Hindawi Publishing Corporation Journal of Computational Methods in Physics Volume 2014, Article ID 392962, 8 pages http://dx.doi.org/10.1155/2014/392962

Research Article **Sinc Collocation Method for Solving the Benjamin-Ono Equation**

Edson Pindza and Eben Maré

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 002, South Africa

Correspondence should be addressed to Eben Mare; eben.mare@up.ac.za ´

Received 22 March 2014; Accepted 17 June 2014; Published 23 July 2014

Academic Editor: Ali Cemal Benim

Copyright © 2014 E. Pindza and E. Mare. This is an open access article distributed under the Creative Commons Attribution ´ License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose a simple, though powerful, technique for numerical solutions of the Benjamin-Ono equation.This approach is based on a global collocation method using Sinc basis functions. Some properties of the Sinc collocation method required for our subsequent development are given and utilized to reduce the computation of the Benjamin-Ono equation to a system of ordinary differential equations. The propagation of one soliton and the interaction of two solitons are used to validate our numerical method. The method is easy to implement and yields accurate results.

1. Introduction

It is well known that nonlinear partial differential equations (NPDEs) are widely used to describe complex phenomena in various fields of sciences, such as physics, biology, and chemistry.

In this paper, we consider the initial value problem for the chemistry.

In this paper, we consider the initial value of the form $u_t + uu_x + \mathcal{H}(u_{xx}) = 0$, (x, t)

$$
u_t + uu_x + \mathcal{H}(u_{xx}) = 0, \quad (x, t) \in \mathbb{R}^2, \tag{1}
$$

together with the following initial and the boundary condi $u_t +$
together with the $u_t + uu_x + \lambda t$ $(u_{xx}) = 0$, $(x, t) \in \mathbb{R}$, (1)

er with the following initial and the boundary condi-
 $u(x, 0) = u_0(x)$, $u, u_x \rightarrow 0$ as $|x| \rightarrow \infty$. (2)

tions:
 $u(x, 0) = u_0(x), \quad u, u_x \rightarrow 0 \text{ as } |x| \rightarrow \infty.$ (2)

Here $u : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a real valued function and \mathcal{H} denotes

the Hilbert transform defined and described by [1] (amongst

others): the Hilbert transform defined and described by [1] (amongst others): Are It's a real valued function and *H* denotes

ansform defined and described by [1] (amongst
 $\mathcal{H}[f](x) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{f(x - y)}{y} dy$, (3)

$$
\mathcal{H}[f](x) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{f(x - y)}{y} dy, \tag{3}
$$

where P denotes the Cauchy principal value. This equation was derived by Benjamin [2] and later by Ono [3] as a model for one-dimensional waves in deep water and it has a close relation with the famous KdV equation which models long waves in shallow water [4].

We recall that the BO equation has an infinite sequence of invariants [5], the first three of which are rater
the I
ne fir

$$
I_1 = \int_{-\infty}^{\infty} u \, dx \quad \text{(mass)}
$$
\n
$$
I_2 = \int_{-\infty}^{\infty} u^2 \, dx \quad \text{(momentum)}, \tag{4}
$$
\n
$$
I_3 = \int_{-\infty}^{\infty} \left[u^3 - 3u_x \mathcal{H}(u) \right] dx \quad \text{(energy)}.
$$

The BO has been shown to admit rational analytical soliton solutions in x and t [6]. However, for a given arbitrary initial condition, finding analytical solutions of the BO equation becomes an intractable problem. Therefore the use of numerical methods plays an important role in the study of the dynamics of the BO equation.

James and Weideman [7] used the Fourier method which implicitly assumes the periodicity of the boundary conditions and a method based on rational approximating function to compute numerical solutions of the BO. The rational method was shown to have spectacular accuracy for solutions that do not wander too far from the origin while, for long dated

solutions, the Fourier method was shown to retain superior accuracy. Miloh et al*.*[8] proposed an efficient pseudospectral method for the numerical solution of the weakly nonlinear Benjamin-Ono equation for arbitrary initial conditions and suggested a practical new relationship for estimating the number of solitons in terms of arbitrary initial conditions. Thomée and Vsaudeva Murthy [9] used the Crank-Nicolson approximation in time and finite difference approximations in space to solve the BO equation. They treated the nonlinear term in a standard conservative fashion and discretized the Hilbert transform by a quadrature formula which was computed efficiently using the fast Fourier transform. Recently, Boyd and Xu [10] compared three spectral methods for solving the Benjamin-Ono equation, Fourier pseudospectral, rational Christov functions, and Gaussian radial basis functions. They highlighted the advantages and the disadvantages of each numerical method. For instance, the Fourier pseudospectral method is very fast through use of the fast Fourier transform (FFT), but requires domain truncation which is unnecessary for a rational basis. Radial basis functions are slow for a given number of grid points; however, they have a very flexible grid adaptation. To the best of our knowledge, there are no records regarding numerical solutions of the BO equation by using Sinc numerical methods.

In this paper, we propose a Sinc collocation method for solving the BO equation. Sinc numerical methods for solving ordinary and partial differential equations have increasingly become popular and have been extensively studied, in particular, for problems on unbounded domains and those having singularity at boundaries. The first Sinc method was introduced by Stenger [11] to solve two-point boundary value problems for second order differential equations. In the field of nonlinear partial differential equations, the use of Sinc numerical methods has shown tremendous potential. For instance, Al-Khaled [12] showed the utility of the Sinc Galerkin method for solving the Korteweg-de Vries equation. Recently, Mokhtari and Mohammadi [13] presented a meshfree method based on the Sinc collocation method to solve the generalized regularized long wave equation. Excellent overviews of the existing Sinc methods for solving ODEs, PDEs, and integral equations can be found in [14, 15].

The layout of this paper is as follows. We describe the formulation of the Sinc collocation method and the discretization of the Hilbert transform in Section 2. Section 3 is devoted to the Sinc collocation discretization of the BO equation. Furthermore, we examine the stability of the method by using a linearized stability analysis. Numerical results illustrating the merits of the new scheme are given in Section 4. Finally, we present our conclusions in Section 5.

2. Sinc Collocation Methods

In this section, we introduce some useful definitions and pertinent theorems of the Sinc function needed for space discretization of the BO equation. We use $\mathbb Z$ to denote the set of all integers, $\mathbb R$ the set of all real numbers, and $\mathbb C$ the set of In this section, we introduce some useful definitions and pertinent theorems of the Sinc function needed for space discretization of the BO equation. We use $\mathbb Z$ to denote the set of all integers, $\mathbb R$ the set of all

the step-size. Then the Whittaker function is defined by the
following series:
 $C(u, h)(x) = \sum_{i=1}^{\infty} u_i S_j(x)$, (5) following series:

$$
C(u, h)(x) = \sum_{j=-\infty}^{\infty} u_j S_j(x),
$$
 (5)
where S_j is given as follows:

$$
\sum_{j=-\infty}^{x} y_j y_j \dots (3)
$$
\n*i* is given as follows:
\n
$$
S_j(x) = \text{Sinc}\left(\frac{x - jh}{h}\right), \quad j = 0, \pm 1, \pm 2, \dots, \quad (6)
$$
\n
$$
\text{Sinc function defined on the real line } \mathbb{R} \text{ is given by}
$$
\n
$$
\int \frac{\sin(\pi x)}{x + 0} \, dx \neq 0.
$$

and the Sinc function defined on the real line R is given by ${\rm n}$

and the Sinc function defined on the real line R is given by
\n
$$
Sinc(x) = \begin{cases}\n\frac{\sin(\pi x)}{\pi x}, & x \neq 0, \\
1, & x = 0.\n\end{cases}
$$
\n(7)
\nWhenever the series given in (5) converges, *u* is approximated

by using a finite number of terms. Therefore, for a positive
integer N, (5) implies
 $C_N(u, h)(x) = \sum_{i=1}^{N} u_i S_j(x)$. (8) Whenever the series g
by using a finite num
integer N, (5) implies

$$
C_{N}(u, h)(x) = \sum_{j=-N}^{N} u_{j} S_{j}(x).
$$
 (8)

 $C_N(u, h)(x) = \sum_{j=-N}^{N} u_j S_j(x)$. (8)

The approximation of the *n*th derivative of the function *u* by

the Sinc is given by
 $u^{(n)}(x) \approx \sum_{j=-N}^{N} u(jk) \frac{d^n}{dx} [S_{\cdot}(x)]$. (9) the Sinc is given by

function of the *n*th derivative of the function *u* by

\n
$$
u^{(n)}(x) \approx \sum_{j=-N}^{N} u(jk) \frac{d^n}{dx^n} \left[S_j(x) \right]. \tag{9}
$$

The Sinc collocation method requires derivatives of Sinc functions to be evaluated at collocation points. We can obtain explicit close form expressions for these; namely, location method requires derived by the evaluated at collocation points
form expressions for these; nam
 $\binom{00}{jk} = [S_j(x)]\big|_{x=x_k} = \begin{cases} 1, & j=k \\ 0, & j \neq k. \end{cases}$

$$
\delta_{jk}^{(0)} = [S_j(x)]\Big|_{x=x_k} = \begin{cases} 1, & j = k \\ 0, & j \neq k. \end{cases}
$$

$$
\delta_{jk}^{(1)} = \frac{d}{dx} [S_j(x)]\Big|_{x=x_k} = \begin{cases} 0, & j = k, \\ \frac{(-1)^{j-k}}{h(j-k)}, & j \neq k. \\ \frac{c}{k} & j = k, \end{cases}
$$
(10)
$$
\delta_{jk}^{(2)} = \frac{d^2}{dx^2} [S_j(x)]\Big|_{x=x_k} = \begin{cases} \frac{-\pi^2}{3}, & j = k, \\ \frac{-2}{-2} - 1)^{j-k} & \dots \end{cases}
$$

$$
\left[\begin{array}{cc} h(j-k) & \text{(10)}
$$
\n
$$
\delta_{jk}^{(2)} = \left. \frac{d^2}{dx^2} [S_j(x)] \right|_{x=x_k} = \begin{cases} \frac{-\pi^2}{3}, & j = k, \\ \frac{-2(-1)^{j-k}}{h^2(j-k)^2}, & j \neq k. \end{cases}
$$
\nLemma 1. The Hilbert transform of a function u can be

approximated by **nma 1.** The *F*
roximated by
 $\mathcal{H}[u](x) = \frac{1}{x}$ $Hilbert$ transform

mma 1. The Hilbert transform of a function u can be
proximated by

$$
\mathcal{H}[u](x) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{f(x - y)}{y} dy \approx \sum_{j=-N}^{N} u_j T_j(x), \quad (11)
$$

where

$$
T_{\pi} = \frac{1 - \cos[\pi/h(x - jh)]}{\pi}
$$
\n
$$
T_{j}(x) = \frac{1 - \cos[\pi/h(x - jh)]}{\pi/h(x - jh)}.
$$
\n(12)

Journal of Computational Methods in Physics

The entries of the Hilbert transform matrix at collocation point
 $x_k = kh$ are given by 0, = ,

The entries of the Hilbert transform matrix at collocation point
\n
$$
x_k = kh
$$
 are given by
\n
$$
H_{jk} = T_j(x_k) = \begin{cases} 0, & j = k, \\ \frac{1 - (-1)^{j-k}}{\pi (j-k)}, & j \neq k. \end{cases}
$$
\n(13)

In order to state the convergence theorem of the Sinc collocation method, we introduce the following notation and definitions. collocation method, we introduce the 1
definitions.
Definition 2. Let \mathcal{D}_d denote the infixidth 2*d* (*d* > 0) in the complex plane

Definition 2. Let \mathcal{D}_d denote the infinite strip region with \mathcal{D}_d denote the infinite strip region with
in the complex plane
 \mathcal{D}_d ≡ { $z \in C$ | |Imz| < d }. (14) *Definition 2.* Let \mathcal{D}_d denote the infinit
width 2*d* (*d* > 0) in the complex plane
 $\mathcal{D}_d \equiv \{z \in C \mid |\text{Im}z|$ <
For all 0 < ε < 1, let $\mathcal{D}_d(\varepsilon)$ be defined by \overline{a}

$$
\mathcal{D}_d \equiv \{ z \in C \mid |\text{Im} z| < d \}. \tag{14}
$$

 $\mathbf 0$

$$
\mathcal{D}_d = \{ z \in C \mid |\text{Im} z| < d \}. \tag{14}
$$
\nFor all $0 < \varepsilon < 1$, let $\mathcal{D}_d(\varepsilon)$ be defined by

\n
$$
\mathcal{D}_d(\varepsilon) = \left\{ z \in C \, |\text{Re} z| < \frac{1}{\varepsilon}, |\text{Im} z| < d \left(1 - \varepsilon \right) \right\}.
$$
\nLet $H^1(\mathcal{D}_d)$ be the Hardy space over the region \mathcal{D}_d , that is,

the set of functions such that ϵ

he Hardy space over the region \mathcal{D}_d , that is,

ns such that
 $\lim_{\epsilon \to 0} \int_{\partial \mathcal{D}_d(\epsilon)} |u(z)| |dz| < \infty.$ (16)

$$
\lim_{\varepsilon \to 0} \int_{\partial \mathcal{D}_{d}(\varepsilon)} |u(z)| \, |dz| < \infty. \tag{16}
$$

One then gets the following convergence results.
 orem 3 (see [15]). Assume, with positive consta.
 (d, that)
 (l) u belongs to $H^1(\mathcal{D}_d)$; $\lim_{\varepsilon \to 0} \int_{\partial \mathcal{D}_d(\varepsilon)} |u(z)| |dz| < \infty.$ (16)

One then gets the following convergence results.
 Theorem 3 (see [15]). *Assume, with positive constants* α , β , *and , that* **(2)** *decays 6 <i>decays exponentially on the real line;* that (1) *u* belongs to $H^1(\mathcal{D}_d)$;

(2) *u* decays exponentially on the real line; that is, $(g \circ \text{to } H^1(\mathcal{D}_d));$
 $(g \circ \text{to } H^1(\math$

mentially on the real line;

$$
|u(x)| \le \alpha \exp(-\beta |x|), \quad \forall x \in \mathbb{R}.
$$
 (17)

Then we have

$$
|u(x)| \le \alpha \exp(-\beta |x|), \quad \forall x \in \mathbb{R}.
$$
 (17)
Then we have

$$
\sup_{-\infty < x < \infty} \left| u^{(n)}(x) - \sum_{j=-N}^{N} u_j S_j^{(n)}(x) \right|
$$

$$
\le C_1 N^{(n+1)/2} \exp\left(-\sqrt{\pi d \beta N}\right),
$$

$$
\sup_{-\infty < x < \infty} \left| \mathcal{H}[u](x) - \sum_{j=-N}^{N} u_j T_j(x) \right|
$$

$$
\le C_2 N^{1/2} \exp\left(-\sqrt{\pi d \beta N}\right),
$$
for some constants C_1 and C_2 , where the mesh size h is taken

as $\exp\left(-\right)$
 C_2 , whe

$$
h = \left(\frac{\pi d}{\beta N}\right)^{1/2}.\tag{19}
$$

The proof of the above Theorem 3 is beyond the scope of this paper. We refer the reader to [15] for a detailed discussion. Theorem 3 states that, if u is an analytic function on an infinite strip containing the real line and allows specific growth restrictions, then it has exponentially decaying absolute errors in the Sinc approximation. Similarly, the approximation of the derivatives and the cific growth restrictions, then it has exponentially decaying absolute errors in the Sinc approximation. Similarly, the approximation of the derivatives and the Hilbert transform

3. Construction of the Method

We consider the initial value problem for the Benjamin-Ono equation of the form the initial value problem for the Ber
he form
 $t + uu_x + \mathcal{H}(u_{xx}) = 0$, $(x, t) \in \mathbb{R}^2$

$$
u_t + uu_x + \mathcal{H}(u_{xx}) = 0, \quad (x, t) \in \mathbb{R}^2,
$$
 (20)
ith the following initial:

$$
u(x, 0) = u_0(x),
$$
 (21)

together with the following initial:

$$
u(x, 0) = u_0(x),
$$
 (21)

and the boundary conditions

$$
u(x, 0) = u_0(x),
$$
 (21)
and the boundary conditions

$$
u - u_x = 0 \text{ as } x \longrightarrow -\infty,
$$

$$
u + u_x = 0 \text{ as } x \longrightarrow \infty.
$$
 (22)
Here $u : \mathbb{R}^2 \to \mathbb{R}$ is a real valued function and \mathcal{H} denotes

the Hilbert transform defined by $\rightarrow \mathbb{R}$ is a real
ansform define
 $\mathcal{H}[f](x) = \frac{1}{x}$ al valued function
ned by
 $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ $\frac{(z-y)}{y}$ dy, (23)

$$
\mathcal{H}\left[f\right](x) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{f\left(x - y\right)}{y} dy,\tag{23}
$$

where P denotes the Cauchy principal value.

In order to propose an unconditionally stable methodology, we discretize the time derivative of the BO equation where *P* denotes the Cauchy principal value.

In order to propose an unconditionally stable method-

ology, we discretize the time derivative of the BO equation

using a classic finite difference formula by the θ -weig as $\log a$ class
 $\leq \theta \leq 1$) s \le 1) scheme between two successive levels *n* and
 \le 1) scheme between two successive levels *n* and
 $\frac{1-u^n}{\delta t} + \theta (uu_x)^{n+1} + \theta \mathcal{H} (u_{xx}^{n+1}) + (1 - \theta) (uu_x)$

as
\n
$$
\frac{u^{n+1} - u^n}{\delta t} + \theta(uu_x)^{n+1} + \theta \mathcal{H}(u_{xx}^{n+1}) + (1 - \theta) (uu_x)^{n+1}
$$
\n
$$
+ (1 - \theta) \mathcal{H}(u_{xx}^{n+1}) = 0,
$$
\n(24)
\nwhere $u^n = u(x, t^n)$, $t^n = t^{n-1} + \delta t$, and δt is the time step size.

+ $(1 - \theta)$ $\mathcal{H}(u_{xx}^{n+1}) =$

re $u^n = u(x, t^n), t^n = t^{n-1}$

The nonlinear term (uu_x) $^{n+1}$ in (24) can be approximated $\mathbf{1}$ t^n), $t^n = t^{n-1}$
ar term (uu_3)
sion. We ob $\binom{1}{c}$
ta
 t

by Taylor expansion. We obtain the following formula:
\n
$$
u^{n+1} \approx u^n + \delta t (u_t)^n
$$
\n
$$
\approx u^n + \delta t \left(\frac{u^{n+1} - u^n}{\delta t} \right) + \mathcal{O}(\delta t^2), \qquad (25)
$$
\n
$$
(u_x)^{n+1} \approx u_x^n + \delta t \left(\frac{u_x^{n+1} - u_x^n}{\delta t} \right) + \mathcal{O}(\delta t^2).
$$
\nTherefore
\n
$$
(uu_x)^{n+1} \approx (uu_x)^n + \delta t \left[(u_t)^n u_x^n + u^n u_{xt}^n \right] + \mathcal{O}(\delta t^2)
$$

Therefore

herefore
\n
$$
(uu_x)^{n+1} \approx (uu_x)^n + \delta t \left[(u_t)^n u_x^n + u^n u_{xt}^n \right] + \mathcal{O}(\delta t^2)
$$
\n
$$
= (uu_x)^n + \delta t \left[\left(\frac{u_x^{n+1} - u_x^n}{\delta t} \right) u_x^n + u^n \left(\frac{u_x^{n+1} - u_x^n}{\delta t} \right) \right] + \mathcal{O}(\delta t^2),
$$
\n
$$
= u^n u_x^{n+1} + u_x^n u^{n+1} - u^n u_x^n + \mathcal{O}(\delta t^2).
$$
\n(26)

Equation (24) can be rewritten as

$$
u^{n+1} + \delta t \theta \left[u^n u_x^{n+1} + u_x^n u^{n+1} + \mathcal{H} \left(u_{xx}^{n+1} \right) \right]
$$

$$
= u_n - \delta \left[(1 - 2\theta) u^n u_x^n + (1 - \theta) \mathcal{H} \left(u_{xx}^n \right) \right].
$$
 (27)

Now the space variable is discretized into collocation points

space variable is discretized into collocation points
\n
$$
\{x_1 = a, ..., x_i = a + (i - 1)h, ..., x_N = b\},
$$
\n
$$
h = \frac{|b - a|}{N - 1},
$$
\n(28)

so that the solution of (20) is interpolated and approximated by means of the Sinc functions as
 $u(x, t^n) = u^n(x) =$

$$
u(x, t^n) = u^n(x) = \sum_{j=1}^{N} u_j^n \xi_j(x),
$$
\n(29)

 ${\rm tr}$

$$
u(x, t^n) = u^n(x) = \sum_{j=1}^N u_j^n \xi_j(x),
$$
\n(29)
\nwhere the basis functions $\xi_i(x)$ are given by
\n
$$
\xi_j(x) = \begin{cases}\n\omega_0(x), & j = 1 \\
S_j(x), & j = 2,..., N - 1, \\
\omega_1(x), & j = N.\n\end{cases}
$$
\n(30)
\nHere $S_j(x)$ is defined as

 \overline{a}

defined as
\n
$$
S_j(x) = \operatorname{Sinc}\left(\frac{x - (j-1)h - a}{h}\right), \tag{31}
$$

and the two cubic interpolants [14] bic int

the two cubic interpolants [14]
\n
$$
\omega_0 = \frac{(x-a)(b-x)^2}{(b-a)^2} + \frac{(2x+b-3a)(b-x)^2}{(b-a)^3},
$$
\n
$$
\omega_1 = \frac{(-2x+3b-a)(x-a)^2}{(b-a)^3} + \frac{(b-x)(x-a)^2}{(b-a)^2}
$$
\n(32)

are introduced to handle the radiation boundary conditions in (22).

The unknown parameters u_j in (29) are to be determined by collocation method. Therefore, for each collocation point
 x_i , (29) can be written as
 $u^n (x_i) = \sum_{i=1}^{N} u_i^n \xi_j (x_i)$, $i = 1,..., N.$ (33) x_i , (29) can be written as

$$
u^{n}(x_{i}) = \sum_{j=1}^{N} u_{j}^{n} \xi_{j}(x_{i}), \quad i = 1, ..., N.
$$
 (33)

yields the following equation: [

Journal of Computational Methods in Physics
\nThe substitution of (33) into (27) at collocation points
$$
x_i
$$

\nyields the following equation:
\n
$$
\sum_{j=1}^{N} u_j^{n+1} \xi_j(x_i) + \delta t \theta \left[\left(\sum_{j=1}^{N} u_j^n \xi_j(x_i) \right) \left(\sum_{j=1}^{N} u_j^{n+1} \xi_j'(x_i) \right) + \left(\sum_{j=1}^{N} u_j^n \xi_j'(x_i) \right) \left(\sum_{j=1}^{N} u_j^n \xi_j(x_i) \right) + \sum_{i=1}^{N} \left(\sum_{j=1}^{N} u_j^{n+1} \xi''(x_i) \right) T_i(x_k) \right]
$$
\n
$$
= \sum_{j=1}^{N} u_j^n \xi_j(x_i) - \delta t \left[(1 - 2\theta) \left(\sum_{j=1}^{N} u_j^n \xi_j(x_i) \right) + \left(1 - \theta \right) \sum_{i=1}^{N} \left(\sum_{j=1}^{N} u_j^n \xi''(x_i) \right) T_i(x_k) \right].
$$
\n(34)

To obtain the matrix representation of the expression (34), we introduce the following matrix and vector notations: natrix representation

bllowing matrix as
 $\boldsymbol{u}^n = [u_1^n, u_2^n, \ldots, u_N^n]$ ioi
and
"N

introduce the following matrix and vector notations:
\n
$$
u^n = [u_1^n, u_2^n, \dots, u_N^n]^T,
$$
\n
$$
\mathbf{I}^{(0)} = (\xi_j(x_i)), \quad i, j = 1, \dots, N,
$$
\n
$$
\mathbf{I}^{(1)} = (\xi'_j(x_i)), \quad i, j = 1, \dots, N,
$$
\n
$$
\mathbf{I}^{(2)} = (\xi''_j(x_i)), \quad i, j = 1, \dots, N,
$$
\n
$$
\mathbf{H} = (T_j(x_i)), \quad i, j = 1, \dots, N.
$$
\nThus we obtain the following system of *N* linear equations

 $\mathbf{H} = \left(T_j(x_i) \right), \quad i, j = 1, \dots, N.$
Thus we obtain the following system of N linear equations
in N unknown parameters u^{n+1} which can be expressed in a matrix form lowing system
ters u^{n+1} which
 $\mathbf{M} u^{n+1} = \mathbf{R} u^n$,

$$
\mathbf{M}u^{n+1} = \mathbf{R}u^n, \tag{36}
$$
\n
$$
\delta t \theta \{ \mathbf{A} + \mathbf{B} + \mathbf{C} \},
$$

where

$$
\mathbf{M}u^{n+1} = \mathbf{R}u^n, \qquad (36)
$$

$$
\mathbf{M} = \mathbf{I}^{(0)} + \delta t \theta \{ \mathbf{A} + \mathbf{B} + \mathbf{C} \},
$$

$$
\mathbf{R} = \mathbf{I}^{(0)} - \delta t \{ (1 - 2\theta) \mathbf{D} + (1 - \theta) \mathbf{C} \}
$$

$$
u^n, \qquad \mathbf{A} = u^n * \mathbf{I}^{(1)}, \qquad \mathbf{B} = u^n * \mathbf{I}^{(0)},
$$

in which

$$
\mathbf{R} = \mathbf{I}^{(0)} - \delta t \{ (1 - 2\theta) \mathbf{D} + (1 - \theta) \mathbf{C} \}
$$

which

$$
u_x^n = \mathbf{I}^{(1)} u^n, \qquad \mathbf{A} = u^n * \mathbf{I}^{(1)}, \qquad \mathbf{B} = u_x^n * \mathbf{I}^{(0)},
$$

$$
\mathbf{C} = \mathbf{H} \times \mathbf{I}^{(2)}, \qquad \mathbf{D} = u^n * u_x^n * \mathbf{I}^{(0)},
$$
(38)

where symbols "∗" and "×" mean the component-wise and the matrix multiplications, respectively.

The stability of the approximation (36) is investigated by using the matrix method. The linearized version of (20) is The stability of the approximation (36) is investigated by using the matrix method. The linearized version of (20) is obtained by assuming the quantity u in the nonlinear term The stability of the approximation (36) is investigated by
ing the matrix method. The linearized version of (20) is
tained by assuming the quantity *u* in the nonlinear term
x as a local constant \overline{u} . The error at thod. The linearized version of (20) is

g the quantity *u* in the nonlinear term

t \overline{u} . The error at timestep *n* is defined as
 $e^n = u_{\text{exact}}^n - u_{\text{num}}^n$, (39)

$$
e^n = u_{\text{exact}}^n - u_{\text{num}}^n,\tag{39}
$$

 uu_x as a local constant \overline{u} . The error at timestep *n* is defined as
 $e^n = u_{\text{exact}}^n - u_{\text{num}}^n$, (39)

where u_{exact}^n and u_{num}^n are the exact and the numerical

solutions, respectively. The error matrix equa solutions, respectively. The error matrix equation of the linearized BO equation is given by
 $\left[\mathbf{I} + \theta \delta t\right] e^{n+1} = \left[\mathbf{I} + \theta\right]$

where $\mathbf{I} = \mathbf{I}^{(0)}$ and $\mathbf{I} = \overline{n} \mathbf{I}^{(1)} + \mathbf{H}$ um
y.
)n
]e t
equent
le

$$
[\mathbf{I} + \theta \delta t \mathbf{J}] e^{n+1} = [\mathbf{I} + (1 - \theta) \delta t \mathbf{J}] e^n, \tag{40}
$$

linearized BO equation is given by
 $[\mathbf{I} + \theta \delta t \mathbf{J}] e^{n+1} = [\mathbf{I} + (1 - \theta) \delta t \mathbf{J}] e^n$, (40)

where $\mathbf{I} = \mathbf{I}^{(0)}$ and $\mathbf{J} = \overline{u} \mathbf{I}^{(1)} + \mathbf{H} \times \mathbf{I}^{(2)}$. Now, let $\mathbf{P} = [\mathbf{I} + \mathbf{I}]$ **J**] $[\mathbf{I} + \theta \delta t] e^{n+1} = [\mathbf{I} + (1 - \theta) \delta$

e $\mathbf{I} = \mathbf{I}^{(0)}$ and $\mathbf{J} = \overline{u} \mathbf{I}^{(1)} + \mathbf{H} \times \mathbf{I}^{(2)}$.
 $\overline{\mathbf{I}} = [\mathbf{I} + (1 - \theta) \delta t]$; then (40) becomes $\overline{aI}^{(1)} + H$
en (40) b
 $n+1} = Pe$ $\theta \delta t \mathbf{J}^{-1} [\mathbf{I} + (1 - \theta) \delta t \mathbf{J}]$; then (40) becomes
 $e^{n+1} = \mathbf{P}e^n$. (41)

The numerical scheme is stable if $\|\mathbf{P}\|_2 \le 1$, or equivalently,

$$
e^{n+1} = \mathbf{P}e^n. \tag{41}
$$

P
 $e^{n+1} = \mathbf{P}e^n$. (41)
 P) ≤ 1 ; that is, the spectral radius of the matrix **P** has to be smaller than or equal to one. From (40) it can be seen that the stability conditions are possible if all the eigenvalues of the stability conditions are possible if all the eigenvalues of The numerical scheme is stable if $||P||_2 \le 1$, or equivalently, ρ (**P**) ≤ 1; that is, the spectral radius of the matrix **P** has to be smaller than or equal to one. From (40) it can be seen that the stability condition condition: \dot{t} $\frac{1}{2}$ and $\frac{1}{2}$ one. From $\sin \alpha$ (i.e. 110m
 $\sin \alpha$ (i.e. 110m
 $\sin \alpha$ (i.e. 110m)
 $\frac{1}{\alpha} - \delta t (1 - \theta) \lambda_J$ $\frac{1}{\lambda_I + (1 - \theta)\delta t}$
 $-\delta t (1 - \theta) \lambda_J$
 $\lambda_I + \delta t \theta \lambda_J$ all
] sat

$$
\left|\frac{\lambda_I - \delta t (1 - \theta) \lambda_J}{\lambda_I + \delta t \theta \lambda_J}\right| \le 1,
$$
\nwhere λ_I and λ_J are the eigenvalues of the matrices *I* and *J*,

respectively. For λ_I and λ_J are the eigenvalues of the etively.
For $\theta = 0.5$, the relation (42) becomes \mathfrak{t} he eigenvalue
|ation (42) be
| $\lambda_I - 0.5 \delta t \lambda_J$ $\frac{1}{2}$.

respectively.
\nFor
$$
\theta = 0.5
$$
, the relation (42) becomes
\n
$$
\left| \frac{\lambda_I - 0.5 \delta t \lambda_J}{\lambda_I + 0.5 \delta t \lambda_J} \right| \le 1.
$$
\n(43)
\nIf both λ_I and λ_J are complex eigenvalues, we write $\lambda_I = a_h +$

 $\left| \frac{\lambda_I - 0.5 \delta t \lambda_J}{\lambda_I + 0.5 \delta t \lambda_J} \right| \le 1.$ (
both λ_I and λ_J are complex eigenvalues, we write $\lambda_I = a$
 λ_h and $\lambda_J = a_k + ib_k$. In this case, (43) can be rewritten as nd λ_j are complex eigenvalues, w
 $\lambda_i + ib_k$. In this case, (43) can b
 $h_h - 0.5\delta t a_k$) + *i* ($b_h - 0.5\delta t b_k$) ϵ

and
$$
\lambda_j
$$
 are complex eigenvalues, we write $\lambda_l = a_h + ib_k$. In this case, (43) can be rewritten as\n
$$
\left| \frac{(a_h - 0.5\delta t a_k) + i (b_h - 0.5\delta t b_k)}{(a_h + 0.5\delta t a_k) + i (b_h + 0.5\delta t b_k)} \right| \le 1.
$$
\n(44)

The inequality (44) is satisfied if $a_h a_k + b_h b_k \ge 0$. For real $\left| \frac{(a_h - 0.5\delta t a_k) + i (b_h - 0.5\delta t b_k)}{(a_h + 0.5\delta t a_k) + i (b_h + 0.5\delta t b_k)} \right| \le 1.$ (44)
The inequality (44) is satisfied if $a_h a_k + b_h b_k \ge 0$. For real eigenvalues, the inequality (44) holds true for $(\lambda_h \ge 0$ and $\left| \overline{(a_h + 0.5\delta t a_k) + i (b_h + 0.5\delta t b_k)} \right| \le 1.$ (44)

the inequality (44) is satisfied if $a_h a_k + b_h b_k \ge 0$. For real

igenvalues, the inequality (44) holds true for $(\lambda_h \ge 0$ and
 $h \ge 0$ or $(\lambda_h \le 0$ and $\lambda_h \le 0)$. This s The inequality (44) is satisfied if $a_h a_k + b_h b_k \ge 0$. For real eigenvalues, the inequality (44) holds true for ($\lambda_h \ge 0$ and $\lambda_h \ge 0$) or ($\lambda_h \le 0$ and $\lambda_h \le 0$). This shows that scheme (36) is unconditionally stable i The inequality (44) is satisfied if $a_h a_k + b_h b_k \ge 0$. For real eigenvalues, the inequality (44) holds true for ($\lambda_h \ge 0$ and $\lambda_h \ge 0$) or ($\lambda_h \le 0$ and $\lambda_h \le 0$). This shows that scheme (36) is unconditionally stable i for real eigenvalues. ≥ 0) or $(\lambda_h \leq 0 \text{ and } \lambda_h \leq 0)$. This s
i is unconditionally stable if $a_h a_k + b_h b_k$
mvalues and $(\lambda_h \geq 0 \text{ and } \lambda_h \geq 0)$ or $(\lambda$
real eigenvalues.
For $\theta = 0$, the inequality (42) becomes stable if α \overline{a} 1
alit
1 λ_h $\frac{1}{2}$

$$
\left|1 - \frac{\delta t \lambda_J}{\lambda_I}\right| \le 1.
$$
 (45)

$$
\left|\frac{2\lambda_J}{\lambda_I}\right| \ge 0.
$$
 (46)

In other words,

$$
\begin{array}{ccc}\n & \lambda_I & | & \lambda_I \\
 & \delta t \le \frac{2\lambda_J}{\lambda_I}, & \frac{\lambda_J}{\lambda_I} \ge 0.\n\end{array} \tag{46}
$$

Therefore, when $\theta = 0$, the scheme (42) is conditionally stable.

4. Numerical Results

The analytical soliton solutions of the BO equation are **4. Numerical Results**
The analytical soliton solutions of the BO equation are
rational functions in *x* and *t*. For example, one and two
soliton solutions are given, respectively, by (see [6, 16, 17])
 $u(x,t) = \frac{4k_1}{k_1^$ soliton solutions are given, respectively, by (see [6, 16, 17]) on solutions of
 x and *t*. For

given, respective
 $u(x,t) = \frac{4k_1}{x_1}$

x and t. For example, one and two
\ngiven, respectively, by (see [6, 16, 17])
\n
$$
\mu(x, t) = \frac{4k_1}{k_1^2 \theta_1^2 + 1},
$$
\n(47)
\n
$$
k_2 \theta_2^2 + k_1^{-1} k_2^{-1} (k_1 + k_2)^3 (k_1 - k_2)^{-2}
$$

 $u(x, t)$

$$
u(x,t) = \frac{1}{k_1^2 \theta_1^2 + 1},
$$
\n
$$
u(x,t) = \frac{4k_1 k_2 (k_1 \theta_1^2 + k_2 \theta_2^2 + k_1^{-1} k_2^{-1} (k_1 + k_2)^3 (k_1 - k_2)^{-2})}{(k_1 k_2 - (k_1 + k_2)^2 (k_1 - k_2)^{-2})^2 + (k_1 \theta_1 + k_2 \theta_2)^2},
$$
\n(48)

where $\theta_1 = x - k_1 t + \phi_1$, $\theta_2 = x - k_2 t + \phi_2$, and k_1 , k_2 , ϕ_1 , ϕ_2 are arbitrary constants. In this section, we examine the proposed algorithm using different test problems related to the propagation of one soliton and interaction of two soliton solutions. The accuracy of the scheme is measured by using
the following error norms:
 $||E||_2 = ||u - \tilde{u}||_2 = \left[h \sum_{j=1}^{N} (u_j - \tilde{u}_j)^2 \right]^{1/2},$ the following error norms:

$$
||E||_2 = ||u - \tilde{u}||_2 = \left[h \sum_{j=1}^{N} (u_j - \tilde{u}_j)^2 \right]^{1/2},
$$

$$
||L||_{\infty} = ||u - \tilde{u}||_{\infty} = \max_{1 \le j \le N} |u_j - \tilde{u}_j|,
$$
 (49)

where u and \tilde{u} represent the exact and approximate solutions, respectively, and h is the minimum distance between any two respectively, and *h* is the minimum distance between any two
points of set points for which the errors are evaluated. In our
computational work, we use the collocation points
 $\{x_1 = a, ..., x_i = a + (i - 1)h, ..., x_N = b\}, \quad h = \frac{|b - a|}{N$ computational work, we use the collocation points d. In o .w
ou
1
1

$$
\{x_1 = a, \dots, x_i = a + (i - 1)h, \dots, x_N = b\}, \quad h = \frac{|b - a|}{N - 1}.
$$
\n(50)

The BO equation possesses infinite conservation laws [5]; the
first three are given as follows:
 $I_1 = \int_0^b u \, dx$, $I_2 = \int_0^b u^2 \, dx$, first three are given as follows:

$$
I_1 = \int_a^b u \, dx, \qquad I_2 = \int_a^b u^2 \, dx,
$$
\n(51)\n
$$
I_3 = \int_a^b \left[u^3 - 3u_x \mathcal{H}(u) \right] dx,
$$
\nrelated to the mass, momentum, and energy. The quantities I_1 ,

 $I_3 = \int_a^b \left[u^3 - 3u_x \mathcal{H} (u) \right] dx$,
elated to the mass, momentum, and energy. The quantities I_1 ,
2, and I_3 are applied to measure the conservation properties of the collocation scheme calculated by applied to measure the conservation scheme calculated by
 $I_1 \approx h \sum_{j=1}^{N} u_j^n$, $I_2 \approx h \sum_{j=1}^{N} (u_j^n)^2$, $\frac{n}{j}$

$$
I_{1} \approx h \sum_{j=1}^{N} u_{j}^{n}, \qquad I_{2} \approx h \sum_{j=1}^{N} (u_{j}^{n})^{2},
$$

$$
I_{3} \approx h \sum_{j=1}^{N} \left[(u_{j}^{n})^{3} - 3(u_{x})_{j}^{n} \mathcal{H}(u_{j}^{n}) \right].
$$
 (52)

Table 1: Invariants and errors for a single soliton of the BO equation. $k_1 = 0.3$, $\phi_1 = 0$, $N = 200$, $\delta t = 0.001$, $\theta = 1/2$, and $x \in [-100, 100]$.
Table 1: Invariants and errors for a single soliton of the BO equation

Time	L_{∞}	L ₂	1,	l ₂	I_3	CPU(s)
$\overline{0}$	Ω	Ω	12.3007	7.5397	10.1788	0.000
10	$3.3754E - 5$	$7.6966E - 5$	12.3007	7.5397	10.1788	0.810
30	$6.0085E - 5$	$1.8419E - 4$	12.3008	7.5397	10.1788	2.098
50	$8.5661E - 5$	$3.0307E - 4$	12.3008	7.5397	10.1788	3.605
70	$1.1471E - 4$	$4.5713E - 4$	12.3008	7.5397	10.1788	5.505
90	$1.5029E - 4$	$6.5433E - 4$	12.3008	7.5397	10.1788	7.499
110	$1.9803E - 4$	$9.3644E - 4$	12.3008	7.5397	10.1788	9.931

4.1. Propagation of Single Solitons. In this experiment, we consider the propagation of single solitons of the BO equation. The initial and boundary conditions are extracted from (47) and (22), respectively. The values of the parameters used
in the numerical experiments are $k_1 = 0.3$, $\phi_1 = 0$, $\theta = 1/2$,
the number of collocation points $N = 200$, and $\delta t = 0.001$.
The soliton from which the ini 4.1. Propagation of Single Solitons. In this experiment, we consider the propagation of single solitons of the BO equation. The initial and boundary conditions are extracted from (47) and (22), respectively. The values of consider the propagation of single solitons of the BO equation. The initial and boundary conditions are extracted from (47) and (22), respectively. The values of the parameters used in the numerical experiments are $k_1 =$ The soliton from which the initial condition is extracted (47) in the numerical experiments are $k_1 = 0.3$, $\phi_1 = 0$, $\theta = 1/2$, the number of collocation points $N = 200$, and $\delta t = 0.001$. this case are performed using the Sinc basis functions. soliton from which the initial condition is extracted (47) ves to the right across the space interval $x \in [-100, 100]$ en the time interval is $t \in [0, 110]$. The numerical tests for case are performed using the Sinc basis moves to the right across the space interval $x \in [-100, 100]$ moves to the right across the space interval $x \in [-100, 100]$
when the time interval is $t \in [0, 110]$. The numerical tests for
his case are performed using the Sinc basis functions.
The error norms L_{∞} , L_2 and cons

the numerical results given in Table 1 it is observed that, The error norms L_{∞} , L_2 and conservation quantities I_1 , I_2 , and I_3 are computed, which are shown in Table 1. From the numerical results given in Table 1 it is observed that, throughout the simulation, the than 1.9803 × 10⁻⁴ and L_2 remains less than 9.3644 × 10⁻⁴, *I*₂, and *I*₃ are computed, which are shown in Table 1. From the numerical results given in Table 1 it is observed that, throughout the simulation, the error norms L_{∞} remain less than 1.9803 × 10^{−4} and L_2 the numerical results given in Table 1 it is observed that,
throughout the simulation, the error norms L_{∞} remain less
than 1.9803×10^{-4} and L_2 remains less than 9.3644×10^{-4} ,
whereas the changes of the in of the initial value; our scheme is satisfactorily conservative. The numerical solutions at different time levels (a) and the whereas the changes of the invariant I_1 are less than 10^{-4} and the invariants I_2 and I_3 at a given time t are equal to those of the initial value; our scheme is satisfactorily conservative. The numerical sol

 $N = 200$, and $\delta t = 0.001$ in the region $x \in [-100, 100]$. $k_1 =$

In the next experiment, we investigate the convergence of $k_1 = 0.3$, $\phi_1 = 0$, $\theta = 1/2$, the number of collocation points $N = 200$, and $\delta t = 0.001$ in the region $x \in [-100, 100]$.
In the next experiment, we investigate the convergence of our approach in terms of the number of $t = 1$. To ensure that our scheme is not dominated by the time *N* = 200, and δt = 0.001 in the region *x* ∈ [-100, 100].
In the next experiment, we investigate the convergence of
our approach in terms of the number of grid points *N* at time
t = 1. To ensure that our scheme is In the next experiment, we investigate the convergence of
our approach in terms of the number of grid points N at time
 $t = 1$. To ensure that our scheme is not dominated by the time
discretization, we choose $\delta t = 10^{-5}$. our approach in term
 $t = 1$. To ensure that

discretization, we ch

such as $k_1 = 0.4$, $k_2 =$

and $x \in [-100, 100]$. 1. To ensure that our scheme is not dominated by the time
retization, we choose $\delta t = 10^{-5}$. We take the parameters
h as $k_1 = 0.4$, $k_2 = 0.1$, $\phi_1 = 30$, $\phi_2 = 0$, $\delta t = 10^{-5}$, $\theta = 1/2$,
 $x \in [-100, 100]$.
Figure 2 s

exponentially for the propagation of one soliton solutions and for the interaction of two soliton solutions as we increase the and $x \in [-100, 100]$.
Figure 2 shows that the exponentially for the prop
for the interaction of two
number of grid points N.

4.2. Interaction of Two Solitons. Our second experiment pertains to the interaction of two soliton solutions of the BO equation having different amplitudes and travelling in the same direction. The initial and boundary conditions are extracted from (47) and (22).

To allow the interaction to occur, the experiment was run from $t = 0$ to 210 in the region [−100, 100]. Figure 3

shows the interaction of two soliton solutions of BO equation $\phi_2 = 0$, $N = 200$ and 300, $\delta t = 0.001$, $\theta = 1/2$, and $x \in [-100, 100]$.

shows the interaction of two soliton solutions of BO equation

for $k_1 = 0.4$, $k_2 = 0.1$, $\phi_1 = 30$, $\phi_2 = 0$, $N = 200$, shows the interaction of two soliton solutions of BO equation
for $k_1 = 0.4$, $k_2 = 0.1$, $\phi_1 = 30$, $\phi_2 = 0$, $N = 200$,
 $\delta t = 0.001$, $\theta = 1/2$, and $x \in [-100, 100]$. It can be seen that the faster pulse interacts with and emerges ahead of the lower pulse with the shape and velocity of each soliton retained. Because of the nature of the Sinc discretization, the Hilbert transform and matrix differentiation are explicitly

obtained with exponential accuracy. The result in Figure 3 shows numerical interaction of the two soliton solution and its time evolution of the L_2 error from $t = 0$ to $t =$. In Figure 3(b), it is shown that the Sinc discretization maintains accurate results comparable to those given in [7, 10] for a long period. Therefore, a number of properties of the Benjamin-Ono equation can be checked numerically,

$\theta = 1/2$, and $x \in [-100, 100]$.									
Time	L_{∞}	L ₂		1 ₂		CPU(s)			
$\overline{0}$		θ	24.0123	12.5716	16.7526	0.000			
1	$1.0200E - 4$	$1.4299E - 4$	24.0124	12.5716	16.7526	0.278			
30	$2.7172E - 4$	$8.2385E - 4$	24.0124	12.5716	16.7526	1.833			
60	$4.0996E - 4$	$1.4813E - 3$	24.0124	12.5716	16.7526	3.854			
90	$5.6586E - 4$	$2.1770E - 3$	24.0124	12.5716	16.7526	7.016			
120	$6.8573E - 4$	$2.9978E - 3$	24.0124	12.5716	16.7526	8.961			
150	$8.5960E - 4$	$4.2343E - 3$	24.0124	12.5716	16.7526	11.351			
180	$2.1269E - 3$	$6.6914E - 3$	24.0124	12.5716	16.7526	14.142			
210	$3.1148E - 3$	$9.6304E - 3$	24.0124	12.5716	16.7526	16.748			

TABLE 2: Invariants and errors for interaction of two solitons of the BO equation. $k_1 = 0.4$, $k_2 = 0.1$, $\phi_1 = 30$, $\phi_2 = 0$, $N = 200$, $\delta t = 0.001$, 8
TABLE 2: Invariants and error
θ = 1/2, and $x \in [-100, 100].$ TABLE 2: Invariants and errors for interaction of two solitons of the BO equation. $k_1 = 0.4$, $k_2 = 0.1$, $\phi_1 = 30$, $\phi_2 = 0$, $N = 200$, $\delta t = 0.001$
 \overline{J}_1 I_2 I_3 CPU(s)

including the exhibition of no phase shifts after interaction of the solitons.

Numerical check on the conservation mass, momentum, and energy shows that the three quantities remain constant with respect to time as shown in Table 2. Propagation of the single solitary wave and two soliton integrations are simulated well with the proposed algorithms and conservation invariants do not change much during the computer run. Thus Sinc functions can be used to construct approximate numerical methods of the BO equation.

5. Conclusion

A numerical technique based on the Sinc collocation method has been presented for numerical solutions of the BO equation. The efficiency of the method is tested on the problems of propagation of a single soliton as well as interaction of two solitons. The accuracy of solutions is examined in terms has been presented for numerical solutions of the BO equation. The efficiency of the method is tested on the problems of propagation of a single soliton as well as interaction of two solitons. The accuracy of solutions is ion. The efficiency of the method is tested on the problems
of propagation of a single soliton as well as interaction of
wo solitons. The accuracy of solutions is examined in terms
of the L_{∞} , L_2 error norms, and method. The results obtained for the Sinc collocation are very close to analytical ones. Our algorithm was found to be unconditionally stable and exponentially convergent in space and a reliable numerical method for solving the BO equation. The method is easy to implement and compares favourably to Fourier-based spectral methods without any assumptions on periodicity.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

Edson Pindza is thankful to Brad Welch for the financial support from RidgeCape Capital.

References

[1] J. A. C. Weideman, "Computing the Hilbert transform on the real line," *Mathematics of Computation*, vol. 64, no. 210, pp. 745– 762, 1995.

- [2] T. B. Benjamin, "Internal waves of permanent form in fluids of great depth," *Journal of Fluid Mechanics*, vol. 29, no. 3, pp. 559– 592, 1967.
- [3] H. Ono, "Algebraic solitary waves in stratified fluids," *Journal of the Physical Society of Japan*, vol. 39, no. 4, pp. 1082–1091, 1975.
- [4] C. E. Kenig, G. Ponce, and L. Vega, "Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle," *Communications on Pure and Applied Mathematics*, vol. 46, no. 4, pp. 527–620, 1993.
- [5] L. Abdelouhab, J. L. Bona, M. Felland, and J. Saut, "Nonlocal models for nonlinear, dispersive waves," *Physica D*, vol. 40, no. 3, pp. 360–392, 1989.
- [6] J. Satsuma and Y. Ishimori, "Periodic wave and rational soliton solutions of the Benjamin-Ono equation," *Journal of the Physical Society of Japan*, vol. 46, no. 2, pp. 681–687, 1979.
- [7] R. L. James and J. A. C.Weideman, "Pseudospectral methods for the Bejamin-Ono equation," in *Advances in Computer Methods for Partial Differential Equations VII*, pp. 371–377, 1992. R. L. James and J. A. C. Weideman, "Pseudospectral methods for
the Bejamin-Ono equation," in *Advances in Computer Methods*
for *Partial Differential Equations VII*, pp. 371–377, 1992.
T. Miloh, M. Prestin, L. Shtilman, an
- [8] T. Miloh, M. Prestin, L. Shtilman, and M. P. Tulin, "A note on evolution equation," *Wave Motion*, vol. 17, no. 1, pp. 1–10, 1993.
- [9] V. Thomée and A. S. Vasudeva Murthy, "A numerical method for the Benjamin-Ono equation," *BIT Numerical Mathematics*, vol. 38, no. 3, pp. 597–611, 1998.
- [10] J. P. Boyd and Z. Xu, "Comparison of three spectral methods for the Benjamin-Ono equation: Fourier pseudospectral, rational Christov functions and Gaussian radial basis functions," *Wave Motion*, vol. 48, no. 8, pp. 702–706, 2011.
- [11] F. Stenger, "A Sinc-Galerkin methods for solution of boundary value problems," *Mathematics of Computation*, vol. 33, pp. 85– 109, 1979.
- [12] K. Al-Khaled, "Sinc numerical solution for solitons and solitary waves," *Journal of Computational and Applied Mathematics*, vol. 130, no. 1-2, pp. 283–292, 2001.
- [13] R. Mokhtari and M. Mohammadi, "Numerical solution of GRLW equation using Sinc-collocation method," *Computer Physics Communications*, vol. 181, no. 7, pp. 1266–1274, 2010.
- [14] J. Lund and K. L. Bowers, *Sinc Methods For Quadrature and Differential Equations*, SIAM, Philadelphia, Pa, USA, 1992.
- [15] F. Stenger, *Numerical Methods Based on Sinc and Analytic Functions*, Springer, New York, NY, USA, 1993.
- [16] Y. Matsuno, "Exact multi-soliton solution of the Benjamin-Ono equation," *Journal of Physics A: Mathematical and General*, vol. 12, no. 4, pp. 619–621, 1979.
- [17] Y. Matsuno, "Interaction of the Benjamin-Ono solitons," *Journal of Physics A: Mathematical and General*, vol. 13, no. 5, pp. 1519– 1536, 1980.

Advances in Condensed Matter Physics

