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This paper addresses formulation of stabilizability and motion tracking conditions for
mechanical systems from the point of view of constraints put on them. We present a new
classification of constraints, which includes nonholonomic constraints that arise in both
mechanics and control. Based on our classification we develop kinematic and dynamic
control models of systems subjected to these constraints. We demonstrate that a property
of being a “hard-to-control” nonholonomic system may not be related to the nature of
the constraints. It may result from the formulation of control objectives for a system.
We examine two control objectives which are stabilization to the target equilibrium by a
continuous static state feedback control and motion tracking. Theory is illustrated with
examples of control objective formulations for systems with constraints of various types.
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1. Introduction

A control design project does not begin when a control engineer is handed a model of
a system. It begins at the onset of the model formulation. The paper is focused on the
formulation of kinematic and dynamic control models of constrained systems and a sub-
sequent specification of control objectives for them. We provide a new classification of
constraints, which is a basis for the formulation of the models. We consider nonholo-
nomic constraints, which may be of two types: material and non-material. Equations,
which specify the non-material constraints, may be differential equations of high-order
with respect to time derivatives of coordinates.

Dynamic models of mechanical systems with first-order nonholonomic constraints
can be developed using classical methods of analytical mechanics, for example, Lagrange’s
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equations with multipliers and their modifications. For systems with second-order con-
straints Appell’s equations are available [1–4]. Recently, a method of the derivation of
equations of motion of systems with nonholonomic constraints of high-order has been
developed. This is a generalized programmed motion equations (GPME) method [5, 6].
The high-order constraints are referred to as programmed, since they are put by a de-
signer to specify tasks that systems have to perform or they may arise from design and
control objectives [5–7]. They are non-material constraints in contrast to materials that
are given by nature. Also, an equation that specifies the angular momentum conservation
is meant as a non-material nonholonomic constraint [1]. Constraints that arise from
underactuation in a control system are non-material nonholonomic and second-order
[8, 9].

Nonholonomic control systems are a class of nonlinear control systems, which are not
amenable to methods of linear control theory even locally and they are not transformable
into linear control problems in any meaningful way. They require different control ap-
proaches than other nonlinear control systems due to the presence of the nonholonomic
constraints. Moreover, control systems in which the high-order constraints are present
require different control approaches than systems with first-order constraints [1–3, 10–
12].

Nonholonomic control systems can be presented in a general form [2]:

ẋ = F(x,u), (*)

where x ∈M, and M is a smooth n-dimensional manifold referred to as the state space,
u ∈ U , u(t) is a time-dependent map from the nonnegative reals R+ to a constraint set
Σ ⊂ Rm, F is assumed to be C∞ (smooth) or Cω (analytic) and is taken from M ×Rm

into TM such that for each fixed u, F is a vector field on M. The map u is assumed
to be piecewise smooth or piecewise analytic, that is, it is admissible. There are many
generalizations and specializations of this definition, for example, for Hamiltonian and
Lagrangian control systems; see [2] and references there. For the scope of this paper we
may consider affine nonlinear control systems in the form [2, 11]

ẋ = f (x) +
m∑

i=1

gi(x)ui, (**)

where f is the drift vector field, gi, i= 1, . . . ,m, are the control vector fields, and both are
smooth on M. We assume that the constraint set Σ contains an open neighborhood of the
origin in Rm.

In this paper, we make connections between the control models (**) for systems with
material and non-material nonholonomic constraints, and control objectives stated for
them. We demonstrate that nonholonomically constrained systems are not “hard to con-
trol” when proper control objectives and strategies are employed.

We select two control objectives, that is, stabilization (local asymptotic stabilizability)
by a continuous static-state feedback strategy and motion tracking.

The system (**) is said to be LAS if there exists a feedback u(x) defined on a neighbor-
hood of 0 such that 0∈M is an asymptotically stable equilibrium of the closed-loop sys-
tem. A feedback controller u(x) is said to be a static-state feedback when it is a continuous
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map u : M → U : x→ u(x), u(0) = 0, such that the closed-loop system (**) has a unique
solution x(t,x(0)), t ≥ 0, for sufficiently small initial state x(0). The asymptotic stabiliz-
ability of the target equilibrium holds only if the dimension of the equilibria set including
the target is equal to the number of control inputs [13, 14]. This result is equivalent to
Brockett’s necessary condition for feedback stabilization [2, 15]. Based on Brockett’s con-
dition, control models of nonholonomic systems are not asymptotically stabilizable even
locally. However, we can still formulate control objectives for some control problems that
make them LAS.

Motion tracking consists in tracking a desired motion specified by algebraic or dif-
ferential equations of constraints [16, 17]. This extended definition of tracking includes
trajectory tracking as a peculiar case for which a trajectory is specified by an algebraic
equation. Usually in nonlinear control, motion tracking means trajectory tracking. It is
achieved using two kinds of models. One considers velocities of a system as control inputs
and uses a kinematic model, and ignores a system dynamics (see [2, 18, 19] and refer-
ences therein). The second uses the system dynamics, where control forces and torques
as well as velocities can be control inputs [10–12]. For a nonholonomic system with first-
order constraints, kinematic and dynamic control models are usually integrated. A con-
trol strategy developed in such a way has a two-level architecture. The lower control level
operates within the kinematic model to stabilize the system motion to a desired trajec-
tory. The upper control level uses the dynamic model and stabilizes feedback obtained
on the lower control level [12]. Trajectory tracking for nonholonomic systems with first-
order constraints can also be achieved using controllers based on dynamic models in a
reduced-state form [3, 12, 20]. For a control objective other than trajectory tracking these
nonlinear control strategies are not applicable and new strategies have to be pursued. A
model reference tracking control strategy for programmed motion is a tool developed for
tracking motions specified by equations of constraints of arbitrary order [6, 7, 16, 17].
The strategy uses only dynamic models of a system, both derived by the GPME method.
This strategy can also be applied to underactuated systems additionally subjected to pro-
grammed constraints [21]. For this reason we do not have to distinguish the underactu-
ated systems as a special class of systems with second-order nonholonomic constraints as
it is usually done.

Contributions of the paper consist of the presentation of the new classification of non-
holonomic constraints, formulation of control models and control objectives for systems
with such constraints, and design control strategies to realize these objectives.

The paper is organized as follows. In Section 2 we present the classification of con-
strained systems. In Sections 3 and 4 we address kinematic and dynamic control models
for them. In Sections 5 and 6, based on examples, we review these models with respect to
the stabilizability conditions and possibilities of motion tracking. Examples are illustrated
with simulation results. The paper closes with conclusions and a list of references.

2. Classification of nonholonomic systems

Classifications of nonholonomic constraints known to the author capture material con-
straints and non-material that arise from the conservation law and underactuation, for
example, [1, 8, 9, 12, 14, 22]. In Table 2.1 we present a new classification, which includes
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nonholonomic non-material high-order constraints. The high-order constraints enable
specification of many tasks, control objectives, and motion requirements that are usually
considered “side conditions” not the constraints. In the new classification they are treated
in the same way as other constraints on systems, provided that they can be specified by al-
gebraic or differential equations. An example is an equation of a desired trajectory, which
we treat as a constraint.

We do not consider high-order constraints in biomechanical systems herein, see, for
example, [23].

The most common constrained systems are these with first-order material constraints
(group 1). They arise from the condition that vehicle wheels or fingers of multifinger
hands grasping objects do not slip. There is a subgroup of the wheeled systems for which
their wheels are not powered. These are a snakeboard [24, 25], a roller-racer [26, 27], a
roller-blader [28], a roller-walker [29], or snake-like robots [30, 31]. All these systems can
move their bodies due to the relative motion of their joints. This motion is referred to as
snake-like motion. Control properties of systems with powered and idle wheels signifi-
cantly differ.

The constraints from group 2 originate from the conservation law and have the form of
nonholonomic constraint equations of first-order. They play the same role as the material
constraints do, that is, they specify conditions, which system velocities have to satisfy.
Usually, they are distinguished as the “conservation laws” not the constraints per se [1].
They arise for space vehicles and robots, for a falling cat [1], for a sportsman performing
a summersault [32], and for an astronaut on a space walk [3]. Some of these systems may
be underactuated; then we assign them to group 5.

Underactuated systems from group 3 are defined as systems for which the dimension
of the configuration space exceeds that of the control input space. Dynamic models of
underactuated systems are classified as second-order nonholonomic system models (see
(2.3a) in Table 2.1). This is due to equations that represent unactuated degrees of free-
dom, which are second-order nonholonomic and nonintegrable in general [9].

The underactuated systems may be wheeled mobile robots, underactuated vehicles and
manipulators with unactuated joints or space robots without jets or momentum wheels
[8]. Sometimes specific properties of these systems are utilized to facilitate control design,
for example, equipping unactuated joints with breaking mechanisms or including gravity
terms make linearization of system models about equilibrium controllable (see (2.3b) in
Table 2.1).

The constraints form group 4 are programmed and they are specified by (4). We as-
sume that they are ideal constraints. Equations (4) may specify both material and non-
material constraints on a system and for this reason they are referred to as a unified con-
straint formulation. We state the following proposition.

Proposition 2.1. The unified constraint formulation B(t,q, q̇, . . . ,q(p−1))q(p) + s(t,q, q̇, . . . ,
q(p−1))= 0 may specify both material and non-material constraints on mechanical systems.

Proof. The proof is based upon the reasoning that the type of a constraint equation does
not influence the derivation of equations of motion of a system subjected to this con-
straint. The only concern is the constraint order and whether it is ideal. Indeed, when
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Table 2.1. Classification of nonholonomic constraints.

Kind of
constraints

Systems/constraint
equations

Number of degrees of
freedom (m), number
of control inputs (l)

LAS Tracking

(1) First-order,
material
nonholonomic.

Car-like vehicles, mobile
platforms with powered
wheels, multifingered hands,
nonholonomic manipulators,
dexterous manipulation.

B1(q, q̇)= 0 (2.1)

B1 is a (k×n) full rank
matrix, n > k.

m= n− k;
m= l

− +

Wheeled vehicles with idle
wheels, nonholonomic toys,
snake-like robots and
manipulators.
Constraints have the
form (2.1), n > k.

m= n− k;
m≥ l

− +

(2) First-order,
non-material
nonholonomic
(conservation law).

Space vehicles and robots,
sportsman, falling cat.

B2(q)q̇+ b2(q)= 0 (2.2)

B2 is a (k×n) full rank
matrix, n > k

m= n− k;
m≥ l

May
be

+

(3) Second-order, non-
material nonholonomic,
(underactuated).

Manipulators, space systems,
underwater vehicles.

M11(q)q̈1 +M12(q)q̈2 +C1(q, q̇)

= T1(q)τ,

M21(q)q̈1 +M22(q)q̈2

+C2(q, q̇)= 0,

(2.3a)

No gravity is present:
m= n,
m> l

− +

M11(q)q̈1 +M12(q)q̈2

+C1(q, q̇) +D1(q)

= T1(q)τ,

M21(q)q̈1 +M22(q)q̈2

+C2(q, q̇) +D2(q)= 0,

(2.3b)

Gravity is
present:
m= n,
m> l

+ +
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Table 2.1. Continued.

(4) High-order, non-
material nonholonomic
(programmed).

Task specifications for any
system:

B
(
t,q, q̇, . . . ,q(p−1)

)
q(p)

+ s
(
t,q, q̇, . . . ,q(p−1)

)= 0,
(2.4)

B is a (k×n) full rank matrix,
n≥ k, s is a (k× 1) vector.

m= n− k,
m≥ l

May
be

+

(5) Different types of
constraints put on
a system.

Underactuated vehicles with
idle wheels, manipulators and
other systems with material
and programmed constraints.
The unified constraint
(4), n≥ k.

m= n− k,
m≥ l

May
be

+

p = 0 we get a position constraint, which may be a material constraint that describes, for
example, a constant distance between link ends or be a programmed constraint that spec-
ifies a desired trajectory. When p = 1, a constraint equation is in the form (2.1) or (2.2).
It can be a material constraint, a specification of the conservation law, or a programmed
constraint that specifies a desired velocity. For all examples of constraints of order p = 1,
equations of motion are generated in the same way provided that constraints are ideal.
Material constraints are of orders p = 0 or p = 1 and can be presented by (2.1). Equa-
tions for the conservation law are of order p = 1 and are specified by (2.2). Constraint
equations for p > 1 are of the non-material type. Two or more constraint equations, each
of a different type, may be listed in (4). The constraint (4) can be used then to specify
constraint equations of any order and type. �

It should be emphasized that the constraint equations which have been investigated so
far in nonlinear control were mostly in the so-called Chaplygin form, they were mostly
driftless and differentially flat, and could be transformed into the power or chained forms
or to their extensions [2, 3, 33]. A trajectory tracking control design for such systems
can be considered a solved problem, at least theoretically [2, 11, 19]. Systems with both
material and programmed constraints may be, in general, non-Chaplygin and may not
be transformable into any special control form [34].

For the unified constraint formulation (4) we introduce a definition.

Definition 2.2. The equations of constraints (4) are completely nonholonomic if they
cannot be integrated with respect to time, that is, constraint equations of a lower-order
cannot be obtained.

If we can integrate (4) (p − 1) or less times, that is, we can obtain nonholonomic
constraints of first-orders or orders lower than p, we say that (4) are partially integrable.
If (4) can be integrated completely, we say that they are holonomic.
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We assume that (4) are completely nonholonomic. Then they do not restrict positions
q(t) and their time derivatives up to (p− 1)th-order. Our definition is an extension of a
definition of completely nonholonomic first-order constraints [2] and completely non-
holonomic second-order constraints [9]. Necessary and sufficient integrability conditions
for differential constraints of arbitrary order such as (4) are formulated in [35].

The constraint equations (4) may be of different orders. From the point of view of
a control strategy design they may be differentiated. For the numerical simulation the
differentiated constraint equations have to be stabilized; for more details see [17].

Finally, the constraints belong to group 5 when they are of different types and also
arise form underactuation in a system.

3. Kinematic control models of constrained systems

Kinematic control models of systems with the material constraints (2.1) have a form of
driftless state equations [1, 2]

ẋ =
n−k∑

i=1

gi(x)ui, (3.1)

where gi, i= 1, . . .n− k, are control vector fields smooth onM. The vector x ∈M, andM is
a smooth n-dimensional manifold referred to as the state space, u(t) is a time-dependent
map from the nonnegative reals R+ to a constraint set Σ⊂Rn−k, which contains an open
neighborhood of the origin in Rn−k. For systems from group 1 stabilizability conditions
and trajectory tracking algorithms at kinematic and dynamic control levels are well es-
tablished [1–3, 11, 18]. Nonholonomic systems with the constraints (2.1) are not LAS
[13–15]. A trajectory tracking formulated as an asymptotic stabilization of a tracking
error is LAS for them [14]. The same holds for motion tracking [6]. For some vehicles
with idle wheels subjected to the constraints (2.1) no kinematic control models can be
developed [26, 27].

Kinematic control models of systems with the constraints (2.2) and (4) may have the
form

ẋ = f (x) +
n−k∑

i=1

gi(x)ui, (3.2)

where f is the drift vector field smooth on M.
For these systems a trajectory tracking and motion tracking control formulated as an

asymptotic stabilization of a tracking error is LAS. In Section 5 we show that we can select
a control objective that may make (3.2) stabilizable at some equilibrium by a continuous
static-state feedback.

For the unified constraints (4) we formulate the following theorem.

Theorem 3.1. The unified constraint formulation (4) can be presented in the state space
control form (3.2).

Proof. Let us take a new p-vector x = (x1, . . . ,xp) such that x1 = q, ẋ1 = x2, . . . , ẋp−1 = xp.
If time t is present explicitly in (4), we reorder coordinates, assigning x0 = t. With the new
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vector x (4) can be written as (p− 1 + k) first-order equations

ẋ1 = x2,

ẋ2 = x3,

: :

: :

ẋp−1 = xp,

B
(
x1, . . . ,xp

)
ẋp =−s

(
x1, . . . ,xp

)

(3.3a)

or in a matrix form

C(x)ẋ = b(x), (3.3b)

where C is a (p− 1 + k)× p matrix and b is a (p− 1 + k)-dimensional vector. Let f (x)
be a particular solution of (3.3b) so that C(x) f (x)= b(x). Let g(x) be a full-rank matrix,
whose column space is in the null space of C(x), that is, C(x)g(x)= 0. Then, the solution
of (3.3b) is given by ẋ = f (x) + g(x)u(t) for any smooth vector u(t). �

In the control models (3.1) or (3.2) the number of equations is less than the number
of degrees of freedom of a system, to which they are related, that is, n > k. When con-
straints are programmed, we say that the program is partly specified. When the number
of equations (4) and (2.1) or (2.2) is equal to the number of degrees of freedom, that is,
n = k, a system motion is fully specified provided that the constraints are not mutually
exclusive [7, 36]. In this paper, we consider partly specified programs.

4. Dynamic control models of constrained systems

Motions specified by equations of programmed constraints have to be controlled at a dy-
namic level. There are important reasons to formulate a motion tracking control problem
at the dynamic level. The first reason, significant from the perspective of this paper, is that
we consider constraints of high-order, which specify dynamic properties of systems. Sec-
ondly, this is the level at which control takes place in practice. Designing controllers at
the dynamic level usually leads to significant improvements in performance and imple-
mentability, and can help in the early identification and resolution of difficulties. Finally,
unmodeled dynamics, friction, and disturbances can be taken into account at that level.
Also, for massive wheeled robots that operate at high speeds, dynamics-based control
strategies are necessary to obtain realistic control results [19]. It is interesting to con-
sider tracking for holonomically constrained systems in this regard; the kinematic con-
trol problem is trivial, but the dynamic control problem is still quite challenging [37]. For
wheeled vehicles that perform the snake-like motion, control at the dynamic level is only
possible. The reason is that we cannot determine their global motions by just the shape
variations, since they do not posses a sufficient number of nonholonomic constraint
equations for this [26, 27]. Dynamic control models of such systems consist of (2.3a)
and (2.1). For underactuated systems dynamic control models are (2.3a) or (2.3b). For
systems with the constraints (4) dynamic models can be derived by the GPME method
only.
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The GPME method can also be used to derive the dynamic models (2.3a) and (2.3b),
and dynamic models of systems with the constraints (2.1) or (2.2). To demonstrate this,
recall that dynamic control models used in control theory are mostly based on Lagrange’s
equations with multipliers [2, 7], that is,

M(q)q̈+C(q, q̇) +D(q)= J(q)Tλ+E(q)τ,

J(q)q̇ = 0,
(4.1)

where q is a n-vector of generalized coordinates, M(q) is a (n×n) positive definite sym-
metric inertia matrix, C(q, q̇)-vector of centripetal and Coriolis forces, D(q)-vector of
gravitational forces, E(q)-vector of an input transformation, J(q) is a full-rank (k× n)
matrix of the constraint equations, 2≤ n− k < n, λ is a k-vector of Lagrange multipliers,
E(q)τ is a vector of generalized forces applied to a system, and τ is an r-vector of control
inputs. For control applications, the dynamic control model (4.1) has to be transformed
to the reduced-state form [2, 20, 32]. The reduced-state equations characterize the con-
trol dependent motion on the constraint manifold. The reduction procedure consists in
the elimination of the constraint reaction forces. To this end let q = (q1,q2) be a partition
of the configuration variables corresponding to the partitioning of the matrix function
J(q) as J(q)= [J1(q), J2(q)], det J1(q) �= 0, and q1 ∈Rk, q2 ∈Rn−k. The second time deriv-
ative of a vector of dependent coordinates q1 extracted from the constraint equations and
inserted into the first of (4.1) yields equations of motion decoupled into two sets, from
which one is used to design a control strategy

M22(q)q̈2 +C22
(
q, q̇2

)
q̇2 +D2(q)= E2τ,

q̇1 =−J−1
1 (q)J2(q)q̇2,

(4.2a)

and the second when one wishes to retrieve the constraint reaction forces

M12(q)q̈2 +C12
(
q, q̇2

)
q̇2 +D1(q)= E1τ + JT1 λ. (4.2b)

The dynamic control model (4.2a) can be written in the extended kinematic control form
[2]

q̇ = g1(q)v1 + ···+ gn−k(q)vn−k, i= 1, . . . ,n− k, 2≤ n− k < n, (4.3a)

vrii = ui, (4.3b)

where ri, . . . ,rm denote an order of time differentiation and v is the output of a linear sys-
tem consisting of chains of integrators. Equations (4.3a), (4.3b) form a dynamic model,
since in applications from mechanics ri = 1, i= 1, . . . ,n− k, controls are typically gener-
alized forces and the model consists of the constraint (4.3a) and the equations of motion
(4.3b), which reduce to v̇ = u.

The dynamic control model (4.2a) is applicable to systems with the constraints (2.1)
and for trajectory tracking. A desired trajectory is specified by q2p = q2p(t), where “p”
stands for “program.” It is enough then to control q2(t) and q1(t) is also controlled, since
it satisfies the constraint equations. The resulting tracking is state tracking. Using the



10 Mathematical Problems in Engineering

same reduced-state dynamics (4.2a), the input-output decoupling procedure can be ap-
plied for output tracking [10]. In what follows we address state tracking strategies. For
systems with the constraints (4) a new tracking control strategy is designed, that is, the
model reference tracking control strategy for programmed motion. All details about this
strategy can be found in [5, 6, 17] and here we report it briefly. Its architecture consists of
three blocks. One is a control law block with feedback and the two are dynamic models.
The first one is a reference dynamic model for programmed motion. It is a constrained
dynamics that incorporates effects of all constraints on a system and has the form

M(q)q̈+V(q, q̇) +D(q)=Q(t,q, q̇),

B
(
t,q, q̇, . . . ,q(p−1))q(p) + s

(
t,q, q̇, . . . ,q(p−1))= 0.

(4.4)

The matrix M(q) is a (n− k×n) matrix, B(t,q, q̇, . . . ,q(p−1)) is a full-rank (k×n) matrix.
V(q, q̇),D(q), andQ(t,q, q̇) are all (n− k× 1) vectors and they stand, respectively, for cen-
tripetal, Coriolis and friction forces, for gravitational forces, and for other external forces
applied to a system. Equations (4.4) form a reference block that plans a programmed
motion.

The second dynamic model in the strategy is a dynamic control model, which incor-
porates effects of material constraints and conservation laws only, that is,

Mc(q)q̈+Vc(q, q̇)q̇+Dc(q)= Ec(q)τ,

B1(q)q̇ = 0.
(4.5)

Equations (4.5) consist of (n− k) equations of motion and k equations of the constraints.
They form a “plant” block in the strategy. Both models are derived by the GPME so they
are in the reduced-state form. Outputs qip(t), i= 1, . . . ,n, of (4.4) are inputs to the control
law τ in (4.5). We can demonstrate that (4.5) are equivalent to (4.2a).

Theorem 4.1. The dynamic control model (4.5) is equivalent to the reduced-state dynamic
control model (4.2a).

Proof. The reduction procedure that results in (4.2a) can be accomplished in several ways
[3, 20]. We start from Lagrange’s equations with multipliers (4.1), which we write as

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
= JT(q)λ+Q(q, q̇),

J(q)q̇ = 0,
(4.6)

where we assume that Q(q, q̇) stands for all external forces applied to a system.
To eliminate constraint forces from (4.6) we project these equations onto the linear

subspace generated by the null space of J(q). Since (JT(q)λ) · δq = 0, Lagrange’s equations
become

[
d

dt

(
∂T

∂q̇

)
− ∂T

∂q
−Q

]
· δq = 0, (4.7)

where δq ∈Rn and satisfies J(q)δq = 0. We partition the coordinate vector q and the J(q)
matrix such that q = (q1,q2)∈Rk ×Rn−k, and J = [J1(q)J2(q)], J1(q)∈Rk×k is invertible.
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Then the relation δq1 =−J−1
1 (q)J2(q)δq2 holds. Inserting it to (4.7) we obtain

J−1
1 J2

[
d

dt

(
∂T

∂q̇1

)
− ∂T

∂q1
−Q1

]
−
[
d

dt

(
∂T

∂q̇2

)
− ∂T

∂q2
−Q2

]
= 0. (4.8)

Equations (4.8) are second-order differential equations in terms of q. They can be simpli-
fied by reusing the constraint equation q̇1 = −J−1

1 (q)J2(q)q̇2 to eliminate q̇1 and q̈1. The
evolution of q1 can be retrieved by reapplication of the constraint equations. Equations
(4.8) are equivalent to Nielsen’s equations in Maggi’s form [7], that is,

J−1
1 J2

[
∂Ṫ

∂q̇1
− 2

∂T

∂q1
−Q1

]
− ∂Ṫ

∂q̇2
− 2

∂T

∂q2
−Q2 = 0 (4.9a)

which are the GPME for p = 1, that is, they are (4.5). It is enough to show that

d

dt

(
∂T

∂q̇σ

)
= ∂2T

∂q̇σ∂t
+

n∑

ρ=1

∂2T

∂q̇σ∂qρ
q̇ρ +

n∑

ρ=1

∂2T

∂q̇σ∂q̇ρ
q̈ρ, (4.10a)

Ṫ = ∂T

∂t
+

n∑

ρ=1

∂T

∂qρ
q̇ρ +

n∑

ρ=1

∂T

∂q̇ρ
q̈ρ. (4.10b)

Based on (4.10b) we have

∂Ṫ

∂q̇σ
= ∂2T

∂t∂q̇σ
+

n∑

ρ=1

∂2T

∂qρ∂q̇σ
q̇ρ +

n∑

ρ=1

∂2T

∂q̇ρ∂q̇σ
q̈ρ +

∂T

∂qσ
(4.11)

and comparing (4.10a) and (4.11) we obtain that

d

dt

(
∂T

∂q̇σ

)
= ∂Ṫ

∂q̇σ
− ∂T

∂qσ
. (4.12)

Relations (4.12) inserted into (4.8) for q1 and q2 yield that terms in brackets in (4.8)
are equal to (∂Ṫ/∂q̇σ − 2(∂T/∂qσ)), σ = 1,2, and (4.8) are equivalent to (4.9a), that is,
equivalent to the GPME for p = 1. �

Theorem 4.2. There exists a static-state feedback U(q̇1,q,u) : Rm ×Rn ×Rm → Rm such
that the dynamics (4.5) can be transformed to the state space control formulation (4.3a),
(4.3b).

Proof. First, transform (4.5) to the state space control formulation. To this end, present
the constraint equation as

q̈ =G(q)q̈1 + Ġ(q)q̇1, (4.13)

where partition of the vector q is q = (q1,q2) and q1 ∈Rn−k, q2 ∈Rk, m= n− k, and q1,
q2 are the vectors of independent and dependent coordinates, respectively. Columns of
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the matrix G(q) span the right null space of B1(q). It is the (n×m) matrix of the form

G=
⎡
⎣

I(m×m)

−B−1
12 (q)B11(q)

⎤
⎦ , (4.14)

where I is a (m×m) identity matrix, B−1
12 (q)B11(q) is a locally smooth (k ×m) ma-

trix function, and the matrix B1(q) is expressed as B1 = [B11(q),B12(q)], and B11(q) is
a k× (n− k) matrix function, and B12(q) is a (k× k) locally nonsingular matrix function.
Elimination of second-order derivatives of dependent coordinates from the first of (4.5)
yields

Mc(q)G(q)q̈1 +
[
Mc(q)Ġ(q) +Vc(q, q̇)G(q)

]
q̇1 +Dc(q)= Ec(q)τ,

q̇ =G(q)q̇1.
(4.15)

Equations (4.15) are exactly the reduced-state dynamic model of a nonholonomic system
[4, 20].

Now, introduce in (4.15) a new state variable vector x = (q, q̇1) = (x1,x2) such that
ẋ1 = q̇ = (q̇1, q̇2), ẋ2 = q̈1 and x1 ∈Rn, x2 ∈Rm. Then, (4.15) takes the form

Mc
(
x1
)
G
(
x1
)
ẋ2 +

[
Mc
(
x1
)
Ġ
(
x1
)

+Vc
(
x1, ẋ1

)
G
(
x1
)]
x2 +Dc

(
x1
)= Ec

(
x1
)
τ,

ẋ1 =G
(
x1
)
x2.

(4.16)

Now, select for the dynamics (4.16) a static-state feedback U(x2,x1,u) :Rm×Rn×Rm→
Rm defined by the relation Mc(x1)G(x1)u+ [Mc(x1)Ġ(x1) +Vc(x1, ẋ1)G(x1)]x2 +Dc(x1)=
Ec(x1)τ. Application of this static-state feedback to (4.16) transforms it to the form

ẋ1 =G
(
x1
)
x2,

ẋ2 = u,
(4.17)

which is a desired state space control formulation with f (x) = (G(x1),0) and g(x) =
(0,ei), and ei is the standard basis vector in Rn−k. �

The first of (4.17) is the constraint equation. The second is the motion equation, which
transforms immediately to the linear controllable dynamics [11]

d

dt

[
q1

q̇1

]
=
[

0 Im
0 0

][
q1

q̇1

]
+

[
0
Im

]
u. (4.18)

Equations (4.17) can be transformed to the normal form equivalent to the one obtained
for instance in [2]. Taking new state variables z1 = q1, z2 = q2, z3 = q̇1, which are related
to x1 and x2 such that ẋ1 = (ż1, ż2), ż3 = ẋ2, (4.17) can be written as

ż1 = z3,

ż2 =G∗
(
z1,z2

)
z3,

ż3 = u.

(4.19)
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This form is equivalent to the control form (3.2) where f (z) = (z3,G∗(z1,z2)z3,0),gi =
(0,0,ei) and ei is the standard basis vector inRn−k. The matrix G∗ in (4.19) is a (k×n− k)
submatrix of the matrix G defined in (4.14).

We demonstrated that the dynamic control model derived with the aid of the GPME
can be presented in a standard state space representation (4.17) or (4.19). This allows
us to reformulate for our dynamics (4.5) all theoretical control results obtained for the
classical control models [1–3, 11, 12, 19, 20, 33].

A main motivation to design the model reference tracking control strategy for pro-
grammed motion is that a variety of equations of the non-material constraints (4) dis-
ables designing a general algorithm for a tracking controller. Instead, we separate pro-
grammed constraints from material and conservation laws. All constraint equations on a
system, that is, (2.1), (2.2), and (4) are merged into the reference dynamic model (4.4).
Material constraints and conservation laws are merged into the dynamic control model
(4.5). This separation yields that (4.5) can be derived once for a given system and differ-
ent reference dynamic models (4.4) that specify different programmed motions can be
plugged into (4.5) each time. Also, this separation makes motion tracking analog to tra-
jectory tracking and enables application of controllers originally dedicated to holonomic
systems. This latter property of the tracking strategy significantly increases its scope of
applications.

5. Stabilizability conditions for constrained systems

The control model (3.1) is not LAS due to Brockett’s condition [2, 13, 14]. For the con-
trol model (3.2) we may formulate a control objective, for which we may design a con-
tinuous static-state feedback that makes (3.2) LAS. To show this, consider a model of a
free-floating space robot presented in Figure 5.1. The angular momentum conservation
yields the constraint equation

[
J+
(
m1 +m2

)
l21 +m2l

2
2

]
φ̇+
[(
m1 +m2

)
l21 +m2l

2
2

]
θ̇1 +m2l

2
2 θ̇2 +m2l1l2 cosθ2

(
2φ̇+2θ̇1+θ̇2)=K0

(5.1)

which can be written as

B1ϕϕ̇+B1θ1θ̇1 +B1θ2θ̇2 = K0, (5.2)

where Ko is the initial angular momentum that may or may not be zero and

B1ϕ = J +
(
m1 +m2

)
l21 +m2l

2
2 + 2m2l1l2 cosθ2,

B1θ1 =
(
m1 +m2

)
l21 +m2l

2
2 + 2m2l1l2 cosθ2,

B1θ2 =m2l
2
2 +m2l1l2 cosθ2.

(5.3)

In (5.1) J is the inertia of the base body, and m1, m2-masses of links concentrated at
their ends. We assume that no external forces act on the space robot model. Let us select
ϕ̇ = u1, θ̇2 = u2 as controls and introduce a state vector x ∈ R3 such that x1 = ϕ− ϕp,
x2 = θ1− θ1p, x3 = θ2− θ2p. It quantifies the error between current values (ϕ,θ1,θ2) and
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Figure 5.1. Free-floating space robot.

desired values (ϕp,θ1p,θ2p) of the coordinates. Then the control model (3.2) for the space
robot becomes

dx

dt
=

⎡
⎢⎢⎣

0
Ko(x)

0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1 0
−K1(x) −K2(x)

0 1

⎤
⎥⎥⎦

[
u1

u2

]
(5.4)

with Ko(x)= (Ko(x))/(B1θ1(x)), K1(x)= (B1ϕ(x))/(B1θ1(x)), K2(x)= (B1θ2(x))/(B1θ1(x)).
When Ko is zero it seems natural to formulate a control objective as to asymptotically
stabilize the equilibrium x = 0. Then the system (5.4) is driftless and the number of states
n= 3 and n− k = 2. The equilibrium is not LAS. When Ko is not zero, the drift term never
vanishes and x = 0 is not an equilibrium. It implies that asymptotic stabilization of x = 0
is not an appropriate control objective.

Instead, we can formulate a control problem as follows: make a system achieve x(tp)=
0 for a given initial time t = 0 and some final time t = tp. For this formulation of the
control goal, we can apply the following time-varying transformation. Select ξ ∈R3, ξ =
(ξ1,ξ2,ξ3) such that

ξ1 = x1,

ξ2 = x2 +K1(0)x1 +K2(0)x3−Ko(0)
(
t− tp

)
,

ξ3 = x3.

(5.5)

In the new coordinates the control model (5.4) has the form

dξ

dt
=

⎡
⎢⎢⎣

0
Ko(ξ)−Ko(0)

0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1 0
−[K1(ξ)−K1(0)

] −[K2(ξ)−K2(0)
]

0 1

⎤
⎥⎥⎦

[
u1

u2

]
(5.6)

and the system has equilibrium at ξ = 0. It can be verified that the dimension of the
equilibrium set is 2 and n− k = 2. Then the system is stabilizable by continuous static-
state feedbacks.
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We conclude that the control problem formulation is significant as well as the structure
of the system and constraints on it.

6. Motion tracking conditions for constrained systems

Tracking a desired motion becomes a control objective in a case of the programmed con-
straints put on a system. Trajectory tracking can be formulated as asymptotic stabilization
of a tracking error and the tracking error dynamics are LAS [13, 14]. Consider an example
of a system subjected to the high-order constraint (4). Take a two-link planar manipula-
tor model presented in Figure 6.1 [16, 36]. We put a constraint on the manipulator end
effector, which specifies the rate of change of the curvature Φ(t) of its trajectory. In the
joint coordinates the constraint has the form

F2
...
Θ1 +

...
Θ2−F1 = 0, (6.1)

where

F1 =
Aφ−A1−A2ao

a2 + a4ao
, F2 = a1 + a2 + ao

(
a3 + a4

)

a2 + a4ao
, ao = a5

a6
,

Aφ = −Φ
(
a2

5 + a2
6

)2[
Φ̇
(
a2

5 + a2
6

)
+ 3Φ

(
a5a7 + a6a8

)]

a6
(
a5a8− a7a6

) ,

A1 = 3a3Θ̇1Θ̈1 + 3a4
(
Θ̈1 + Θ̈2

)(
Θ̇1 + Θ̇2

)− a1Θ̇
3
1− a2

(
Θ̇1 + Θ̇2

)3
,

A2 = 3a3Θ̇1Θ̈1 + 3a2
(
Θ̈1 + Θ̈2

)(
Θ̇1 + Θ̇2

)
+ a3Θ̇

3
1 + a4

(
Θ̇1 + Θ̇2

)3
,

a1 =−l1 sinΘ1, a3 =−l1 cosΘ1,

a2 =−l2 sin
(
Θ1 +Θ2

)
, a4 =−l2 cos

(
Θ1 +Θ2

)
,

a5 = a1Θ̇1 + a2
(
Θ̇1 + Θ̇2

)
, a7 = a1Θ̇1 + a3Θ̇

2
1 + a2

(
Θ̈1 + Θ̈2

)
+ a4

(
Θ̇1 + Θ̇2

)2
,

a6 =−a3Θ̇1− a4
(
Θ̇1 + Θ̇2

)
, a8 =−a3Θ̈1 + a1Θ̇

2
1− a4

(
Θ̈1 + Θ̈2

)
+ a2

(
Θ̇1 + Θ̇2

)2
.

(6.2)

For this constraint n = 2, n− k = 1. The kinematic control model (3.2) generated for
(6.1) has a drift that does not vanish. One option is to look for one control input that
can steer a system to the desired motion consistent with (6.1). The other is to apply the
model reference tracking control for programmed motion based on (4.4) and (4.5). The
reference dynamic model of the manipulator subjected to the third-order constraint (6.1)
and developed by the GPME is

(
b1− b2F2

)
Θ̈1 +

(
b2− δF2

)
Θ̈2 + c = 0,

...
Θ2 = F1−F2

...
Θ1,

(6.3)

where α = Iz1 + Iz2 + m1r
2
1 + m2(l21 + r2

2 ), β = m2l1r2, δ = Iz2 + m2r
2
2 , b1 = α + 2βcosΘ2,

b2 = δ +βcosΘ2, and c =−βΘ̇2(Θ̇2 + 2Θ̇1)sinΘ2− 4/3βΘ̇2
1F2 sinΘ2.
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Figure 6.1. Two-link planar manipulator.

The parameters above consist of inertia and geometric data for the manipulator model.
The dynamic control model of the manipulator is as follows:

⎡
⎢⎣
α+ 2βcosΘ2 δ +βcosΘ2

δ +βcosΘ2 δ

⎤
⎥⎦

⎡
⎢⎣
Θ̈1

Θ̈2

⎤
⎥⎦

+

⎡
⎢⎣
−Θ̇2β sinΘ2 −β sinΘ2

(
Θ̇1 + Θ̇2

)

Θ̇1β sinΘ2 0

⎤
⎥⎦

⎡
⎢⎣
Θ̇1

Θ̇2

⎤
⎥⎦=

⎡
⎢⎣
τ1

τ2

⎤
⎥⎦ ,

(6.4)

since the manipulator with no programmed constraints is holonomic.
The reference dynamics (6.3) produces programmed outputs Θ1p, Θ2p, and their

derivatives, which are inputs to the control dynamics (6.4). Two control inputs τ = (τ1,τ2)
are torques, which have to be applied at manipulator joints to track the desired motion
specified by (6.1). Furthermore, they can be static-state feedbacks designed in the same
way as for any holonomic system, specifically for any manipulator [37, Chapter 3.4]. In-
deed, when to select computed torque controllers τ1, τ2, and the PD controller for the
outer loop, the tracking error is asymptotically stable as long as the PD controller gains
are all positive. Specifically, we have

τ =Mc(Θ)u+Vc(Θ,Θ̇)Θ̇, (6.5)

whereΘ= (Θ1,Θ2),Mc(Θ),Vc(Θ,Θ̇) are matrices that furnish (6.4), and u is a new input.
The PD controller can be defined as u= Θ̈p− 2σė− σ2e and a vector of a tracking error as
e(t) =Θ(t)−Θp(t). The tracking error satisfies the equation ë+ 2σė+ σ2e = 0 in which
σ is a convergence rate diagonal matrix. It converges to zero exponentially, that is, the
end-effector motion converges to the programmed motion.

In a general case of a dynamic control model of a nonholonomic system, according to
Theorem 4.2, the computed torque applied to (4.5) results in (4.17) that can be written
as

q̈1 = u,

q̈2 =−B−1
12 (q)B11(q)q̈1− d

dt

[
B−1

12 (q)B11(q)
]
q̇1.

(6.6)
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Figure 6.2. Programmed motion tracking by the PD controller.

A vector of a new input is u and it can be selected as

u= q̈1p− 2σ ˙̃q− σ2q̃, (6.7)

where q̃ = q1 − q1p is a position tracking error. The tracking error satisfies the equation
¨̃q+ 2σ ˙̃q+ σ2q̃ = 0 and converges to zero exponentially. This simple sample of a controller
design illustrates the philosophy of the application of the reference dynamic model in the
model reference tracking control strategy for programmed motion.

Simulation results for tracking the programmed motion specified by (6.1) by the PD
controller and tracking errors are presented in Figures 6.2 and 6.3. Position and velocity
errors are denoted by e1 = Θ1 −Θ1p, e2 = Θ2 −Θ2p, and e3 and e4 for the angle time
derivatives, respectively.

This tracking strategy can be employed in the same way with the application of other
static-state feedback controllers [17].

7. Conclusions

In this paper, we have presented the new constraint classification with respect to kinds of
constraints put on mechanical systems. This classification reflects the extended constraint
concept that includes non-material nonholonomic constraints of high-order. The general
form of equations of constraints referred to as the unified constraint formulation follows
this classification. For systems subjected to the unified high-order constraints kinematic
and dynamic control models have been developed and examined from the point of view
of stabilizability and motion tracking conditions. We have demonstrated that constrained
systems are not “hard to control” when appropriate control objectives are formulated
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Figure 6.3. Position and velocity tracking errors versus time.

and control strategies are applied. In this paper, we applied the model reference tracking
control strategy for programmed motion to track motions specified by the constraint
equations.
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