
Research Article
Comparison of CFBP, FFBP, and RBF Networks in
the Field of Crack Detection

Dhirendranath Thatoi,1 Punyaslok Guru,1 Prabir Kumar Jena,2

Sasanka Choudhury,1 and Harish Chandra Das1

1 Department of Mechanical Engineering, Institute of Technical Education and Research, SOA University, Bhubaneswar,
Odisha 751030, India

2 VSSUT, Burla, Odisha 768018, India

Correspondence should be addressed to DhirendranathThatoi; dnthatoi@gmail.com

Received 31 July 2013; Revised 26 October 2013; Accepted 22 November 2013; Published 4 February 2014

Academic Editor: Chia-Feng Juang

Copyright © 2014 DhirendranathThatoi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The issue of crack detection and its diagnosis has gained a wide spread of industrial interest.The crack/damage affects the industrial
economic growth. So early crack detection is an important aspect in the point of view of any industrial growth. In this paper a
design tool ANSYS is used to monitor various changes in vibrational characteristics of thin transverse cracks on a cantilever beam
for detecting the crack position and depth andwas compared using artificial intelligence techniques.The usage of neural networks is
the key point of development in this paper.The three neural networks used are cascade forward back propagation (CFBP) network,
feed forward back propagation (FFBP) network, and radial basis function (RBF) network. In the first phase of this paper theoretical
analysis has been made and then the finite element analysis has been carried out using commercial software, ANSYS. In the second
phase of this paper the neural networks are trained using the values obtained from a simulated model of the actual cantilever beam
using ANSYS. At the last phase a comparative study has been made between the data obtained from neural network technique and
finite element analysis.

1. Introduction

The presence of cracks in a mechanical member has catas-
trophic effects on its functionality and the failure in detecting
the said cracks may result in failure of the mechanical mem-
ber.Hence, studies related to crack detection has been amajor
field of interest among researchers and scholars. Crack detec-
tion using vibrational analysis is considered the most prolific
and efficient technique in crack detection but the integration
of vibrational analysis with artificial intelligence and soft
computing techniques has provided new dimensions to crack
detection and analysis.

There have been many papers suggesting different meth-
ods for detecting cracks in a simple cantilever beam by
using vibrational analysis. The inverse measurement of crack
parameters from vibrational analysis is the basis on which the
crack analysis is done in this paper and the relevant literature
in this regard is described as follows. Lifshitz and Rotem
[1] pioneered the proposed damage detection via vibration

measurements-inverse measurement of crack parameters
from vibrational parameters. They look at the change in
the dynamic moduli, which can be related to the frequency
shift, as indicating damage in particle-filled elastomers. The
dynamic moduli, which are the slopes of the extensional and
rotational stress-strain curves under dynamic loading, are
computed for the test articles from a curve-fit of themeasured
stress-strain relationships, at various levels of filling. By
considering the change ofmodal frequencies as the key factor
of damage, various researchers have used the inverse method
for examining the changes of modal frequencies [2–13].

Many times, it is quite difficult to determine the crack
parameters by presenting a physical model of the can-
tilever beam along with the crack. In order to examine
and analyze the various parameters and simulate a simple
crack on a cantilever beam efforts have been taken with
the help of designing software. Apart from using a simulation
software, researchers have used different means of analyzing
the entire system. Sahoo et al. [14] have used ultrasonic
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signals to monitor the various vibrational changes and
anomalies.

After the successful monitoring of these changes and
anomalies a conclusion was made about the various crack
parameters. In general if a person tries to reach such a con-
clusion by following a theoretical process it would take him
a longer period of time as well as decrease the effectiveness
and efficiency of the obtained result. Hence, various methods
apart from the conventional technique are utilized to obtain
a good and approximately exact result. Suresh et al. [15]
presented a method by considering the flexural vibration in
a cantilever beam with a transverse crack. They computed
modal frequency parameters analytically for various crack
locations and depths. After obtaining these values the param-
eters so obtained were used to train the neural network to
identify the damage location and size. Saridakis et al. [16]
proposed fuzzy logic, genetic algorithm (GA) and neural
network for considering the dynamic behavior of a shaft with
two transverse cracks characterized by position, depth, and
relative angle. Little and Shaw [17] solved exactly a linearised
version of the model. They explicitly show that the capacity
of the memory is related to the number of synapses and not
the number of neurons. Amethod was proposed by Loutridis
et al. [18] “forced vibration behavior and crack detection
of cracked beams using instantaneous frequency” to detect
the crack in beam depending on instantaneous frequency
(IF). The study monitored the dynamic behavior for the
beam with breathing crack. They carried out the research
under harmonic excitation with experimental and theoretical
results.The observed data of the simulation and experimental
test were analyzed using MATLAB. A relation between the
depth of crack and the main difference of instantaneous
frequency was established. The instantaneous frequency was
found to be a good indicator for the size of crack.

Thatoi et al. [19] have reviewed the variousmethodologies
used for crack detection and fault diagnosis. Doebling et al.
[20] have reviewed different techniques of detection, location,
and characterization of structural damage and faults. The
analysis included changes in modal frequency, changes in
mode shapes, and changes in flexibility coefficients.

Qian et al. [21] used a finite element model to predict the
behavior of a beam with an edge crack by taking an element
stiffnessmatrix, which is derived from an integration of stress
intensity factor. Kim and Stubbs [22] located the position and
estimated the size of a crack in beam type structures by taking
the changes in natural frequencies, which is formulated by
relating fractional changes in modal energy due to the pres-
ence of crack. Ihn and Chang [23] have proposed a method
for detecting and monitoring hidden fatigue crack growth.
They have used diagnostic signals, generated from nearby
piezoelectric actuators built into the structure to detect the
crack growth. A complete built-in diagnostic system for the
tests was developed, including a sensor network, hardware,
and the diagnostic software. Lele and Maiti [24] have con-
sidered the effect of shear deformation and rotational inertia
through the Timoshenko beam theory for detection and
measurement of crack extension of short beams. Quek et al.
[25] have inspected the sensitivity of wavelet technique in the
detection of cracks in beam-like structure. In this aspect they
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Figure 1: Beam model.

have compared the results of two wavelets such as: Haar and
Gabor wavelets. Zagrai and Giurgiutiu [26] have described
the utilization of electromechanical impedance method for
crack detection in thin plates. This method allows the direct
identification of structural dynamics by obtaining its electro-
mechanical impedance.

Crack detection in the beam-like structures having single
as well as multicracks was modeled using artificial neural
network (ANN) and the various characteristics were studied
[27–29].

In the present study a methodical approach to analyze
and detect the crack parameters, that is, the crack location
and relative crack depth from a set of frequency values
obtained from a simulated model of the cantilever beam
containing a thin transverse crack using ANSYS. Using the
data, cascade forward back propagation (CFBP), feed forward
back propagation (FFBP) and radial basis function (RBF)
neural network models are developed and finally result thus
obtained are compared.

2. Mathematical Formulation

2.1. Computation of Flexibility Matrix of a Damaged Beam
Subjected to Complex Loading. A beam with cracks has
smaller stiffness than a normal beam. This decreased local
stiffness can be formulated as a matrix. The dimension of
the matrix would depend on the degrees of freedom in
the problem. Figure 1 shows a cantilever beam of width 𝑊
and height 𝑇, having a transverse surface crack of depth 𝑏

1
.

The beam experiences combined longitudinal and transverse
motion due to the axial force 𝑃

1
and bending moment 𝑃

2
.

Here two degrees of freedom are considered, leading to a 2×2
local stiffness matrix.

The relationship between strain energy release rate 𝐽(𝑏)
and stress intensity factors (𝐺

𝐼𝑖
) at the crack section is given

by Tada et al. [30] as

𝐽 (𝑏) =
1

𝐸
(𝐺
𝐼1
+ 𝐺
𝐼2
)
2

, (1)

where 𝐸 = 𝐸/(1−]2), for plane strain condition, and 𝐸 = 𝐸,
for plane stress,𝐺

𝐼1
= stress intensity factor for openingmode

𝐼 due to load 𝑃
1
, and 𝐺

𝐼2
= stress intensity factor for opening

mode 𝐼 due to load 𝑃
2
.
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From earlier studies (Tada et al. [30]), the values of stress
intensity factors are

𝐺
𝐼1
=

𝑃
1

𝑊𝑇

√𝜋𝑏(𝐹
1
(
𝑏

𝑇
)) ,

𝐺
𝐼2
=
6𝑃
2

𝑊𝑇2
√𝜋𝑏(𝐹

2
(
𝑏

𝑇
)) ,

(2)

where 0 ≤ 𝑏 ≤ 𝑏
1
and the experimentally determined

functions 𝐹
1
and 𝐹

2
are expressed as follows:

𝐹
1
(
𝑏

𝑇
) = (

2𝑇

𝜋𝑏
tan(𝜋𝑏

2𝑇
))

0.5

× {(0.752 + 2.02 (
𝑏

𝑇
)

+ 0.37(1 − sin(𝜋𝑏
2𝑇
))

3

)

× (cos(𝜋𝑏
2𝑇
))

−1

} ,

𝐹
2
(
𝑏

𝑇
) = (

2𝑇

𝜋𝑏
tan(𝜋𝑏

2𝑇
))

0.5

× {
0.923 + 0.199(1 − sin (𝜋𝑏/2𝑇))4

cos (𝜋𝑏/2𝑇)
} .

(3)

The strain energy release rate (also called strain energy
density function) at the crack location is defined as

𝐽 (𝑏) =
𝜕𝑈
𝑡

𝜕 (𝑏 ×𝑊)
, (4)

where (𝑏 × 𝑊) is the newly created surface area of the crack

𝑑𝑈
𝑡
= 𝐽 (𝑏) 𝑑 (𝑏 ×𝑊) = 𝑊𝐽 (𝑏) 𝑑𝑏, (5)

since the width of the cross section of the beam is constant

𝑈
𝑡
= 𝑊∫

𝑏
1

0

𝐽 (𝑏) 𝑑𝑏. (6)

So the strain energy release (𝑈
𝑡
) due to the crack of depth 𝑏

1

is calculated.
Then fromCastigliano’s theorem, the additional displace-

ment along the force 𝑃
𝑖
is given as

𝑆
𝑖
=
𝜕𝑈
𝑡

𝜕𝑃
𝑖

. (7)

Using (1) and (6),

𝑆
𝑖
=

𝜕

𝜕𝑃
𝑖

[𝑊∫

𝑏
1

0

𝐽 (𝑏) 𝑑𝑏] = 𝑊
𝜕

𝜕𝑃
𝑖

[∫

𝑏
1

0

𝐽 (𝑏) 𝑑𝑏] , (8)

𝐶
𝑖𝑗
=
𝜕𝑆
𝑖

𝜕𝑃
𝑗

=
𝜕

𝜕𝑃
𝑗

[𝑊
𝜕

𝜕𝑃
𝑖

{∫

𝑏
1

0

𝐽 (𝑏) 𝑑𝑏}]

= 𝑊
𝜕
2

𝜕𝑃
𝑖
𝜕𝑃
𝑗

∫

𝑏
1

0

𝐽 (𝑏) 𝑑𝑏.

(9)

The flexibility influence coefficient 𝐶
𝑖𝑗
as per definition will

be as follows.
By substituting (1) in (9),

𝐶
𝑖𝑗
=
𝑊

𝐸

𝜕
2

𝜕𝑃
𝑖
𝜕𝑃
𝑗

∫

𝑏
1

0

(𝐺
𝑙1
+ 𝐺
𝑙2
)
2

𝑑𝑏. (10)

Putting 𝛿 = (𝑏/𝑇), 𝑑𝛿 = 𝑑𝑏/𝑇, we get 𝑑𝑏 = 𝑇𝑑𝛿 and when
𝑏 = 0, 𝛿 = 0; 𝑏 = 𝑏

1
, 𝛿 = 𝑏

1
/𝑇 = 𝛿

1
.

From the above condition (10) converts to

𝐶
𝑖𝑗
=
𝑊𝑇

𝐸

𝜕
2

𝜕𝑃
𝑖
𝜕𝑃
𝑗

∫

𝛿
1

0

(𝐺
𝑙1
+ 𝐺
𝑙2
)
2

𝑑𝛿. (11)

Equation (11) will give different expressions of flexibility
influence coefficient 𝐶

𝑖𝑗
.

𝐶
𝑖𝑗
= flexibility influence coefficient in 𝑖 direction (𝑋-

direction or 𝑌-direction) due to the load in 𝑗 direction (𝑃
1

or 𝑃
2
).
The expressions for𝐶

11
, 𝐶
12
(=𝐶
21
) and𝐶

22
are obtained

as follows:

𝐶
11
=
𝑊𝑇

𝐸
∫

𝛿
1

0

𝜋𝑏

𝑊2𝑇2
2𝐹
1

2
(𝛿) 𝑑𝛿

=
2𝜋

𝑊𝐸

∫

𝛿
1

0

𝛿𝐹
1

2
(𝛿) 𝑑𝛿,

𝐶
12
= 𝐶
21
=

12𝜋

𝐸𝑇𝑊
∫

𝛿
1

0

𝛿𝐹
1
(𝛿) 𝐹
2
(𝛿) 𝑑𝛿,

𝐶
22
=

72𝜋

𝐸𝑊𝑇2
∫

𝛿
1

0

𝛿𝐹
2

2
(𝛿) 𝑑𝛿.

(12)

The local stiffness matrix can be obtained by taking the
inversion of compliance matrix. That is,

𝐾 = [
𝐾
11

𝐾
12

𝐾
21

𝐾
22

] = [
𝐶
11

𝐶
12

𝐶
21

𝐶
22

]

−1

. (13)

Converting the influence coefficient into dimensionless form,

𝐶
11
= 𝐶
11

𝑊𝐸


2𝜋
; 𝐶

12
= 𝐶
12

𝐸

𝑇𝑊

12𝜋
= 𝐶
21
;

𝐶
22
= 𝐶
22

𝐸

𝑊𝑇
2

72𝜋
.

(14)

2.2. Governing Equations for Vibration Mode of the Cracked
Beam. The cantilever beam as mentioned in Section 2.1 is
considered here for free vibration analysis. A cantilever beam
of length “𝐿” width “𝑊” and depth “𝑇”, with a crack of depth
“𝑏
1
” at a distance “𝐿

𝑐
” from the fixed end is considered

as shown in Figure 1. Taking 𝑆
1
(𝑥, 𝑡) and 𝑆

2
(𝑥, 𝑡) as the

amplitudes of longitudinal vibration for the sections before
and after the crack position and 𝑉

1
(𝑥, 𝑡), 𝑉

2
(𝑥, 𝑡) are the

amplitudes of bending vibration for the same sections as
shown in Figure 2.
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Figure 2: Beam model with deflection.

The free vibration of an Euler-Bernoulli beam of a con-
stant rectangular cross section is given by the following dif-
ferential equations as:

𝜕
2
𝑆/𝜕𝑡
2
= (𝐸/𝜌)𝜕

2
𝑆/𝜕𝑥
2, for longitudinal vibration

and
𝐸𝐼(𝜕
4
𝑉/𝜕𝑥
4
) − 𝜌𝜔

2
𝑉 = 0, for lateral vibration of

beam.

Thenormal functions for the cracked beam in nondimen-
sional form for both the longitudinal and bending vibrations
in steady state can be defined as

𝑆
1
(𝑥) = 𝐵

1
cos (𝐻

𝑠
𝑥) + 𝐵

2
sin (𝐻

𝑠
𝑥) , (15a)

𝑆
2
(𝑥) = 𝐵

3
cos (𝐻

𝑠
𝑥) + 𝐵

4
sin (𝐻

𝑠
𝑥) , (15b)

𝑉
1
(𝑥) = 𝐵

5
cosh (𝐻V𝑥) + 𝐵6 sinh (𝐻V𝑥)

+ 𝐵
7
cos (𝐻V𝑥) + 𝐵8 sin (𝐻V𝑥) ,

(15c)

𝑉
2
(𝑥) = 𝐵

9
cosh (𝐻V𝑥) + 𝐵10 sinh (𝐻V𝑥)

+ 𝐵
11
cos (𝐻V𝑥) + 𝐵12 sin (𝐻V𝑥) ,

(15d)

where 𝑥 = 𝑥/𝐿, 𝑆 = 𝑆/𝐿, 𝑉 = 𝑉/𝐿, 𝛼 = 𝐿
𝑐
/𝐿,

𝐻
𝑠
=
𝜔𝐿

𝐷
𝑠

, 𝐷
𝑠
= (

𝐸

𝜌
)

1/2

, 𝐻
𝑉
= (

𝜔𝐿
2

𝐷V
)

1/2

,

𝐷V = (
𝐸𝐼

𝜇
)

1/2

, 𝜇 = 𝐴𝜌,

(16)

𝐵
𝑖
, (𝑖 = 1, 12) constants are to be determined, from boundary

conditions. The boundary conditions of the cantilever beam
in consideration are

𝑆
1
(0) = 0; 𝑉

1
(0) = 0; 𝑉



1
(0) = 0;

𝑆


2
(1) = 0; 𝑉



2
(1) = 0; 𝑉



2
(1) = 0.

(17)

At the cracked section,

𝑆
1
(𝛼) = 𝑆

2
(𝛼) ; 𝑉

1
(𝛼) = 𝑉

2
(𝛼) ;

𝑉


1
(𝛼) = 𝑉



2
(𝛼) ; 𝑉



1
(𝛼) = 𝑉



2
(𝛼) .

(18)

Also at the cracked section,

𝐴𝐸
𝑑𝑆
1
(𝐿
𝑐
)

𝑑𝑥
= 𝐾
11
(𝑆
2
(𝐿
𝑐
) − 𝑆
1
(𝐿
𝑐
))

+ 𝐾
12
(
𝑑𝑉
2
(𝐿
𝑐
)

𝑑𝑥
−
𝑑𝑉
1
(𝐿
𝑐
)

𝑑𝑥
) .

(19)

Multiplying both sides of the above equation by𝐴𝐸/𝐿𝐾
11
𝐾
12
,

𝑁
1
𝑁
2
𝑆


1
(𝛼) = 𝑁

2
(𝑆
2
(𝛼) − 𝑆

1
(𝛼)) + 𝑁

1
(𝑉


2
(𝛼) − 𝑉



1
(𝛼)) .

(20)

Similarly,

𝐸𝐼
𝑑
2
𝑉
1
(𝐿
𝑐
)

𝑑𝑥2
= 𝐾
21
(𝑆
2
(𝐿
𝑐
) − 𝑆
1
(𝐿
𝑐
))

+ 𝐾
22
(
𝑑𝑉
2
(𝐿
𝑐
)

𝑑𝑥
−
𝑑𝑉
1
(𝐿
𝑐
)

𝑑𝑥
) .

(21)

Multiplying both sides of the above equation by𝐸𝐼/𝐿2𝐾
22
𝐾
21
,

𝑁
3
𝑁
4
𝑉


1
(𝛼) = 𝑁

3
(𝑆
2
(𝛼) − 𝑆

1
(𝛼))

+ 𝑁
4
(𝑉


2
(𝛼) − 𝑉



1
(𝛼)) ,

(22)

where 𝑁
1
= 𝐴𝐸/𝐿𝐾

11
, 𝑁
2
= 𝐴𝐸/𝐾

12
, 𝑁
3
= 𝐸𝐼/𝐿𝐾

22
, 𝑁
4
=

𝐸𝐼/𝐿
2
𝐾
21
.

The normal functions (15a), (15b), (15c), and (15d) along
with the boundary conditions as mentioned above yield the
characteristic equation of the system as

|𝑄| = 0, (23)

where𝑄 is a 12×12matrix as given belowwhose determinant
is a function of natural circular frequency (𝜔), the relative
location of the crack (𝛼) and the local stiffness matrix (𝐾),
which in turn is a function of the relative crack depth 𝛿

1
=

(𝑏
1
/𝑇):
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Figure 3: Finite element mesh and mesh zoom of the crack.

𝑄 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 𝐺
3

𝐺
4
−𝐺
7
−𝐺
8

0 0 0 0

0 0 0 0 𝐺
4

𝐺
3

𝐺
8
−𝐺
7

0 0 0 0

𝐺
1
𝐺
2
−𝐺
5
−𝐺
6
−𝐺
1
−𝐺
2
𝐺
5

𝐺
6

0 0 0 0

𝐺
2
𝐺
1

𝐺
6
−𝐺
5
−𝐺
2
−𝐺
1
−𝐺
6
𝐺
5

0 0 0 0

𝐺
1
𝐺
2

𝐺
5

𝐺
6
−𝐺
1
−𝐺
2
−𝐺
5
−𝐺
6

0 0 0 0

𝑆
1
𝑆
2

𝑆
3

𝑆
4

−𝐺
2
−𝐺
1
𝐺
6
−𝐺
5

𝑆
5

𝑆
6

𝑆
7

𝑆
8

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 −𝑇
8
𝑇
7

0 0 0 0 0 0 0 0 −𝑇
6
𝑇
5

𝑇
6
−𝑇
5

𝑆
9
𝑆
10

𝑆
11

𝑆
12

𝑆
13

𝑆
14

𝑆
15

𝑆
16

𝑆
17

𝑆
18

−𝑇
5
−𝑇
6

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (24)

where

𝑆
1
= 𝐺
2
+ 𝑁
3
𝐻V𝐺1, 𝑆

2
= 𝐺
1
+ 𝑁
3
𝐻V𝐺2,

𝑆
3
= −𝐺
6
− 𝑁
3
𝐻V𝐺5, 𝑆

4
= 𝐺
5
− 𝑁
3
𝐻V𝐺6,

𝑆
5
=
𝑁
34

𝐻V
𝑇
5
, 𝑆

6
=
𝑁
34

𝐻V
𝑇
6
, 𝑆

7
=
−𝑁
34

𝐻V
𝑇
5
,

𝑆
8
=
−𝑁
34

𝐻V
𝑇
6
, 𝑆

9
= 𝑁
12
𝐻V𝐺2,

𝑆
10
= 𝑁
12
𝐻V𝐺1, 𝑆

11
= −𝑁
12
𝐻V𝐺6,

𝑆
12
= 𝑁
12
𝐻V𝐺5, 𝑆

13
= −𝑁
12
𝐻V𝐺2,

𝑆
14
= −𝑁
12
𝐻V𝐺1, 𝑆

15
= 𝑁
12
𝐻V𝐺6,

𝑆
16
= −𝑁
12
𝐻V𝐺5, 𝑆

17
= 𝑇
5
− 𝑁
1
𝐻
𝑠
𝑇
6
,

𝑆
18
= 𝑇
6
+ 𝑁
1
𝐻
𝑠
𝑇
5
,

𝐺
1
= Cosh (𝐻V𝛼) , 𝐺

2
= Sinh (𝐻V𝛼) ,

𝐺
3
= Cosh (𝐻V) , 𝐺

4
= Sinh (𝐻V) ,

𝐺
5
= Cos (𝐻V𝛼) , 𝐺

6
= Sin (𝐻V𝛼) ,

𝐺
7
= Cosh (𝐻V) , 𝐺

8
= Sin (𝐻V) ,

𝑇
5
= Cos (𝐻

𝑠
𝛼) ,

𝑇
6
= Sin (𝐻

𝑠
𝛼) , 𝑇

7
= Cos (𝐻

𝑠
) , 𝑇

8
= Sin (𝐻

𝑠
) ,

𝑁
12
=
𝑁
1

𝑁
2

, 𝑁
34
=
𝑁
3

𝑁
4

.

(25)

3. Finite Element Model Using ANSYS

The vibrational analysis of a continuous beam by analytical
procedures is quite appropriate and less complicated. How-
ever, with the introduction of crack in a beam the analysis
of the beam for its vibrational characteristics becomes more
complicated. Since the equation of motion of the continuous
beam is a partial differential equation and we have with us
various initial and boundary conditions we use the finite
element method (FEM), which translates the complex partial
differential equations into linear algebraic equations and
hence the mode of solution becomes simpler.

In the present research the ANSYS is used as a tool to
model and simulate a beam with a crack, to monitor the vari-
ation in its vibrational characteristics. The beam is modeled
using design software such as solid work and it is imported to
ANSYS for the analysis.

Now, after importing the model file, its geometry was
modified and divided the entire structure into meshes
(Figure 3) by using FEM and has been solved for the modes
of frequencies. The meshing size should be increased so that
it uniformly covers the entire structure. After the model
is properly meshed and solved by using FEM, the various
frequency values were obtained for a particular combination
of crack location and depth.

The above procedure is elaborated as follows.

(1) Double click on workbench. Import geometry from
solid works file saved in solid works as .igs file.

(2) Modify geometry, click on mesh, and increase the
meshing size.

(3) Provide support and make one end fixed.
(4) Click on solve.
(5) Click on displacement.
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4. The Inverse Tool: Artificial Neural Network

In order to determine the crack parameters from the fre-
quency data we take the help of artificial intelligence in the
form of neural network. The structure of a neural net is very
similar to the exact biological structure of a human brain
cell. In order to be precise, neural network can be stated
as a network model whose functionality is similar to that
of the brain. In other words, a neural network is at first
trained to recognize a predefined pattern or an already known
relationship from certain prefound values. It works by taking
certain number of inputs and computing the output after
carefully adjusting the weights, which are attached with the
input values to differentiate these input values on the basis of
importance and priority in processing. These weight values
are utilized to obtain the final output. For example, if we have
two inputs 𝑋

1
and 𝑋

2
, then a simple neural network can be

designed and the net input can be found out as

𝑌in = 𝑥1𝑤1 + 𝑥2𝑤2, (26)

where 𝑥
1
and 𝑥

2
are the activations of the input neurons 𝑋

1

and𝑋
2
, that is, the output of the input signals.The output𝑦 of

the output neuron 𝑌 can be obtained by applying activations
over the net input, that is, the function of the net input:

𝑦 = 𝑓 (𝑦in) . (27)

Output = Function (net input calculated).
The function to be applied over the net input is called an

activation function.
A neural network is classified on the basis of the model’s

synaptic interconnections, the learning rule adapted and the
activation functions used in the neural net. Based on the
synaptic interconnections we choose a multilayer perceptron
model for our research purpose. Now, depending on the
process of learning a neural network, it is classified as
supervised learning network, unsupervised learning net-
work, and reinforced learning network. Supervised learning
process requires a set of already known values to train
the network and hence find out the output. From the set
of values obtained after monitoring the vibrational char-
acteristics of the cracked beam and subjecting it to finite
element modeling, the corresponding values are trained to
the network. The tansigmoid hyperbolic function is chosen
as the activation function. Finally the cascade forward back
propagation (CFBP) network model, the feed forward back
propagation (FFBP) network model, and the radial basis
function (RBF) network model are used and the results are
analysed.

4.1. The CFBP Network. As stated earlier in the present study
a CFBP network (Figure 4) is used. This network is very
similar to the feed forward back propagation networks with
the difference being that the input values calculated after
every hidden layer are back-propagated to the input layer
and the weights adjusted subsequently. The input values are
directly connected to the final output and a comparison
occurs between the values obtained from the hidden layers

Hidden layer 

Output layerInput layer

O
ut

pu
t

In
pu

t

Figure 4: Structure of CFBP network.

and the values obtained from the input layers and weights are
adjusted accordingly.

Sahoo et al. [14] and Gopikrishnan et al. [31] observed
that the results obtained fromCFBP networks aremuchmore
efficient than the FFBP networks. Badde et al. [32] suggested
that CFBP networks show better and efficient results in most
cases.

The algorithm followed in the present paper is given as
follows.

(1) Initialize the predefined input matrix.
(2) Initialize the desired output or target matrix.
(3) Initialize the network by using the net = newcf

(Input, Output, Hidden layers, Transfer Function,
Training algorithm, Learning Function, Performance
Function).

(4) Define the various training parameters such as num-
ber of epochs, number of validation checks, and
maximum and minimum gradient.

(5) Test the new found weights and biases for accuracy.
(6) Using the weights and biases determine the unknown

results.

The initial weight and bias values are taken as 0 (zero).
In Figure 4, the inputs are connected to the hidden layer

as well as the output layer.

4.2. The FFBP Network. Another network that we are using
for our comparative study in the detection of cracks in a
cantilever beam is the feed forward back propagation (FFBP)
network (Figure 5). This network differs from the CFBP
network on the basis that each subsequent layer has a weight
coming from the previous layer and no connection is made
between the layers and the first layer. All layers have biases.
The last layer is the network output.

In this study relevant information comparing the results
of both networks as well as the result from a third network is
presented.The algorithm used for CFBP network is also used
in case of the FFBP network except for the network creation
mode, which uses the keyword newff.
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Figure 5: Structure of a FFBP network.

4.3. The RBF Network. The radial basis function (RBF) net-
work (Figure 6) is basically used to find the least number
of hidden layers or neurons in a single hidden layer, until
a minimum error value is reached. The RBF networks can
be used to approximate functions. For network creation the
keyword newrb adds neurons to the hidden layer of a radial
basis network until it meets the specified mean squared error
goal.

5. Results and Discussions

As discussed earlier the motive of this paper is to detect the
location of a single crack formed on a cantilever beam. A
methodology involving ANN and ANSYS was followed to
get the results and was discussed. To begin with, a transverse
thin crack is formed on a cantilever beam. Finite element
modeling is applied in the cracked beam using ANSYS to
monitor the various frequencies in different modes of crack
formation. Based on this sample data, a neural network has
been trained to find out the crack depth and location of any
arbitrary transverse crack on a cantilever beam.

Hence, there are two steps in present mode of solution:

(1) monitoring the vibrational changes using ANSYS;
(2) creating an ANN and training it to provide us with an

approximate result.

A thin transverse crack is present on a cantilever beam of
length 26 cm and with this crack a beam model is designed
using ANSYS to obtain a set of natural frequencies for the
first, second, and thirdmodes at different crack locationswith
varying crack depths.

Cascade forward back propagation network, feed forward
back propagation network, and radial basis function network
were used to estimate the crack location and relative crack
depth. A single hidden layer was used with 13 neurons. The
TANSIG hyperbolic tangent sigmoid transfer function or
activation function was used to calculate the final output of
the neural net.

The TANSIG transfer function is given as

tansig (𝑛) = 2

1 + 𝑒−2𝑛
− 1. (28)
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Figure 6: Structure of RBF neural network.
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Figure 7: Performance graph of CFBP network.

The Levenberg-Marquardt (trainlm) training process was
followed to train the neural network. Training stopswhen any
of these conditions occurs.

(1) The maximum number of epochs (repetitions) is
reached.

(2) The maximum amount of time has been exceeded.
(3) Performance has been minimized to the goal.

The division of training data was done using the random
(Dividerand) method.

The number of iterations provided was 200. The gradient
was set at amaximum value of 1 andminimum value of 0.The
performance or goal or maximum number of error checks
was set to be 150. There was no constraint on the amount of
time for which the training program ran. Since the number of
values employed for testing was large in number, hence, few
values were taken to depict the efficiency of the ANNmodel.
The tested data for a relative crack depth of 0.1 and varying
locationswas tabulated and a comparisonwith the actual data
is shown in Table 1.

The network formed, generating a performance plot
which is shown in Figure 7 by mentioning the relationship
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Figure 8: Regression plot of CFBP network.
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Figure 9: Comparison of result of location between ANSYS and
CFBP network.
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ANSYS and CFBP network.
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Figure 11: Performance graph of FFBP network.

between the trained, tested, and validated points against a
threshold value.

A regression plot is also generated which is shown in
Figure 8 for the individual results obtained.
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Figure 12: Regression plot of FFBP network.

On plotting the values obtained from ANSYS and ANN
and comparing both, it was observed that minimum differ-
ence was obtained between both of the values thus validating
our training process.The plots of crack location for the values
represented in Table 1 are shown in Figure 9.

The plot of Figure 10 shows the comparison of results for
varius crack depths obtained fromANSYS andCFBPnetwork
by fixing the crack location.

It was observed that after running the CFBP network for
a particular number of iterations a certain value of error
between the ANSYS generated values and the network gen-
erated values was obtained. It is essential to mention that the
error obtained here is of the order of 10−2 and in general for
any number of iterations run over any period of time and
keeping the abovementioned parameters (except the number
of epochs) constant, the error obtained is of the same order
and varying upto 10−4 under a uniform testing, training, and
validation situation.

After observing the results of CFBP network, the FFBP
network is introduced for the comparative study. In this
network 13 hidden neurons and a single hidden layer have
been taken. The activation function, training function, the
division of data function, number of iterations, gradient value
and all the parameters are similar to those used for the CFBP

network. After training the data to FFBP network with the
similar process (by keeping relative crack depth constant
and varying the location), the results are obtained and the
comparison with the results of actual data is presented in
Table 2.

Similar to CFBP network the performance plot and the
regression plot of FFBP network obtained from the trained
data are shown in Figures 11 and 12, respectively.

On plotting the values obtained from ANSYS and ANN
and comparing both, it has been observed that minimum
difference was obtained between both of the values, thus
validating our training process.The plots of crack location for
the values represented in Table 2 are shown in Figure 13.

Figure 14 shows the comparison of results for varius crack
depths obtained fromANSYS and FFBPnetwork by fixing the
crack location.

In comparison with CFBP network it is observed that the
FFBPnetwork is showing the better results. For the above case
the CFBP network gives the best validation performance in
terms of root mean square error (RMSE) value of 0.018464,
whereas the FFBP network gives 0.041058 which shows that
the mean squared error calculated in case of the CFBP
network is lower than that of the FFBP network.
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Figure 13: Comparison of result of relative crack depth between
ANSYS and FFBP network.
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Figure 14: Comparison of result of crack location between ANSYS
and FFBP network.
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Figure 15: Performance graph of RBF network.

The RBF network is used then to complete the compara-
tive study. The RBF network takes the input and output data
used for training, which we get from ANSYS. The default
value of the mean squared error goal set in the RBF network
is 0.0 and the spread value is also taken as the default value,
which is 1.0. The more the spread, the smoother the function
approximation. Basically the newrb keyword creates a two-
layered network. The results obtained and the comparisons
with the results of actual data are shown in Table 3.

The RBF network generated a performance plot, which is
different from the CFBP and FFBP networks on the grounds
that in an RBF network a particular goal is set to be reached
but the number of iterations is not fixed. For this particular
case it was observed that the errors generated in all cases are of
the order of 10−3and the RBF network certainly yields a better
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Figure 16: Comparison of result of relative crack depth between
ANSYS and RBF network.
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Figure 17: Comparison of result of crack location between ANSYS
and RBF network.

result at more frequent intervals than the CFBP and the FFBP
networks. The performance plot is shown in Figure 15.

In similarity to CFBP and FFBP network a comparison
plot has been obtained from the various results of actual data
and RBF network for relative crack depth and crack location
and is shown in Figures 16 and 17, respectively.

After observing the results of various networks used
(CFBP, FFBP, and RBF) a comparison of results has been
made and is shown in Table 4. In the following table a
comparative study has been made between the three neural
network techniques in comparison with ANSYS and also the
percentage of error has been presented. It was observed that
for some cases RBF network result outperforms the results
of the other two networks. But in general CFBP was found
to be more efficient in terms of error and computational
complexity.

Ultimately after observing the training process of all three
networks and individually comparing the results of each of
the networks, the three networks combined together with
respect to the relative crack depth and crack location. We
find that the result obtained from all three networks is very
similar with marginal differences at certain particular points.
By comparing the results of relative crack depth and crack
location for the three networks, a comparison plot among
three networks have been drawn and these are shown in
Figure 18 and Figure 19. The point to note is that overall
deductions suggest that RBF network gives the optimum
result. The CFBP net is much more flexible on the grounds
that we can alter its efficiency by varying the number and size
of the hidden layers.

Table 5 shows the various properties of the material used
for the above study.
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Table 1: Input data and results for CFBP network.

Test points First three natural frequencies (Hz) CFBP
rcd Location 1st mode 2nd mode 3rd mode rcd Location
0.100 2.000 48.209 302.187 846.297 0.103 2.329
0.100 4.000 48.214 302.270 846.630 0.125 3.836
0.100 5.000 48.216 302.305 846.758 0.129 4.809
0.100 6.000 48.219 302.340 846.845 0.126 5.809
0.100 8.000 48.221 302.400 847.003 0.127 8.115

Table 2: Input data and results for FFBP network.

Test points First three natural frequencies (Hz) FFBP
rcd Location 1st mode 2nd mode 3rd mode rcd Location
0.100 2.000 48.209 302.187 846.297 0.106 2.030
0.100 4.000 48.176 302.010 845.879 0.096 3.765
0.100 5.000 48.134 301.797 845.399 0.098 4.952
0.100 6.000 48.086 301.549 844.821 0.096 6.148
0.100 8.000 48.031 301.261 844.155 0.095 8.093

Table 3: Input data and results for RBF network.

Test points First three natural frequencies (Hz) RBF
rcd Location 1st mode 2nd mode 3rd mode rcd Location
0.100 2.000 48.209 302.187 846.297 0.099 1.964
0.100 4.000 48.176 302.010 845.879 0.102 4.678
0.100 5.000 48.134 301.797 845.399 0.150 5.012
0.100 6.000 48.086 301.549 844.821 0.098 6.176
0.100 8.000 48.031 301.261 844.155 0.101 8.131

Table 4: Comparison of results among CFBP, RBF, and FFBP network.

Test points First three natural frequencies (Hz) CFBP FFBP RBF
rcd Location 1st mode 2nd mode 3rd mode rcd Location rcd Location rcd Location
0.100 2.000 48.209 302.187 846.297 0.103 2.329 0.106 2.030 0.099 1.964
0.100 4.000 48.176 302.010 845.879 0.125 3.836 0.096 3.765 0.102 4.678
0.100 5.000 48.134 301.797 845.399 0.129 4.809 0.098 4.952 0.150 5.012
0.100 6.000 48.086 301.549 844.821 0.126 5.809 0.096 6.148 0.098 6.176
0.100 8.000 48.031 301.261 844.155 0.127 8.115 0.095 8.093 0.101 8.131
0.100 10.000 48.226 302.448 847.068 0.150 10.095 0.089 9.802 0.099 9.982
0.100 12.000 48.229 302.481 847.051 0.141 11.925 0.088 11.725 0.101 12.098
0.100 14.000 48.234 302.503 846.976 0.094 13.908 0.082 13.918 0.100 13.978
0.100 15.000 48.236 302.511 846.928 0.135 15.248 0.079 14.767 0.099 14.908

Table 5: Material properties of aluminum-alloy, 2014-𝑇
4
.

Young’s
modulus

𝐸

Density
𝜌

Poisson’s
ratio
𝜇

Length
𝐿

Diameter
𝐷

72.4GPa 2.8 gm/cc 0.33 800mm 150mm

6. Conclusion

The effects of transverse cracks on the vibrating uniform
cracked cantilever beam have been presented in this paper.
The main purpose of this research work has been to develop
a proficient technique for diagnosis of crack in a vibrating
structure in short span of time. The vibration analysis has

been done using theoretical and also it has been carried out
through using finite element method as per ANSYS. In this
analysis natural frequency plays an important role in the
identification of crack. Crack has been identified in terms of
crack depth and crack location. The results obtained from
ANSYS are used to develop artificial intelligence techniques
using three neural networks (FFBP, RBF, and CFBP). The
CFBP network shows a better result than the FFBP network;
the CFBP network gives the best validation performance
of 0.018464, whereas the FFBP network gives 0.041058.
It was observed that for some cases RBF network result
outperforms the results of the other two networks. But in
general CFBPwas found to bemore efficient in terms of error
and computational complexity. As it was observed that the
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Figure 18: Overall comparison of result of relative crack depth
among ANSYS, CFBP, FFBP, and RBF networks.
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Figure 19: Overall comparison of result of crack location among
ANSYS, CFBP, FFBP, and RBF networks.

predicted results of neural network technique are reasonably
adequate and in agreement with the theoretical result, the
developed models can be efficiently used for crack detection
problems.
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