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The paper constructs a class of simple high-accurate schemes (SHA schemes) with third order approximation accuracy in both
space and time to solve linear hyperbolic equations, using linear data reconstruction and Lax-Wendroff scheme. The schemes can
bemade even fourth order accurate with special choice of parameter. In order to avoid spurious oscillations in the vicinity of strong
gradients, we make the SHA schemes total variation diminishing ones (TVD schemes for short) by setting flux limiter in their
numerical fluxes and then extend these schemes to solve nonlinear Burgers’ equation and Euler equations.The numerical examples
show that these schemes give high order of accuracy and high resolution results.The advantages of these schemes are their simplicity
and high order of accuracy.

1. Introduction

In designing numerical schemes of very high order of
accuracy for solving hyperbolic conservation laws one faces
at least three major difficulties. One of them concerns the
preservation of high accuracy in both space and time formul-
tidimensional problems. Another one concerns conservation;
this is mandatory in the presence of shock waves. The other
very important issue relates to the generation of spurious
oscillations in the vicinity of strong gradients. According
to Godunov’s theorem [1] these are unavoidable by linear
schemes of accuracy greater than one. Each one of these
difficulties is in itself not easy to resolve; the simultaneous res-
olution of all three difficulties above represents a formidable
task in the numerical analysis of hyperbolic conservation
laws. At present, there are various approaches for construct-
ing numerical schemes that attempt to overcome the above
difficulties. State-of-the-art very high order methods (at least
third order) for hyperbolic conservation laws include the
class of ENO/WENO schemes [2–4], Spectral Method [5],
the class of Compact Difference Methods [6], Discontinuous
Galerkin Finite Element Methods [7], and ADER Methods
[8]. These schemes meet the requirement of very high order
spatial accuracy; matching time accuracy to space accuracy,
however, remains an issue in all of the above approaches.

As regards the ENO/WENO/MPWENO approach, the most
accurate scheme reported so far uses 9th order spatial
discretisation with Runge-Kutta methods for time evolution.
To avoid spurious oscillations these Runge-Kutta methods
must be TVD.This leads to accuracy barriers: the accuracy of
such methods cannot be higher than fifth. Moreover, fourth
and fifth order methods are quite complicated and have
reduced stability range. In most practical implementation
reported, when the solution is not smooth, a third order
TVD Runge-Kutta method has been used, for example, [2].
Although increased order of spatial discretization improves
accuracy for some problems, such schemes converge with
third order only when the mesh is refined. Therefore when
numerical simulation of compressible turbulence and wave
propagation problems involves long-time evolution, it would
be beneficial to use schemes which are simple and efficient
and converge with higher order both in time and space.

How to construct simple and high-accurate schemes in
both space and time by simple approach is an interesting
work.There are various ways to construct high order numeri-
cal schemes for conservation laws.One of them is theMUSCL
(Monotone Upstream-Centred Scheme for Conservation
Laws) [9–11] approach which is a very popular and simple
one to construct explicit, fully discrete schemes that lies on
the solution of Riemann problem and could be extended
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to nonlinear systems. The MUSCL-type methods based on
piecewise linear, local reconstruction of data are 2nd order
of accuracy and their available highest order is 3rd for linear
advection equation. In this paper, we generalize the MUSCL
approach by modifying the piecewise linear reconstruction
with a gradual slope, solving a Riemann problem at each
interface and using Lax-Wendroff approach to compute the
numerical flux. The new schemes constructed can reach 3rd
order of accuracy in time and space, and its available highest
order of accuracy is 4th. The flux limiter approach is used to
obtain TVD version of the new schemes to avoid unphysical
oscillations in the vicinity of large gradients.

The rest of the paper is organized as follows. In Section 2
we describe the construction of the class of schemes SHA
for linear advection equation and prove its convergent order;
next we set the limiter to the fluxes of these schemes to
make them TVD ones in Section 3 and carry out some
numerical examples in Section 4 and then extend them to
solve nonlinear Burgers’ equation in Section 5 and carry
out some numerical examples in Section 6 and finally apply
the schemes to solve one-dimensional Euler equations in
Section 7. The conclusions are drawn in Section 8.

2. The Construction of Simple
High-Accurate Schemes (SHA Schemes) for
Advection Equations

In this section we consider the Initial Boundary Value
Problem (IBVP) for the linear advection equation in the
domain [0, 𝐿]×[0, 𝑇] on the 𝑥−𝑡 plane.This consists of a PDE
together with initial condition (IC) and boundary conditions
(BCs); namely,

𝑢
𝑡
+ (𝑎𝑢)

𝑥
= 0, 𝑥 ∈ (0, 𝐿) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ (0, 𝐿) ,

(1)

with suitable boundary conditions.
A mesh for discretizing the domain is a regular grid of

dimension Δ𝑥 (spacing of grid points in the 𝑥-direction)
by Δ𝑡 (spacing in the 𝑡-direction). We suppose that [0, 𝐿] is
discretized by𝑀+ 1 equally spaced grid points. Then

Δ𝑥 =
𝐿

𝑀
. (2)

The mesh points of the mesh are positioned at (𝑖Δ𝑥, 𝑛Δ𝑡) on
the 𝑥 − 𝑡 plane, with 𝑖 = 0, 1, . . . ,𝑀 and 𝑛 = 0, 1, . . .. We will
use the notation 𝑥

𝑖
= 𝑖Δ𝑥, 𝑡𝑛 = 𝑛Δ𝑡.The discrete values of the

function 𝑢(𝑥, 𝑡) at (𝑖Δ𝑥, 𝑛Δ𝑡) will be denoted by

𝑢
𝑛

𝑖
≡ 𝑢 (𝑖Δ𝑥, 𝑛Δ𝑡) ≡ 𝑢 (𝑥

𝑖
, 𝑡
𝑛
) . (3)

We will also use the symbol 𝑢𝑛
𝑖
to denote an approximation

to the exact mesh value 𝑢(𝑖Δ𝑥, 𝑛Δ𝑡). The distinction will be
made at appropriate places.

We could construct a class of simple high-accurate
schemes (SHA schemes) for advection equation as follows.

Step 1. Data reconstruction with boundary extrapolated val-
ues

𝑢
𝑖
(𝑥) = 𝑢

𝑛

𝑖
+
2

3

𝑥 − 𝑥
𝑖

Δ𝑥
Δ
𝑖
, 𝑥 ∈ [𝑥

𝑖−1/2
, 𝑥
𝑖+1/2
] . (4)

We choose 𝑢𝐿
𝑖
= 𝑢
𝑛

𝑖
− (1/3)Δ

𝑖
, 𝑢𝑅
𝑖
= 𝑢
𝑛

𝑖
+ (1/3)Δ

𝑖
, where

Δ
𝑖
=
1

2
(1 + 𝜔) Δ𝑢

𝑖−1/2
+
1

2
(1 − 𝜔) Δ𝑢

𝑖+1/2
, 𝜔 ∈ [−1, 1] ,

Δ𝑢
𝑖+1/2
= 𝑢
𝑛

𝑖+1
− 𝑢
𝑛

𝑖
.

(5)

Step 2. Consider evolution of 𝑢𝐿
𝑖
, 𝑢𝑅
𝑖

by a time (1/2)Δ𝑡
according to

𝑢
𝐿

𝑖
= 𝑢
𝐿

𝑖
+
1

2

Δ𝑡

Δ𝑥
[𝑓 (𝑢
𝐿

𝑖
) − 𝑓 (𝑢

𝑅

𝑖
)] ,

𝑢
𝑅

𝑖
= 𝑢
𝑅

𝑖
+
1

2

Δ𝑡

Δ𝑥
[𝑓 (𝑢
𝐿

𝑖
) − 𝑓 (𝑢

𝑅

𝑖
)] .

(6)

Step 3. Solution of piecewise constant data Riemann problem

𝑢
𝑡
+ 𝑓(𝑢)

𝑥
= 0,

𝑢 (𝑥, 0) = {
𝑢
𝑅

𝑖
𝑥 − 𝑥
𝑖+1/2
< 0,

𝑢
𝐿

𝑖+1
𝑥 − 𝑥
𝑖+1/2
> 0.

(7)

This step solves the conventional Riemann problem at the
interface 𝑥

𝑖+1/2
with data

(𝑢
𝑅

𝑖
, 𝑢
𝐿

𝑖+1
) , (8)

the solution of which for linear advection equation (1) is

𝑢
𝑖+1/2
(
(𝑥 − 𝑥

𝑖+1/2
)

(𝑡 − 𝑡𝑛)
)

=

{{{

{{{

{

𝑢
𝑅

𝑖
= 𝑢
𝑛

𝑖
+
1

3
(1 − 𝑐) Δ

𝑖
if
(𝑥 − 𝑥

𝑖+1/2
)

(𝑡 − 𝑡𝑛)
< 𝑎,

𝑢
𝐿

𝑖+1
= 𝑢
𝑛

𝑖+1
−
1

3
(1 + 𝑐) Δ

𝑖+1
if
(𝑥 − 𝑥

𝑖+1/2
)

(𝑡 − 𝑡𝑛)
> 𝑎,

(9)

where 𝑐 = 𝑎(Δ𝑡/Δ𝑥). Then applying the solution (9) to the
Lax-Wendroff flux for linear advection equation

𝑓
𝐿−𝑊

𝑖+1/2
=
1

2
(1 + 𝑐) 𝑓 (𝑢

𝑛

𝑖
) +
1

2
(1 − 𝑐) 𝑓 (𝑢

𝑛

𝑖+1
) , (10)

we get a new flux

𝑓
SHA
𝑖+1/2
=
1

2
(1 + 𝑐) 𝑓 (𝑢

𝑅

𝑖
) +
1

2
(1 − 𝑐) 𝑓 (𝑢

𝐿

𝑖+1
) . (11)

After some algebra operations, 𝑓SHA
𝑖+1/2

becomes

𝑓
SHA
𝑖+1/2
=
1

2
(1 + 𝑐) (𝑎𝑢

𝑛

𝑖
) +
1

2
(1 − 𝑐) (𝑎𝑢

𝑛

𝑖+1
)

+
𝑎

6
(1 − 𝑐

2
) (Δ
𝑖
− Δ
𝑖+1
)

= 𝑓
𝐿−𝑊

𝑖+1/2
+
𝑎

6
(1 − 𝑐

2
) (Δ
𝑖
− Δ
𝑖+1
) .

(12)
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Also, we can substitute (9), the solution of (7), into the
following type of 𝐿 −𝑊 flux;

𝑓
𝐿−𝑊

𝑖+1/2
= 𝑓 (𝑢

𝑛+1/2

𝑖+1/2
) ,

𝑢
𝑛+1/2

𝑖+1/2
=
1

Δ𝑥
∫
(1/2)Δ𝑥

−(1/2)Δ𝑥

𝑢
𝑖+1/2
(𝑥,
1

2
Δ𝑡) 𝑑𝑥

(13a)

or two-step Richtmyer type flux of 𝐿 −𝑊method

𝑓
𝐿−𝑊

𝑖+1/2
= 𝑓 (𝑢

𝑛+1/2

𝑖+1/2
) ,

𝑢
𝑛+1/2

𝑖+1/2
=
1

2
(𝑢
𝑅

𝑖
+ 𝑢
𝐿

𝑖+1
) +
1

2

Δ𝑡

Δ𝑥
(𝑓
𝑛

𝑖
− 𝑓
𝑛

𝑖+1
)

(13b)

to get the flux as (12), where 𝑓𝑛
𝑖
= 𝑓(𝑢

𝑅

𝑖
), 𝑓𝑛
𝑖+1
= 𝑓(𝑢

𝐿

𝑖+1
).

Conservative Scheme. Substitution of 𝑓SHA
𝑖+1/2

as numerical flux
into conservative method gives a new scheme:

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
+
Δ𝑡

Δ𝑥
(𝑓

SHA
𝑖−1/2
− 𝑓

SHA
𝑖+1/2
) , (14)

where

𝑓
SHA
𝑖+1/2
=
1

2
(1 + 𝑐) 𝑓 (𝑢

𝑅

𝑖
) +
1

2
(1 − 𝑐) 𝑓 (𝑢

𝐿

𝑖+1
) . (15)

As for linear advection equation 𝑓(𝑢) = 𝑎𝑢, we have

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
+
Δ𝑡

Δ𝑥
(𝑓
𝐿−𝑊

𝑖−1/2
− 𝑓
𝐿−𝑊

𝑖+1/2
)

+
𝑐

6
(1 − 𝑐

2
) (Δ
𝑖−1
− 2Δ
𝑖
+ Δ
𝑖+1
) .

(16)

The following introduces a theorem on how to verify the
accuracy of a linear scheme:

𝑢
𝑛+1

𝑖
=

𝑘𝑅

∑
𝑘=−𝑘𝐿

𝑏
𝑘
𝑢
𝑛

𝑖+𝑘
. (17)

Theorem 1 (Roe [12]). A scheme of the form (17) is 𝑝𝑡ℎ (𝑝 ≥
0) order accurate in space and time if and only if

𝑘𝑅

∑
𝑘=−𝑘𝐿

𝑘
𝑞
𝑏
𝑘
= (−𝑐)

𝑞
, 0 ≤ 𝑞 ≤ 𝑝. (18)

According to Roe’s theorem, it is easy to verify that
scheme (16) is third order accurate in space and time for any
value 𝜔 ∈ [−1, 1] and the scheme is fourth order accurate
when 𝜔 = 𝑐/2.

3. TVD Version of SHA Scheme

According to Godunov’sTheorem [1] there are nomonotone,
linear schemes (17) of second or higher order of accuracy.
This means that any linear scheme of second or higher is
nonmonotone and there will be spurious oscillation in the
vicinity of high gradients. The scheme must be modified in

order to avoid spurious oscillation near the high gradients.
Harten [13] proposed the TVD property of conservation
schemes. The numerical solutions will be free from spurious
oscillations if the scheme has the TVD property. Now we will
modify the SHA method above to a scheme with the TVD
property according to Harten’s Theorem.

Considering the class of nonlinear schemes

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
− 𝐶
𝑖−1/2
Δ𝑢
𝑖−1/2
+ 𝐷
𝑖+1/2
Δ𝑢
𝑖+1/2
, (19)

whereΔ𝑢
𝑖+1/2
= 𝑢
𝑖+1
−𝑢
𝑖
and the coefficients𝐶

𝑖−1/2
,𝐷
𝑖+1/2

are
in general assumed to be functions of the data {𝑢𝑛

𝑖
}, Harten

had proved the following important result.

Theorem 2 (Harten [13]). For any scheme of the form (19) to
solve (1), a sufficient condition for the scheme to be TVD is that
the coefficients satisfy

𝐶
𝑖−1/2
≥ 0, 𝐷

𝑖+1/2
≥ 0,

0 ≤ 𝐶
𝑖+1/2
+ 𝐷
𝑖+1/2
≤ 1.

(20)

The conservative scheme SHA can be written as follows
when applied to linear advection equation:

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
+
Δ𝑡

Δ𝑥
(𝑓

SHA
𝑖−1/2
− 𝑓

SHA
𝑖+1/2
) , (21)

where

𝑓
SHA
𝑖+1/2
=

2

∑
𝑘=−1

𝛽
𝑘
(𝑎𝑢
𝑛

𝑖+𝑘
) ,

𝛽
−1
= −

1

12
(1 − 𝑐) (1 + 𝑐) (1 + 𝜔) ,

𝛽
0
=
1 + 𝑐

2
(1 +

1

3
(1 − 𝑐) 𝜔) +

1

12
(1 − 𝑐) (1 + 𝑐) (1 + 𝜔) ,

𝛽
1
=
1

12
(1 − 𝑐) (1 + 𝑐) (1 − 𝜔) +

1 − 𝑐

2
(1 −

1

3
(1 + 𝑐) 𝜔) ,

𝛽
2
= −

1

12
(1 − 𝑐) (1 + 𝑐) (1 − 𝜔) .

(22)

Thus we obtain

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
+
Δ𝑡

Δ𝑥
(

2

∑
𝑘=−1

𝛽
𝑘
(𝑎𝑢
𝑛

𝑖−1+𝑘
) −

2

∑
𝑘=−1

𝛽
𝑘
(𝑎𝑢
𝑛

𝑖+𝑘
))

= 𝑢
𝑛

𝑖
− 𝑐 (𝛽

−1
Δ𝑢
𝑖−3/2
+ 𝛽
0
Δ𝑢
𝑖−1/2

+𝛽
1
Δ𝑢
𝑖+1/2
+ 𝛽
2
Δ𝑢
𝑖+3/2
)

= 𝑢
𝑛

𝑖
− 𝑐(𝛽

−1

Δ𝑢
𝑖−3/2

Δ𝑢
𝑖−1/2

+ 𝛽
0

+𝛽
1

Δ𝑢
𝑖+1/2

Δ𝑢
𝑖−1/2

+ 𝛽
2

Δ𝑢
𝑖+3/2

Δ𝑢
𝑖−1/2

)Δ𝑢
𝑖−1/2

(23)
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Table 1: Initial value problem (30) and 𝐿1 and 𝐿∞ norms of the errors.

𝑀 𝐿
1-error Order 𝐿

∞-error Order
10 1.203897900384131𝑒 − 002 — 1.860124553555120𝑒 − 002 —
20 7.747165606962370𝑒 − 004 3.957 1.216839281057258𝑒 − 003 3.934
40 4.892558239899294𝑒 − 005 3.985 7.685201177864975𝑒 − 005 3.984
80 3.065750738086813𝑒 − 006 3.996 4.815669996355299𝑒 − 006 3.996
160 1.917328754602903𝑒 − 007 3.999 3.011732963263680𝑒 − 007 3.999

or

= 𝑢
𝑛

𝑖
+ (−𝑐) (𝛽

−1

Δ𝑢
𝑖−3/2

Δ𝑢
𝑖+1/2

+ 𝛽
0

Δ𝑢
𝑖−1/2

Δ𝑢
𝑖+1/2

+ 𝛽
1
+ 𝛽
2

Δ𝑢
𝑖+3/2

Δ𝑢
𝑖+1/2

)

× Δ𝑢
𝑖+1/2
.

(24)

Let

𝐶
𝑖−1/2
= 𝑐(𝛽

−1

Δ𝑢
𝑖−3/2

Δ𝑢
𝑖−1/2

+ 𝛽
0

Δ𝑢
𝑖−1/2

Δ𝑢
𝑖+1/2

+ 𝛽
1
+ 𝛽
2

Δ𝑢
𝑖+3/2

Δ𝑢
𝑖+1/2

)

(25)

or

𝐷
𝑖+1/2
= −𝑐(𝛽

−1

Δ𝑢
𝑖−3/2

Δ𝑢
𝑖+1/2

+ 𝛽
0
+ 𝛽
1

Δ𝑢
𝑖+1/2

Δ𝑢
𝑖−1/2

+ 𝛽
2

Δ𝑢
𝑖+3/2

Δ𝑢
𝑖−1/2

) .

(26)

Then we could modify (23) as

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
− 𝐿 (𝐶

𝑖−1/2
) Δ𝑢
𝑖−1/2

(27a)

or

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
+ 𝐿 (𝐷

𝑖+1/2
) Δ𝑢
𝑖+1/2
, (27b)

where 𝐿 is a function

𝐿 (𝑧) = max (0,min (1, 𝑧)) . (28)

Obviously 𝐿(𝐶
𝑖−1/2
) (or 𝐿(𝐷

𝑖+1/2
)) ∈ [0, 1]; schemes (27a)

and (27b) modified above are TVD according to Harten’s
result. In addition formula (27a) can be rewritten into

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
−
Δ𝑡

Δ𝑥
(𝐿 (𝐶

𝑖−1/2
)
Δ𝑥

Δ𝑡
𝑢
𝑛

𝑖
− 𝐿 (𝐶

𝑖−1/2
)
Δ𝑥

Δ𝑡
𝑢
𝑛

𝑖−1
) .

(29)

Formula (27b) also can be done similarly. So it can be seen
that the conservativity of the TVD schemes (27a) and (27b)
is not destroyed.

4. Numerical Experiments for
Linear Advection Equation

4.1. Accuracy Test for SHA Scheme. In the subsection we first
test the order of accuracy of scheme SHA (16). Let us consider
the linear equation subject to periodic initial data:

𝑢
𝑡
+ 𝑢
𝑥
= 0, 𝑢 (𝑥, 0) = sin𝜋𝑥, 𝑥 ∈ [0, 1] . (30)

This problem admits the global smooth solution that was
computed at time 𝑡 = 1 with the varying number of grid
points 𝑀. In Table 1 the accuracy of the scheme is shown.
The table lists the errors at 𝑡 = 1 unit using the fourth order
scheme SHA (16) (𝜔 = 𝑐/2); notice that we have the full order
of accuracy, 4, in both 𝐿1 and 𝐿∞ norms.

4.2. Numerical Experiment I. Next we will use the fourth
order scheme SHA (16) (𝜔 = 𝑐/2) and TVD schemes
(27a) and (27b) to compute the continuous initial value test
problem (31) and discontinuous initial value test problem (32)
for the linear advection (1). Computed results are shown,
respectively, in Figures 1, 3, and 5 and Figures 2, 4, and 6.The
first test problem to be solved is

𝑢
𝑡
+ (𝑓 (𝑢))

𝑥
= 0,

𝑢 (𝑥, 0) = 𝑒
−32𝑥
2

, 𝑥 ∈ [−0.5, 0.5] ,

(31)

where 𝑓(𝑢) = 𝑢.
In this experiment the Courant number 𝐶𝐹𝐿 is 𝑐 = 0.9.

Figure 1 shows the excellent behavior of scheme (16) after long
time. Figures 3 and 5 show the results computed by scheme
(27a) and scheme (27b), respectively, at 𝑡 = 9 units and
reveal that schemes ((27a)-(27b)) also have high approximate
accuracy to smooth initial problem.

4.3. Numerical Experiment II. We solve the same problem
as in experiment I, except that we replace the smooth initial
condition with a discontinuous initial condition:

𝑢
𝑡
+ (𝑓 (𝑢))

𝑥
= 0,

𝑢 (𝑥, 0) =

{{

{{

{

0, 𝑥 ≤ −0.2,

1, −0.2 < 𝑥 < 0.2,

0, 𝑥 ≥ 0.2,

(32)

where 𝑓(𝑢) = 𝑢.
In experiment II the 𝐶𝐹𝐿 is still 0.9 and Δ𝑥 = 1/80.

Figure 2 shows the result computed by the 4th order scheme
SHA (16) (𝜔 = 𝑐/2) at 𝑡 = 2 units and reveals the 4th order
scheme SHA without TVD products spurious oscillation
in the vicinity of discontinuity. Figure 4 shows the result
computed by the scheme SHA with TVD (27a) at 𝑡 = 2 units
and Figure 6 shows the result computed by scheme (27b) at
𝑡 = 2 units. From the results shown by Figures 4 and 6 we
see that schemes (27a) and (27b) both control the spurious
oscillation, but the comparison of Figures 4 and 6 reveals that
scheme (27b) has better resolution to discontinuous initial
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Figure 1: SHA method applied to linear advection equation with
a continuous initial value; numerical (symbols) and exact (line)
solutions are compared at 𝑡 = 9 units.
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Figure 2: SHA method applied to linear advection equation for
a square wave; numerical (symbols) and exact (line) solutions are
compared at 𝑡 = 2 units.

problem. The period boundary conditions are used in both
experiments I and II.

5. The Application of SHA
Scheme to Burgers’ Equation

We can see the SHA schemes perform well in solving linear
advection equation from the numerical results above. It can
reach fourth order accuracy in space and time where the
solution is smooth enough and the implementation of the
scheme is so easy that the method can be extended to
nonlinear conservative laws conveniently.
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Figure 3: SHA method with TVD (27a) applied to linear advection
equation with a continuous initial value; numerical (symbols) and
exact (line) solutions are compared at 𝑡 = 9 units.
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Figure 4: SHA method with TVD (27a) applied to linear advection
equation for a square wave; numerical (symbols) and exact (line)
solutions are compared at 𝑡 = 2 units.

In the following we will extend the schemes to inviscid
Burgers’ equation

𝑢
𝑡
+ (
𝑢
2

2
)
𝑥

= 0, 𝑥 ∈ (𝑎, 𝑏) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ (𝑎, 𝑏) ,

(33)

with suitable boundary conditions.

5.1. 𝐶𝐹𝐿 Number and Numerical Boundary Conditions.
Assume that the space [𝑎, 𝑏] is divided into 𝑀 cells 𝐼

𝑖
=

[𝑥
𝑖−1/2
, 𝑥
𝑖+1/2
]; the spacing of grid points Δ𝑥 is 𝑥

𝑖+1/2
− 𝑥
𝑖−1/2

,
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Figure 5: SHAmethod with TVD (27b) applied to linear advection
equation with a continuous initial value; numerical (symbols) and
exact (line) solutions are compared at 𝑡 = 9 units.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

0

0.2

0.4

0.6

0.8

1

1.2

Exact solution
Numerical solution

x

u

−0.2

Figure 6: SHAmethod with TVD (27b) applied to linear advection
equation for a square wave; numerical (symbols) and exact (line)
solutions are compared at 𝑡 = 2 units.

which is 𝐿/𝑀. The full discrete conservative formula for the
above equation is

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
+
Δ𝑡

Δ𝑥
(𝑓
𝑖−1/2
− 𝑓
𝑖+1/2
) . (34)

In the application of SHA scheme to the inviscid Burgers’
equation we use the following transmissive boundary condi-
tions:

𝑢
𝑛

0
= 𝑢
𝑛

1
, 𝑢

𝑛

−1
= 𝑢
𝑛

2
, 𝑢

𝑛

𝑀+1
= 𝑢
𝑛

𝑀
, 𝑢

𝑛

𝑀+2
= 𝑢
𝑛

𝑀−1
,

(35)

to provide numerical fluxes𝑓
1/2

,𝑓
𝑀+1/2

. Denoting by 𝑆𝑛max the
maximum wave speed throughout the domain at time level 𝑛
we define the maximum Courant number 𝐶

𝑐𝑓𝑙
:

𝐶
𝑐𝑓𝑙
=
Δ𝑡𝑆
𝑛

max
Δ𝑥

, (36)

where Δ𝑡 is such that

0 < 𝐶
𝑐𝑓𝑙
≤ 1. (37)

The time step Δ𝑡 follows as

Δ𝑡 =
𝐶
𝑐𝑓𝑙
Δ𝑥

𝑆𝑛max
, (38)

where

𝑆
𝑛

max = max
𝑖

{𝑆
𝑛

𝑖+1/2
} ,

𝑆
𝑛

𝑖+1/2
=
{

{

{

1

2

󵄨󵄨󵄨󵄨𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖+1

󵄨󵄨󵄨󵄨 , if 𝑢𝑛
𝑖
> 𝑢
𝑛

𝑖+1
, (shock)

max (󵄨󵄨󵄨󵄨𝑢
𝑛

𝑖

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢
𝑛

𝑖+1

󵄨󵄨󵄨󵄨) , if 𝑢𝑛
𝑖
< 𝑢
𝑛

𝑖+1
, (rarefaction) .

(39)

The calculation of the max wave speed value in (39) needs to
use all of the speed values in the cells, including the boundary
cells.

The Riemann problem for Burgers’ equation is

𝑢
𝑡
+ (
𝑢
2

2
)
𝑥

= 0,

𝑢 (𝑥, 0) = {
𝑢
𝐿
, 𝑥 < 0,

𝑢
𝑅
, 𝑥 > 0.

(40)

Its exact solution is

if 𝑢
𝐿
> 𝑢
𝑅
, then

𝑢 (𝑥, 𝑡) = {
𝑢
𝐿
, if 𝑥 − 𝑆𝑡 < 0,

𝑢
𝑅
, if 𝑥 − 𝑆𝑡 > 0,

where 𝑆 = (1/2) (𝑢
𝐿
+ 𝑢
𝑅
) ; (the speed of shock)

if 𝑢
𝐿
≤ 𝑢
𝑅
, then

𝑢 (𝑥, 𝑡) =

{{{{

{{{{

{

𝑢
𝐿
, if 𝑥

𝑡
≤ 𝑢
𝐿
,

𝑥

𝑡
, if 𝑢

𝐿
<
𝑥

𝑡
< 𝑢
𝑅
,

𝑢
𝑅
, if 𝑥

𝑡
≥ 𝑢
𝑅
.

(41)

5.2. SHA Schemes for Solving Nonlinear Scalar Equation. The
high order scheme is constructed as follows.

Step 1. Data reconstruction

𝑢
𝑖
(𝑥) = 𝑢

𝑛

𝑖
+
2

3

𝑥 − 𝑥
𝑖

Δ𝑥
Δ
𝑖
, 𝑥 ∈ [𝑥

𝑖−1/2
, 𝑥
𝑖+1/2
] . (42)
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Figure 7: 𝑢𝑅
𝑖
> 𝑢
𝐿

𝑖+1
shock wave.

Δ
𝑖
is the slope on cell 𝑖 for 𝑢

𝑖
(𝑥), and

Δ
𝑖
=
1

2
(1 + 𝜔) Δ𝑢

𝑖−1/2
+
1

2
(1 − 𝜔) Δ𝑢

𝑖+1/2
, 𝜔 ∈ [−1, 1] ,

Δ𝑢
𝑖+1/2
= 𝑢
𝑛

𝑖+1
− 𝑢
𝑛

𝑖
.

(43)

Then we get the values on the interface of cells:

𝑢
𝐿

𝑖
= 𝑢
𝑖
−
1

3
Δ
𝑖
, 𝑢

𝑅

𝑖
= 𝑢
𝑖
+
1

3
Δ
𝑖
. (44)

Step 2. Consider evolution of 𝑢𝐿
𝑖
, 𝑢𝑅
𝑖

by a time (1/2)Δ𝑡
according to

𝑢
𝐿

𝑖
= 𝑢
𝐿

𝑖
+
1

2

Δ𝑡

Δ𝑥
[𝑓 (𝑢
𝐿

𝑖
) − 𝑓 (𝑢

𝑅

𝑖
)] ,

𝑢
𝑅

𝑖
= 𝑢
𝑅

𝑖
+
1

2

Δ𝑡

Δ𝑥
[𝑓 (𝑢
𝐿

𝑖
) − 𝑓 (𝑢

𝑅

𝑖
)] .

(45)

Step 3. Solution of piecewise constant data Riemann problem

𝑢
𝑡
+ 𝑓(𝑢)

𝑥
= 0,

𝑢 (𝑥, 0) = {
𝑢
𝑅

𝑖
𝑥 − 𝑥
𝑖+1/2
< 0,

𝑢
𝐿

𝑖+1
𝑥 − 𝑥
𝑖+1/2
> 0.

(46)

Step 4. Compute the integral

𝑢
𝑛+1/2

𝑖+1/2
=
1

Δ𝑥
∫
(1/2)Δ𝑥

−(1/2)Δ𝑥

𝑢
𝑖+1/2
(𝑥,
1

2
Δ𝑡) 𝑑𝑥. (47)

Then the numerical flux is computed by 𝑓SHA
𝑖+1/2
= 𝑓(𝑢

𝑛+1/2

𝑖+1/2
).

The 𝑢𝑛+1/2
𝑖+1/2

is required for computing the numerical flux
𝑓
SHA
𝑖+1/2

; that means the integral of the Riemann solution needs
to be calculated. The following gives the exact integral with
exact Riemann solution of inviscid Burgers’ equation. There
are two cases.

Case 1. See Figure 7, 𝑢𝑅
𝑖
> 𝑢
𝐿

𝑖+1
; the shock wave is formed; the

exact solution for Riemann problem is

𝑢 (𝑥, 𝑡) = {
𝑢
𝑅

𝑖
if 𝑥 − 𝑆𝑡 < 0,

𝑢
𝐿

𝑖+1
if 𝑥 − 𝑆𝑡 > 0,

(48)

where 𝑆 = (1/2)(𝑢𝑅
𝑖
+ 𝑢
𝐿

𝑖+1
). Substitute (48) into (47); then

𝑢
𝑛+1/2

𝑖+1/2
=
1

Δ𝑥
∫
(1/2)Δ𝑥

−(1/2)Δ𝑥

𝑢
𝑖+1/2
(𝑥,
1

2
Δ𝑡) 𝑑𝑥

=
1

Δ𝑥
(∫
𝑥𝐵

−(1/2)Δ𝑥

𝑢
𝑖+1/2
(𝑥,
1

2
Δ𝑡) 𝑑𝑥

+∫
(1/2)Δ𝑥

𝑥𝐵

𝑢
𝑖+1/2
(𝑥,
1

2
Δ𝑡) 𝑑𝑥)

=
1

Δ𝑥
(𝑢
𝑅

𝑖
𝑙
𝐴𝐵
+ 𝑢
𝐿

𝑖+1
𝑙
𝐵𝐶
)

=
1

Δ𝑥
(𝑢
𝑅

𝑖
(
Δ𝑥

2
+
Δ𝑡

2
𝑆) + 𝑢

𝐿

𝑖+1
(
Δ𝑥

2
−
Δ𝑡

2
𝑆))

=
1

2
(𝑢
𝑅

𝑖
+ 𝑢
𝐿

𝑖+1
) +
1

2

Δ𝑡

Δ𝑥
(
1

2
(𝑢
𝑅

𝑖
)
2

−
1

2
(𝑢
𝐿

𝑖+1
)
2

) .

(49)

Case 2. See Figure 8, 𝑢𝑅
𝑖
≤ 𝑢
𝐿

𝑖+1
, and the solution is a centred

rarefaction wave; the exact solution for Riemann problem is

𝑢 (𝑥, 𝑡) =

{{{{

{{{{

{

𝑢
𝑅

𝑖
if 𝑥
𝑡
≤ 𝑢
𝑅

𝑖
,

𝑥

𝑡
if 𝑢𝑅
𝑖
<
𝑥

𝑡
< 𝑢
𝐿

𝑖+1
,

𝑢
𝐿

𝑖+1
if 𝑥
𝑡
≥ 𝑢
𝐿

𝑖+1
.

(50)

Substitute the above solution (50) into (47), then

𝑢
𝑛+1/2

𝑖+1/2
=
1

Δ𝑥
∫
(1/2)Δ𝑥

−(1/2)Δ𝑥

𝑢
𝑖+1/2
(𝑥,
1

2
Δ𝑡) 𝑑𝑥

=
1

Δ𝑥
(∫
𝑥𝐵

−(1/2)Δ𝑥

𝑢
𝑖+1/2
(𝑥,
1

2
Δ𝑡) 𝑑𝑥

+ ∫
𝑥𝐶

𝑥𝐵

𝑢
𝑖+1/2
(𝑥,
1

2
Δ𝑡) 𝑑𝑥

+∫
(1/2)Δ𝑥

𝑥𝐶

𝑢
𝑖+1/2
(𝑥,
1

2
Δ𝑡) 𝑑𝑥)

=
1

Δ𝑥
(𝑢
𝑅

𝑖
𝑙
𝐴𝐵
+ 𝑢
𝐿

𝑖+1
𝑙
𝐶𝐷
+ ∫
𝑥𝐶

𝑥𝐵

𝑥

(1/2) Δ𝑡
𝑑𝑥)

=
1

Δ𝑥
(𝑢
𝑅

𝑖
(
Δ𝑥

2
+
Δ𝑡

2
𝑢
𝑅

𝑖
) + 𝑢
𝐿

𝑖+1
(
Δ𝑥

2
−
Δ𝑡

2
𝑢
𝐿

𝑖+1
)

+
2

Δ𝑡
(
1

2
(
Δ𝑡

2
𝑢
𝑅

𝑖
)
2

−
1

2
(
Δ𝑡

2
𝑢
𝐿

𝑖+1
)
2

) )

=
1

2
(𝑢
𝑅

𝑖
+ 𝑢
𝐿

𝑖+1
) +
1

2

Δ𝑡

Δ𝑥
(
1

2
(𝑢
𝑅

𝑖
)
2

−
1

2
(𝑢
𝐿

𝑖+1
)
2

) .

(51)

We can get the numerical flux 𝑓SHA
𝑖+1/2

= 𝑓(𝑢
𝑛+1/2

𝑖+1/2
) at 𝑖th cell

interface. As we can see, the flux is the same as two-step
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Figure 8: 𝑢𝑅
𝑖
≤ 𝑢
𝐿

𝑖+1
rarefaction wave.

Richtmyer flux versions (13a) and (13b).Then we can give the
conservative formula for solving Burgers’ equation:

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
+
Δ𝑡

Δ𝑥
(𝑓

SHA
𝑖−1/2
− 𝑓

SHA
𝑖+1/2
) . (52)

5.3. TVDVersion of SHA for Burgers’ Equation. In this section
we will construct the TVD version of SHA (52) by the
combination of a low order monotone flux 𝑓LO

𝑖+1/2
and a high

order flux 𝑓HI
𝑖+1/2

as

𝑓
𝑖+1/2
= 𝑓

LO
𝑖+1/2
+ 𝜙
𝑖+1/2
[𝑓

HI
𝑖+1/2
− 𝑓

LO
𝑖+1/2
] , (53)

where 𝜙
𝑖+1/2

is a flux limiter. Here a specific Flux Limiter
Centred scheme is constructed by taking

𝑓
LO
𝑖+1/2
= 𝑓

force
𝑖+1/2
, 𝑓

HI
𝑖+1/2
= 𝑓

SHA
𝑖+1/2
, (54)

where 𝑓force
𝑖+1/2

is a First Order Centred scheme and is given as
follows for nonlinear systems.

A classical scheme of first order accuracy to solve hyper-
bolic conservation laws is that of Lax-Friedrichs, whose
numerical flux at the interface of two states 𝑢

𝑙
, 𝑢
𝑟
is

𝑓
LF
𝑖+1/2
=𝑓

LF
𝑖+1/2
(𝑢
𝑙
, 𝑢
𝑟
)=
1

2
[𝑓 (𝑢
𝑙
)+𝑓 (𝑢

𝑟
)]+
1

2

Δ𝑥

Δ𝑡
[𝑢
𝑙
− 𝑢
𝑟
] .

(55)

A second order accurate scheme Richtmyer scheme is given
by computing a numerical flux

𝑓
RI
𝑖+1/2
= 𝑓 (𝑢

RI
𝑖+1/2
) , (56)

where the intermediate state

𝑢
RI
𝑖+1/2
= 𝑢

RI
𝑖+1/2
(𝑢
𝑙
, 𝑢
𝑟
)

=
1

2
(𝑢
𝑙
+ 𝑢
𝑟
) +
1

2

Δ𝑡

Δ𝑥
[𝑓 (𝑢
𝑙
) − 𝑓 (𝑢

𝑟
)] .

(57)

Hence 𝑓force
𝑖+1/2

is given as

𝑓
force
𝑖+1/2
=𝑓

force
𝑖+1/2
(𝑢
𝑙
, 𝑢
𝑟
)=
1

2
[𝑓

LF
𝑖+1/2
(𝑢
𝑙
, 𝑢
𝑟
) + 𝑓

RI
𝑖+1/2
(𝑢
𝑙
, 𝑢
𝑟
)] .

(58)

As we know in [14], the relationship between conventional
upwind flux limiters 𝜓(𝑟) and centred flux limiters 𝜙(𝑟) is

𝜙 (𝑟) = 𝜙
𝑔
+ (1 − 𝜙

𝑔
) 𝜓 (𝑟) , (59)

with

𝜙
𝑔
=

{{{

{{{

{

0, 𝑟 ≤ 1,

𝜙
𝑔
≡
(1 − 𝐶

𝑐𝑓𝑙
)

(1 + 𝐶
𝑐𝑓𝑙
)
, 𝑟 ≥ 1,

(60)

where 𝐶
𝑐𝑓𝑙

is the maximum Courant number. By choosing
the upwind flux limiters SUPERBEE [15], VANLEER [16],
VANALBADA [17], and MINBEE [15] we can obtain corre-
sponding centred flux limiters. Here we recommend the use
of the SUPERBEE flux limiter 𝜓sb to obtain a centred flux
limiter:

𝜙sb (𝑟) =

{{{{{{

{{{{{{

{

0, 𝑟 ≤ 0,

2𝑟, 0 ≤ 𝑟 ≤
1

2
,

1,
1

2
≤ 𝑟 ≤ 1,

min {2, 𝜙
𝑔
+ (1 − 𝜙

𝑔
) 𝑟} , 𝑟 > 1.

(61)

Set

𝑟
𝐿

𝑖+1/2
=
Δ𝑢
𝑖−1/2

Δ𝑢
𝑖+1/2

, 𝑟
𝑅

𝑖+1/2
=
Δ𝑢
𝑖+3/2

Δ𝑢
𝑖+1/2

. (62)

A single flux limiter is computed as

𝜙LR = min {𝜙sb (𝑟
𝐿

𝑖+1/2
) , 𝜙sb (𝑟

𝑅

𝑖+1/2
)} . (63)

Here 𝜙sb is the limiter function (61), and we will apply 𝜙LR to
the flux in (53). As we see, the method can be easily extended
to a system of conserved variables; we just need to apply
(62)-(63) to every component 𝑢

𝑘
and obtain a corresponding

limiter 𝜙LR
𝑘
, 𝑘 = 1, . . . , 𝑚.Then, one can select the final limiter

as

𝜙
LR
= min
𝑘

{𝜙
LR
𝑘
} , 𝑘 = 1, . . . , 𝑚. (64)

In next section, we present some numerical results for
above methods.

6. Numerical Experiment for
Inviscid Burgers’ Equation

Apply the SHA scheme (52) to the inviscid Burgers’ equation
as follows:

𝑢
𝑡
+ (
𝑢
2

2
)
𝑥

= 0, 𝑥 ∈ (0, 2) ,

𝑢 (𝑥, 0) = sin (𝜋𝑥) , 𝑥 ∈ (0, 2) ,

(65)

the exact solution of which is 𝑢 = sin𝜋(𝑥 − 𝑢𝑡).
Firstly, we test the accuracy of the scheme when the

solution is still continuous. 𝐿1 and 𝐿∞ errors are listed in
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Table 2: Initial value problem (65) and 𝐿1 and 𝐿∞ norms of the errors.

𝑀 𝐿
1-error Order 𝐿

∞-error Order
10 1.271602441600013𝑒 − 003 — 4.379023250708602𝑒 − 003 —
20 3.014198107186672𝑒 − 004 2.076 1.184828766909840𝑒 − 003 1.885
40 8.022589039827272𝑒 − 005 1.909 3.326609280748238𝑒 − 004 1.836
80 1.970290376099131𝑒 − 005 2.025 8.196194678489199𝑒 − 005 2.021
160 4.901628379673853𝑒 − 006 2.007 2.022463637441074𝑒 − 005 2.001
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x

u

Figure 9: SHA method applied to inviscid Burgers’ equation for
continuous initial value; numerical (symbols) and exact (line)
solutions are compared at 𝑡 = 0.4 units.

Table 2 using SHA scheme (52) at 𝑡 = 0.1 units. We have the
order of accuracy, 2, in both 𝐿1 and 𝐿∞ norms.

Next we compute the shock by SHA scheme (52) with
𝐶𝐹𝐿 = 0.8 and Δ𝑥 = 0.01. The comparison of exact solution
and numerical solution for initial value problem (65) is given
in Figure 9.Thenwe use the SHA scheme (53) with the limiter
𝜙LR(𝑟) in (63) to solve the initial value problem (65). The
comparison is shown in Figure 10. From Figures 9 and 10
we can see that SHA scheme gives satisfactory solution when
shock develops at 𝑡 = 0.4.

Considering the discontinuous initial value problem for
Burgers’ equation

𝑢
𝑡
+ (
𝑢
2

2
)
𝑥

= 0,

𝑢 (𝑥, 0) =

{{{{{{{

{{{{{{{

{

−0.5 0 < 𝑥 <
1

3
,

1
1

3
≤ 𝑥 ≤

2

3
,

0
2

3
< 𝑥 < 1.

(66)

The comparison of exact solution and numerical solution for
initial value problem (66) computed by SHA scheme (52) is

0 0.5 1 1.5 2

0

0.5

1

1.5

−0.5

Exact solution
Numerical solution

x

u

Figure 10: SHA method with TVD applied to inviscid Burgers’
equation for continuous initial value; numerical (symbols) and exact
(line) solutions are compared at 𝑡 = 0.4 units.

given in Figure 11; then we use the SHA scheme (53) with
TVD to solve the initial value problem (66); the comparison
is shown in Figure 12. From Figures 11 and 12 we see that SHA
scheme (52) cannot control the spurious oscillation, but SHA
scheme (53) not only can control the spurious oscillation but
also has better resolution to discontinuity.

7. The Application of SHA
Scheme to Euler Equations

We have presented every procedure of SHA scheme applying
to Burgers’ equation; now we will turn our focus on the
application of SHA scheme to the following Euler equations:

𝜕𝑈

𝜕𝑡
+
𝜕𝐹

𝜕𝑥
= 0 (67)

with

𝑈 = [

[

𝜌

𝜌𝑢

𝐸

]

]

, 𝐹 = [

[

𝜌𝑢

𝜌𝑢
2
+ 𝑝

𝑢 (𝐸 + 𝑝)

]

]

, (68)

where

𝐸 = 𝜌𝑒 +
1

2
𝜌𝑢
2
, 𝑒 =

𝑝

𝜌 (𝛾 − 1)
(69)
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and 𝑈 is conservative variable, 𝐹 is vector of convective flux,
𝑒 is specific internal energy, 𝐸 is total energy, and 𝛾 is ratio of
specific heats, the value of which is 1.4 for ideal gas.

The process of applying SHA to Euler equations is similar
to that of Burgers’ equation. The time step is determined by

Δ𝑡 = 𝐶
𝑐𝑓𝑙

Δ𝑥

𝑆𝑛max
, (70)

where 𝑆𝑛max is the maximum wave speed at the time 𝑡𝑛. A
practical choice of 𝑆𝑛max is

𝑆
𝑛

max = max
𝑖

(
󵄨󵄨󵄨󵄨𝑢
𝑛

𝑖

󵄨󵄨󵄨󵄨 + 𝑎
𝑛

𝑖
) , (71)

where 𝑎𝑛
𝑖
is the sound speed, for ideal gas 𝑎𝑛

𝑖
= √𝛾𝑝𝑛

𝑖
/𝜌𝑛
𝑖
.

The data reconstruction and evolution part is the same as
Burgers’ equation. When we obtain the 𝑈𝐿

𝑖
and 𝑈𝑅

𝑖
at each

interface, there are two ways to construct the flux 𝑓SHA
𝑖+1/2

for
each interface.

TheRiemann solver free way is to use two-step Richtmyer
version of Lax-Wendroff method to obtain the SHA numeri-
cal flux:

𝑈
𝑛+1/2

𝑖+1/2
=
1

2
(𝑈
𝑅

𝑖
+ 𝑈
𝐿

𝑖+1
) +
Δ𝑡

Δ𝑥
(𝐹
𝑛

𝑖
− 𝐹
𝑛

𝑖+1
) ,

𝐹
SHA
𝑖+1/2
= 𝐹 (𝑈

𝑛+1/2

𝑖+1/2
) ,

(72)

where 𝐹𝑛
𝑖
= 𝐹(𝑈

𝑅

𝑖
), 𝐹𝑛
𝑖+1
= 𝐹(𝑈

𝐿

𝑖+1
). Then (53) can be used

to construct TVD scheme for the Euler equations which is
similar to the procedure for Burgers’ equation.

The other way to obtain the flux at the cell is according to
(13a); for the Euler equations, the flux is given as

𝐹
SHA
𝑖+1/2
= 𝐹 (𝑈

𝑛+1/2

𝑖+1/2
) ,

𝑈
𝑛+1/2

𝑖+1/2
=
1

Δ𝑥
∫
(1/2)Δ𝑥

−(1/2)Δ𝑥

𝑈
𝑖+1/2
(𝑥,
1

2
Δ𝑡) 𝑑𝑥,

(73)

where 𝑈
𝑖+1/2
(𝑥, 𝑡) is the solution of the Riemann problem

with piecewise constant data 𝑈𝑅
𝑖
, 𝑈𝐿
𝑖+1

. And approximate
Riemann solvers may be applied to get the solution of the
Riemann problem. Assume the four constant states of the
solution are 𝑈(1), 𝑈(2), 𝑈(3), 𝑈(4) in order; in that way, the
integral in (73) becomes [14]

𝑈
𝑛+1/2

𝑖+1/2
=
1

2
(𝑈
𝑛

𝑖
+ 𝑈
𝑛

𝑖+1
) −
1

2

4

∑
𝑘=1

𝑐
𝑘
(𝑈
(𝑘+1)

𝑖+1/2
− 𝑈
(𝑘)

𝑖+1/2
) , (74)

where 𝑈(𝑘)
𝑖+1/2

is the value of 𝑈
𝑖+1/2
(𝑥, 𝑡) in region 𝑘 and 𝑐

𝑘
=

Δ𝑡𝑆
𝑘
/Δ𝑥 is the Courant number for wave 𝑘 of speed 𝑆

𝑘
. And

then the flux is obtained from (73). The TVD version of the
flux of the scheme is constructed as follows:

𝑈
𝑛+1/2

𝑖+1/2
=
1

2
(𝑈
𝑛

𝑖
+ 𝑈
𝑛

𝑖+1
) −
1

2

4

∑
𝑘=1

sign (𝑐
𝑘
) 𝜙
𝑘
(𝑈
(𝑘+1)

𝑖+1/2
− 𝑈
(𝑘)

𝑖+1/2
) ,

(75)
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Figure 11: SHA method applied to inviscid Burgers’ equation for
discontinuous initial value; numerical (symbols) and exact (line)
solutions are compared at 𝑡 = 0.15 units.

where 𝜙
𝑘
= 𝜙(𝑟

(𝑘)
, 𝑐), and 𝑟(𝑘) = Δ𝑞(𝑘)

𝑖−1/2
/Δ𝑞
(𝑘)

𝑖+1/2
, for 𝑐

𝑘
> 0;

𝑟
(𝑘)
= Δ𝑞
(𝑘)

𝑖+3/2
/Δ𝑞
(𝑘)

𝑖+1/2
, for 𝑐

𝑘
< 0. The quantity 𝑞 is known

to change across each wave family in the solution of the
Riemann problem. For the Euler equations the choice 𝑞 ≡ 𝜌
(density) gives very satisfactory results. And a recommended
limiter can be found in [14]:

𝜙 (𝑟, 𝑐) =

{{{{{{{{{{{

{{{{{{{{{{{

{

1, 𝑟 ≤ 0,

1 − 2𝑟 (1 − |𝑐|) 2𝑟, 0 ≤ 𝑟 ≤
1

2
,

|𝑐| ,
1

2
≤ 𝑟 ≤ 1,

1 − (1 − |𝑐|) 𝑟,
1

2
≤ 𝑟 ≤ 2,

2 |𝑐| − 1, 𝑟 > 2.

(76)

Finally, the TVD flux is 𝐹SHA
𝑖+1/2
= 𝐹(𝑈

𝑛+1/2

𝑖+1/2
).

In order to test the effectiveness of the scheme, we apply
the TVD schemes (72) and (53) (denoted as SHA 1) and
the TVD schemes (73), (75), and (76) (denoted as SHA 2)
for Euler equations to Sod’s tube problem and Lax problem
[18, 19]. HLLC approximate Riemann solver [20] is used to
obtain the solution of the Riemann problem at the interface.
At the same time, the MUSCL-Hancock scheme [21], WEN
(3rd order) [22, 23], and RKDG (3rd order) [24] are also
applied for comparison.

Sod’s Tube Problem. The initial value consists of two constant
states:

𝑊 = {
𝑊
𝐿
= (𝜌
𝐿
, 𝑢
𝐿
, 𝑝
𝐿
)
𝑇

= (1.0, 0.0, 1.0)
𝑇

𝑥 < 0.5,

𝑊
𝑅
= (𝜌
𝑅
, 𝑢
𝑅
, 𝑝
𝑅
)
𝑇

= (0.125, 0.0, 0.1)
𝑇
𝑥 > 0.5.

(77)

This is a very common test for numerical scheme and its
solution consists of a left rarefaction, a contact, and a right
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Figure 12: SHA method with TVD applied to inviscid Burgers’
equation for continuous initial value; numerical (symbols) and exact
(line) solutions are compared at 𝑡 = 0.15 units.
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Figure 13: Density comparison of schemes at time 0.2 units for Sod’s
tube problem.

shock.Themesh used isΔ𝑥 = 0.005 and the Courant number
is 0.9. The comparisons between the numerical solution
obtained by the five schemes and the exact solution are shown
in Figures 13, 14, and 15. We can see that both kinds of SHA
schemes with TVD give satisfactory results. The numerical
results from the SHA 1 without Riemann solver are similar
to that of MUSCL-Hancockmethods, and bothmethods give
more dissipation than the other three methods, and SHA 2
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Figure 14: Velocity comparison of schemes at time 0.2 units for Sod’s
tube problem.
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Figure 15: Pressure comparison of schemes at time 0.2 units for
Sod’s tube problem.

with Riemann Solver scheme gives least dissipation at the
contact wave and shock wave.

Lax Problem. The initial states are given by

𝑊={
𝑊
𝐿
=(𝜌
𝐿
, 𝑢
𝐿
, 𝑝
𝐿
)
𝑇

=(0.445, 0.698, 3.528)
𝑇
𝑥< 0.5,

𝑊
𝑅
=(𝜌
𝑅
, 𝑢
𝑅
, 𝑝
𝑅
)
𝑇

=(0.5, 0.0, 0.571)
𝑇

𝑥 >0.5.

(78)
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Figure 16: Density comparison of schemes at time 0.16 units for Lax
problem.

This is a tough test for numerical schemes. The Courant
number in this test is still 0.9 and Δ𝑥 = 0.005. The numerical
results computed by the five schemes are shown in Figures
16, 17, and 18 comparing with the exact solution. We can see
that the numerical results from both SHA schemes are good,
the results of SHA 2 are comparable with results obtained
by WENO or DG, but SHA 2 is more simple and requires
less computational cost. These show the effectiveness of our
method.

8. Conclusion

This paper introduces a class of SHA schemes with 3rd order
approximation accuracy only for linear advection equation
by linear data reconstruction, solving Riemann problem and
using Lax-Wendroff flux, and its available highest order is
4th. The general flux limiter approach is used to make the
SHA schemes TVD in order to avoid spurious oscillations
in the vicinity of strong gradients for nonlinear equations
and systems. The numerical results show that these schemes
can solve hyperbolic conservation laws with high order of
accuracy, high resolution, and less computational cost. The
next work is to extend SHA schemes to high-dimensional
hyperbolic equations and apply them to compute some
practical flows, for example, around an airfoil and wing.
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