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Abstract

In the last years, the importance of an independent validation for
the prediction ability of a new gene signature has been largely rec-
ognized. Recently, with the development of gene signatures which
integrate rather than substitute the clinical predictors in the predic-
tion rule, the focus has been moved to the validation of the added
predictive value of a gene signature, i.e. to the verification that the
inclusion of the new gene signature in a prediction model is able to im-
prove its prediction ability. The high-dimensional nature of the data
from which a new signature is derived raises challenging issues and
necessitates to modify classical methods to adapt them to this frame-
work. Here we show how to validate the added predictive value of
a signature derived from high-dimensional data and critically discuss
the impact of the choice of the different methods on the results. The
analysis of the added predictive value of two gene signatures developed
in two recent studies on the survival of leukemia patients allows us to
illustrate and empirically compare different validation techniques in
the high-dimensional framework.
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Background

In the last 15 years numerous signatures derived from high-dimensional omics
data such as gene expression data have been suggested in the literature. A
bitter disillusion followed the enthusiasm of the first years, as researchers
realized that the predictive ability of most signatures failed to get validated
when evaluated based on independent datasets. This issue is now widely
recognized and validation is considered as most important in omics-based
prediction research by both quantitative scientists such as statisticians or
bioinformaticians and medical doctors [36, 12, 19, 26, 29, 13].

A validation dataset can be generated by randomly splitting the avail-
able dataset into a training set and a validation set. This type of validation
does not yield information on the potential performance of the signature on
patients recruited in different places or at different times. The training and
validation patients are drawn from the same population and thus expected
to be similar with respect to all features relevant to the outcome. In this
case, validation can be seen as an approach to correct for all optimization
procedures taking place while deriving the signature based on the training
data [16, 10]. External and temporal validations, in contrast, consider pa-
tients from a different place or recruited at a later time-point, respectively.
They give information on the potential performance of the signature when
applied to patients in clinical settings in the future.

George [19] states that “the purpose of validation is not to see if the model
under study is “correct” but to verify that it is useful, that it can be used as
advertised, and that it is fit for purpose”. To verify that the model is useful,
validation of the predictive ability of the omics model is not sufficient as the
clinical interest centers around the added value compared to previous existing
models [31]. To verify that the new model is useful, one also needs to validate
the added predictive value. This concept is not trivial from a methodological
point of view and one may think of many different procedures in this context.
While the problem of added predictive value has long been addressed in the
literature on low-dimensional models, literature on added predictive value
of signatures derived from high-dimensional data is scarce [6], although the
high dimension of the predictor space adds substantial difficulties that have
to be addressed by adapting classical methods.

In this paper we focus on this latter case, aiming to provide a better
understanding on the process of validation of the added predictive value of a
signature derived from high-dimensional data. We tackle this issue from an
empirical perspective based on exemplary studies related to the prediction
of survival in leukemia patients based on high-dimensional gene expression
data. Our goal is three-fold: (i) demonstrating the use of different methods
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related to the validation of added predictive value through application to two
recent leukemia studies relating gene expression data to survival data, (ii)
showing the impact of the choice of the method on the results, (iii) suggesting
an analysis approach based on our own experience and previous literature.

In order to better enlighten the methodological issues and the actual
use of the validation methods, we take advantage of two leukemia datasets
which are paradigm cases in biomedical practice. In particular, their rela-
tively small effective sample size (number of events) is typical of this kind
of studies. It is worth noting, anyway, that a statistical comparison whose
results could be generalizable needs a large number of studies [7] or convinc-
ing evidence from simulations, and therefore two examples would have been
meant as illustrative even if they would have had a larger effective sample
size. Furthermore, these studies allow us to pursue our goal in two differ-
ent situations: one, ideal from a statistical point of view, in which the omics
data are computed in the same way both in the training and in the validation
sets, and one in which they are computed with different techniques, making
training and validation observations not directly comparable. In particular,
in the first dataset we start from the work already done by Metzeler and
colleagues [28], illustrating alternative approaches to study the added pre-
dictive value of their score, besides the therein performed validation strategy
based on the p-value of a significance test within the Cox model. The second
dataset, instead, allows us to have a better insight on the approaches avail-
able in a situation in which a measurement error – in a broad sense including
the use of different technique to measure the gene expressions – makes the
validation process more complicated. This is not uncommon in biomedical
practice, especially since specific technologies, such as TaqMan Low Density
Array, enable rapid validation of the differential expressions of a subset of
relevant genes detected with a more labor-intensive technique [1]. Therefore,
it is worth considering this situation from a methodological point of view.
It is worth noting that the validation of the added predictive value concerns
only the gene signature computed with data collected following the technique
used in the validation set, not its version based on the training data. Any
analysis, in this case, must be performed using only the information present
in the validation set. In particular, a possible bad performance of the sig-
nature, in this case, would not mean an overall absence of added predictive
value, but its lack of usefulness when constructed with data obtained with
the latter technique.

We first present the considered leukemia datasets in the Data section in
order to subsequently use them to illustrate the methods presented in the
Methods section. These methods are empirically compared in the Results
section. In order to improve transparency and facilitate the readability of
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our study, we summarize the description of the data used and the analyses
performed in Tables 1 and 2, adapting the REMARK profile [3].

Data

Acute myeloid leukemia

Tables

The first dataset refers to a study conducted by Metzeler and colleagues
[28] on patients with cytogenetically normal acute myeloid leukemia (AML).
As one of the main results of the study, the authors suggest a signature
based on the expression of 86 probe sets to predict the event-free and overall
survival time of the patients. In this paper we focus on the latter, which is
defined as the time interval between the entrance in the study and death.
The signature has been derived using the “supervised principal component”
[4] technique, which in this study leads to a signature involving 86 probe
sets. The supervised principal component technique consists in applying a
principal component analysis to the set of the predictors mostly correlated
with the outcome; in this specific case, the authors used the univariate Cox
scores as a measure of correlation, and they selected those predictors with
absolute Cox score greater than a specific threshold derived by a 10-fold
cross-validation procedure.

The 86 probe sets signature has been derived using the omics information
contained in a training set of 163 patients, with 105 events (patients deceased)
and 58 right censored observations. The validation set includes 79 patients,
with 33 events and as many as 46 right censored observations. Gene expres-
sion profiling was performed using Affymetrix HG-U133 A&B microarrays
in the training set and Affymetrix HG-U133 plus 2.0 microarrays in the val-
idation set. Both sets are available in Gene Expression Omnibus (reference:
GSE12417). See Table 1 for further details.

For both the training and validation sets, we have information also about
some clinical predictors, namely age, sex, FLT3-ITD (internal tandem du-
plication of the fms-like tyrosine kinase 3) and NPM1 (mutation in nucle-
ophosmin 1). Here age is a continuous variable ranging from 17 to 83 years
in the training set and from 18 to 85 in the validation set. The other three
predictors are dichotomous (male/female, FLT3-ITD/NON-FLT3-ITD and
NMP1 mutated/wild type, respectively). For more information, we refer
to the original paper [28]. To give a first impression of the data, Figure 1
shows a first univariate graphical analysis for the clinical predictors based
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Figure 1: Acute myeloid leukemia: Kaplan-Meier estimation of the survival
curves in subgroups based on age (first row), sex (second row), FLT3-IDT
(third row) and NPM1 (fourth row), computed in the training (first column)
and in the validation (second column) sets.

on the Kaplan-Maier curves, where the threshold used to dichotomize the
predictor age (60 years) is established in the medical literature [17]. It can
be immediately seen that there is a large difference in the follow-up times:
in the training set, it ranges from 0 to 2399 days (median 1251, computed
by inverse Kaplan-Meier estimate); in the validation set, from 1 to 837 days
(median 415). One one hand, the events in the training set mainly occur in
the first 800 days, and therefore the not overlapping time is not highly infor-
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mative; on the other hand, in the validation set there are no events after 1.5
years (547.5 days), which suggests the existence of a not negligible difference
between the two sets. From the analysis of the Kaplan-Meier curves, we can
also see that the effect of the predictor FLT3-ITD seems to vary with the
time (this issue is more visible in the validation set, where FLT3-ITD seems
to have no effect in the first 250 days, while it is relevant only for the first
150 days in the training set). All the other predictors, however, seem to have
a regular behavior, and in the multivariable Cox model including all clinical
predictors, the proportional hazards assumption is acceptable. Finally, the
two sets slightly differ in terms of survival rate. As it can be seen in Figure
2, the patients in the validation set have a lower mortality than those in the
training set (for graphical clearness, here the Kaplan-Meier curve related to
the training set is cut at 1250 days, after the last event).

Chronic lymphocytic leukemia

The second dataset refers to a study conducted by Herold and colleagues
[25] on patients with chronic lymphocytic leukemia (CLL). The main goal
of this study is also to provide a signature based on gene expression which
can help to predict time-to-event outcomes, namely the time to treatment
and the overall survival time. We again focus on the overall survival as the
authors did. The signature developed in this study is based on the expres-
sion of eight genes and was obtained using the “supervised principal com-
ponent” technique, similarly to the previous study. In this study, however,
the selection of the relevant gene expression predictors is more complex. The
univariate Cox regressions measuring the strength of the association between
survival time and each of the candidate predictors are not simply conducted
based on the whole dataset like in the previous study, but instead repeated
in 5000 randomly drawn bootstrap samples. In each of these samples, the
association between each predictor and the outcome was computed, and the
predictors with a significant association selected. The 17 genes most fre-
quently selected across the 5000 bootstrap replications were considered in
a further step, necessary to discard high-correlated genes. The expressions
of the 8 genes surviving this further selection were finally used to construct
the prognostic signature. The use of a procedure based on bootstrap sam-
pling is motivated by the necessity of increasing the stability and potentially
reducing the influence of outliers [35].

Also in this case we have a training set that was used to derive the
signature, and an independent validation set that was used to evaluate its
accuracy. The former contains clinical and omics information on 151 patients,
with 41 events and 110 right censored observations. Among the 149 patients
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Figure 2: Acute myeloid leukemia: comparison between the Kaplan-Meier
estimation of the survival curves computed in the training (red line) and in
the validation (green line) sets.

from the validation set, 18 were disregarded due to missing values resulting in
a sample size of 131, with 40 events and 91 censored observations. The gene
expression data are available in Gene Expression Omnibus with reference
number GSE22762. The details about the data are collected in Table 2.

The peculiarity of this study is that the gene expressions are collected
using different techniques in the training and validation sets. While for the
training set gene expressions were measured using Affymetrix HG-U133 (44
Affymetrix HG-U133 A&B, 107 Affymetrix HG-U133 plus 2.0), for the val-
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idation patients a low-throughput technique (TaqMan Low Density Array,
LDA) was used to measure only those genes involved in the signature. The
validation procedures, therefore, are related to the validation data and cannot
take into consideration the training set.

The considered clinical predictors were age (considered as continuous as
in the previous study), sex, fluorescent in situ hybridization (FISH ) and
immunoglobulin variable region (IGVH ) mutation status. FISH and IGVH
are two widely used predictors in CLL studies [22]. The former is an index
based on a hierarchical model proposed by Döhner and colleagues [17] that
includes the possible deletion or duplication of some chromosomal regions
(17p13, 11q22-23, 13q14, 12q13), and has 5 modalities (0 = deletion of 13q14
only, 1 = deletion of 11q22-23 but no deletion of 17p13, 2 = deletion of
17p13, 3 = trisomy 12q13 but no deletion of 17p13 or 11q22-23, 4 = no
previously mentioned chromosomal aberration), while the latter indicates
whether IGVH is mutated or not.

Also in this case we present a preliminary overview of the univariate
effect of the clinical predictors via the Kaplan-Meier curves. The results are
reported in Figure 3. We can see that both FISH and IGVH are able to well
separate patients with high risk and patients with low risk. In particular, the
difference between patients with FISH = 2 (patients with “deletion 17p13”)
and the others is obvious. This group is characterized by a small sample size
and very high risk of death. In this case there is a smaller difference in terms
of follow-up time between the training and the validation sets: in the former,
it ranges from 11 to 2694 days (median computed via reverse Kaplan-Meier
curve equal to 1499); in the latter, from 77 to 1808 days (median 1516).
Also in this case, there is a small difference between the two sets in terms of
survival rate. In Figure 4, we can see that the Kaplan-Meier curve computed
in the validation set is below the one computed in the training set.

Methods

Scores

The term “signature” usually refers to a score synthesizing several omics
markers that is supposed to be related to the patient’s disease status or out-
come. In this paper, we prefer the term “omics score” that better emphasizes
how the score is constructed and clearly outlines its quantitative character.
An omics score is typically derived by applying an algorithm to a training
set. It can either involve all the features present in the dataset or a subset
of them. For example, in the CLL study (see Data section for more details),
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Figure 3: Chronic lymphocytic leukemia: Kaplan-Meier estimation of the
survival curves in subgroups based on age (first row), sex (second row), FISH
(third row) and IGVH (fourth row), computed in the training (first column)
and in the validation (second column) sets.

the authors selected (a subset of) eight genes and defined their omics score
as the first principal component:

OS = 0.16 · SFTPB− 0.151 ·MGAT4A− 0.096 · TCF7 + 0.089 ·MGC29506

−0.11 · PLEKHA1− 0.108 · PDE8A + 0.081 ·MSI2− 0.208 · NRIP1,

where the abbreviation OS stands for omics score and the other abbreviations
on the right hand are the names of the involved genes. This score is obviously
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Figure 4: Chronic lymphocytic leukemia: comparison between the Kaplan-
Meier estimation of the survival curves computed in the training (red line)
and in the validation (green line) sets.

linear, but in general scores may also show a more complex structure. In some
cases they do not even have a simple closed form, for example when they are
derived using machine learning tools like random forests.

Strategies

No matter with which algorithm the omics score was derived based on the
training data, its usefulness as a predictor for prognosis purposes has to
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be evaluated using a set of patients that have not been considered until
now: the validation data. We now focus on this part of the analysis, with
special emphasis on the question of the added predictive value given other
well-established clinical predictors. The underlying idea is that the new
omics score is relevant for clinical practice only if it allows to improve the
prediction accuracy [33] that one would obtain based on existing predictors.
An exception where the omics score may be useful even if it does not improve
prediction accuracy is when it is, say, cheaper or faster to measure. We
assume that this is not the case in most applications and that the question
of the added predictive value is an important issue.

Here we consider the following situation: we have at our disposition the
clinical data (predictors Z1, . . . , Zq) and the omics data (predictorsX1, . . . , Xp)
for both the training and the validation sets. Furthermore, we know how the
omics score can be calculated for the omics data. In the case of linear scores
like those suggested in the two considered leukemia studies, it means that
we know the coefficients and the name of each involved gene, either from a
table included in a paper or from a software object. In the rest of this paper,
we denote the function used to calculate the omics score based on the omics
predictors X1, . . . , Xp as f̂T (X1, . . . , Xp), where the hat and the exponent T
indicate that this function was estimated based on the training set.

A. Evaluating clinical model and combined model on validation
data. The more direct approach to the validation of the added predictive
value of an omics score consists to (i) fit two models to the training data:
one involving clinical predictors only and one combining clinical predictors
and the omics score of interest, and (ii) evaluate their prediction accuracy
on the validation set. The added predictive value can then be considered
as validated if the prediction accuracy of the combined score (i.e., the score
involving both the clinical predictors and the omics score) is superior to the
prediction accuracy of the clinical score (i.e., the one based only on clinical
predictors). This general approach has to be further specified with respect
to

1. the procedure used to derive a combined prediction score;

2. the evaluation scheme used to compare the prediction accuracy of the
clinical and combined prediction scores, respectively, on the validation
set.

Regarding issue 1), a natural approach consists to simply fit a multivariate
Cox model with the clinical predictors and the omics score as predictors
to the training data. The resulting linear score can then be regarded as a
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combined score, since involving both clinical predictors and the omics score.
More precisely, the model

λ(t|Z1, . . . , Zq,OS) = λ0(t) · exp(

q∑

j=1

βj · Zj + β∗ ·OS), (1)

is fit by maximization of the partial likelihood of the training set, yielding
the estimates β̂Tj (for j = 1, . . . , p) and β̂T∗ , respectively, where the exponent
T stands for the training dataset that is used for fitting. In model (1), the
omics score OS is given as OS= f̂T (X1, . . . , Xp). The clinical model

λ(t|Z1, . . . , Zq) = λ0(t) · exp(

q∑

j=1

βj · Zj), (2)

is computed in the same way, without taking into account the omics infor-
mation.

Regarding issue 2), we need to specify how we measure the prediction ac-
curacy of the prognostic rules based on the clinical and the combined predic-
tion scores, respectively. This involves a graphical or numerical investigation
of their discriminative ability and calibration, either separately, or simulta-
neously in order to have a more “general view” on the prediction ability of
the prognostic rule. We will focus later on this issue 2 in a dedicated section,
“Evaluation criteria”. In the meantime, we want to stress that, within this
strategy, the measure of the prediction accuracy is computed in the valida-
tion set. There is a major issue related to this approach: the omics score,
fitted to the training data usually tends to (strongly) overfit these data and
to consequently dominate the clinical predictors. This is because the training
set T is used twice: first for the estimation of f̂T and then for the estimation
of β̂T1 , . . . , β̂

T
q , β̂

T
∗ . This issue will be addressed through the application to

our two exemplary datasets.

B. Multivariate testing of the omics score in the validation data.
To address this overfitting issue, model (1) can also be fit on the validation
data, yielding the estimates β̂Vj (for j = 1, . . . , p) and β̂V∗ for the clinical
predictors Z1, . . . , Zq and the omics score OS, respectively. Here the exponent
V stresses the fact that the estimates are computed using the validation data.
By fitting the model on the validation data, we do not face the overfitting
issues mentioned above, because different sets are used to derive OS and to
fit the coefficients of model (1). In this approach the clinical predictors of
the training set are not used.
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A test can then be performed to test the null-hypothesis β∗ = 0, for
instance a score test, a Wald test or a likelihood ratio test. The p-value can
be used as a simple and familiar measure of association between the score
and the outcome. However, the p-value is more related to the explained
variability than to the prediction error, and a small p-value can be found also
if the omics score hardly adds anything to the predictive value [6]. Therefore,
the use of the p-values for the validation of the additional predictive value of
an omics score is not sensible. For example, the p-value gets smaller simply
increasing the sample size, also if the predictive ability of the model does not
change [6].

C. Comparison of the predictive accuracy of the models with and
without omics score through cross-validation in the validation data.
To focus on predictive ability, an option consists of evaluating the com-
bined model (1) and the model based on clinical data only (2) through
cross-validation (or a related procedure) on the validation set. The main
reason to perform this procedure is to avoid the overfitting issues related
to the aforementioned double use of the training data for variable selection
and parameter estimation. The cross-validation procedure mimics the ideal
situation in which three sets are available: one to construct the omics score,
one to estimate the parameters and one to test the model. This is performed
by splitting the validation set into k subsets: in each of the k iterations, the
outcome of the k-th fold (“test set”) is predicted using both the clinical and
the combined models fitted in the remaining k − 1 folds (“training set”) in
turn. Comparing these predictions with the actual values of the outcome
present in the k-th fold, we can compute a measure of prediction accuracy.
As already stated for the strategy A denoted as “Evaluating clinical model
and combined model on validation data”, the prediction accuracy of the
prognostic rules based on the clinical and the combined prediction scores can
be measured in terms of discriminative ability, calibration, or investigating
these two properties simultaneously. The details are explained in the dedi-
cated section. Since, in each cross-validation step, parameter estimation and
measurement of the prediction accuracy are performed in independent sets,
we do not face overfitting issues. The averages of the results (in terms of
prediction accuracy) obtained in the k iterations for the two models allow to
assess the added predictive value of the omics score.

D. Subgroup analysis. Subgroup analyses may be helpful in the context
of added predictive value for different reasons. Firstly, biological reasoning
may be available. If there are few existing predictors, examining the perfor-
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mance of the omics score in all possible subgroups defined by the existing
predictors is a direct approach to determine its added predictive value, i.e.
whether it can discriminate patients that are not discriminated by existing
predictors (since they have the same values for all predictors). Secondly,
even if there are too many combinations of existing predictors to apply this
direct approach, applying the methods described in the above sections to
subgroups may yield interesting results, for instance that the omics score has
more added predictive value in a particular subgroup. The most important
drawbacks of such subgroup analyses are related to sample size (each sub-
group being smaller than the whole dataset) and multiple testing issues (if
several subgroups are investigated in turn). Care is required to assess the
value of subgroup analyses.

Evaluation criteria

In the description of the different strategies, we have seen that a relevant as-
pect to validate the added predictive value of an omics score is how to measure
the prediction accuracy of a prognostic rule. As we stated above, this can
be done by investigating, either separately or combined, the discriminative
ability and the calibration. Specifically, the former describes the ability of
discriminating between observations with and without the outcome, or, in
case of continuous outcome, correctly ranking their values: in case of survival
data, for example, predicting which observations have the higher risk. Since
in this paper we focus on survival analysis, we refer only to those methods
that handle time-to-event data. This is true also for the calibration, that, in
this context, can be seen as a measure describing the agreement between the
predicted and the actual survival times.

Discriminative ability: in the context of survival curves, the discrimi-
native ability is, in principle, reflected by the distance between the survival
curves for individuals or groups [34]. Therefore, a graphical comparison be-
tween the Kaplan-Meier curves can be used to assess this property: the
best rule, indeed, is the one which leads to the most separated curves. In
practice, we can split the observations in two groups, assembled considering
the estimates of the linear predictors ηcomb =

∑q
j=1 βj · Zj + β∗ · OS and

ηclin =
∑q

j=1 βj · Zj, for example, using their medians as cutpoints. In this
way, we define a low- and a high-risk group in both cases (using ηcomb and
ηclin), and we can plot the resulting four Kaplan-Meier curves. If the two
curves related to groups derived using η̂comb are much more separated than
those related to groups derived using η̂clin, then we can assert the presence
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of added predictive value. In principle, more prognostic groups can be con-
structed, reflecting a division more meaningful from a medical point of view.
Nevertheless, for the illustration purpose of this graphic, the two-group split
is sufficient. In the same vein, the choice of the cutpoint is not relevant too,
and we expect similar results with different (reasonable) cutpoints.

Numerical criteria, instead, can be based on the estimation of the con-
cordance probability or on the prognostic separation of the survival curves.
The most popular index which exploits the former idea is probably the C-
index [23]. It consists in computing the proportion of all the “usable” pairs
of patients for which the difference between the predicted outcomes and the
difference between the true outcomes have the same sign. Here “usable”
means that censoring does not prevent to order them. This enlightens the
dependence of this index on the censoring scheme, which may compromise
its performance. In order to overcome this issue, Gönen & Heller [20] pro-
posed an alternative index relying on the proportional hazards assumption
and applicable when a Cox model is used. For both indexes, the highest
value denotes the best rule (in a scale from 0 to 1).

Calibration: Also the calibration can be evaluated graphically. A first
method consists in comparing the Kaplan-Meier curve (observed survival
function) computed in the validation set with the average of the predicted
survival curves of all the observations of the validation sample [34]. The closer
the predicted curve is to the Kaplan-Meier curve, the better calibration the
prognostic rule has. Under the proportional hazards assumption, a numeric
result can be obtained via the “calibration slope”. This particular approach
consists in fitting a Cox model with the prognostic score as the only predictor.
Good calibration leads to an estimate of the regression coefficient close to
1. It is worth pointing out that this procedure focuses on the calibration
aspect and does not constitute itself, as sometimes claimed in the literature,
a validation of the prediction model [34]. Calibration is often considered less
important than discriminative ability, because a recalibration procedure can
be applied whenever appropriate.

Overall performance: a measure of the overall performance of a prog-
nostic rule should take care of both discrimination and calibration. The
integrated Brier score [5, 38] is such a measure. It summarizes in a single
index the time-dependent information provided by the Brier score [21] (that
measures the prediction error at a specific time t), by integrating it over the
time. The best prediction rule is the one which leads to the smallest value
for the integrated Brier score. The Brier score can also be plotted as a func-
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tion of the time to provide the prediction error curve, which can be used to
graphically evaluate the prediction ability of the model: the lower the curve,
the better the prediction rule is. The integrated Brier score corresponds to
the area under this curve.

As a remark, we note that, in order to compute these measures, different
levels of information from the training set are needed [34]. For example, the
baseline hazard function is necessary to assess calibration, while it is not to
evaluate the discriminative ability via Kaplan-Meier curves.

Results

Acute myeloid leukemia

In this subsection we illustrate the use of different methods and their impact
on the results taking advantage of the acute myeloid leukemia dataset. For a
summary of the analyses performed, we refer to the profile provided in Table
1.

A. Evaluating clinical model and combined model on validation
data. We have seen that the easiest way to derive a prediction combined
score is to fit a multivariate Cox model including as covariates the clinical
predictors and the omics score. The added predictive value of the latter is
then validated looking at the prediction properties (calibration, discrimina-
tion, overall performance) of this model compared to the model fitted using
only the clinical predictors. For the AML dataset, therefore, we compare
the combined model (see Table 3) with the clinical model (i.e., the model
without the omics score).

While estimates from these models come from the training set, the predic-
tion properties must be evaluated in the validation set. Starting by gaining
an overall view of their predictive ability, we consider the Brier score, both
by investigating graphically the prediction error curves representing its value
against the time (Figure 5) and by measuring the area under these curves
commonly denoted as the integrated Brier score. Since for late time-points
the error estimates (Brier scores) are based on a small number of observations
(generally with few/no events) and therefore unreliable, the researcher may
prefer to evaluate Brier score-based quantities up to a specific time, which
ideally has a clear clinical meaning. In this case, since we do not have any
time value highly relevant from a clinical point of view, we choose to compute
the integrated Brier score up to 1.5 years, following the graphical investiga-
tion of the Kaplan-Meier curves performed in the Data section. The values of
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Figure 5: Acute myeloid leukemia: prediction error curves based on the Bier
score computed in the validation set for the null (black line), the clinical (red
line) and the combined (green line) models fitted on the training data.

the integrated Brier score are 0.201, 0.181 and 0.190 for the null, the clinical
and the combined models, respectively, and, therefore, we cannot validate
the added predictive value of the omics score. The graphical investigation of
the prediction error curves in Figure 5 confirms this point: after an initial
time period of around 300 days in which the three lines are indistinguishable
(i.e., the prediction models do not provide any information), the red (clinical
model) and the green (combined model) are actually below the black (null
model), but there is not evidence of a better performance of the combined
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model in comparison to the clinical model (the green line is not constantly
below the red line).
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Figure 6: Acute myeloid leukemia: Kaplan-Meier curves computed in the
validation set for risks groups based on the clinical (red) and the combined
(green) scores derived in the training set: the curves below represent the
survival curves for observations belonging to the high risk group, the two
above the low risk group.

If we consider calibration and discriminative ability separately, we can see
that the main issues are related with the former. The discriminative ability
of the combined model, indeed, is slightly better both according to the C-
index (0.631 versus 0.605 for the clinical model) and to the K-statistic (0.674
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versus 0.653). The difference, however, is definitely not large, and the values
themselves are small (C-index and K-statistic range from 0.500 standing for
complete random situation to 1 indicating perfect concordance). We can
draw the same conclusion from the graphical inspection of Figure 6: the
graphic shows the Kaplan-Meier curves for the low- and the high-risk groups
(defined using the median score as a cutpoint) derived using the combined
(green line) and the clinical (red line) models. The green lines are slightly
more separated than the red ones. We also tried to define the low- and high-
risk groups using a K-means clustering procedures (2-means), obtaining very
similar results (here not shown).

A different result is obtained when considering calibration. Figure 7 dis-
plays the graphical comparison between the Kaplan-Meier curve, i.e., the
observed survival curve, and the average predicted survival curves (continu-
ous line) of the subjects in the validation set, based on the clinical (red) and
combined (green) models, respectively. Both predicted curves are relatively
far from the observed one. This bad calibration is partly due to the difference
between the two sets, which leads to a different estimation of the baseline
survival function (calibration-in-the-large): in order to show its effect, we
have reported in dashed line the average survival curves predicted using the
baseline survival function computed in the validation data (please note that
this is done to interpret the graphic, for validation purpose only the contin-
uous lines are relevant). We can see that with this “correction”, the average
survival curves slightly approach the observed one. The other aspect that we
should consider is the calibration slope: being directly related to the linear
predictors, it is of high interest in terms of validation of the added predictive
value of the omics score. In order to focus on this aspect, we obtain a numer-
ical result by estimating the regression coefficients of the clinical and of the
combined score when used as a predictor in a Cox model. Since the inter-
cept is absorbed in the baseline hazard, indeed, this procedure does not take
into account the calibration-in-the-large [15]. The values obtained for the
calibration slope confirm the impressions of the graphical investigation: the
estimates of the regression coefficient using the clinical score and the com-
bined score are 0.900 (sd=0.314) and 0.888 (sd=0.245), respectively. There
is a small worsening when considering the omics score, and both values are
relatively far from the ideal case, in this case a coefficient equal to 1.

Possible sources of overfitting. As stated by Steyerberg et al. (2010)
[38], calibration-in-the-large and calibration slope issues are common in the
validation process, and they reflect the overfitting problem [24] that we have
already stated in the Method section. With particular regard to calibration
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Figure 7: Acute myeloid leukemia: comparison between the observed survival
curve (Kaplan-Meier, black line) and the average predictive survival curves
computed in the validation set using the clinical (red line) and combined
(green line) models fitted on the training data. Continuous lines represent
the average predictive survival curves computed interpolating the baseline
survival curve derived in the training set. Dashed lines represent the same
curves computed using an estimation of the baseline survival curve derived
in the validation set. For the dotted curves, the estimates of the regression
coefficients are shrunk toward 0..

slope, this can be related to the need for shrinkage of regression coefficients
[38, 14, 41]. If we go back to Figure 7 and shrink the regression coefficients
toward 0, we can see that, in this way, we obtain a good calibration (dotted
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lines, almost indistinguishable from the black one). In the clinical model,
it is done by applying a shrinkage factor of 0.92 to all the four regression
coefficients: the small amount of shrinkage necessary to move the average
predicted curve close to the observed one reveals the relatively scarce effect
of the overfitting issue in a model constructed with low-dimensional predic-
tors. In order to obtain the same results with the combined model, instead,
we applied a relatively large shrinkage factor, 0.5, to the regression coef-
ficient related to the omics score (and, therefore, leaving those related to
the clinical predictors unchanged). This reflects the typical situation of a
model containing a predictor derived from high-dimensional data: since this
predictor (omics score) has been constructed (variable selection and weight
estimation) and its regression coefficient estimated, respectively, in the same
set (training set), the overfitting issues largely affects the combined model.
The fact that we need to apply the shrinkage factor only to the regression co-
efficient of the omics score, moreover, is a clear signal of how much the omics
score, inasmuch derived from high-dimensional data, dominates the clinical
predictors. This may explain the large distance between the red and the
green (continuous) lines in Figure 7. As a result, the effect of the (possibly
overfitting) omics score may turn out to hide the contribution of the clinical
predictors when estimated on the same training set, in a way that in the
validation step we in fact mostly evaluate the predictive value of the omics
score. The fact that the problem of overfitting largely affects the calibra-
tion of the models, moreover, may influence the analyses based on the direct
computation of the Brier score (strategy A), and a more refined approach
(strategy C) may be required.

To highlight the overfitting problem, we re-estimated the regression coef-
ficients of the combined model based on the validation set. Table 4 shows the
estimated log-hazard ratios of all considered predictors based on the training
set (first column) and the validation set (second column). It can be seen that
the log-hazard ratios of the predictors age, FLT3-ITD and NPM1 do not no-
ticeably change, while the value of the log-hazard ratio of the omics score
decreases substantially from the training set – where overfitting is plausible –
to the validation set. This confirms our suspicions and strengthens the idea
that, if the effect of the omics score is to be assessed through a multivariate
model, this model cannot be fitted on the same set used for the construction
of the score (training set), but in an independent one. Obviously, if we use
the validation set for this purpose, i.e., in van Houweliengen’s definition [40],
to update the model, we need a third set for the validation. We have seen
that this idea motivates strategy C.
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B. Multivariate testing of the omics score in the validation data.
The combined multivariate model previously fitted on the training set can
be further used to derive the p-value corresponding to the null-hypothesis
that the coefficient of the omics score is zero, by estimating its regerssion
coefficients on the validation set. The results are reported in Table 3, and
are in line with those presented in the original paper [28]. More precisely,
the authors used as clinical predictors only age, FLT3-ITD and NPM1, while
here we consider also sex. Nevertheless, the effect of sex being weak (with
a p-value of 0.111), the p-value of the score which we are interested in is
hardly affected by this additional predictor (here p-value = 0.031, in the
original paper p-value = 0.037). Since these values are in a borderline area
between the most commonly used significance levels of 0.01 and 0.05, we
cannot clearly confirm the added predictive value of the omics score. Most
importantly, this significance testing approach within the multivariate model
does not provide any information on prediction accuracy, an aspect that is
considered in the next section.

C. Comparison of the predictive accuracy of the models with and
without omics score through cross-validation in the validation data.
The combined model fitted on the validation set in the last subsection cannot
be evaluated using the validation set again: the same set, indeed, cannot be
used both to update and to validate the model. Since a third set is rarely
available, an option is to evaluate this model based on a cross-validation
approach (10-fold CV in this paper) as described in the Methods section,
and to ultimately compare its performance to the performance of the model
including clinical predictors only. Since the results of cross-validation usually
depend highly on the chosen random partition of the data [27, 9], we repeat
cross-validation 100 times for different random partitions and finally average
the results over these repetitions. The results are reported in terms of Brier
score via the prediction error curves in Figure 8. Although the clinical and
the combined models have very similar behaviors, we can see some little
improvement in including the omics score in the prediction model. This is
probably not sufficient to clearly validate its added predictive value (in line
with the borderline result obtained within the previous approach), but it
confirms the influence of the overfitting issue: as we saw in Table 4, the
regression coefficient for the omics score fitted in the training set seems to be
too dependent on the training data, leading to prediction errors (Figure 5) for
the combined model bigger than the clinical one. When we fit the models on
the validation data, as in this case, the problem disappears, and the combined
model performs better than the clinical one (Figure 8). The values of the

22



integrated Brier score computed for the different models (consistently up to
1.5 years) confirm these results: for the null model it is 0.208, 0.191 for the
clinical and 0.188 for the combined ones. It is worth noting, however, that in
the first 300 days the behaviors of the three curves are similar, strengthening
the considerations stated for approach A.
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Figure 8: Acute myeloid leukemia: prediction error curves based on Brier
score computed via 10-fold cross-validation (100 replications). The null
(black line), the clinical (red line) and the combined (green line) models
are considered. Only the validation set is used.

An alternative to cross-validation is the bootstrap: in each bootstrap
iteration, the models can be fitted on a bootstrap sample (i.e., a sample
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random drawn with replacement from the validation set) and then evaluated
using those observations that are not included in the bootstrap sample. Using
the “0.632+” version of bootstrap introduced by Efron and Tibshirani [18],
based on 1000 bootstrap replications, we obtain results very similar to those
obtained by the aforementioned 10-fold cross-validation technique (data not
shown).

D. Subgroup analysis (male and female populations separately).
In this example, therefore, all the approaches seem to agree on the scarce
improvement of including the omics score in the model in term of prediction
ability. One aspect that remains to investigate is the peculiar behavior of the
predictor sex, which yields substantially different regression coefficient esti-
mates in the training and validation sets (Table 4). Although the relevance
of this predictor in the analysis is not obvious (it would have certainly been
discarded by a variable selection procedure in the training set, the p-value
related to a significance test in the validation set is 0.1114, see Table 3), it
is the best candidate to use as splitting criterion in order to illustrate the
subgroup analysis described in the Methods section, and to highlight possi-
ble issues related to this strategy. Our goal, then, is to validate the added
predictive value of the omics score in the male and in the female population
separately. The training set contains 88 female patients (54 events) and 74
male patients (51 events), while in the validation set the female patients are
46 (16 events) and the male 33 (17 events). The sample sizes are very small,
but not uncommon in studies dealing with omics data.

The results are striking: although the clinical score has been derived in
the whole population, the difference in its usefulness to predict the survival
time for male and female patients is huge. While for the female subgroup
its additional predictive value is sizable both in term of calibration (the
calibration slope moves from 0.761 (sd=0.353) for the clinical model to 1.058
(sd=0.305) for the combined model) and discriminative ability (the C-index
is equal to 0.632 for the clinical model and to 0.689 for the combined model),
in the male population the addition of the omics score worsens, in a very
clear way, both the calibration (calibration slope from 0.698, sd=0.635, to
0.157, sd=0.397) and the discriminative ability (C-index from 0.584 to 0.493,
even worse than the 0.500 representing the random situation) of the model.
The prediction error curves plotted in Figure 9 clearly show the different
effect of the omics score in the female and male populations: while the green
curve (combined model) is definitely under the red one (clinical model) in the
first graphic (female population), in the second graphic (male population) it
is not only above the red curve, but also the black curve representing the
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prediction error curve of the null model.
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Figure 9: Acute myeloid leukemia: prediction error curves based on the Bier
score computed in the validation set for the null (black line), the clinical (red
line) and the combined (green line) models, fitted on the training data, for
both the female (left) and the male (right) populations.

To address the overfitting issue associated with this procedure, we then
also repeat the analyses described above in both subgroups separately. Al-
though both the positive effect (in the female subgroup) and the negative
effect (in the male subgroup) of the omics score are substantially smaller in
the validation set than in the training set in absolute value, the first impres-
sion is confirmed. The prediction error curves based on a 100 replication of a
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10-fold cross-validation procedure (Figure 10) seem to confirm the results of
the previous subgroup approaches. The p-values from the combined model
fitted on the validation set provide the same evidence, with a test on the
nullity of the regression coefficient of the omics score yielding a p-value of
0.004 in the female population and 0.753 in the male one.
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Figure 10: Acute myeloid leukemia: prediction error curves based on 10-
fold cross-validation (100 replications) for the null (black lines), clinical (red
lines) and combined (green lines) models in the female (left) and in the male
(right) populations. Only the validation set is used.

In particular, with regards to the overfitting issues, it is worth looking at
the difference among the slopes of the prediction error curves in the graphics.
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If we look at Figure 9, we note that in the female population the prediction
error curves for the three models have, more or less, the same slope, and
the difference in their behavior is basically a shift in the central part. The
same happens in Figure 10. This is not the case for the male population.
When the regression coefficients are estimated from the validation set (Figure
10) this is still working, but when the regression coefficients are estimated
from the training set (Figure 9), this is not true anymore, and the slope of
the error prediction curve for the combined model has a completely different
behavior. This can be seen as the result of overfitting mechanisms that may
affect the predictions in the male subgroup and not in the female subgroup.
Nevertheless, the instability of the prediction error curves, derived by the
small amount of observations available in the two groups, does not allow us
to draw any conclusion, and these considerations should be seen as possible
interpretation of the results of a subgroup analysis.

In any case, an unexpected relation between sex and the omics score seems
to be present. A different way to investigate this relation consist in fitting a
multivariate Cox model in the validation set, considering also the interaction
between these two predictors. Although the p-value, as we stressed in the
Methods section, is more related to the ability of the predictor to explain
the outcome variability than to the predictive ability, the result reported in
Table 7 seems to support the existence of an interaction. This result is hard
to explain. Nothing in the medical literature seems to confirm such a strong
interaction between sex and gene-expression for leukemia disease (there are
only rare cases of specific gene deletions known to be related with the sex,
but they are not considered here). Different is the case, for example, of the
interaction between the omics score and FLT3-ITD, which is well-known and
has been clearly stated in the original paper. It could be shown by performing
the subgroup approach on the sample split between those patients with and
those without the FLT3-ITD. The result would be an added predictive value
for the omics score only when there is replication: unfortunately, the small
amount of patients without FLT3-ITD does not allow us to use this variable
to illustrate the subgroup analysis. The total independence between sex and
FLT3-ITD in the sample (if we test the hypothesis of independence through
a Fisher exact test, we obtain a p-value equal to 1) allows us to exclude the
presence of spurious correlation. Moreover, we note that in a multivariate
Cox model including the interaction score/sex, the effect of the omics score
is more significant (p-value 0.0035) than in the model without interaction
(p-value 0.031, see Table 3). If we consider the interaction FLT3-ITD/score
in the Cox model, instead, the p-value of the omics score is high (0.4189),
showing that all its explanatory ability lies in the interaction with FLT3-ITD
(p-value = 0.0020). It is worth noting, however, that the effective sample size
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(in survival analysis we should consider as relevant only those observations
where an event occurs) in the subgroup analysis is small (16 events for women,
17 for men). The results may thus be affected by peculiar characteristics of
the sample such as a specific pattern in the censoring scheme. To support
this idea, we report the fact that the K-statistic computed in the two sub-
populations (male and female) gives results completely different from the C-
index: its value, indeed, is increased by the inclusion of the omics score in the
prognostic index both in the female (from 0.684 of the clinical model to 0.694
of the combined model) and in the male (from 0.631 to 0.665) subgroups. We
would like to stress that the provided interpretations should be understood
as illustrative for a similar case, and not as conclusion for the leukemia study.

Chronic lymphocytic leukemia

Here we show the possibilities to validate the added predictive value in a
dataset where the training and validation data are different. We refer to the
profile provided in Table 2 for a summary of the analyses performed.

A. Evaluating clinical model and combined model on validation
data. The most notable peculiarity of this dataset is the different measure-
ment of the gene expressions in the training and validation sets. Part of the
advantage of the signature proposed in Herold et al. [25], indeed, consists in
the relatively small number of involved genes (eight), which allows the prac-
titioner to use a cheaper and more convenient platform to collect the data
needed to compute the omics score. Nevertheless, the different measurements
affect the validation strategy to be used for assessing the added predictive
value of the omics score. In particular, it makes no sense to estimate a model
including clinical predictors and omics score based on the training data and
to apply this model to the validation data. Since the goal is to validate the
added predictive value of the omics score when the gene expressions are col-
lected with the technique used in the validation set, it is necessary to fit the
considered models based on the validation data. This is what we do when
applying the methods discussed below.

B. Multivariate testing of the omics score in the validation data.
While it is not possible to compare the predictive ability of clinical and com-
bined models fitted to the training set, methods fitting the coefficients of the
models based on the validation set are fully applicable, since the regression
coefficient of the omics score is estimated using the data collected with the
desired measurement. In particular, a test can be conducted to test the nul-
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lity of the coefficient β∗ of the omics score in a multivariate model fitted on
the validation set. The results presented in Table 5 (p-value < 0.0001 for
the omics score) confirm the utility of including the omics score in the pre-
dictive model for explaining the variability. We have already stressed that
a significant p-value is not necessarily associated to added predictive ability
and therefore proceed with the cross-validation approach based on the Brier
score.

C. Comparison of the predictive accuracy of the models with and
without omics score through cross-validation in the validation data.
We conduct the same analysis as for the AML dataset. Prediction error
curves are displayed in Figure 11, clearly showing the added predictive value
of the omics score. The curve of the combined model (green line) is clearly
under the curve of the clinical model (red line). It can also be seen that
the clinical model has better predictive ability than the null model (black
line). These results are in line with the corresponding values of the integrated
Brier score (null model: 0.142, clinical model: 0.113, combined model: 0.101,
all computed up to 1500 days, value selected looking at the Kaplan-Meier
curves). We note that the prediction error curve for the combined model
already starts to be below the one for the clinical and null models after
only one year of follow-up, i.e., when the observations are numerous and the
estimates stable. As in the previous example, these results are averaged over
100 repetitions of a 10-fold cross-validation procedure.

Conclusion

In this paper we illustrated and critically discussed the application of various
methods with the aim to assess the added predictive value of omics scores
through the use of a validation set. In a nutshell, our study based on two
recent leukemia datasets outlined that:

• When testing is performed within a multivariate model in the validation
data, the omics score may have a significant p-value but show poor or
no added predictive value as measured using criteria such as the Brier
score. This is because a test in multivariate regression tests whether the
effect of the omics score is zero but does not assess how much accuracy
can be gained through its inclusion in the model.

• To gain information on – and “validate” – predictive value, it is neces-
sary to apply models with and without the omics score to the validation
data. There are essentially two ways to do that.
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Figure 11: Chronic lymphocytic leukemia: prediction error curves based on
10-fold cross-validation (100 replications).

• The first approach (denoted as “Evaluating clinical model and com-
bined model on validation data” in this paper) consists to fit a clinical
model and a combined model based on the training data and compare
the prediction accuracy of both models on the validation data. This
is essentially the most intuitive way to proceed in low-dimensional set-
tings. The problem in high-dimensional settings is that the omics score
is likely to overfit the training data. As a result, its effect might be
over-estimated when estimated using the same training set again. We
have seen how this leads to serious problems especially in term of bad
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calibration. Furthermore, this approach is not applicable when the
omics data has been measured with different techniques in the training
and validation sets, as in the CLL data.

• The second approach, which we recommend in high-dimensional set-
tings, consists of using a cross-validation-like procedure to compare
models with and without the omics score using the validation set. By
using the validation set only, we avoid the overfitting problem described
above. When using this approach, it is recommended to perform as
many repetitions of CV as computationally feasible (and to average
the results over the repetitions) in order to achieve more stable results.

• Alternatively, one could also fit the models based on the validation
set and use an additional third set to assess them. This approach
would avoid the use of cross-validation procedures that are known to
be affected by a high variance, especially in high-dimensional settings.
However, the opportunity to assess the models based on a third set is
rarely given in the context of omics data, since datasets are usually too
small to be split.

• All in all, our procedure is in line with the recommendations given in
a recent paper by Pepe and colleagues [33]. This paper suggests that,
in case of binary outcome, all the tests based on the equality between
the discriminative abilities of the clinical and the combined scores refer
to the same null hypothesis, namely the nullity of the coefficient of
a predictor in a regression model. Assuming that this statement also
roughly applies to the survival analysis framework considered in our
paper, it would mean that we can rely on the likelihood test performed
on the regression coefficient of the omics score in the combined Cox
model to test the difference in performance between the models with
and without omics predictors. However, the same authors also claim
that estimating the magnitude of the improvement in the prediction
ability is much more important than testing its presence [33]. This
cannot be done looking at the regression coefficient of the omics score,
as often discussed in the literature [2, 32] and illustrated through our
AML data example. In this paper we have seen some procedures to
quantify the improvement in prediction accuracy of a model containing
an omics score derived from high-dimensional data, in order to validate
its added predictive value.

• Subgroup analyses might give valuable insights into the predictive value
of the score, and therefore illustrated through the example of the AML
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dataset. Normally, they should be inspired by a clear biological reason
and, importantly, performed as far as allowed by the sample sizes.
However, one should keep in mind that these analyses are possibly
affected by multiple testing issues. Their results should be considered
in an explorative perspective.

Our experience based on the analysis of the two considered leukemia
datasets and further similar datasets (data not shown) make us recommend
to compare the predictive accuracy of the models with and without omics
score through cross-validation based on the validation data.

In this paper we deliberately focused on the case of the validation of
omics scores fitted on training data in the context of survival analysis in the
presence of a few clinical predictors. Other situations may be encountered
in practice. Firstly, the omics score may be given from a previous study, in
which case the overfitting issue leading to an over-estimation of its effect is
not relevant anymore and the omics score can be treated as any other can-
didate biomarker. Secondly, there may be situations where a validation set
is not available (typically because the available dataset is not large enough
to be split). In this case, other (resampling-based) approaches may be taken
to test predictive value and assess the gain of predictive accuracy [39, 8].
Thirdly, the outcome of interest may be something else than the survival
time. Binary outcomes (e.g. responder vs. non-responder) are common.
The evaluation criteria used to assess predictive accuracy are of course dif-
ferent in this case. Fourthly, one may also consider the added predictive of
a high-dimensional set of predictors versus another high-dimensional set of
predictors. This situation is becoming more common with the multiplication
of high-throughput technologies generating, e.g. gene expression data, copy
number variation data, or methylation data. Data integration is currently a
hot topic in statistical bioinformatics and prediction methods handling this
type of data are still in their infancy.

Furthermore, we did not address in our paper the problem of the con-
struction of the omics score. We simply assumed that it was estimated based
on the training data with any adequate method. The construction of such an
omics score is of course not trivial and has indeed been the subject of numer-
ous publications in biostatistics and bioinformatics in the last decade. From
the point of view of predictive accuracy it may be advantageous to construct
the omics score while taking the clinical predictors into account [30, 37, 11]
in order to focus on the residual variability, a fact that we did not consider
in this paper but plan to investigate in a subsequent study. The two omics
score here analyzed, indeed, have been constructed without this expedient,
and optimized to substitute the clinical predictors rather than focusing on
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the added predictive value of the omics data.
Finally, we point out that, even in the case considered in our paper (val-

idation of omics scores fitted on training data in the context of survival
analysis in the presence of a few clinical predictors), further approaches are
conceivable. For example, other evaluation criteria for prediction models
may be considered, see [34] for a recent overview in the context of exter-
nal validation. When considering combined prediction models we focused on
the multivariate Cox model including clinical predictors and omics score as
covariates and with linear effects only. Of course further methods could be
considered in place of the Cox model with linear effects, including models
with time-varying coefficients, parametric models or non-linear transforma-
tions of the predictors such as fractional polynomials.

As soon as one “tries out” many procedures for assessing added predic-
tive value, however, there is a risk of conscious or subconscious “fishing for
significance” – in this case “fishing for added predictive value”. To avoid
such pitfalls, it is important that the choice of the method used in the final
analyses presented in the paper is not driven by the significance of its re-
sults. If several sensible analysis strategies are adopted successively by the
data analysts, they should consider reporting all results, not just the most
impressive in terms of added predictive value.

Here we have summarized all our analyses in REMARK type profile tables
(namely, Tables 1 and 2), in order to increase transparency and to allow the
reader to easily go through the study.
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Table 1: Acute myeloid leukemia: REMARK-like profile of the analysis per-
formed on the dataset.

a) Patients, treatment and variables
Study and marker Remarks

Marker OS = 86-probe-set gene-expression signature
Further variables v1 = age, v2 = sex, v3 = NMP1, v4 = FLT3
Reference Metzeler et al (2008)
Source of the data GEO (reference: GSE12417)
Patients n Remarks

T
ra

in
in

g
se

t

Assessed for eligibility 163 Disease: acute myeloid leukemia
Patient source: German AML Cooperative Group 1999-2003

Excluded 0
Included 163 Treatment: following AMLCG-1999 trial

Gene expression profiling: Affymetrix HG-U133 A& B microarrays
with outcome events 105 Overall survival: death from any cause

V
a
li

d
a
ti

o
n

se
t

Assessed for eligibility 79 Disease: acute myeloid leukemia
Patient source: German AML Cooperative Group 2004

Excluded 0
Included 79 Treatment: 64 following AMLCG-1999 trial

17 intensive chemotherapy outside the study
Gene expression profiling: Affymetrix HG-U133 plus 2.0 microarrays

with outcome events 33 Overall survival: death from any cause
Relevant differences between training and validation sets

Data source same research group, different time (see above)
Follow-up time much shorter in the validation set (see text)
Survival rate higher in the validation set (see Fig. 2)

b) Statistical analyses of survival outcomes
Analysis n e Variables

considered
Results/remarks

A: preliminary analysis (separately on training and validation sets)

A1: univariate
163 105

v1 to v4 Kaplan-Meier curves (Fig. 1)
79 33

B: evaluating clinical model and combined model on validation data (models fitted on training set, evaluated
on validation set)

B1: overall prediction

OS, v1 to v4

prediction error curves (Fig. 5)
integrated Brier score (text)

B2: discriminative
ability

training comparison of Kaplan-Meier curves for risk groups:
- medians as cutpoints (Fig. 6),
- K-mean clustering (data not shown - see text)
C-index (text)
K-statistic (text)

163 105

validation

B3: calibration
79 33 Kaplan-Meier curve vs average individual survival

curves for risk groups (Fig. 7)
calibration slope (text)

C: Multivariate testing of the omics score in the validation data (only validation set involved)
C1: significance 79 33 OS, v1 to v4 multivariate Cox model (Tab. 3)
D: Comparison of the predictive accuracy of clinical and combined models through cross-validation in the
validation data (only validation set involved)

D1: overall prediction 79 33 OS, v1 to v4

prediction error curves based on cross-validation
(Fig. 8)
prediction error curves based on bootstrap resam-
pling (data not shown - see text)
integrated Brier score based on cross-validation
(text)

E: Subgroup analysis (E1-E3 based on training and validation sets, E4 and E5 only on validation set; for all,
separate analysis for female and male population)

E1: overall prediction

OS, v1 to v4

prediction error curves (Fig. 9)
female

E2: discriminative
ability

t.: 88 54 C-index (text)
K-statistic (text)v.: 46 16

E3: calibration male calibration slope (text)
E4: significance t.: 74 51 multivariate Cox model (text)

E5: overall prediction
v.: 33 17 prediction error curves based on cross-validation

(Fig. 10)
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Table 2: Chronic lymphocytic leukemia: REMARK-like profile of the analy-
sis performed on the dataset.

a) Patients, treatment and variables
Study and marker Remarks

Marker OS = 8-probe-set gene-expression signature
Further variables v1 = age, v2 = sex, v3 = FISH, v4 = IGVH
Reference Herold et al (2011)
Source of the data GEO (reference: GSE22762)
Patients n Remarks

T
ra

in
in

g
se

t

Assessed for eligibility 151 Disease: chronic lymphocytic leukemia
Patient source: Department of Internal Medicine III, University of Mu-
nich (2001 - 2005)

Excluded 0
Included 151 Criteria: sample availability

Gene expression profiling: 44 Affymetrix HG-U133 A& B microar-
rays, 107 Affymetrix HG-U133 plus 2.0 microarrays

with outcome events 41 Overall survival

V
a
li

d
a
ti

o
n

se
t

Assessed for eligibility 149 Disease: chronic lymphocytic leukemia
Patient source: Department of Internal Medicine III, University of Mu-
nich (2005 - 2007)

Excluded 18 due to missing clinical information
Included 131 Criteria: sample availability

Gene expression profiling: 149 qRT-PCR (only selected genes)
with outcome events 40 Overall survival

Relevant differences between training and validation sets
Data source same institution, different time (see above)
Measurement of gene expressions Affymetrix HG-U133 vs. TaqMan LDA (see text)
Survival rate lower in the validation set (see Fig. 4)

b) Statistical analyses of survival outcomes
Analysis n e Variables

considered
Results/remarks

F: preliminary analysis (separately on training and validation sets)

F1: univariate
151 41

v1 to v4 Kaplan-Meier curves (Fig. 3)
131 40

G: Multivariate testing of the omics score in the validation data (only validation set involved)
G1: significance 131 40 OS, v1 to v4 multivariate Cox model (Tab. 5)
H: Comparison of the predictive accuracy of clinical and combined models through cross-validation in the
validation data (only validation set involved)

H1: Overall prediction 131 40 OS, v1 to v4
prediction error curves based on cross-validation (Fig.
11)
integrated Brier score based on cross-validation (text)

Table 3: Acute myeloid leukemia: estimates of the log-hazard in a multivari-
ate Cox model fitted on the validation data, with the standard deviations
and the p-values related to the hypothesis of nullity of the coefficients (simple
null hypothesis).
variable coeff sd(coeff) p-value
score 0.523 0.243 0.0312
age(continuous) 0.022 0.015 0.1340
sex (male) 0.643 0.404 0.1114
FLT3 (ITD) 0.436 0.440 0.3220
NPM1 (mutated) -0.377 0.404 0.3497
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Table 4: Acute myeloid leukemia: differences in the estimates of the log-
hazard ratio when the combined model is fitted on the training (first column)
or on the validation (second column) data. Standard deviations are reported
between brackets.

log-hazard ratios
variable training validation
score 0.642 (0.172) 0.523 (0.243)
age(continuous) 0.021 (0.008) 0.022 (0.015)
sex (male) -0.024 (0.208) 0.643 (0.404)
FLT3 (ITD) 0.448 (0.253) 0.436 (0.440)
NPM1 (mutated) -0.370 (0.215) -0.377 (0.404)

Table 5: Chronic lymphocytic leukemia: estimates of the log-hazard in a
multivariate Cox model fitted on the validation data, with the standard de-
viations and the p-values related to the hypothesis of nullity of the coefficients
(simple null hypothesis.
variable coeff sd(coeff) p-value
score -0.589 0.150 8.65× 10−05

age(continuous) 0.113 0.023 6.82× 10−07

sex (female) 0.157 0.343 0.6472
FISH=1 0.171 0.459 0.7092
FISH=2 1.352 0.590 0.0219
FISH=3 -0.195 0.665 0.7694
FISH=4 -0.459 0.427 0.2823
IGVH (mutated) 0.695 0.416 0.0949
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