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Chip attach is the bottleneck operation in semiconductor assembly. Chip attach scheduling is in nature unrelated parallel machine
scheduling considering practical issues, for example, machine-job qualification, sequence-dependant setup times, initial machine
status, and engineering time. The major scheduling objective is to minimize the total weighted unsatisfied Target Production
Volume in the schedule horizon. To apply 𝑄-learning algorithm, the scheduling problem is converted into reinforcement learning
problem by constructing elaborate system state representation, actions, and reward function. We select five heuristics as actions
and prove the equivalence of reward function and the scheduling objective function. We also conduct experiments with industrial
datasets to compare the 𝑄-learning algorithm, five action heuristics, and Largest Weight First (LWF) heuristics used in industry.
Experiment results show that 𝑄-learning is remarkably superior to the six heuristics. Compared with LWF, 𝑄-learning reduces
three performance measures, objective function value, unsatisfied Target Production Volume index, and unsatisfied job type index,
by considerable amounts of 80.92%, 52.20%, and 31.81%, respectively.

1. Introduction

Semiconductor manufacturing consists of four basic steps:
wafer fabrication, wafer sort, assembly, and test. Assembly
and test are back-end steps. Semiconductor assembly con-
tains many operations, such as reflow, wafer mount, saw,
chip attach, deflux, EPOXY, cure, and PEVI. IS factory is a
site for back-end semiconductor manufacturing where chip
attach is the bottleneck operation in the assembly line. In
terms of Theory of Constraints (TOC), the capacity of a
shop floor depends on the capacity of the bottleneck, and
a bottleneck operation gives a tremendous impact upon
the performance of the whole shop floor. Consequently,
scheduling of chip attach station has a significant effect on
the performance of the assembly line. Chip attach is per-
formed in a station which consists of ten parallel machines;
thus, chip attach scheduling in nature is some form of
unrelated parallel machine scheduling under certain realistic
restrictions.

Research on unrelated parallel machine scheduling
focuses on two sorts of criteria: completion time or flow time
related criteria and due date related criteria. Weng et al. [1]

proposed a heuristic algorithm called “Algorithm 9” to
minimize the total weighted completion time with setup
consideration. Algorithm 9 was demonstrated to be superior
to six heuristic algorithms. Gairing et al. [2] presented an
effective combinatorial approximate algorithm for makespan
objective. Mosheiov [3] and Mosheiov and Sidney [4] con-
verted an unrelated parallel machine scheduling problem
with total flow time objective into polynomial number of
assignment problems. The scheduling problem was tack-
led by solving the derived assignment problems. Yu et
al. [5] formulated unrelated parallel machine scheduling
problems as mixed integer programming and dealt with
them using Lagrangian Relaxation. They examined six mea-
sures such as makespan and mean flow time. Promising
results were achieved compared with a modified FIFO
method.

Besides completion time or flow time related criteria,
tardiness objectives are also employed frequently. Dispatch-
ing rules are widely applied to production scheduling with a
tardiness objective, such as EarliestDueDate (EDD), Shortest
Processing Time (SPT), Critical Ratio (CR), Minimal Slack
(MS), Modified Due Date (MDD) [6, 7], Apparent Tardiness
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Cost (ATC) [8, 9], and COVERT [10–12]. More complicated
heuristic algorithms and local search methods are also
developed. Bank and Werner [13] addressed the problem of
minimizing the weighted sum of linear earliness and tardi-
ness penalties in unrelated parallel machine scheduling.They
derived some structural properties useful to searching for
an approximate solution and proposed various constructive
and iterative heuristic algorithms. Liaw et al. [14] found the
efficient lower and upper bounds of minimizing the total
weighted tardiness by a two-phase heuristics based on the
solution to an assignment problem. They also presented a
branch-and-bound algorithm incorporating various domi-
nance rules. Kim et al. [15] studied batch scheduling of
unrelated parallel machines with a total weighted tardiness
objective and setup times consideration. They examined
four search heuristics for this problem: the earliest weighted
due date, the shortest weighted processing time, the two-
level batch scheduling heuristic, and the simulated annealing
method.

We are concerned in the paper about a particular Target
Production Volume (TPV) oriented optimization objective.
In real production in IS factory, the planning department
figures out the TPV of each job type on chip attach operation
in a schedule horizon. Thus, the major objective of chip
attach scheduling is to meet TPVs to the fullest extent (see
Section 2.1 for details). We apply reinforcement learning
(RL), an artificial intelligence method, for this study. We first
present a brief concept of reinforcement learning.

1.1. 𝑄-Learning. Reinforcement learning is a machine learn-
ing method proposed to approximately solve large-scale
Markov Decision Process (MDP) or Semi-Markov Decision
Process (SMDP) problems. Reinforcement learning problem
is a model in which an agent learns to select optimal or
near-optimal actions for achieving its long-term goals (to
maximize the total or average reward) through trial-and-
error interactions with dynamic environment. In this paper,
we address RL problems of episodic task, that is, problems
with a terminal state. Sutton and Barto [16] defined four key
elements of RL algorithms: policy, reward function, value
function, andmodel of the environment. A policy determines
the agent’s action at each state. A reward function determines
the payment on transition from one state to another. A value
function specifies the value of a state or a state-action pair
in the long run, the expected total reward for an episode.
By learning from interaction between the agent and its
environment, value-based RL algorithms aim to approxi-
mate the optimal state or action value function through
iteration and thus find a near-optimal policy. Compared
with dynamic programming, RL algorithms do not need to
know the transition probability and reduce the computational
effort.

𝑄-learning is one of the most widely applied RL algo-
rithms based on value iteration. 𝑄-learning was first pro-
posed by Watkins [17]. Convergence results of tabular 𝑄-
learning were obtained by Watkins and Dayan [18], Jaakkola
et al. [19], and Tsitsiklis [20]. Bertsekas and Tsitsiklis [21]
demonstrated that 𝑄-learning produces the optimal policy

in discounted reward problems under certain conditions. 𝑄-
learning uses𝑄(𝑠, 𝑎), called𝑄-value, to represent the value of
a state-action pair. 𝑄(𝑠, 𝑎) is defined as follows:

𝑄 (𝑠, 𝑎) = ∑

𝑠

∈𝑆

𝑝 (𝑠, 𝑎, 𝑠


) [𝑟 (𝑠, 𝑎, 𝑠


) + 𝛾𝑉
∗

(𝑠


)] , (1)

where 𝑆 denotes the state space, 𝑝(𝑠, 𝑎, 𝑠) denotes the
transition probability from 𝑠 to 𝑠 taking action a, 𝑟(𝑠, 𝑎, 𝑠)
denotes the reward on transition from 𝑠 to 𝑠 taking action a,
𝛾 (0 < 𝛾 ≤ 1) is a discounted factor, and 𝑉∗(⋅) is the optimal
state value function.

In terms of Bellman optimality function, the following
holds for arbitrary 𝑠 ∈ 𝑆, where𝐴(𝑠) denotes the set of actions
available for state 𝑠:

𝑉
∗

(𝑠) = max
𝑎∈𝐴(𝑠)

𝑄 (𝑠, 𝑎) . (2)

From (1) and (2), the following equation holds:

𝑄 (𝑠, 𝑎) = ∑

𝑠

∈𝑆

𝑝 (𝑠, 𝑎, 𝑠


) [𝑟 (𝑠, 𝑎, 𝑠


) + 𝛾 max
𝑎

∈𝐴(𝑠)

𝑄 (𝑠


, 𝑎


)]

∀ (𝑠, 𝑎) .

(3)

Equation (3) is the basic transformation of 𝑄-learning
algorithm. The step-size version of 𝑄-learning is

𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼[𝑟 (𝑠, 𝑎, 𝑠


) + 𝛾 max
𝑎

∈𝐴(𝑠)

𝑄 (𝑠


, 𝑎


)

− 𝑄 (𝑠, 𝑎)] , ∀ (𝑠, 𝑎) ,

(4)

where 𝛼 (0 < 𝛼 ≤ 1) is learning rate. Using historical
samples or simulation experiments, 𝑄-learning obtains a
near-optimal policy by driving action-value function,𝑄(𝑠, 𝑎),
towards the optimal action-value function, 𝑄∗(𝑠, 𝑎), through
iteration based on formula (4).

Recently, RL has drawn attention from production
scheduling. S. Riedmiller and M. Riedmiller [22] used 𝑄-
learning to solve stochastic and dynamic job shop scheduling
problem with the overall tardiness objective. Some typical
heuristic dispatching rules, SPT, LPT, EDD, and MS, were
chosen as actions and comparedwith the𝑄-learningmethod.
Aydin and Öztemel [23] applied a 𝑄-learning algorithm
to minimize the mean tardiness of dynamic job shop
scheduling. Their results showed that the RL-scheduling
system outperformed the use of each of the three rules
(SPT, COVERT, and CR) individually with mean tardiness
objective in most of the testing cases. Hong and Prabhu
[24] formulated setup minimization problem (minimizing
the sum of due date deviation and setup cost) in JIT man-
ufacturing systems as an SMDP and solved it by tabular 𝑄-
learningmethod. Experiment results showed that𝑄-learning
algorithms achieved significant performance improvement
over usual dispatching rules such as EDD in complex real-
time shop floor control problems for JIT production. Wang
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and Usher [25] applied 𝑄-learning to select dispatching
rules for the single machine scheduling problem. Csáji et al.
[26] proposed an adaptive iterative distributed scheduling
algorithm operated in a market-based production control
system, where every machine and job is associated with its
own software agent. Singh et al. [27] proposed an online
reinforcement learning algorithm for call admission control.
The approach optimized the SMDP performance criterion
with respect to a family of parameterized policies. Multi-
agent reinforcement learning system has also been applied to
scheduling or control problems, for example, Kaya and Alhajj
[28], Paternina-Arboleda and Das [29], Mariano-Romero et
al. [30], Vengerov [31], Iwamura et al. [32].

Applications of RL algorithms to scheduling problems
have not been thoroughly explored in the prior studies. In
this study, we employ 𝑄-learning algorithm to resolve chip
attach scheduling problem and achieve overwhelming exper-
imental results compared with six heuristic algorithms. The
remainder of this paper is organized as follows. We describe
the problem and convert it into RL problem explicitly in
Section 2, present the RL algorithm in Section 3, conduct the
computational experiments and analysis in Section 4, and
draw conclusions in Section 5.

2. RL Formulation

2.1. Problem Statement. The scheduling problem concerned
in this paper is described as follows. The work station for
chip attach operation consists of 𝑚 parallel machines and
processes 𝑛 types of jobs. The bigger the weight of a job type
is, the more important it is. Each job needs to be processed
on one machine only and one machine processes at most
one job at a time. Any job type (say, 𝑗) is only allowed to be
processed on subset𝑀

𝑗
of the𝑚 parallel machines. The jobs

of the same type 𝑗 have a deterministic processing time 𝑝
𝑖,𝑗

(1 ≤ 𝑖 ≤ 𝑚; 1 ≤ 𝑗 ≤ 𝑛) if they are processed on machine
𝑖. The machines are unrelated; that is, 𝑝

𝑖,𝑗
is independent of

𝑝
𝑘,𝑗

for all jobs 𝑗 and all machines 𝑖 ̸= 𝑘. The production is
lot based. Normally, one lot contains more than 1000 units.
Thus, the processing time is the time for processing one lot
and processing is nonpreemptive (i.e., once a machine starts
processing one lot, it cannot process another one until it
completely processes this lot). Setup time between job type
𝑗1 and 𝑗2 is 𝑠

𝑗1,𝑗2
(1 ≤ 𝑗1, 𝑗2 ≤ 𝑛). The setup times are

deterministic and sequence dependant. Trivially, 𝑠
𝑗,𝑗

= 0

holds for arbitrary 𝑗 (1 ≤ 𝑗 ≤ 𝑛) and 𝑠
𝑗,𝑥
+ 𝑠
𝑥,𝑞
> 𝑠
𝑗,𝑞

holds for
arbitrary 𝑗, 𝑥, 𝑞 (1 ≤ 𝑗, 𝑥, 𝑞 ≤ 𝑛).

The usage of a machine is considered to be in one of
two categories: engineering time (e.g.,maintenance time) and
production time. We only need to schedule the production
in production time, the total available time in a schedule
horizon deducting the engineering time. Production time is
divided into initial production time and normal production
time. We consider the initial machine status in the schedule
horizon. If a machine is processing a lot, called “initial lot,”
at the beginning of a schedule horizon, it is not allowed
to process any other lot until it completely processes the
remaining units in the initial lot (called initial volume).

The time for processing the unprocessed initial volume in
the initial lot is called “initial production time.” Since the
production of nonbottleneck operations is determined by
the bottleneck operation, we assume that the jobs are always
available for processing on chip attach operation when they
are needed.

The primary objective of chip attach scheduling is to
minimize the total weighted unsatisfied TPV of a schedule
horizon. Since equipment of semiconductor manufacturing
is very expensive, machine utilization should be kept in a
high level. Hence, on the premise that TPVs of all job types
are entirely satisfied, the secondary objective of chip attach
scheduling is to process asmuch asweighted excess volume to
relieve the burden of the next schedule horizon.The objective
function is formulated as follows:

min
𝑛

∑

𝑗=1

𝑤
𝑗
(𝐷
𝑗
− 𝑌
𝑗
)
+

−

𝑛

∑

𝑗=1

𝑤
𝑗

𝑀
(𝑌
𝑗
− 𝐷
𝑗
)
+

, (5)

where 𝑤
𝑗
(1 ≤ 𝑗 ≤ 𝑛) is the weight per unit of job type 𝑗, 𝐷

𝑗

(1 ≤ 𝑗 ≤ 𝑛) is the predetermined TPV of job type 𝑗 (including
the initial volume in the initial lots), and 𝑌

𝑗
(1 ≤ 𝑗 ≤ 𝑛) is

the processed volume of job type 𝑗. 𝐷
𝑗
can be represented as

follows:

𝐷
𝑗
=

𝑚

∑

𝑖=1

𝜔 (𝑖, 𝑗) 𝐼
𝑖
+ 𝑘
𝑗
𝐿 (𝑘

𝑗
= 0, 1, . . .) , (6)

where 𝐼
𝑖
denotes the initial volume in the initial lot processed

bymachine 𝑖 at the beginning of the schedule horizon, 𝐿 is lot
size, and

𝜔 (𝑖, 𝑗) =

{{

{{

{

1, if machine 𝑖 is processing job type 𝑗
in the beginning of the schedule horizon,

0, otherwise.
(7)

Calculation of 𝑌
𝑗
is rate based, interpreted as follows.

Suppose machine 𝑖 processes lot 𝐿𝑄 (belonging to job type
𝑞), proceeding lot 𝐿𝐽 (belonging to job type 𝑗). Let 𝑡𝑠

𝐿𝐽
denote

the start time of setup for 𝐿𝐽; then, the completion time of 𝐿𝐽
is 𝑡𝑠
𝐿𝐽
+𝑠
𝑞,𝑗
+𝑝
𝑖,𝑗
. LetΔ𝑌

𝑖,𝑗
(𝑡) denote the increase of processed

volume of job type 𝑗 because of processing 𝐿𝐽 on machine 𝑖
from time 𝑡𝑠

𝐿𝐽
to 𝑡, defined as follows:

Δ𝑌
𝑖,𝑗
(𝑡) =

(𝑡 − 𝑡𝑠
𝐿𝐽
) 𝐿

𝑠
𝑞,𝑗
+ 𝑝
𝑖,𝑗

(𝑡𝑠
𝐿𝐽
≤ 𝑡 ≤ 𝑡𝑠

𝐿𝐽
+ 𝑠
𝑞,𝑗
+ 𝑝
𝑖,𝑗
) . (8)

𝑀 is a positive number which is large enough. 𝑀 is set
following the next inequality:

𝑀 > max{
(𝑤
𝑞
+ 𝑤
𝑥
) (𝑠V,𝑗 + 𝑝𝑖,𝑗)

𝑤
𝑗
𝑝
𝑖,𝑞

,

𝑤
𝑞
(𝑠V,𝑥 + 𝑝𝑖,𝑥) (𝑠𝑥,𝑗 + 𝑝𝑖,𝑗)

𝑝
𝑖,𝑗
min
1≤𝑐≤𝑚,1≤𝑎,𝑏,𝑘≤𝑛

{𝑤
𝑘
(𝑠
𝑎,𝑏
+ 𝑝
𝑐,𝑏
)}
}

(∀1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗, 𝑞, V, 𝑥 ≤ 𝑛) .

(9)
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For an optimal schedule minimizing objective function
(5), if (9) holds and there exists 𝑗 (1 ≤ 𝑗 ≤ 𝑛) such that 𝑌

𝑗
>

𝐷
𝑗
, then

𝑌
𝑗
+

𝑚

∑

𝑖=1

𝛽 (𝑖, 𝑗) 𝑈
𝑖
≥ 𝐷
𝑗

(∀1 ≤ 𝑗 ≤ 𝑛) , (10)

where 𝑈
𝑖
denotes the unprocessed volume in the last lot

processed by machine 𝑖 at the end of this schedule horizon
(i.e., the initial volume of the next schedule horizon) and

𝛽 (𝑖, 𝑗)

=

{{

{{

{

1, if machine 𝑖 is processing job type 𝑗 at
the end of the schedule horizon,

0, otherwise.

(11)

According to inequality (9), in any schedule minimizing
objective function (5), any machine will not process a lot
belonging to a job type whose TPV has been satisfied until
TPV of any other job types is also fully satisfied. In other
words, inequality (9) guarantees that the objective function
takesminimization of the total weighted unsatisfied TPV (the
first item of objective function (5)) as the first priority. The
fundamental problem in applying reinforcement learning
to scheduling is to convert scheduling problems into RL
problems, including representation of state, construction of
actions, and definition of reward function.

2.2. State Representation and Transition Probability. We first
define the state variables. State variables describe the major
characteristics of the system and are capable of tracking
the change of the system status. The system state can be
represented by the vector

𝜑 = [𝑇
0

𝑖
(1 ≤ 𝑖 ≤ 𝑚) ; 𝑇

𝑖
(1 ≤ 𝑖 ≤ 𝑚) ; 𝑡

𝑖
(1 ≤ 𝑖 ≤ 𝑚) ;

𝑑
𝑗
(1 ≤ 𝑗 ≤ 𝑛) ; 𝑒

𝑖
(1 ≤ 𝑖 ≤ 𝑚)] ,

(12)

where 𝑇0
𝑖
(1 ≤ 𝑖 ≤ 𝑚) denotes the job type of which the

latest lot completely processed on machine 𝑖, 𝑇
𝑖
(1 ≤ 𝑖 ≤ 𝑚)

denotes the job type of which the lot being processed on
machine 𝑖 (𝑇

𝑖
equals zero if machine 𝑖 is idle), 𝑡

𝑖
(1 ≤ 𝑖 ≤ 𝑚),

denotes the time starting from the beginning of the latest
setup on machine 𝑖 (for convenience, we assume that there
is a zero-time setup if 𝑇0

𝑖
= 𝑇
𝑖
), 𝑑
𝑗
(1 ≤ 𝑗 ≤ 𝑛) is unsatisfied

TPV (i.e., (𝐷
𝑗
− 𝑌
𝑗
)
+), and 𝑒

𝑖
(1 ≤ 𝑖 ≤ 𝑚) represents the

unscheduled normal production time of machine 𝑖.
Considering the initial status of machines, the initial

system state of the schedule horizon is

𝑠
0
= [𝑇
0

𝑖,0
(1 ≤ 𝑖 ≤ 𝑚) ; 𝑇

𝑖,0
(1 ≤ 𝑖 ≤ 𝑚) ; 𝑡

𝑖,0
(1 ≤ 𝑖 ≤ 𝑚) ;

𝐷
𝑗
(1 ≤ 𝑗 ≤ 𝑛) ;TH − 𝜎

𝑖
− TE
𝑖
(1 ≤ 𝑖 ≤ 𝑚)] ,

(13)

where TH denotes the overall available time in the schedule
horizon, 𝜎

𝑖
denotes the initial production time of machine 𝑖,

and TE
𝑖
denotes the engineering time of machine 𝑖.

There are two kinds of events triggering state transitions:
(1) completion of processing a lot on one or more machines;
(2) any machine’s normal production time is entirely sched-
uled. If the triggering event is completion of processing, the
state at the decision-making epoch is represented as

𝑠
𝑑
= [𝑇
0

𝑖,𝑑
(1 ≤ 𝑖 ≤ 𝑚) ; 𝑇

𝑖,𝑑
(1 ≤ 𝑖 ≤ 𝑚) ; 𝑡

𝑖,𝑑
(1 ≤ 𝑖 ≤ 𝑚) ;

𝑑
𝑗,𝑑
(1 ≤ 𝑗 ≤ 𝑛) ; 𝑒

𝑖,𝑑
(1 ≤ 𝑖 ≤ 𝑚)] ,

(14)

where {𝑖 | 𝑇
𝑖,𝑑
= 0, 1 ≤ 𝑖 ≤ 𝑚} ̸=Φ. If 𝑇

𝑖,𝑑
= 0 (machine

𝑖 is idle), then 𝑡
𝑖,𝑑
= 0. If the triggering event is using up a

machine’s normal production time, then {𝑖 | 𝑒
𝑖,𝑑
= 0, 1 ≤ 𝑖 ≤

𝑚} ̸=Φ.
Assume that after taking action 𝑎, the system state

immediately transfers form 𝑠
𝑑
to an interim state, 𝑠, as follows:

𝑠 = [𝑇
0

𝑖
(1 ≤ 𝑖 ≤ 𝑚) ; 𝑇

𝑖
(1 ≤ 𝑖 ≤ 𝑚) ; 𝑡

𝑖
(1 ≤ 𝑖 ≤ 𝑚) ;

𝑑
𝑗
(1 ≤ 𝑗 ≤ 𝑛) ; 𝑒

𝑖
(1 ≤ 𝑖 ≤ 𝑚)] ,

(15)

where 𝑇
𝑖
> 0 for all 𝑖 (1 ≤ 𝑖 ≤ 𝑚); that is, all machines are

busy.
Let Δ𝑡 denote the sojourn time at state 𝑠; then, Δ𝑡 =

min{min
1≤𝑖≤𝑚

{𝑠
𝑇
0

𝑖
,𝑇
𝑖

+ 𝑝
𝑖,𝑇
𝑖

− 𝑡
𝑖
}, min

1≤𝑖≤𝑚
{𝑒
𝑖
| 𝑒
𝑖
> 0}}. Let

Λ = {𝑖 | 𝑠
𝑇
0

𝑖
,𝑇
𝑖

+ 𝑝
𝑖,𝑇
𝑖

− 𝑡
𝑖
= Δ𝑡}; then, the state at the next

decision-making epoch is represented as

𝑠


= [𝑇
𝑖
(𝑖 ∈ Λ) , 𝑇

0

𝑖
(𝑖 ∉ Λ) ; 𝑇

𝑖
= 0 (𝑖 ∈ Λ) , 𝑇

𝑖
(𝑖 ∉ Λ) ;

0 (𝑖 ∈ Λ) , 𝑡
𝑖
+ Δ𝑡 (𝑖 ∉ Λ) ;

𝑑
𝑗
−
Δ𝑡𝐿∑

𝑚

𝑖=1
𝛿
𝑌
(𝑇
𝑖
, 𝑗)

𝑠
𝑇
0

𝑖
,𝑗
+ 𝑝
𝑖,𝑗

(1 ≤ 𝑗 ≤ 𝑛) ;

max {𝑒
𝑖
− Δ𝑡, 0} (1 ≤ 𝑖 ≤ 𝑚)] ,

(16)

where

𝛿
𝑌
(𝑇
𝑖
, 𝑗) = {

1, if 𝑇
𝑖
= 𝑗,

0, if 𝑇
𝑖
̸= 𝑗.

(17)

Apparently we have 𝑃𝑎
𝑠
𝑑
,𝑠
 = 1, where 𝑃𝑎

𝑠
𝑑
,𝑠
 denotes the one-

step transition probability from state 𝑠
𝑑
to state 𝑠 under

action 𝑎. Let 𝑠
𝑢
and 𝜏

𝑢
denote the system state and time,

respectively, at the 𝑢th decision-making epoch. It is easy to
show that
𝑃 {𝑠
𝑢+1

= 𝑋, 𝜏
𝑢+1

− 𝜏
𝑢
≤ 𝑡 | 𝑠

0
, 𝑠
1
, . . . , 𝑠

𝑢
; 𝜏
0
, 𝜏
1
, . . . , 𝜏

𝑢
}

= 𝑃 {𝑠
𝑢+1

= 𝑋, 𝜏
𝑢+1

− 𝜏
𝑢
≤ 𝑡 | 𝑠

𝑢
; 𝜏
𝑢
} ,

(18)

where 𝜏
𝑢+1

− 𝜏
𝑢
is the sojourn time at state 𝑠

𝑢
. That is,

the decision process associated with (𝑠, 𝜏) is a Semi-Markov
Decision Process with particular transition probability and
sojourn times. The terminal state of an episode is

𝑠
𝑒
= [𝑇
0

𝑖,𝑒
(1 ≤ 𝑖 ≤ 𝑚) ; 𝑇

𝑖,𝑒
(1 ≤ 𝑖 ≤ 𝑚) ; 𝑡

𝑖,𝑒
(1 ≤ 𝑖 ≤ 𝑚) ;

𝑑
𝑗,𝑒
(1 ≤ 𝑗 ≤ 𝑛) ; 0 (1 ≤ 𝑖 ≤ 𝑚)] .

(19)
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2.3. Action. Prior domain knowledge can be utilized to fully
exploit the agent’s learning ability. Apparently, an optimal
schedule must be nonidle (i.e., any machine has no idle time
during the whole schedule). It may happen that more than
one machine are free at the same decision-making epoch.
An action determines which lot to be processed on which
machine. In the following, we define seven actions using
heuristic algorithms.

Action 1. Select jobs by WSPT heuristics as follows.

Algorithm 1. WSPT heuristics.

Step 1. Let SM denote the set of free machines at a decision-
making epoch.

Step 2. Choose machine 𝑘 to process job type 𝑞, with (𝑘, 𝑞) =
argmin

(𝑖,𝑗)
{(𝑠
𝑇
0

𝑖
,𝑗
+ 𝑝
𝑖,𝑗
)/𝑤
𝑗
| 1 ≤ 𝑗 ≤ 𝑛, 𝑖 ∈ 𝑀

𝑗
and 𝑖 ∈ SM}.

Step 3. Remove 𝑘 fromSM. If SM ̸= Φ, go to Step 2; otherwise,
the algorithm halts.

Action 2. Select jobs byMWSPT (modifiedWSPT) heuristics
as follows.

Algorithm 2. MWSPT heuristics.

Step 1. Define SM as Step 1 in Algorithm 1, and let SJ denote
the set of job types whose TPVs have not been satisfied at a
decision-making epoch; that is, SJ = {𝑗 | 𝑌

𝑗
< 𝐷
𝑗
, 1 ≤ 𝑗 ≤ 𝑛}.

If SJ = Φ, go to Step 4.

Step 2. Choose job type 𝑞 to process on machine 𝑘, with
(𝑘, 𝑞) = argmin

(𝑖,𝑗)
{(𝑠
𝑇
0

𝑖
,𝑗
+ 𝑝
𝑖,𝑗
)/𝑤
𝑗
| 𝑗 ∈ SJ, 𝑖 ∈ 𝑀

𝑗
and

𝑖 ∈ SM}.

Step 3. Remove 𝑘 from SM. Set 𝑌
𝑞
= 𝑌
𝑞
+ 𝐿 and update SJ. If

SJ ̸= Φ and SM ̸= Φ, go to Step 2; if SJ = Φ and SM ̸= Φ, go to
Step 4; otherwise, the algorithm halts.

Step 4. Choose machine 𝑘 to process job type 𝑞, with (𝑘, 𝑞) =
argmin

(𝑖,𝑗)
{(𝑠
𝑇
0

𝑖
,𝑗
+ 𝑝
𝑖,𝑗
)/𝑤
𝑗
| 1 ≤ 𝑗 ≤ 𝑛, 𝑖 ∈ 𝑀

𝑗
and 𝑖 ∈ SM}.

Step 5. Remove 𝑘 fromSM. If SM ̸= Φ, go to Step 4; otherwise,
the algorithm halts.

Action 3. Select jobs by Ranking Algorithm (RA) as follows.

Algorithm 3. Ranking Algorithm.

Step 1. Define SM and SJ as Step 1 in Algorithm 2. If SJ = Φ,
go to Step 5.

Step 2. For each job type 𝑗 (𝑗 ∈ SJ), sort the machines in
increasing order of (𝑠

𝑉
𝑖
,𝑗
+𝑝
𝑖,𝑗
) (1 ≤ 𝑖 ≤ 𝑚), where𝑉

𝑖
is defined

as follows.

𝑉
𝑖
= {

𝑇
𝑖
, if machine 𝑖 is busy

𝑇
0

𝑖
, if machine 𝑖 is free

(1 ≤ 𝑖 ≤ 𝑚) . (20)

Let 𝑔
𝑖,𝑗
(1 ≤ 𝑔

𝑖,𝑗
≤ 𝑚) denote the order of machine 𝑖 (1 ≤ 𝑖 ≤

𝑚) for job type 𝑗 (1 ≤ 𝑗 ≤ 𝑛).

Step 3. Choose job 𝑞 to process on machine 𝑘, with (𝑘, 𝑞) =
argmin

(𝑖,𝑗)
{𝑔
𝑖,𝑗
| 𝑗 ∈ SJ, 𝑖 ∈ 𝑀

𝑗
and 𝑖 ∈ SM}. If there

exist two or more machine-job combinations (say, machine-
job combination (𝑖

1
, 𝑗
1
), (𝑖
2
, 𝑗
2
), . . ., (𝑖

ℎ
, 𝑗
ℎ
)) with the same

minimal order; that is, (𝑖
𝑒
, 𝑗
𝑒
) = argmin

(𝑖,𝑗)
{𝑔
𝑖,𝑗
| 𝑗 ∈ SJ, 𝑖 ∈

𝑀
𝑗
and 𝑖 ∈ SM} holds for 𝑒 (1 ≤ 𝑒 ≤ ℎ), then choose job type

𝑗
𝑒
to process onmachine 𝑖

𝑒
, with (𝑖

𝑒
, 𝑗
𝑒
) = argmin

(𝑖,𝑗)
{(𝑠
𝑉𝑖
𝑒
,𝑗
𝑒

+

𝑝
𝑖
𝑒
,𝑗
𝑒

)/𝑤
𝑗
𝑒

| 1 ≤ 𝑒 ≤ ℎ}.

Step 4. Remove 𝑘 or 𝑖
𝑒
fromSM. Set𝑌

𝑞
= 𝑌
𝑞
+𝐿 or𝑌

𝑗
𝑒

= 𝑌
𝑗
𝑒

+𝐿

and update SJ. If SJ ̸= Φ and SM ̸= Φ, go to Step 3; if SJ = Φ and
SM ̸= Φ, go to Step 5; otherwise, the algorithm halts.

Step 5. Choose job 𝑞 to process on machine 𝑘, with (𝑘, 𝑞) =
argmin

(𝑖,𝑗)
{𝑔
𝑖,𝑗
| 1 ≤ 𝑗 ≤ 𝑛, 𝑖 ∈ 𝑀

𝑗
and 𝑖 ∈ SM}. If there

exist two or more machine-job combinations (say, machine-
job combinations (𝑖

1
, 𝑗
1
), (𝑖
2
, 𝑗
2
),. . ., (𝑖

ℎ
, 𝑗
ℎ
)) with the same

minimal order, choose job type 𝑗
𝑒
to process on machine 𝑖

𝑒
,

with (𝑖
𝑒
, 𝑗
𝑒
) = argmin

(𝑖,𝑗)
{(𝑠
𝑉𝑖
𝑒
,𝑗
𝑒

+ 𝑝
𝑖
𝑒
,𝑗
𝑒

)/𝑤
𝑗
𝑒

| 1 ≤ 𝑒 ≤ ℎ}.

Step 6. Remove 𝑘 or 𝑖
𝑒
from SM. If SM ̸= Φ, go to Step 5;

otherwise, the algorithm halts.

Action 4. Select jobs by LFM-MWSPT heuristics as follows.

Algorithm 4. LFM-MWSPT heuristics.

Step 1. Define SM and SJ as Step 1 in Algorithm 2.

Step 2. Select a free machine (say, 𝑘) from SM by LFM (Least
Flexible Machine; see [33]) rule and choose a job type to
process on machine 𝑘 following MWSPT heuristics.

Step 3. Remove 𝑘 fromSM. If SM ̸= Φ, go to Step 2; otherwise,
the algorithm halts.

Action 5. Select jobs by LFM-RA heuristics as follows.

Algorithm 5. LFM-RA heuristics.

Step 1. Define SM and SJ as Step 1 in Algorithm 2.

Step 2. Select a free machine (say, 𝑘) from SM by LFM rule
and choose a job type to process on machine 𝑘 following
Ranking Algorithm.

Step 3. Remove 𝑘 fromSM. If SM ̸= Φ, go to Step 2; otherwise,
the algorithm halts.

Action 6. Each free machine selects the same job type as the
latest one it processed.

Action 7. Select no job.

At the start of a schedule horizon, the system is at
initial state 𝑠

0
. If there are free machines, they select jobs to

process by taking one of Actions 1–6; otherwise, Action 7 is
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chosen. Afterwards, when anymachine completes processing
a lot or any machine’s normal production time is completely
scheduled, the system transfers into a new state, 𝑠

𝑢
. The

agent selects an action at this decision-making epoch and the
system state transfers into an interim state, 𝑠. When, again,
any machine completes processing a lot or any machine’s
normal production time used is up, the system transfers into
the next decision-making state 𝑠

𝑢+1
and the agent receive

reward 𝑟
𝑢+1

, which is computed due to 𝑠
𝑢
and the sojourn

time between the two transitions into 𝑠
𝑢
and 𝑠
𝑢+1

(as shown
in Section 2.4). The previous procedure is repeated until a
terminal state is attained. An episode is a trajectory from the
initial state to a terminal state of a schedule horizon. Action
7 is available only at the decision-making states when all
machines are busy.

2.4. Reward Function. A reward function follows several
disciplines. It indicates the instant impact of an action on the
schedule, that is, to link the action with immediate reward.
Moreover, the accumulated reward indicates the objective
function value; that is, the agent receives large total reward
for small objective function value.

Definition 6 (reward function). Let 𝐾 denote the number of
decision-making epoch during an episode, 𝑡

𝑢
(0 ≤ 𝑢 < 𝐾)

the time at the 𝑢th decision-making epoch, 𝑇
𝑖,𝑢

(1 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑢 ≤ 𝐾) the job type of the lot which machine 𝑖 processes
during time interval (𝑡

𝑢−1
, 𝑡
𝑢
],𝑇0
𝑖,𝑢
the job type of the lotwhich

precedes the lot machine 𝑖 processes during time interval
(𝑡
𝑢−1
, 𝑡
𝑢
], and 𝑌

𝑗
(𝑡
𝑢
) the processed volume of job type 𝑗 by

time 𝑡
𝑢
. It follows that

𝑌
𝑗
(𝑡
𝑢
) − 𝑌
𝑗
(𝑡
𝑢−1
) =

𝑚

∑

𝑖=1

(𝑡
𝑢
− 𝑡
𝑢−1
) 𝛿 (𝑖, 𝑗) 𝐿

𝑠
𝑇
0

𝑖,𝑢
,𝑇
𝑖,𝑢

+ 𝑝
𝑖,𝑇
𝑖,𝑢

, (21)

where 𝛿(𝑖, 𝑗) is an indicator function defined as

𝛿 (𝑖, 𝑗) = {
1, 𝑇

𝑖,𝑢
= 𝑗,

0, 𝑇
𝑖,𝑢

̸= 𝑗.
(22)

Let 𝑟
𝑢
(𝑢 = 1, 2, . . . , 𝐾) denote the reward function at the

𝑢th decision-making epoch. 𝑟
𝑢
is defined as

𝑟
𝑢
=

𝑛

∑

𝑗=1

min{
𝑚

∑

𝑖=1

(𝑡
𝑢
− 𝑡
𝑢−1
) 𝛿 (𝑖, 𝑗) 𝐿

𝑠
𝑇
0

𝑖,𝑢
,𝑇
𝑖,𝑢

+ 𝑝
𝑖,𝑇
𝑖,𝑢

, [𝐷
𝑗
− 𝑌
𝑗
(𝑡
𝑢−1
)]
+

}𝑤
𝑗

+max{
𝑚

∑

𝑖=1

(𝑡
𝑢
− 𝑡
𝑢−1
) 𝛿 (𝑖, 𝑗) 𝐿

𝑠
𝑇
0

𝑖,𝑢
,𝑇
𝑖,𝑢

+ 𝑝
𝑖,𝑇
𝑖,𝑢

− [𝐷
𝑗
− 𝑌
𝑗
(𝑡
𝑢−1
)]
+

, 0}

×
𝑤
𝑗

𝑀
.

(23)

The reward function has the following property.

Theorem 7. Maximization of the total reward 𝑅 in an episode
is equivalent to minimization of objective function (5).

Proof. The total reward in an episode is

𝑅 =

𝐾

∑
𝑢=1

𝑟
𝑢

=

𝐾

∑
𝑢=1

𝑛

∑

𝑗=1

min{
𝑚

∑

𝑖=1

(𝑡
𝑢
− 𝑡
𝑢−1
) 𝛿 (𝑖, 𝑗) 𝐿

𝑠
𝑇
0

𝑖,𝑢
,𝑇
𝑖,𝑢

+ 𝑝
𝑖,𝑇
𝑖,𝑢

,

[𝐷
𝑗
− 𝑌
𝑗
(𝑡
𝑢−1
)]
+

}𝑤
𝑗

+max{
𝑚

∑

𝑖=1

(𝑡
𝑢
− 𝑡
𝑢−1
) 𝛿 (𝑖, 𝑗) 𝐿

𝑠
𝑇
0

𝑖,𝑢
,𝑇
𝑖,𝑢

+ 𝑝
𝑖,𝑇
𝑖,𝑢

− [𝐷
𝑗
− 𝑌
𝑗
(𝑡
𝑢−1
)]
+

, 0}

×
𝑤
𝑗

𝑀

=

𝑛

∑

𝑗=1

𝐾

∑
𝑢=1

min{
𝑚

∑

𝑖=1

(𝑡
𝑢
− 𝑡
𝑢−1
) 𝛿 (𝑖, 𝑗) 𝐿

𝑠
𝑇
0

𝑖,𝑢
,𝑇
𝑖,𝑢

+ 𝑝
𝑖,𝑇
𝑖,𝑢

, [𝐷
𝑗
− 𝑌
𝑗
(𝑡
𝑢−1
)]
+

}

× 𝑤
𝑗

+max{
𝑚

∑

𝑖=1

(𝑡
𝑢
− 𝑡
𝑢−1
) 𝛿 (𝑖, 𝑗) 𝐿

𝑠
𝑇
0

𝑖,𝑢
,𝑇
𝑖,𝑢

+ 𝑝
𝑖,𝑇
𝑖,𝑢

− [𝐷
𝑗
− 𝑌
𝑗
(𝑡
𝑢−1
)]
+

, 0}

×
𝑤
𝑗

𝑀
.

(24)

It is easy to show that

𝑌
𝑗
=

𝐾

∑
𝑢=1

𝑚

∑

𝑖=1

(𝑡
𝑢
− 𝑡
𝑢−1
) 𝛿 (𝑖, 𝑗) 𝐿

𝑠
𝑇
0

𝑖,𝑢
,𝑇
𝑖,𝑢

+ 𝑝
𝑖,𝑇
𝑖,𝑢

. (25)

It follows that

𝑅 =

𝑛

∑

𝑗=1

[𝑤
𝑗
min {𝐷

𝑗
, 𝑌
𝑗
} +

𝑤
𝑗

𝑀
max {0, 𝑌

𝑗
− 𝐷
𝑗
}]

= ∑

𝑗∈Ω
1

[𝑤
𝑗
𝐷
𝑗
+
𝑤
𝑗

𝑀
(𝑌
𝑗
− 𝐷
𝑗
)] + ∑

𝑗∈Ω
2

𝑤
𝑗
𝑌
𝑗

=

𝑛

∑

𝑗=1

𝑤
𝑗
𝐷
𝑗
−
{

{

{

∑

𝑗∈Ω
1

[−
𝑤
𝑗

𝑀
(𝑌
𝑗
− 𝐷
𝑗
)]

+ ∑

𝑗∈Ω
2

𝑤
𝑗
(𝐷
𝑗
− 𝑌
𝑗
)
}

}

}

=

𝑛

∑

𝑗=1

𝑤
𝑗
𝐷
𝑗
−

𝑛

∑

𝑗=1

[𝑤
𝑗
(𝐷
𝑗
− 𝑌
𝑗
)
+

−
𝑤
𝑗

𝑀
(𝑌
𝑗
− 𝐷
𝑗
)
+

] ,

(26)

where Ω
1
= {𝑗 | 𝑌

𝑗
> 𝐷
𝑗
} and Ω

2
= {𝑗 | 𝑌

𝑗
≤ 𝐷
𝑗
}. Since

∑
𝑛

𝑗=1
𝑤
𝑗
𝐷
𝑗
is a constant, it follows that

max𝑅 ⇐⇒ min
𝑛

∑

𝑗=1

[𝑤
𝑗
(𝐷
𝑗
− 𝑌
𝑗
)
+

−
𝑤
𝑗

𝑀
(𝑌
𝑗
− 𝐷
𝑗
)
+

] .

(27)
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3. The Reinforcement Learning Algorithm

The chip attach scheduling problem is converted into an
RL problem with terminal state in Section 2. To apply 𝑄-
learning to solve this RL problem, another issue arises, that is,
how to tailor𝑄-learning algorithm in this particular context.
Since some state variables are continuous, the state space
is infinite. This RL system is not in tabular form, and it is
impossible to maintain 𝑄-values for all state-action pairs.
Thus, we use linear functionwith gradient-descentmethod to
approximate the 𝑄-value function. 𝑄-values are represented
as linear combination of a set of basis functions, Φ

𝑘
(𝑠) (1 ≤

𝑘 ≤ 4𝑚 + 𝑛), as shown in the next formula:

𝑄 (𝑠, 𝑎) =

4𝑚+𝑛

∑

𝑘=1

𝑐
𝑎

𝑘
Φ
𝑘
(𝑠) , (28)

where 𝑐𝑎
𝑘
(1 ≤ 𝑎 ≤ 6, 1 ≤ 𝑘 ≤ 4𝑚 + 𝑛) are the weights of basis

functions. Each state variable corresponds to a basis function.
The following basis functions are defined to normalize the
state variables:

Φ
𝑘
(𝑠)

=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑇
0

𝑘

𝑛
(1 ≤ 𝑘 ≤ 𝑚) ,

𝑇
𝑘−𝑚

𝑛
(𝑚 + 1 ≤ 𝑘 ≤ 2𝑚) ,

𝑡
𝑘−2𝑚

max {𝑠
𝑗1,𝑗2

+ 𝑝
𝑗2
| 1 ≤ 𝑗1 ≤ 𝑛, 1 ≤ 𝑗2 ≤ 𝑛}

(2𝑚 + 1 ≤ 𝑘 ≤ 3𝑚) ,

𝑑
𝑘−3𝑚

𝐷
𝑘−3𝑚

(3𝑚 + 1 ≤ 𝑘 ≤ 3𝑚 + 𝑛) ,

𝑒
𝑘−3𝑚−𝑛

TH
(3𝑚 + 𝑛 + 1 ≤ 𝑘 ≤ 4𝑚 + 𝑛) .

(29)

Let 𝐶𝑎 denote the vector of weights of basis functions as
follows:

𝐶
𝑎

= (𝑐
𝑎

1
, 𝑐
𝑎

2
, . . . , 𝑐

𝑎

4𝑚+𝑛
)
𝑇

. (30)

The RL algorithm is presented as Algorithm 8, where 𝛼
is learning rate, 𝛾 is a discount factor, 𝐸(𝑎) is the vector of
eligibility traces for action 𝑎, 𝛿(𝑎) is an error variable for
action 𝑎, and 𝜆 is a factor for updating eligibility traces.

Algorithm 8. 𝑄-learning with linear gradient-descent func-
tion approximation for chip attach scheduling.

Initialize 𝐶𝑎 and 𝐸(𝑎) randomly. Set parameters 𝛼, 𝛾, and
𝜆.

Let num episode denote the number of episodes having
been run. Set num episode = 0.

While num episode <MAX EPISODE do
Set the current decision-making state 𝑠 ← 𝑠

0
.

While at least one of state variables 𝑒
𝑖
(1 ≤ 𝑖 ≤ 𝑚) is larger

than zero do

Select action 𝑎 for state 𝑠 by 𝜀-greedy policy.
Implement action a. Determine the next event for
triggering state transition and the sojourn time.
Once any machine completes processing a lot or
any machine’s normal production time is completely
scheduled, the system transfers into a new decision-
making state, 𝑠(𝑒

𝑖
(1 ≤ 𝑖 ≤ 𝑚) is a component of 𝑠).

Compute reward 𝑟𝑎
𝑠,𝑠
 .

Update the vector of weights in the approximate 𝑄-
value function of action a:

𝛿 (𝑎) ← 𝑟
𝑎

𝑠,𝑠
 + 𝛾max
𝑎


𝑄(𝑠


, 𝑎


) − 𝑄 (𝑠, 𝑎) ,

𝐸 (𝑎) ← 𝜆𝐸 (𝑎) + ∇
𝐶
𝑎𝑄 (𝑠, 𝑎) ,

𝐶
𝑎

← 𝐶
𝑎

+ 𝛼𝛿 (𝑎) 𝐸 (𝑎) .

(31)

Set 𝑠 ← 𝑠
.

If 𝑒
𝑖
= 0 holds for all 𝑖 (1 ≤ 𝑖 ≤ 𝑚), set num episode =

num episode + 1.

4. Experiment Results

In the past, the company used a manual process to conduct
chip attach scheduling. A heuristic algorithm called Largest
Weight First (LWF) was used as follows.

Algorithm 9 (Largest Weight First (LWF) heuristics). Initial-
ize SMwith the set of all machines (i.e., SM = {𝑖 | 1 ≤ 𝑖 ≤ 𝑚})
and define SJ as Step 1 inAlgorithm 2. Initialize 𝑒

𝑖
(1 ≤ 𝑖 ≤ 𝑚)

with each machine’s normal production time. Set 𝑌
𝑗
= 𝐼
𝑗
,

where 𝐼
𝑗
is the initial production volume of job type 𝑗.

Step 1. Schedule the job types in decreasing order of weights
in order to meet their TPVs.

While SJ ̸= Φ and SM ̸= Φ do
Choose job 𝑞 with 𝑞 = argmax{𝑤

𝑗
| 𝑗 ∈ SJ}.

While SM ∩𝑀
𝑞
̸= Φ and 𝑌

𝑞
< 𝐷
𝑞
do

Choose machine 𝑖 to process job 𝑞, with 𝑖 =
argmin{𝑝

𝑘,𝑞
/𝑤
𝑞
| 𝑘 ∈ SM ∩𝑀

𝑞
}.

If 𝑒
𝑖
− 𝑠
𝑇
0

𝑖
,𝑞
< (𝐷
𝑞
− 𝑌
𝑞
)𝑝
𝑖,𝑞
, then

set 𝑌
𝑞
← 𝑌
𝑞
+ 𝐿(𝑒
𝑖
− 𝑠
𝑇
0

𝑖
,𝑞
)/𝑝
𝑖,𝑞
, 𝑒
𝑖
= 0, and

remove 𝑖 from SM;
else, set 𝑒

𝑖
← 𝑒
𝑖
− 𝑠
𝑇
0

𝑖
,𝑞
− (𝐷
𝑞
− 𝑌
𝑞
)𝑝
𝑖,𝑞
/𝐿, and

𝑌
𝑞
= 𝐷
𝑞
.

𝑇
0

𝑖
= 𝑞

Step 2. Allocate the excess production capacity.

If SM ̸= Φ, then
For each machine 𝑖 (𝑖 ∈ SM),
Choose job 𝑗with 𝑗 = argmax{(𝑒

𝑖
−𝑠
𝑇
0

𝑖
,𝑞
)𝑤
𝑞
/𝑝
𝑖,𝑞
|

1 ≤ 𝑞 ≤ 𝑛}, set 𝑌
𝑗
← 𝑌
𝑗
+ 𝐿(𝑒
𝑖
− 𝑠
𝑇
0

𝑖
,𝑗
)/𝑝
𝑖,𝑗
, 𝑒
𝑖
= 0.
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Table 1: Comparison of objective function values using heuristics and 𝑄-learning.

Dataset no. WSPT MWSPT RA LFM-MWSPT LFM-RA LWF Q-Learning
1 88.867 78.116 59.758 87.689 57.582 42.253 −3.8613
2 138.44 135.86 110.747 126.69 109.07 95.926 7.6657
3 119.01 108.75 124.09 104.25 121.90 83.332 23.775
4 83.681 60.797 39.073 69.405 45.575 33.920 −4.4275
5 129.38 128.47 96.960 109.17 99.827 89.863 21.414
6 70.840 55.692 51.108 66.213 51.041 16.930 −5.4467
7 120.90 100.60 95.399 109.33 90.754 76.422 27.374
8 102.42 107.80 116.56 103.33 107.62 93.663 11.840
9 94.606 87.914 81.763 88.812 80.331 60.164 33.036
10 90.803 88.164 90.773 87.926 88.56293 56.307 22.798
11 111.13 88.287 82.916 97.882 85.605 60.160 16.493
12 100.29 89.005 86.692 95.836 78.342 60.744 −3.8617
Average 104.19 94.123 86.321 95.547 84.685 64.147 12.233

Table 2: Comparison of unsatisfied TPV index using heuristics and 𝑄-learning.

Dataset no. WSPT MWSPT RA LFM-MWSPT LFM-RA LWF Q-learning
1 0.1179 0.1025 0.0789 0.1170 0.0754 0.0554 0.0081
2 0.1651 0.1611 0.1497 0.1499 0.1482 0.1421 0.0137
3 0.1421 0.1289 0.1475 0.1227 0.1455 0.0987 0.0691
4 0.1540 0.1104 0.0716 0.1258 0.0854 0.0614 0.0088
5 0.1588 0.1564 0.1186 0.1303 0.1215 0.1094 0.0571
6 0.1053 0.0819 0.0757 0.1006 0.0762 0.0248 0.0137
7 0.1462 0.1209 0.1150 0.1292 0.1082 0.0917 0.0582
8 0.1266 0.1324 0.1437 0.1272 0.1309 0.1150 0.0381
9 0.1315 0.1211 0.1133 0.1249 0.1127 0.0828 0.0815
10 0.1154 0.1112 0.1151 0.1105 0.1110 0.0709 0.0536
11 0.1544 0.1215 0.1146 0.1387 0.1204 0.0827 0.0690
12 0.1262 0.1112 0.1088 0.1194 0.1002 0.0758 0.0118
Average 0.1370 0.1216 0.1112 0.1247 0.1113 0.0842 0.0402

The chip attach station consists of 10 machines and
normally processes more than ten job types. We selected
12 sets of industrial data for experiments comparing
the𝑄-learning algorithm (Algorithm 8) and the six heuristics
(Algorithms 1–5, 9): WSPT, MWSPT, RA, LFM-MWSPT,
LFM-RA, and LWF. For each dataset, 𝑄-learning repeatedly
solves the scheduling problem 1000 times and selects the
optimal schedule of the 1000 solutions. Table 1 shows the
objective function values of all datasets using the seven
algorithms. Individually, any of WSPT, MWSPT, RA, LFM-
MWSPT, and LFM-RA obtains larger objective function
values than LWF for every dataset. Nevertheless, taking
WSPT,MWSPT, RA, LFM-MWSPT, and LFM-RA as actions,
𝑄-learning algorithm achieves an objective function value
much smaller than LWF for each dataset. In Tables 1–4, the
bottom row presents the average value over all datasets. As
shown in Table 1, the average objective function value of 𝑄-
learning is only 12.233, less than that of LWF, 66.147, by a large
amount of 80.92%.

Besides objective function value, we propose two indices,
unsatisfied TPV index and unsatisfied job type index, tomea-
sure the performance of the seven algorithms. Unsatisfied

TPV index (UPI) is defined as formula (32) and indicates
the weighted proportion of unfinished Target Production
Volume. Table 2 compares UPIs of all datasets using seven
algorithms. Also, any of WSPT, MWSPT, RA, LFM-MWSPT,
and LFM-RA individually obtains larger UPI than LWF
for each dataset. However, 𝑄-learning algorithm achieves
smaller UPI than LWF does for each dataset.The average UPI
of 𝑄-learning is only 0.0402, less than that of LWF, 0.0842,
by a large amount of 52.20%. Let 𝐽 denote the set {𝑗 | 1 ≤
𝑗 ≤ 𝑛, 𝑌

𝑗
< 𝐷
𝑗
}. Unsatisfied job type index (UJTI) is defined

as formula (33) and indicates the weighted proportion of the
job types whose TPVs are not completely satisfied. Table 3
compares UJTIs of all datasets using seven algorithms. With
most datasets, 𝑄-learning algorithm achieves smaller UJTIs
than LWF.The average UJTI of𝑄-learning is 0.0802, which is
remarkably less than that of LWF, 0.1176, by 31.81%. Consider

UPI =
∑
𝑛

𝑗=1
𝑤
𝑗
(𝐷
𝑗
− 𝑌
𝑗
)
+

∑
𝑛

𝑗=1
𝑤
𝑗
𝐷
𝑗

, (32)

UJTI =
∑
𝑗=𝐽
𝑤
𝑗

∑
𝑛

𝑗=1
𝑤
𝑗

. (33)
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Table 3: Comparison of unsatisfied job type index using heuristics and 𝑄-learning.

Dataset no. WSPT MWSPT RA LFM-MWSPT LFM-RA LWF Q-learning
1 0.1290 0.2615 0.1667 0.1650 0.1793 0.0921 0.0678
2 0.1924 0.2953 0.2302 0.2650 0.2097 0.1320 0.0278
3 0.2250 0.3287 0.2126 0.2564 0.2278 0.0921 0.0921
4 0.0781 0.2987 0.0278 0.1290 0.0828 0.0278 0.0278
5 0.2924 0.3169 0.3002 0.2224 0.2632 0.2055 0.0571
6 0.2290 0.3062 0.1817 0.2290 0.1632 0.0571 0.0278
7 0.2650 0.2987 0.2160 0.2529 0.2075 0.1320 0.1647
8 0.1924 0.3225 0.2067 0.1813 0.1696 0.1320 0.1320
9 0.2221 0.3250 0.1403 0.1892 0.2073 0.1320 0.0749
10 0.2621 0.3304 0.2667 0.2859 0.2708 0.1781 0.0678
11 0.2029 0.2896 0.2578 0.2194 0.2220 0.1381 0.1542
12 0.1924 0.3271 0.2302 0.1838 0.2182 0.0921 0.0678
Average 0.2069 0.3084 0.2031 0.2149 0.2018 0.1176 0.0802

Table 4: Comparison of the total setup time using heuristics and 𝑄-learning.

Dataset no. WSPT MWSPT RA LFM-MWSPT LFM-RA LWF Q-learning
1 0.8133 0.8497 0.3283 0.7231 0.3884 0.3895 1.0000
2 0.8333 1.3000 0.4358 0.7564 0.5263 0.4094 1.0000
3 0.8712 1.1633 0.4207 0.6361 0.4937 0.4298 1.0000
4 1.1280 0.7123 0.4629 0.8516 0.5139 0.4318 1.0000
5 0.9629 1.3121 0.4179 0.8597 0.5115 0.3873 1.0000
6 0.7489 1.0393 0.4104 0.7489 0.4542 0.4074 1.0000
7 1.7868 2.2182 0.8223 1.4069 1.0125 0.4174 1.0000
8 0.6456 0.8508 0.4055 0.6694 0.5053 0.3795 1.0000
9 0.9245 0.9946 0.5013 0.7821 0.6694 0.4163 1.0000
10 1.1025 1.7875 0.6703 1.0371 0.9079 0.4894 1.0000
11 0.9973 1.3655 0.3994 0.9686 0.5129 0.4066 1.0000
12 0.7904 1.1111 0.4419 0.6195 0.5081 0.4258 1.0000
Average 0.9671 1.2254 0.4764 0.8383 0.5837 0.4158 1.0000

Table 4 shows the total setup time of all datasets using
seven algorithms. For the reason of commercial confiden-
tiality, we used the normalized data with the setup time of a
dataset divided by the result of this dataset using 𝑄-learning.
Thus, the total setup times of all datasets by 𝑄-learning are
converted into one and the data of the six heuristics are
adjusted accordingly. 𝑄-learning algorithm requires more
than twice of setup time than LWF does for each dataset. The
average accumulated setup time of LWF is only 41.58 percents
of that of 𝑄-learning.

The previous experimental results reveal that for the
whole scheduling tasks, any individual one of the five action
heuristics (WSPT, MWSPT, RA, LFM-MWSPT, and LFM-
RA) for 𝑄-learning performs worse than LWF heuristics.
However, 𝑄-learning greatly outperforms LWF in terms
of the three performance measures, the objective function
value, UPI, and UJTI. This demonstrates that some action
heuristics provide better actions than LWF heuristics at some
states. During repeatedly solving the scheduling problem,
𝑄-learning system perceives the insights of the scheduling
problem automatically and adjusts its actions towards the

optimal ones facing different system states. The actions at
all states form a new optimized policy which is different
from any policies following any individual action heuristics
or LWF heuristics. That is,𝑄-learning incorporates the merit
of five alternative heuristics, uses them to schedule jobs
flexibly, and obtains results much better than any individual
action heuristics and LWF heuristics. In the experiments,
𝑄-learning achieves high-quality schedules at the cost of
inducingmore setup time. In other words,𝑄-learning utilizes
the machines more efficiently by increasing conversions
among a variety of job types.

5. Conclusions

We apply 𝑄-learning to study lot-based chip attach schedul-
ing in back-end semiconductor manufacturing. To apply
reinforcement learning to scheduling, the critical issue being
conversion of scheduling problems into RL problems. We
convert chip attach scheduling problem into a particular
SMDP problem by Markovian state representation. Five
heuristic algorithms, WSPT, MWSPT, RA, LFM-MWSPT,
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and LFM-RA, are selected as actions so as to utilize prior
domain knowledge. Reward function is directly related to
scheduling objective function, and we prove that maximizing
the accumulated reward is equivalent to minimizing the
objective function. Gradient-descent linear function approx-
imation is combined with 𝑄-learning algorithm.

𝑄-learning exploits the insight structure of the schedul-
ing problem by solving it repeatedly. It learns a domain-
specific policy from the experienced episodes through inter-
action and then applies it to latter episodes. We define
two indices, unsatisfied TPV index and unsatisfied job type
index, together with objective function value to measure the
performance of 𝑄-learning and the heuristics. Experiments
with industrial datasets show that 𝑄-learning apparently
outperforms six heuristic algorithms: WSPT, MWSPT, RA,
LFM-MWSPT, LFM-RA, and LWF. Compared with LWF,
𝑄-learning achieves reduction of the three performance
measures, respectively, by an average level of 52.20%, 31.81%,
and 80.92%. With 𝑄-learning, chip attach scheduling is
optimized through increasing effective job type conversions.
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