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This paper presents a hybrid Taguchi deoxyribonucleic acid (DNA) swarm intelligence for solving the inverse kinematics
redundancy problem of six degree-of-freedom (DOF) humanoid robot arms. The inverse kinematics problem of the multi-DOF
humanoid robot arm is redundant and has no general closed-form solutions or analytical solutions.The optimal joint configurations
are obtained byminimizing the predefined performance index inDNAalgorithm for real-world humanoid robotics application.The
Taguchi method is employed to determine the DNA parameters to search for the joint solutions of the six-DOF robot arms more
efficiently. This approach circumvents the disadvantage of time-consuming tuning procedure in conventional DNA computing.
Simulation results are conducted to illustrate the effectiveness and merit of the proposed methods. This Taguchi-based DNA
(TDNA) solver outperforms the conventional solvers, such as geometric solver, Jacobian-based solver, genetic algorithm (GA)
solver and ant, colony optimization (ACO) solver.

1. Introduction

Recently, humanoid robotics has attracted much attention
in the field of robotics. Humanoid robots are capable of
performing various operations that are originally conceived
for humans [1–5]. In contrast with the industrial robots, the
humanoid robots emulate human’s function to achieve a wide
variety of tasks. These high-DOF humanoid robots are supe-
rior to conventional industrial robots in terms of flexibility,
kinematics performance, agility, and dynamic performance.
With these advantages, humanoid robotics has become a new
challenging field in designing home service robotic systems
[1–5].

Humanoid robot arm is one of the main studies of
humanoid robotics. Generally, a humanoid robot arm is com-
posed of six or seven DOFs from the shoulder to the wrist.
From the kinematics point of view, the robot arm imitating
the human arm motions is kinematically redundant like the
human arm [6–8]. In other words, there is a kinematics

redundancy because an infinite number of joint angles result
in the same end-effector position. In kinematics analysis
of humanoid robot arms, forward kinematics problems are
straightforward and there is no complexity for deriving the
kinematics equations [6–10]. However, inverse kinematics is
a much more difficult problem compared with the forward
kinematics [6–10].

The solution of the inverse kinematics problem is com-
putationally intensive and generally takes a very long time in
the real-time control of robot arms. The inverse kinematics
mapping is in general one-to-many, involves complex inverse
trigonometric functions, and has no closed-form solutions
for the humanoid robot arms. This redundancy problem
refers to the fact that the joint space of robot has a larger
dimension than the task space [9, 10].The inverse kinematics
problem of the humanoid robots has been studied in the
last decade [6–10]. Overall, the conventional analytical and
Jacobian-basedmethods are generally computationally inten-
sive and are not suitable for real-time humanoid robotics
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applications. Moreover, these solvers did not provide a
generalized optimal joint configuration of the high-DOF
humanoid robot arm, meaning that these solvers are not
applicable to other high-DOF robotic arms.

Swarm intelligence is a new category of methods in the
optimization framework for solving the complex optimiza-
tion problems in a wide variety of real-world applications
[11–16]. Compared with the conventional methods, these
approaches are more powerful, so that they do not need the
reformulation of the problem to search a nonlinear space
with real-world conditions [11–16]. Among these modern
metaheuristic-based approaches for complex problems solv-
ing, DNA algorithm has been regarded as another efficient
optimization technique. This algorithm proposed by Aldel-
man [17] emulates the concept of the bimolecular evolution
and uses biomolecules for finding optimal solutions of com-
plicated computational problems. This computing paradigm
has successfully been used to solve complex problems in
many disciplines [17–20] because they have more plentiful
genetic information [17–20]. However, the parameters of
the proposed DNA swarm intelligence algorithms are usu-
ally determined by trial-and-error approach [17–20]. These
parameters influence the performance of the DNA algo-
rithms. Unfortunately, the parameters are not appropriately
set in the studies to solve complex optimization problems [17–
20].

Taguchi method is a statistical method developed by
Genichi Taguchi to improve the product quality and cost
in industrial design [21–25]. This approach has proven to
be an important tool in the system design and process
quality in which the best setting of the control factors
(parameters) is determined and has been applied to solve
many optimization problems in electrical machines design,
aerospace engineering, and controller design. For example,
Su et al. [22] proposed an efficient GA approach combined
with Taguchi method for mixed constrained circuit design.
Yang et al. [23] employed the Taguchi method combined
with GA to design a flight controller. Seenivasan et al. [24]
presented an optimization of dehumidifier using Taguchi
method. Hasanien [25] proposed an optimal controller in
automatic voltage regulator system using Taguchi combined
GA. Compared to the conventional full factorial design
method, this method has fewer experiments to obtain opti-
mal parameters or factors in optimization problems using
the orthogonal array and signal-to-noise ratio techniques. To
the authors’ best understanding, there has been no attempt
to developing hybrid Taguchi DNA swarm intelligences for
the optimal inverse kinematics redundancy resolution of six-
DOF humanoid robot arms.

The objective of this paper is to develop a hybrid Taguchi
DNA algorithm to solve the inverse kinematics problem of
the six-DOF humanoid robot arm more effectively. The rest
of this paper is organized as follows. In Section 2, the forward
kinematics and inverse kinematics of the six-DOF humanoid
robot arm are introduced. Section 3 elucidates the procedure
of how to apply the proposed Taguchi-based DNA swarm
intelligence to solve the redundant problem and find an
optimal configuration of the robot arm. Section 4 conducts

several simulations to show the performance andmerit of the
proposed methods. Section 5 concludes this paper.

2. Forward Kinematics and Inverse Kinematics
of the Six-DOF Humanoid Robot Arm

Forward kinematics and inverse kinematics are very impor-
tant for studying the kinematics motion, path planning, and
coordination of the humanoid robot arm. The joints infor-
mation is necessary for these studies. Tasks to be performed
by a robot arm are assigned in the Cartesian space which
includes position vector 𝑝 ∈ R3

(𝑥, 𝑦, 𝑧), whereas robot
actuators work in joint space is represented by joint angles
𝑞 ∈ R6 (𝜃

1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
, 𝜃
6
). The degree in joint space is

three and the degree in Cartesian space is six; the inverse
kinematics is, therefore, a redundancy problem. The forward
kinematic equations relate joint motions of humanoid robot
arm to the Cartesian coordinates. On the other hand, the
conversion of the position of a humanoid robot arm end-
effector from Cartesian space to joint space is called inverse
kinematics problem [6–8].

A commonly used coordinate transformation for select-
ing frames of reference in robotic applications is the Denavit-
Hartenberg (D-H) convention which involves the allocation
of coordinate frames to each link.Thepositions of subsequent
links are defined by the homogeneous transform matrix,
which transforms the frame attached to link 𝑖−1 into a frame
fixed to link 𝑖. In this transformation, each homogeneous
transformation 𝑖−1𝐴

𝑖
is represented as a product of four basic

transformations, given by
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(1)

where the four quantities 𝜃
𝑖
, 𝑎
𝑖
, 𝑑
𝑖
and 𝛼

𝑖
are parameters

associatedwith link 𝑖 and joint 𝑖.The four parameters 𝜃
𝑖
, 𝑎
𝑖
, 𝑑
𝑖
,

and 𝛼
𝑖
in (1) generally denote the joint angle, link length,

link offset, and link twist of link 𝑖, respectively. c𝜃
𝑖
, and s𝜃

𝑖

(𝑖 = 1, 2, 3, . . . , 6) denote cos 𝜃
𝑖
and sin 𝜃

𝑖
. These parameters

are derived from the geometric relationship between two
coordinate frames [6–8]. Figure 1 depicts the picture of the
general six-DOF humanoid robot arm. Table 1 lists all the
D-H parameters of the six-DOF humanoid robot arm in
this study. This mechanical information of the robot arm is
needed to derive the forward kinematics of the robot arm.
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Table 1: D-H parameters of the six-DOF humanoid robot arm.

𝑖 𝜃
𝑖

𝑑
𝑖

𝑎
𝑖

𝛼
𝑖

𝜃
𝑖,min < 𝜃

𝑖
< 𝜃
𝑖,max

1 90∘ 0 𝐿
0
(mm) 142.3 −90∘ −130

∘
< 𝜃
1

< 130
∘

2 90∘ 𝐿
1
(mm) 145 0 −90∘ −80

∘
< 𝜃
2
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∘

3 −90∘ 𝐿
2
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3
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∘
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The transformation matrix between each two successive
joint can be written by simply substituting the parameters
from Table 1 into the matrix given as follows:
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Therefore, the transformation matrix of the end-effector
with respect to the fixed reference frame can be expressed as
follows:
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where 𝑝 = [𝑝
𝑥
, 𝑝
𝑦
, 𝑝
𝑧
]
𝑇 is the position of the end-effector

in Cartesian coordinates and 𝑜 = [
𝑛𝑥 𝑜𝑥 𝑎𝑥
𝑛𝑦 𝑜𝑦 𝑎𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧

] is the rotation
matrix. Although the orientation of the end-effector is gen-
erally of interest in a robotic application, most robot arms
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Figure 1: Picture of the general six-DOF humanoid robot arm.

are used to perform simple and repetitive tasks. In these
applications, the inverse kinematic solvers only consider the
end-effector position matrix; that is, the Euler angles are
not included and the rotation matrix of end-effector is not
considered [26].
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In the forward kinematics equation (3), there are infinite
inverse kinematics solutions for the six-DOFhumanoid robot
arm. Although the solution of the forward kinematics prob-
lem is steady forward, the solution of the inverse kinematics
problem strictly depend on the robot arm’s structures. It is
difficult to obtain a general closed-form and optimal solution
by using conventional methods, such as analytical approach
[7, 8] and Jacobian-based approach [9]. In other words, the
complex and time-consuming procedure of inverse kinemat-
icsmust be derived again for different humanoid robot robots
using these conventional approaches.

In order to circumvent this disadvantage, this paper
presents an evolutionary DNA swarm intelligence algorithm
combined with Taguchi method to solve the general six-DOF
redundant inverse kinematics problem, thus determining
the optimal joint variables of the six-DOF humanoid robot
arm. The DNA parameters are determined using Taguchi
theory rather than trial-and-error approach. The proposed
DNA algorithm with Taguchi method evolves the optimal
configuration of the joint variables for the six-DOFhumanoid
robot arm by minimizing the predefined fitness function and
signal-to-noise ratio (SNR).

3. Taguchi-Based DNA Inverse Kinematics
Redundancy Solver

3.1. DNA Swarm Intelligence Algorithm. DNA swarm intelli-
gence algorithm is a subcategory of nature-inspired optimiza-
tion and population-based optimization algorithms using the
biomolecular structure of DNA molecules [17–20]. Individ-
uals (chromosomes) cooperate with each other to find an
optimal solution in the problem space. The basic elements
of biological DNA are nucleotides which can be classified
into four bases: adenine (A), guanine (G), cytosine (C), and
thymine (T). A triplet code of nucleotide bases specifies the
codon,which in turn contains a specific anticodonon transfer
RNA (tRNA) and assists subsequent transmission of genetic
information in the formation of a specific amino acid [17–20].
A chromosome consists of combinations of the above four
bases with different chemical structures and can represent
many genes in the optimization problems.

Numerical DNA computing algorithm is similar to GAs
since their own natural genetic operators help evolution of
the genes generation by generation, such as crossover and
mutation; however it is different from GAs. In particular,
the DNA algorithms provide two new operators, enzyme and
virus, which are very useful to enhance the effect of mutation.
Moreover, the coding scheme of DNAs is quite different
from those of GAs. In what follows the coding scheme and
core operators of DNA swarm intelligence algorithms are
summarized.

3.1.1. Coding Scheme. A single strand of DNA can be repre-
sented by a string consisting of a combination of four different
symbols, A, G, C, and T; that is, DNA algorithms use A,
G, T, and C to stand for their chromosomes; for example,
one can define A = 0, G = 1, T = 2, and C = 3 to encode
the chromosomes. Compared with the conventional GAs in

ATT TGA GAT

ATA CTA ACC CAT TTG AGT CTA TTCTCA GAT

ATT TGA GA CTA AC

TTC ATC CAA

C CAT TTG A TT G

TAG CG

CT A T

T CGA TA

T C

C

TTC ATC CAATA A TAG CGTTCA G CGAAT TAC

↓

⇓

Crossover point

Chromosome 1

Chromosome 2

Chromosome 2

Chromosome 1

Figure 2: Illustration of one-point crossover of the chromosomes.

which the binary coding system is employed, this approach
has more genetic information for complex optimization
problems solving. Moreover, (4) can be easily applied to
define the range and precision of a parameter in the DNA
algorithm [17, 18]:

𝜋 =
𝑈max − 𝑈min

4𝑙 − 1
, (4)

where 𝜋 denotes the precision, 𝑙 stands for how many bits
will be used, 𝑈max is the maximum of the parameter, and
𝑈min denotes the minimum of the parameter. It is worth
mentioning that (4) hinges on the fact that DNA swarm
intelligence algorithms use four bits for the coding scheme,
but GAs use only two bits.

3.1.2. Selection (Reproduction). The main task of selection
module is to select individuals from the populations so that
these individuals can be sent to the crossover and mutation
module in order to attain new offsprings. Selection is one of
the key operators that ensure survival of the fitness. There
are several selection methods with different characteristics,
such as roulette selection, rank selection, and tournament
selection. However, it is necessary to get the fitness value of
each chromosome prior to selection process.

3.1.3. Crossover. Crossover is themain procedure of chromo-
somal exchange in the DNA swarm intelligence algorithm
to achieve an effective database of knowledge. In molecular
biology, crossover is the process by two chromosomes, paired
up during prophase of meiosis, which exchanges some distal
portion of their DNA. Crossover occurs when two chromo-
somes break and then reconnect but to different end piece. If
they break at the same place, then the result is an exchange
of genes, called genetic recombination. One-point crossover
is adopted throughout the paper due to high speed operation
shown in Figure 2 with a crossover rate 𝑃

𝑐
.

3.1.4. Mutation (Enzyme and Virus). Mutation is the process
which consists of making small alterations to the bits of
the chromosomes by applying some kind of randomized
changes, such as single-point ormultipointmutation process.
This operation complements the procedures of crossover and
selection. As shown in Figure 3, in DNA swarm intelligence
algorithms, there are two special mutation operators, enzyme
and virus, which are more effective than GAs. The enzyme
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Chromosome 1

Chromosome 1

↓

⇓
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↓

⇓

Figure 3: Illustration of enzyme and virus operations in DNA
algorithm.

operator refers to deletion, in which one or more base pairs
are removed, while the virus operator refers to insertion, in
which one or more base pairs are inserted into the sequence.
These two operations provide continuous renewal of the
population, the searching diversity is increased, and the pre-
mature convergence problem is avoided. The determination
of whether mutation will occur is decided by the mutation
rate 𝑃

𝑚
.

3.1.5. Fitness Function (Performance Index). The fitness func-
tion is application-specific and is always designed according
to the problem to be optimized. The fitness of new chromo-
somes from genetic operations, such as crossover and muta-
tion, should be evaluated based on the fitness function. For
complex problems, the computation time becomes dominant
in the overall performance.

3.2. DNA Computing for Solving the Inverse Kinematics Prob-
lem. In DNA computing for inverse kinematics, each chro-
mosome contains the set of the joint variables [𝜃

1
𝜃
2

𝜃
3

𝜃
4

𝜃
5

𝜃
6
] of the six-DOF humanoid robot arm. The

optimal solution is evolved by using the DNA evolution
process to solve the redundant problem of the humanoid
robot arm, thereby obtaining the optimal configurations 𝑞 =

[𝜃
1

𝜃
2

𝜃
3

𝜃
4

𝜃
5

𝜃
6
]
𝑇 for the desired position of the

end-effector 𝑝 = [𝑝
𝑥

𝑝
𝑦

𝑝
𝑧
]
𝑇.

In the inverse kinematics redundant problem of the
six-DOF humanoid robot arm, there exist infinitely many
postures for the robotic arm from any starting pose to
any destination pose. The proposed DNA algorithm will be
employed to minimize the whole movement of the robot arm
in the redundant problem.The configuration of the robot arm
can be represented by the following vector matrix:

𝑞 = [𝜃1 𝜃
2

𝜃
3

𝜃
4

𝜃
5

𝜃
6]
𝑇

. (5)

To determine the minimal movement of the robot arm, one
defines a fitness function composed of the differences from
the initial states of manipulator and the final states of the
robot arm. The initial states 𝑞

𝑖
of the robot arm are denoted

by

𝑞
𝑖
= [𝜃1,𝑖 𝜃

2,𝑖
𝜃
3,𝑖

𝜃
4,𝑖

𝜃
5,𝑖

𝜃
6,𝑖]
𝑇

. (6)

The final states of the humanoid robot arm are expressed by

𝑞
𝑓

= [𝜃1,𝑓 𝜃
2,𝑓

𝜃
3,𝑓

𝜃
4,𝑓

𝜃
5,𝑓

𝜃
6,𝑓]
𝑇

. (7)

The desired final position of the robot’s end-effector
is represented as 𝑋

𝑚,𝑓
= [𝑥

𝑚,𝑓
𝑦
𝑚,𝑓

𝑧
𝑚,𝑓

]
𝑇

=

[𝑝
𝑥

𝑝
𝑦

𝑝
𝑧
]
𝑇. Based on the desired final position of the

end-effector and the inverse kinematics of the robotic arm in
Section 2, one can obtain all the joint angles of the humanoid
robotic arm using the DNA optimization process.

Fitness function (performance index) is very important in
the DNA evolution process because it evaluates all the DNA
chromosomes. In order to employ the DNA algorithm to
solve the redundant problem, one defines the fitness function
𝐹 as follows by considering the minimal movement of the
robot arm:

𝐹 = 𝐹displacement + 𝐹error

= [(𝑞
𝑓

− 𝑞
𝑖
)
𝑇
(𝑞
𝑓

− 𝑞
𝑖
)]
1/2

(𝑞
𝑓

− 𝑞
𝑖
)
𝑇

(𝑞
𝑓

− 𝑞
𝑖
)

+ 𝜔[(𝑥
𝑚,𝑓

− 𝑥
𝑚,𝑖

)
2

+ (𝑦
𝑚,𝑓

− 𝑦
𝑚,𝑖

)
2

+ (𝑧
𝑚,𝑓

− 𝑧
𝑚,𝑖

)
2
]
1/2

,

(8)

where 𝑋
𝑚,𝑖

= [𝑥
𝑚,𝑖

𝑦
𝑚,𝑖

𝑧
𝑚,𝑖

]
𝑇 is the initial position of the

end-effector of the robot arm and 𝜔 is the weight factor. The
fitness function 𝐹 combines the position error 𝐹error with
an additional term based on the joint angle displacement
𝐹displacement from the initial position. The proposed DNA
algorithm is then adopted to find the optimal solutions of
the fitness function 𝐹 in (7); that is, the best fitness value is
thus obtained and the optimal configuration is determined.
These optimal parameters, including 𝜃

1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
, and 𝜃

6
,

are required for the design of robot arm controller to perform
the desired tasks.

The DNA swarm intelligence algorithm for searching
the optimal configurations of the humanoid robot arm is
described by the following steps. Note that if the correspond-
ing joint angle is within the limit of the motor’s workspace,
the chromosome is acceptable.

Step 1. Initialize the population size 𝑆, crossover rate 𝑃
𝑐
,

mutation rate 𝑃
𝑚
, and number of iterations 𝑁.

Step 2. Set the two parents from the selection operation.

Step 3. Execute the crossover operation and also check
whether new chromosomes are acceptable. If the new
chromosomes are unacceptable, repeat this procedure until
acceptable chromosomes are obtained.

Step 4. Perform the mutation process with low mutation rate
and ensure that new chromosomes are acceptable.

Step 5. Repeat the previous four steps again until the conver-
gence criterion is met or predetermined number of iterations
is reached.Output the optimal configuration of the humanoid
robot arm 𝑞

∗
= [𝜃
∗

1
𝜃
∗

2
𝜃
∗

3
𝜃
∗

4
𝜃
∗

5
𝜃
∗

6
]
𝑇.
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Table 2: Control factors and their levels.

Control factor Level 1 Level 2 Level 3
𝑆 100 200 300
𝑁 50 75 100
𝑃
𝑐

0.6 0.7 0.8
𝑃
𝑚

0.015 0.03 0.05

3.3. Taguchi DNA Inverse Kinematics Solver. Although the
redundant inverse kinematics problem of the six-DOF
humanoid robot arm has been successfully resolved by the
proposed DNA swarm intelligence, the DNA parameters,
such as population size, number of generation, crossover rate,
andmutation rate, are not appropriately set.These parameters
affect the searching performance of the DNA computing
in inverse kinematics solver. The most important problem
is, therefore, how to find the optimal DNA parameters to
increase the search efficiency and decrease the effect of
randomness in the proposed DNA redundancy solver. This
subsection aims at employing Taguchi quality method to
present a Taguchi-based DNA inverse kinematics solver for
the six-DOF humanoid robot arm.

Taguchi experimentalmethod can reduce the disturbance
caused by randomness and can help determine the optimal
parameters in the proposedDNAalgorithm.Theadvantage of
the combination of the DNA computing and Taguchimethod
is that only a few experiments are needed because of the
orthogonal array of the Taguchi method. The proper DNA
parameters can be set without full-parameter experiments.
This approach not only greatly reduces the number of
iterations but also makes the DNA final solution approaches
the optimal values with less randomness. Taguchi method
was constructed based on the principle of an orthogonal array
that can effectively minimize the number of experiments
required in any design process [21–25]. An orthogonal array
is a fractional factorial matrix that provides a balanced
comparison of levels of parameters or factors. This approach
can provide an efficient way to obtain the optimal parameters
or factors in an optimization problem or system design.

In this study, there are four control factors: population
size (𝑆), number of generation (𝑁), crossover rate (𝑃

𝑐
), and

mutation rate (𝑃
𝑚
). Table 2 shows the control factors and

their levels, each factor has three levels (level 1, level 2, and
level 3). Table 3 is a standard Taguchi orthogonal array 𝐿

9

(34) which is applied in this inverse kinematics solver.The full
factorial design method requires 34 = 81 experiments while
the Taguchi method needs only nine experiments to obtain
the approximate optimal values.

Signal-to-noise ratio (SNR) is used in Taguchi method
to measure the quality of each experiment in the orthogonal
array. There are several SNRs available depending on the
type of characteristic: nominal-is-best, smaller-the-better, or
larger-the-better [21–25]. This paper adopts the smaller-the-
better characteristic and the SNR is given by

SNR = −10 log𝐹
2
, (9)

where 𝐹 is the fitness value in (8).

Table 3: Orthogonal array of the inverse kinematics solver.

Exp. number 𝑆 𝑁 𝑃
𝑐

𝑃
𝑚

1 100 50 0.6 0.015
2 100 75 0.7 0.03
3 100 100 0.8 0.05
4 200 50 0.7 0.05
5 200 75 0.8 0.03
6 200 100 0.6 0.015
7 300 50 0.8 0.03
8 300 75 0.6 0.015
9 300 100 0.7 0.05

With the Taguchi method with orthogonal array, the
parameters in DNA swam intelligence are properly set to
obtain optimal performance by only using a few experiments.
This Taguchi-based DNA (TDNA) solver provides a general
redundancy resolution for six-DOF the humanoid robot
arm. The proposed TDNA solver can be easily extended to
resolve the redundancy problem of seven-DOF humanoid
robot arms.TheproposedTDNA solver outperforms the con-
ventional solvers, such as geometric solver, Jacobian-based
solver, GA-based solver, and ACO-based solver, because
more genetic information and Taguchi quality method are
applied in this natural-inspired swarm intelligence.

Remark 1. Once the optimal configuration is obtained via the
TDNAalgorithm, the next goal is to plan themotion profile of
each joint and the time trajectory is then generated between
the initial and final configurations. This motion trajectory
planning can be achieved via the trapezoid velocity profile
[26] and S-curve profile which are commonly used inmotion
control to generate the time trajectories for the joint angles
and avoid strong random motion.

Remark 2. The proposed TDNA solver is easily extended
to address the full inverse kinematics in which the position
and rotation matrix are considered. Moreover, this efficient
TDNA solver is applicable to anymulti-DOF robot arms with
different structures.

4. Simulation Results and Discussion

The aims of the simulations are to examine the effec-
tiveness and performance of the proposed Taguchi-based
DNA algorithm to solve the redundant inverse kinematics
problem of the six-DOF humanoid robot arm. The initial
states 𝑞

𝑖
= [𝑞
𝑚,𝑖

] = [0
∘

0
∘

0
∘

0
∘

0
∘

0
∘
]
𝑇 and the

desired final position of the end-effector is set (20 cm,
20 cm, 10 cm). The Taguchi-based DNA computing is ter-
minated at 100th generation. The evolved optimal joint
solution is (𝜃

1,𝑓
, 𝜃
2,𝑓

, 𝜃
3,𝑓

, 𝜃
4,𝑓

, 𝜃
5,𝑓

, 𝜃
6,𝑓

) = (76.19
∘
, −79.15

∘
,

−43.46
∘
, −68.17

∘
, 28.68

∘
, 1.06
∘
) and its corresponding posi-

tion is (19.98 cm, 19.84 cm, 9.98 cm) which is very close to the
desired position.
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Figure 4: SNR of the proposed Taguchi-based DNA algorithm for
the humanoid robot arm.
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Figure 5: Joint trajectories of the robot arm moving from the
starting point to the ending point.

Figure 4 presents the SNR of the proposed Taguchi-based
DNA algorithm to solve the redundant problem of the six-
DOF robot arm. As can been seen in Figure 4, the proposed
Taguchi-based DNA algorithm successfully searches for the
optimal configurations of the humanoid robot arm. Figure 5
depicts the joint trajectories of the robotmanipulatormoving
from the starting point to the ending point. All the joint
angles 𝜃

1
∼ 𝜃
6
converge to constant values. Figure 6 presents

the convergence of end-effector’s position error. As shown in
Figure 6, the position errors, including x, y, and z, are nearly
converged to zero successfully. These simulations clearly
indicate that the proposed Taguchi-based DNA resolves the
redundant problem and finds optimal configuration of the
six-DOF robot arm.

In order to exhibit the merit of the proposed TDNA over
conventional GA and ACO to solve the redundancy problem
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Figure 6: Position error of the humanoid robot arm.
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Figure 7: The evolutions of performance index in the proposed
TDNA and conventional solvers.

of the humanoid robot arm, Figure 7 presents the evolutions
of performance index (fitness value) for the proposed TDNA
solver and the two conventional solvers. The GA and ACO
were executed with the parameters settings: population size
of individuals is 100, crossover probability is 0.85, mutation
probability is 0.1, and maximum iterations are 100, 𝛼 = 0.2,
𝛽 = 0.3, 𝜌 = 0.7, and 𝑄 = 10. These three solvers employed
the same fitness function in (8) to cope with the same inverse
kinematics redundancy problem of the six-DOF humanoid
robot arm. As shown in Figure 7, the proposed TDNA solver
converges to the optimal solution with better performance
index. Through these results, the proposed TDNA inverse
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kinematics solver is superior to the conventional solvers; that
is, it solves this robotic optimization problemmore efficiently
with better joint configurations. It is worth mentioning that
some metaheuristic algorithms could be considered in this
area in the future, like swarm dolphin algorithm, computa-
tional intelligence aided design (CIAD) framework, and so
on, which could be employed in future work.

5. Conclusions

This paper has presented an efficient inverse kinemat-
ics redundancy solver of six-DOF humanoid robot arm
using Taguchi-based DNA swarm intelligence. The proposed
hybrid algorithmhas been developed to solve the redundancy
problem. This algorithm has more genetic information and
avoids the premature convergence problem in conventional
methods. Through simulation results, the proposed TDNA
optimal solver has been shown to search for the optimal
solutions successfully. This TDNA solver has been shown
to outperform the conventional solvers, such as geometric
solver, Jacobian-based solver, GA solver, and the ACO solver.
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