
ar
X

iv
:c

on
d-

m
at

/0
60

35
56

v3
  [

co
nd

-m
at

.s
of

t]
  1

7 
Se

p 
20

07

EPJ manuscript No.
(will be inserted by the editor)

Stretching dynamics of semiflexible polymers

B. Obermayer1a, O. Hallatschek2, E. Frey1, and K. Kroy3

1 Arnold Sommerfeld Center and Center for NanoScience, LMU München, Theresienstr. 37, 80333 München, Germany
2 Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA
3 Institut für Theoretische Physik, Universität Leipzig Postfach 100920, 04009 Leipzig, Germany

the date of receipt and acceptance should be inserted later

Abstract. We analyze the nonequilibrium dynamics of single inextensible semiflexible biopolymers as
stretching forces are applied at the ends. Based on different (contradicting) heuristic arguments, vari-
ous scaling laws have been proposed for the propagation speed of the backbone tension which is induced in
response to stretching. Here, we employ a newly developed unified theory to systematically substantiate,
restrict, and extend these approaches. Introducing the practically relevant scenario of a chain equilibrated
under some prestretching force fpre that is suddenly exposed to a different external force fext at the ends,
we give a concise physical explanation of the underlying relaxation processes by means of an intuitive blob
picture. We discuss the corresponding intermediate asymptotics, derive results for experimentally relevant
observables, and support our conclusions by numerical solutions of the coarse-grained equations of motion
for the tension.

PACS. 61.41.+e Polymers, elastomers, and plastics – 87.15.La Biological and medical physics. Mechanical
properties – 87.15.He Dynamics and conformational changes

The multifaceted viscoelastic properties of complex cel-
lular structures such as the cytoskeleton have been inten-
sively studied on very different levels of complexity [1].
Concerning their nature as networks of semiflexible poly-
mers, it has recently become apparent that prestressed
networks provide a realistic model for the mechanical prop-
erties of living cells [2]. Also, it has been found that the
dynamics of semiflexible polymers and their networks is
quite drastically altered by prestress [3–5]. On the level of
single molecules, the scenario of a single semiflexible chain
prestretched with a force fpre that is suddenly exposed
to a different stretching force fext at the ends may serve
to explain quite generically the influence of prestress on
single-polymer stretching and relaxation dynamics. Since
the first force-extension measurements on DNA, which es-
tablished the wormlike chain (WLC) model as a very good
theoretical description for semiflexible polymers [6], tech-
nological advances towards significantly improved time-
and force-resolution [7, 8] have made measurements on
such more involved experimental setups possible. Theo-
retically, there exists a number of different approaches to
the nonequilibrium dynamics of inextensible WLCs [9–12],
most of them based on the concept of backbone tension,
which is the force “holding the monomers together”. Its
key importance to the longitudinal dynamics has been rec-
ognized some time ago [13], but so far its influence has
mainly been treated on the level of heuristic scaling argu-
ments [13–16]. While such reasoning based on the WLC
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model has been used to analyze DNA relaxation experi-
ments [17,18], a systematic theoretical description of prop-
agation and relaxation of backbone tension has only re-
cently been developed [19].

In the following, we consider an inextensible weakly-
bending WLC in a simple solvent that is equilibrated un-
der some tension fpre. At time t = 0, the chain is suddenly
exposed to an external stretching force fext applied at its
ends, the more interesting case being fext > fpre. Our ob-
jective is to identify the dominant processes involved in the
subsequent nonequilibrium dynamics, and, specifically, to
determine how fast the contour stretches. The inextensi-
bility prevents any contour stretching in the bulk unless
the end regions have been pulled apart, which is however
limited by longitudinal Stokes friction. The conclusion is
that initially the external stretching force penetrates the
contour only within a boundary layer of size ℓ‖(t), see
fig. 1. This comprises the relevant short-time effect and
motivates the analysis presented in the remainder of the
paper. After introducing model and equations of motion
in sec. 1, we discuss in sec. 2 the stretching dynamics qual-
itatively by means of an intuitive “blob” picture inspired
by the analogon for flexible polymers [20]. Hereby we re-
gard only the special case fext ≫ fpre since it captures
all prominent features of the stretching dynamics. We ob-
tain crossover scaling laws for ℓ‖(t) that are compared to
literature results [13–16]. In sec. 3, we explicitly calculate
tension profiles by solving the equations of motion for the
asymptotic regimes of sec. 2, and point out some incon-
sistencies of previous approaches [13, 16]. In the following
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sec. 4 we present an algorithm to solve the equations of
motion for the tension in intermediate and non-asymptotic
regimes. Analytical and numerical results for experimen-
tally relevant observables such as the change in the poly-
mer’s projected length are presented in the final sec. 5,
where also some experimental implications are shortly dis-
cussed. A more systematic derivation of the asymptotic
equations of motion and their solutions, as well as details
of the numerical approach are shifted to the appendices.

1 Equations of motion

Conformations of wormlike chains are described as contin-
uous space curves r(s, t) of total contour length L. In the
WLC-Hamiltonian [21], bending energy is proportional to
the square of the local curvature.1 We set the proportion-
ality constant (the bending rigidity) κ ≡ 1. Below, we will
also set the friction coefficient (per length) ζ to unity. In
these units, tension is a length−2 and time a length4. The
persistence length of a free WLC in equilibrium is then
given by ℓp = (kBT )−1. We account for the local inex-
tensibility |r′| ≡ |∂sr| = 1 by introducing the backbone
tension f(s, t) as a Lagrange multiplier function [9]. In the
limit of small transverse displacements r⊥ from a straight
line, the corresponding weakly-bending Hamiltonian reads

H =
1

2

∫ L

0

ds[r′′2
⊥ + fr′2

⊥]. (1)

Comparing contributions from bending r2
⊥/l4b and from

tension fr2
⊥/l2b on the scaling level, we infer that on length

scales smaller than the blob size lb ≡ f−1/2 [24] (see
fig. 1), the conformation is dominated by bending forces,
and only on larger scales perturbed by the tension contri-
butions. In equilibrium, each blob carries a stored length
of l2b/ℓp [21], which is simply the thermal contraction com-
pared to the straight conformation. The weakly-bending
assumption requires lb ≪ ℓp. This can be realized both
for short stiff polymers (L ≪ ℓp) and for strongly pre-
stretched flexible WLCs (fpre ≫ ℓ−2

p ).
The overdamped motion of the transverse displace-

ments is described by the equation ∂tr⊥ = −δH/δr⊥+ξ⊥,
which captures the balance of viscous friction, bending
and tension forces resulting from the energy [eq. (1)], and
stochastic noise ξ⊥:

∂tr⊥ = −r′′′′
⊥ + (fr′

⊥)′ + ξ⊥. (2)

Introduced as Lagrange multiplier function, the tension
f(s, t) has to be computed through the inextensibility con-
straint, which makes eq. (2) highly nonlinear. In spite of
that, it can be simplified quite significantly in the weakly-
bending limit [19]: spatial variations in the tension f can
be neglected. It turns thus into a linear equation that can
be decomposed into normal modes,

∂tr⊥ = −q4r⊥ − q2fr⊥ + ξ⊥, (3)

1 Note that this harmonic dependence has lately been under
some debate concerning DNA bending angle distributions on
short length scales [22,23].

and solved using the response function

χ⊥(q; t, t′) = e−q2[q2(t−t′)+
R

t

t′
fdt̃]Θ(t − t′). (4)

Here, Θ(t) is the Heaviside function. This allows to eval-
uate a characteristic quantity of high relevance for our
approach: the stored length density ̺ ≡ 1

2

〈

r′2
⊥

〉

that mea-
sures the average amount of contour length stored in ther-
mal undulations:

̺ =
∑

q

[

̺0(q)χ
2
⊥(q; t, 0) +

2q2

Lℓp

∫ t

0

dt′χ2
⊥(q; t, t′)

]

, (5)

by evaluating the noise correlation
〈

ξ⊥,k(t)ξ⊥,q(t
′)
〉

=
4/(Lℓp)δk,qδ(t− t′). The initial mode spectrum of a poly-
mer equilibrated under the force fpre follows via equipar-
tition from the Hamiltonian [eq. (1)]:

̺0(q) =
1

Lℓp(q2 + fpre)
. (6)

However, as discussed in the introduction and illus-
trated in fig. 1, neither the tension f nor the stored length
density ̺ are in fact spatially constant. Compared to the
“fast” transverse undulations though, their spatial depen-
dence is rather slow and can thus be re-introduced within
an adiabatic approximation. This convenient practice is
rigorously justified by means of a multiple scale analy-
sis in ref. [25]. Its main result is that the curvature in
the spatially slowly varying tension profile is given by
changes in the stored length density ̺(s, t), which inher-
its its slow arclength dependence adiabatically from the
tension f(s, t) via eq. (4):

∂2
sf(s, t) = −∂t̺(s, t). (7)

Integrating eq. (7) over time yields

∂2
sF (s, t) = −[̺(s, t) − ̺(s, 0)], (8)

where we have introduced the integrated tension

F (s, t) ≡
∫ t

0

dt′f(s, t′). (9)

Using eq. (5) with a spatial dependence of ̺(s, t) given
through f(s, t) in the exponent of χ⊥(q; t, t′), and taking
the continuum limit L → ∞, renders eq. (8) in the explicit
form [25]

∂2
sF (s, t) =

∫ ∞

0

dq

πℓp

{

1 − e−2q2[q2t+F (s,t)]

q2 + fpre

− 2q2

∫ t

0

dt′ e−2q2[q2(t−t′)+F (s,t)−F (s,t′)]

}

. (10)

Initial and boundary conditions for our setup are

F (s, t < 0) = fpret and F (0, t) = F (L, t) = fextt. (11)
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f−1/2(s)f(s)

fext

fext

fpre

ℓ‖

f
−1/2
pre

r(s)

s

Fig. 1. Pulling a prestretched filament. Thermal fluctuations
in the contour r(s) are straightened first in a boundary layer

of width ℓ‖(t). At any time t, blobs of size f
−1/2
pre and f−1/2(s)

are associated with the prestretching force fpre and the actual
local backbone tension f(s), respectively.

For a detailed derivation of eq. (10) we refer the in-
terested reader to ref. [25]. Here we only comment on a
few important points. First, a proper decomposition of
eq. (2) into its eigenmodes depends on the choice of bound-
ary conditions and yields, in general, eigenvalues different
from the simple q2[q2 +f ] used here. Second, we are going
to extend eq. (10), which applies to the continuum limit
L → ∞, to “real” polymers of finite length. Both issues are
resolved by recognizing that on short times the relevant
modes have wavelength much shorter than L, that long
wavelengths are initially suppressed by prestretching with
fpre, and that therefore the influence of the boundary con-
ditions and the discreteness of the mode spectrum is small.
Below, we will discuss the relevance of these effects for
pertinent observables. Finally, the underlying scale sep-
aration between small-scale “fast” transverse fluctuations
and large-scale “slow” tension dynamics can be readily ra-
tionalized by observing that the tension varies only over
distances on the order of ℓ‖, which is at any time much
larger than the correlation length for transverse fluctua-
tions [19]:

ℓ⊥(t) ≃
{

t1/4, for t ≪ f−2

(f t)1/2, for t ≫ f−2 (12)

Eq. (12) is easily understood as the expression of the
dynamic force balance between transverse friction forces
r⊥/t and bending r⊥/ℓ4

⊥ or tension terms fr⊥/ℓ2
⊥, respec-

tively, i.e., by analyzing eq. (2) on a scaling level. It dis-
plays the crossover between “free” (bending-dominated)
relaxation within blobs and “forced” (tension-driven) re-
laxation on larger scales.

2 Blob picture of stretching dynamics

A qualitative yet rather thorough understanding of the
nonequilibrium stretching dynamics can be gained already
from the special case fext ≫ fpre, i.e., for the scenario of
a sudden strong increase in stretching force. It is useful to
interpret the correlation length ℓ⊥(t) of eq. (12) as an equi-
libration length for transverse fluctuations. At any time t,

segments of length ℓ⊥ are in equilibrium with their sur-
roundings [15, 19]. Upon applying the external force fext,
the contour starts to stretch within a boundary layer of
size ℓ‖. Decomposing the latter into ℓ‖/ℓ⊥ segments of
length ℓ⊥, the extension δ of each segment in response
to the local tension f(s) can be estimated within equilib-
rium theory. At this point we use the blob picture: the
prestretching force fpre and the local tension f(s), which
builds up after the external force is applied, induce blobs
at different length scales. Associated with the weaker pre-

stretching force are large blobs of constant size f
−1/2
pre , and

the stronger local tension corresponds to small blobs of
varying size f−1/2(s), respectively (see fig. 1). The exten-
sion δ depends on “how many” blobs are contained in a
segment (or vice versa). Three cases can be distinguished
for fext ≫ fpre:

– ℓ⊥ ≪ f−1/2(s): a large number of segments ℓ⊥ are
in either type of blob; hence, bending forces dominate
and the extension follows from linear response [26]:
δ ≃ ℓ4

⊥f(s)/ℓp.

– f−1/2(s) ≪ ℓ⊥ ≪ f
−1/2
pre : segments ℓ⊥ near the bound-

ary are larger than the small blobs corresponding to
the local tension. Hence, they get almost completely
stretched, and essentially all initially stored length is
pulled out. Being still smaller than the large blobs of

size f
−1/2
pre , these segments correspond to short stiff ini-

tially unstretched chains, thus their extension is δ ≃
ℓ2
⊥/ℓp.

– f
−1/2
pre ≪ ℓ⊥: now the segments ℓ⊥ are larger than any

of the blobs and release the stored length of a taut

string of blobs. In a segment, there are ℓ⊥/f
−1/2
pre large

blobs of size f
−1/2
pre each with stored length 1/(ℓpfpre),

hence δ ≃ ℓ⊥/(ℓpf
1/2
pre ).

The above results for the extension δ and eq. (12) for
the length ℓ⊥ of the segments can now be used to estimate
the total stretching (ℓ‖/ℓ⊥)δ of the chain’s boundary layer.
On the scaling level, we can set f(s) = fext for the relevant
segments near the boundary. The size ℓ‖ of the boundary
layer is the central quantity still to be determined. Ac-
cording to its definition, it is obtained by requiring that
the total longitudinal friction on the order of ℓ‖(ℓ‖/ℓ⊥)δ/t
equals the driving force fext, i.e., ℓ‖(t) scales as

ℓ1/2
p t1/8, for t ≪ f−2

ext (13a)

ℓ1/2
p (fext t)1/4, for f−2

ext ≪ t ≪ (fextfpre)
−1 (13b)

ℓ1/2
p f1/4

pre (fext t)1/2, for (fextfpre)
−1 ≪ t. (13c)

The first case [eq. (13a)] has already been derived by
Everaers et al. [15] (EJAM) based on a similar argument.
This universal initial regime also shows up for other force
protocols [19, 27], including the case where fext < fpre.
The second scaling law [eq. (13b)] has first been proposed
by Seifert, Wintz, and Nelson [13] (SWN). This interme-
diate regime emerges if the large and small blobs have
very different size, i.e., either for vanishing prestretching
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Fig. 2. Scaling of the boundary layer size ℓ‖(t) (log-log
scale) for different force ratios fpre/fext = 1/2 (long-dashed),
fpre/fext = 10−4 (short-dashed), and fpre = 0 (solid). ℓ‖ is ex-
tracted from numerical solutions of eq. (10). The asymptotic
scaling laws of eq. (13) are indicated by dark lines.

force or for strong force scale separation fext ≫ fpre. How-
ever, only near the boundary the different blobs differ in
size. Accordingly, the contour stretches significantly only
where the actual tension is already strongly different from
its bulk value fpre. Thus, as pointed out in ref. [14], ten-
sion propagates faster than stretching is achieved. Finally,
for long times t ≫ (fextfpre)

−1, we get a result similar
to the one by Brochard, Buguin, and de Gennes (BBG)
derived in ref. [16], where they assumed the tension to
be locally equilibrated. Note, however, that we obtain a
more detailed force dependence in eq. (13c). In sec. 3 be-
low, this discrepancy is traced back to a subtlety of the
limit fpre → 0. Both results agree only for fext ≈ fpre.

In the latter case, i.e., if the stretching force is changed
only by a small amount ∆f ≡ fext − fpre ≪ fext, the re-
sults for the segment extension δ are reduced by a fac-
tor ∆f/fext. Because the different blobs have then es-
sentially the same size, the force balance argument lead-
ing to eq. (13) (here with the driving force ∆f) yields

only two cases: ℓ‖ ≃ ℓ
1/2
p t1/8 [15] for t ≪ f−2

ext and ℓ‖ ≃
ℓ
1/2
p f

3/4
ext t1/2 [16] for t ≫ f−2

ext. There is no intermediate
t1/4-regime.

Summarizing the preceding discussion, we found inter-
mediate asymptotic scaling laws for the boundary layer
size ℓ‖(t) by estimating the stretching of segments ℓ⊥
within a blob picture and balancing the resulting longitu-
dinal friction with the driving force. As a rule of thumb,
the small blobs corresponding to the stronger force f(s)
decide whether a segment gets stretched “just a little” or
“much”, and the large blobs corresponding to the weaker
force fpre determine how much “much” actually is. To
illustrate the power laws given in eq. (13), numerical re-
sults for ℓ‖(t) are shown in fig. 2, where ℓ‖(t) has been
extracted from tension profiles computed by numerically
solving eq. (10), see sec. 4. The intermediate asymptotic
scaling is clearly visible for small and large times, and the

sL

fpre

fext

f(s)f(s)

fext

fpre

ℓ‖ L s

Fig. 3. Schematic tension profiles for fext > fpre. Left: propa-

gation regime t ≪ t
‖
L. Near the ends, the tension falls off over

the distance ℓ‖ ≪ L and is constant in the bulk. Right: re-

laxation regime t ≫ t
‖
L. The tension relaxes towards its final

equilibrium value f ≡ fext. For times t ≫ t⋆ the difference
between f and fext is small.

t1/4-regime of eq. (13b) appears for very strong force scale
separation only. We proceed with a more detailed discus-
sion based on tension profiles to elucidate the similarities
and differences between our results and previous work.

3 Tension profiles

Instead of repeating the rigorous analysis of eq. (10) pre-
sented in ref. [27] and extending it to deal with two force
scales, we will analyze three different asymptotes of eq. (10)
motivated by physical considerations that lead to the quite
different approximations employed previously [13, 15, 16].
As in sec. 2, we are primarily interested in the case fext ≫
fpre and discuss other possibilities only incidentally. A
more systematic and complete derivation is presented in
appendix A.1. Having motivated these approximations and
derived their asymptotic validity, we will find that the par-
tial integro-differential equation (PIDE) [eq. (10)] reduces
to simpler differential equations that can again be solved
in two regimes (see fig. 3):

1. In the propagation regime t ≪ t
‖
L with t

‖
L defined via

ℓ‖(t
‖
L) = L, the tension profile falls off over the (in-

creasing) distance ℓ‖(t). Because then ℓ‖(t) ≪ L, we
may neglect the presence of a second end, set L → ∞
and work with a so-called “semi-infinite” contour. For
this regime we will show that, using SWN’s and BBG’s
approaches, the resulting differential equations do not
always lead to tension profiles with the required fea-
tures (compare fig. 3), namely that F (s) decays from
fext t (at the boundary) to fpre t (in the bulk) within
a region of size ℓ‖, and that F (s) ≡ fpre t is flat in the
bulk.

2. In the relaxation regime t ≫ t
‖
L, the influence of the

second end cannot be neglected. However, it turns out
that for late times t ≫ t⋆, the resulting tension pro-
file can be obtained by expanding eq. (10) about the
final equilibrium profile: F (s, t) = fext t + δF (s, t).
To lowest order, the correction δF is then a simple
parabola with constant curvature given by the right
hand side of eq. (10) evaluated with F ≡ fext t. The
time t⋆ is the crossover time to a regime t ≫ t⋆ where
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δF ≪ fext t is in fact small, and can therefore be de-
fined via δF (t⋆) ≃ fextt⋆. With one exception, we will

find that t⋆ ≃ t
‖
L. Some of the relaxation regimes have

already been discussed in refs. [19,27] for related force
protocols. We shift their analysis to appendix A.2 and
consider in the following only generically new results.

The scaling of the crossover times t
‖
L and t⋆ between the

respective propagation and relaxation regimes will be de-
rived along the way and is summarized in table 1 below.
It is different for the three approximations analyzed in the
remainder of this section and depends on the magnitude
of fpre and fext relative to the critical force fc = ℓ2

p/L4.

Similar to the well-known Euler buckling force f∗ ∝ L−2

that represents a critical threshold above which forces sig-
nificantly disturb the transverse dynamics [3,19], the force
fc can be seen as threshold force for the longitudinal dy-
namics.

3.1 Linear approximation

The two limits discussed above arise quite naturally within
the linear approximation to eq. (10), which is similar to
the approach by EJAM [15]. It consists in treating the
prestretching force fpre as well as the tension F as small
perturbations with respect to the dynamically relevant
bending contributions. From eq. (12) and its interpreta-
tion we infer that this approximation is justified in the
limit t ≪ f−2. Because the tension f varies between fext

at the boundary and fpre in the bulk, this certainly holds

if t ≪ min(f−2
ext , f

−2
pre). In this case, we approximate the re-

sponse function [eq. (4)] by χ⊥(q; t, t′) ≈ e−2q4t(1−2q2F )
and the initial mode spectrum [eq. (6)] by (q2 + fpre)

−1 ≈
q−2(1 − fpre/q2), and obtain eq. (10) to linear order in F
and fpre as:

∂2
sF (s, t) ≈

∫ ∞

0

dq

πℓp

[

− fpre

q4

(

1 − e−2q4t
)

+ 2F (s, t) − 4q4

∫ t

0

dt′ F (s, t′)e−2q4(t−t′)

]

. (14)

Using the Laplace transform F̃ (s, z) = L{F (s, t)}, this
reads

∂2
s F̃ (s, z) =

∫ ∞

0

dq

πℓp

[

− 2fpre

z(z + 2q4)
+ F̃ (s, z)

2z

z + 2q4

]

,

(15)
which, after performing the q-integral, reduces to:

λ2 ∂2
s F̃ = F̃ − fpre

z2
. (16)

Here, λ(z) = 23/8ℓ
1/2
p z−1/8 is a dynamic length scale de-

noting the size of spatial variations in F̃ (s, z). It is there-
fore directly related to ℓ‖(t). With the boundary condi-

tions F̃ (0, z) = F̃ (L, z) = fext/z2, the solution to eq. (16)

reads

F̃ (s, z) =
∆f

z2

cosh[(L − 2s)/2λ]

cosh(L/2λ)
+

fpre

z2
, (17)

where ∆f ≡ fext − fpre is the force difference.
If L ≫ λ, the tension profile eq. (17) varies only close

to the boundaries, as it is characteristic for the propaga-
tion regime. Near s = 0, it simplifies to

F̃ (s, z) ≈ ∆f

z2
e−s/λ +

fpre

z2
, (18)

which can be backtransformed [27] to

F (s, t) = ∆f t φ(s/ℓ‖(t)) + fpret, (19)

where φ(ξ) ≈ exp[−2−3/8ξ/Γ (15/8)] is a scaling function
that depends only on the ratio ξ = s/ℓ‖(t) with a bound-

ary layer size ℓ‖(t) = ℓ
1/2
p t1/8 that scales as predicted in

eq. (13a). The requirement L ≫ λ translates into t ≪ t
‖
L

with t
‖
L ≃ L8/ℓ4

p.
The relaxation regime corresponds to the complemen-

tary limit L ≪ λ, or equivalently t ≫ t
‖
L. Here we find, as

anticipated, that the tension F (s, t) differs for t ≫ t⋆ from
the flat profile fext t only by a subdominant term δF ≃
fextt

3/4L2/ℓp with a (trivial) parabolic s-dependence. By

evaluating δF (t⋆) = fextt⋆ we find t⋆ ≃ L8/ℓ4
p ≃ t

‖
L. See

appendix A.2 for details.

3.2 Taut-string approximation

In this approximation introduced by SWN [13], bend-
ing and thermal forces are neglected after the prepara-
tion of an initial equilibrium configuration. As discussed
below eq. (12), bending contributions are locally negligi-
ble against tension in the long-time limit t ≫ f−2. The
transverse displacement modes effectively obey ∂tr⊥ =
−q2fr⊥, see eq. (3). The stored length density relaxes as
̺ =

∑

q ̺0(q) exp[−2q2F ], and eq. (7) reads [27]:

∂2
sF =

∫ ∞

0

dq

πℓp

1 − e−2q2F

q2 + fpre
. (20)

Depending on the magnitude of the product fpreF (which
is dimensionless in our units), this has two asymptotes:

∂2
sF ∼







√

2F/πℓ2
p, if fpreF ≪ 1,

1/(2f1/2
pre ℓp), if fpreF ≫ 1.

(21a)

(21b)

These will be discussed only for the propagation regime.
Estimating F ≃ fextt near the boundary, the first

asymptotics is realized for intermediate times f−2
ext ≪ t ≪

(fprefext)
−1. The differential equation (21a) is solved [27]

by the scaling ansatz F (s, t) ≡ fextt φ(s/ℓ‖(t)), with the

boundary layer size ℓ‖(t) = ℓ
1/2
p (fext t)1/4 as in eq. (13b),

which implies t
‖
L ≃ L4/(ℓ2

pfext). This scaling ansatz gives
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a tension that decays within a length ℓ‖(t) as expected,
but does it meet our expectations in the bulk? If fpre = 0,
corresponding to the “pulling”-scenario of ref. [19], the
scaling form F = fextt φ(ξ) with ξ = s/ℓ‖(t) can smoothly

be extended to the bulk tension, which obeys F ≡ ∂2
sF ≡

0 [27]:

φ(ξ) =

[

1 − ξ

(72π)1/4

]4

Θ
(

(72π)1/4 − ξ
)

. (22)

If fpre is finite, however, the bulk tension has nonzero mag-
nitude and eq. (21) would yield nonzero curvature for the
expectedly flat bulk profile. Hence, for finite fpre the taut-
string approximation is not valid along the whole contour,
but only in a finite region near the boundary. In this case
it does not represent an intermediate asymptotic regime of
eq. (10).

The second asymptotics (21b), realized for late times
t ≫ (fprefext)

−1, implies zero curvature for the tension
f = ∂tF everywhere. The relaxation changes its character:
most of the initially excited modes have relaxed (the long-
wavelength contributions have been “cut off” by the pre-
stretching force from the beginning). This corresponds to
an almost completely stretched contour under linearly de-
creasing tension in the boundary layer. However, eq. (21b)
is not sufficient to describe the specific shape of the asso-
ciated tension profiles which have to be constant in the
bulk. One needs to include thermal noise.2

3.3 Quasi-static approximation

The preceding paragraph revealed a problem with the
taut-string approximation for f2t ≫ 1 and fpreF ≫ 1:
the right hand side of eq. (21b) becomes time-independent
and the deterministic relaxation saturates, so that the sub-
sequent dynamics is purely of stochastic origin. This al-
lows to simplify it as a quasi-equilibrium process. Follow-
ing the approach of BBG [16], one can assume the fila-
ment to be equilibrated under the local tension f(s, t) =
∂tF (s, t). From the continuum approximation to eq. (6),

the stored length density is ̺ =
∫ dq

πℓp
(q2 + ∂tF )−1 =

(∂tF )−1/2/(2ℓp). According to eq. (8), this adds a small
but relevant contribution to eq. (21b) [27]:

∂2
sF =

1

2ℓp

[

f−1/2
pre − (∂tF )−1/2

]

. (23)

By taking a time derivative we get

∂2
sf =

∂tf

4ℓpf3/2
. (24)

We discuss the quasi-static approximation both for the
propagation and the relaxation regime.

2 SWN’s “noiseless” simulations [13] for a prestretched chain
yield the correct scaling ℓ‖(t) ∝ t1/2 and linear tension pro-
files, but (as their scaling argument indicates) a straight string
drawn through a viscous solvent gives a linear profile, irrespec-
tive of thermal noise.
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Fig. 4. Numerical solutions of eq. (25) for the scaling func-
tion ϕ(ξ) of the tension profile f(s, t). (a) Plot of the slope
∂ξϕ(0) at the boundary (solid line) vs. force ratio c =
fpre/fext (log-scale) with analytical asymptotes for c → 0 and
c → ∞, respectively (dashed lines). (b) The scaling func-
tions (c = 2, 4, 10, 20, 100, 1000 from top to bottom) asymp-
totically collapse for c → ∞ if the abscissa is rescaled by
c−3/4 and the ordinate by c−1. (c) The scaling functions
(c = .5, .25, .1, .05, .01, .001 from top to bottom) asymptoti-
cally collapse onto a piecewise linear profile for c → 0 if the
abscissa is rescaled by c−1/4.

Propagation regime. Here we insert the scaling ansatz
f(s, t) ≡ fextϕ(ξ) with ξ = s/ℓ∗‖(t) and the tentative scal-

ing ℓ∗‖(t) = ℓ
1/2
p f

3/4
ext t1/2 as proposed by BBG. This leads

to an ordinary differential equation

∂2
ξ ϕ = −1

8
ξϕ−3/2∂ξϕ. (25)

Boundary conditions are ϕ(0) = 1 and ϕ(ξ → ∞) = c
where c ≡ fpre/fext is the force ratio. This is the same
equation as eq. (18) of ref. [16], safe for a factor 1

4 due to
a slightly different definition of the scaling variable ξ. We
have solved it numerically by a shooting method. Starting
with ϕ(0) = 1, it is integrated forward, adjusting the slope
∂ξϕ(0) at the left boundary in order to fulfill the second
boundary condition. The dependence of the slope ∂ξϕ(0)
on the force ratio c is shown in fig. 4(a), together with
the asymptotes for c → ∞ and c → 0, respectively. These
shall now be analyzed in more detail.

The case c > 1 corresponds to a stretching force fext <
fpre that is decreased at t = 0, i.e., a “sudden release”-
scenario as in refs. [16, 19, 27]. Since fpre is the relevant
force scale, the scaling ansatz is more appropriately writ-
ten as f(s, t) = c fextϕ(c−3/4ξ). Now we can safely take
the limit c → ∞ (fext → 0) describing the case where
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the force is switched off completely,3 because the artificial
c1/4-divergence in ∂ξϕ(0) has been removed. The resulting

boundary layer size scales like ℓ‖(t) ≃ ℓ
1/2
p f

3/4
pre t1/2 as in

ref. [16] and the corresponding scaling functions, shown in
fig. 4(b), smoothly converge to the solutions depicted in
refs. [16, 27].

The opposite limit c → 0 is more subtle. Although
it is not obvious from eq. (25), we may not simply set
fpre = 0 as in ref. [16], since then the condition fpreF ≫ 1
in eq. (21b) cannot be met. Moreover, considering the
limit c → 0 with fpre > 0 fixed instead, our numerical
results (fig. 4(a)) indicate that the initial slope ∂ξϕ(0) di-

verges like c−1/4. This suggests the scaling variable η ≡
c−1/4ξ = s/ℓ‖(t) with the new boundary layer scaling

ℓ‖(t) = c1/4ℓ∗‖(t) = ℓ
1/2
p f

1/4
pre (fextt)

1/2 as anticipated in

eq. (13c). We can further rationalize this asymptotic scal-
ing by inserting the improved scaling ansatz F (s, t) =
fextt φ(η) into eq. (23), which gives ∂2

ηφ(η) = 1
2 +O(c1/2).

In the limit c → 0, the scaling function φ is parabolic in
the boundary region η ∈ [0, 2], and the scaling function
ϕ = φ− 1

2η∂ηφ = 1− 1
2η for the tension f becomes linear.

Numerical solutions to eq. (25) in terms of η = ξc−1/4 in
fact tend towards a piecewise linear function with a kink
fixed at η = 2 (see fig. 4(c)), hence the kink is moving
towards vanishing ξ = c1/4η as c → 0. This reveals that
the limit c → 0 cannot properly be taken in terms of the
original scaling variable ξ, because eq. (23) and therefore
eq. (25) become invalid if c = fpre/fext = 0.

Relaxation regime. In the relaxation regime t ≫ t⋆ we
expect the tension to deviate only slighly from the flat
equilibrium profile F ≡ fext t, see fig. 3. We therefore write
F (s, t) = fext t+δF (s, t) and expand eq. (23), which gives
the time-independent correction:

δF =
1

4ℓp

[

f−1/2
pre − f

−1/2
ext

]

s(s − L). (26)

This result has two significant implications. First of all, in
order to estimate the time t⋆ beyond which δF becomes
small compared to fext t, we evaluate δF (t⋆) = fext t⋆ and

find that not always t⋆ ≃ t
‖
L, see the last two rows of

table 1. We find for fpre ≫ fext and fpre ≫ fc another

intermediate regime t
‖
L ≪ t ≪ t⋆ of homogeneous ten-

sion relaxation, where the tension f has a more compli-
cated than just parabolic spatial dependence and the sim-
ple ansatz F (s, t) = fext t + δF (s, t) for the relaxation
regimes does not work. This has been attributed [19] to
the fact that longitudinal friction may play an essential

role also for times t ≫ t
‖
L beyond the propagation regime

and significantly slow down the relaxation. Safe for small

3 If for strongly prestretched “flexible WLC” with ℓp ≪ L
and fpre ≫ ℓ−2

p the external force is decreased too much
(fext . ℓ−2

p ), the weakly-bending approximation eventually
breaks down near the ends as the tension decreases. This re-
stricts the applicability of our analysis to the dynamics of those
observables that are insensitive to boundary contributions [27].

t
‖
L t⋆

fpre ≪ fext ≪ fc
L8/ℓ4p

fext ≪ fpre ≪ fc

fpre ≪ fc ≪ fext L4/(ℓ2pfext)

fc ≪ fpre ≪ fext L2/(ℓpf
1/2
pre fext)

fext ≪ fc ≪ fpre

L2/(ℓpf
3/2
pre )

L8/ℓ4p

fc ≪ fext ≪ fpre L2/(ℓpf
3/2

ext )

Table 1. Crossover times t
‖
L and t⋆ depending on the magni-

tude of fpre and fext relative to the critical force fc = ℓ2p/L4.

correction terms (see appendix A.2), our results for the
homogeneous relaxation regime are identical to the “sud-
den release”-case fext = 0 discussed in ref. [27].

Secondly, a time-independent correction δF of the in-
tegrated tension yields an actual tension f = ∂tF that
(to leading order) does not deviate at all from the flat
equilibrium profile f ≡ fext. The relaxation dynamics sat-
urates prematurely to equilibrium, i.e., at times t ≃ t⋆
long before the longest bending mode has relaxed (see
also eq. (37) below). This behavior arises within a sce-
nario where a strong stretching force fpre ≫ fc is changed
to fext ≫ fc but remains strong. Hence, there is no need
to destroy (create) long-wavelength contributions in the
mode spectrum of the stored length (see eq. (6)) as in
the “pulling”(“release”)-scenario of ref. [19]. By taking the
next-to-leading order term in the quasi-static approxima-
tion [eq. (23)] (cf. appendix A.2), we find an improved cor-
rection term that captures the slow diffusive relaxation of
the remaining long-wavelength modes:

δF (s, t) =
1

4ℓp

(

f−1/2
pre − f

−1/2
ext

)

s(s − L)

− 1

4ℓp

f−1
pre − f−1

ext√
2π(fext t)1/2

s(s − L). (26’)

Having discussed some of the asymptotic solutions to
eq. (10) resulting from the linear, the taut-string, and the
quasi-static approximation, respectively, we now present
a numerical approach to solve eq. (10).

4 Numerical approach

While the intermediate asymptotes of eq. (10) serve to
expose the relevant physics involved in the relaxation pro-
cess, experiments on the biopolymers we have in mind
are usually performed in intermediate, non-asymptotic pa-
rameter ranges. Therefore we devised a numerical scheme
to solve the nonlinear PIDE [eq. (10)] under very general
initial and boundary conditions, allowing eq. (10) to be
applied to far more scenarios than just the ones analyzed
in this work.

Numerical solutions of eq. (10) are written in terms
of dimensionless variables. Here, we use a characteristic
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length scale sc specified when necessary, and the time and
force scales tf = f−2

ext and fext, respectively. The integrated
tension is written as

F (s, t) ≡ fext t Φ

(

s

sc
,

t

tf

)

, (27)

and the actual tension profile is then extracted via

f(s, t) = fext ϕ(σ, τ) ≡ fext ∂τ [τΦ(σ, τ)]. (28)

Inserting the scaling form [eq. (27)] into eq. (10) and
rescaling q = q̃

√
fext and t′ = zt, we are left with

Λ2 ∂2
σΦ(σ, τ) =

∫ ∞

0

dq̃

π

[

1 − e−2q̃2τ [q̃2+Φ(σ,τ)]

τ(q̃2 + c)

− 2q̃2

∫ 1

0

dz e−2q̃2τ [q̃2(1−z)+Φ(σ,τ)−zΦ(σ,τz)]

]

. (29)

The remaining parameters are

Λ2 = ℓp/(f
1/2
ext s2

c) and c = fpre/fext. (30)

For the “semi-infinite” polymers with L → ∞ we use Λ2 =

1 by choosing sc = ℓ
1/2
p f

−1/4
ext , while in the finite case the

appropriate choice is sc = L.
Our strategy is as follows. Given the initial condition

ϕ(σ, 0) ≡ ϕ0(σ) and appropriate linear boundary condi-
tions for the respective scenario, we introduce a discretized
time coordinate τn for n = 0, . . .N . At each time step τn

we obtain a two-point boundary value problem:

∂2
σΦ(σ, τn) = G[Φ(σ, τk)k≤n]. (31a)

The nonlinear term G depends also on “earlier” solutions
Φ(σ, τk) with k ≤ n. We allow arbitrary linear boundary
conditions incorporated via 6 coefficients αjk:

α00Φ(0, τn) + α01∂σΦ(0, τn) = α02 (31b)

α10Φ(σM , τn) + α11∂σΦ(σM , τn) = α12. (31c)

These boundary value problems [eq. (31)] are solved by
transforming to a system of nonlinear equations using the
discretized arclength coordinate σm for m = 0, . . .M , and
discrete representations for the differential operators ∂σ

and ∂2
σ. For details see Appendix B.

Given numerical solutions to eq. (10), it is straightfor-
ward to obtain results for pertinent observables.

5 Results for the change in projected length

The observable of highest interest in experiments is cer-
tainly the change in end-to-end distance. Since the sudden
change in stretching force (from fpre to fext) induces the
creation or destruction of stored length, and since the to-
tal contour length is conserved, we can simply evaluate the

change in end-to-end distance (approximated by its pro-
jection onto the longitudinal reference axis) by integrating
up the total difference in stored length:

∆R‖(t) = −
∫ L

0

ds [̺(s, t) − ̺(s, 0)]

=

∫ L

0

ds ∂2
sF (s, t)

= F ′(L, t) − F ′(0, t).

(32)

Here we have used eq. (8) to relate the change in stored
length to the curvature of the integrated tension F . The
notation ∆R‖(t) serves as a remainder of the fact that

∆R‖(t) includes only bulk contributions. The “real” change

in projected end-to-end distance
〈

∆R‖(t)
〉

measured in
experiments also contains end contributions that depend
on the choice of boundary conditions which we have ne-
glected in our approximate mode decomposition of eq. (2).
However, a careful analysis [27] shows that for hinged or
clamped ends and a sufficiently large prestretching force
fpre ≫ L−2 these contributions vanish. For the “semi-
infinite” polymers discussed above we neglected the pres-
ence of a second end; here we can exploit the symmetry
of the setup and use ∆R‖(t) = −2F ′(0, t).

5.1 Analytical results

Given the two forces fext and fpre, and the additional force
scale fc, the sequence of asymptotic regimes realized for a
specific choice of parameters depends on their respective
ratios and is in general quite complicated, see also table 1.
Relaxing the condition fext > fpre of sec. 2, we chose to
first illustrate schematically the general dependence on
the force ratio fpre/fext since the systematic investigation
of its influence is the major novelty of this work. With
our numerical results, we will then demonstrate the de-
pendence on the polymer length (more specifically, on the
parameter Λ2 of eq. (30)) for fixed force ratio.

Using eq. (32), we summarized the asymptotic growth
laws for ∆R‖(t) resulting from the tension profiles com-
puted in sec. 3 in two phase diagrams. We illustrate the
growth laws for ∆R‖(t) as boxed formulas in their re-
spective asymptotic regime depending on the force ratio

fpre/fext in fig. 5 for the propagation regime (t ≪ t
‖
L) and

in fig. 6 for the relaxation regime (t ≫ t⋆), respectively.
Given a specific force ratio, the evolution of ∆R‖(t) corre-

sponds to a vertical line through fig. 5 until t ≃ t
‖
L where

it crosses over to the relaxation regimes (t ≫ t⋆) depicted

in fig. 6, since in most cases t
‖
L ≃ t⋆.

Let us first turn to the propagation regimes of fig. 5.
In the universal initial regime (light shaded) the scaling is
linear in the force difference ∆f = fext−fpre, see eq. (19);
it is followed by a quasi-static regime (white) with different
force scaling for asymptotically small (<) and large (>)
force ratio; in these limits, we find analytical values for
the prefactors b> and b< as shown in the figure caption.
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Fig. 5. Regimes of intermediate asymptotics (separated by
thick black lines) for the bulk contribution to the change in
end-to-end distance ∆R‖(t) (boxed formulas) in the propaga-

tion regime t ≪ t
‖
L; time t/f−2

ext vs. force ratio fpre/fext (log-
log scale). Asymptotic values for the prefactors are b< ∼ 2,
b> ∼ −2.48, and a = 4(2/π)
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3. See text for explanation.
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ext
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√
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π

L
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1/2

2
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Γ(1/4)
L
ℓp

t
1/4

∆Req
‖ + O(∆f t−

1/2)

Fig. 6. Regimes of intermediate asymptotics for ∆R‖(t) as in
fig. 5, but here for the relaxation regime t ≫ t⋆. See text for
explanation.

The general formula follows from eq. (23) and reads

∆R‖(t) = −4∂ξϕ(0)ℓ−1/2
p f

1/4
ext t1/2, (33)

where the dependence of the slope ∂ξϕ(0) on the force
ratio c = fpre/fext is depicted in fig. 4. The intermedi-
ate taut-string region (dark shaded) emerges only for very
small force ratio. Here the analytical value for the prefac-
tor a applies to the case fpre = 0.

Except for the case fpre ≫ fext, fc, the propagation-

relaxation crossover at t ≃ t
‖
L leads directly to the regimes

depicted in fig. 6. Here we find again a short-time regime
linear in ∆f , followed by two different intermediate regimes:
the one with small fpre/fext connects to the “pulling”-case

(fpre = 0), the other with large force ratio connects to the
“release”-case (fext = 0) of ref. [27], respectively. In the
final regime t ≫ t⋆ with fext, fpre ≫ fc, the to leading
order time-independent correction δF to the equilibrium
tension profile [eq. (26)] implies via eq. (32) that ∆R‖(t)
prematurely attains its equilibrium value

∆Req
‖ =

L

2ℓp

[

f−1/2
pre − f

−1/2
ext

]

. (34)

From eq. (26’) we find the subdominant correction term

∆R‖(t) = ∆Req
‖ − ∆f L

√
32πℓpfpref

3/2
ext t1/2

. (35)

The intermediate regime of homogeneous tension re-

laxation t
‖
L ≪ t ≪ t⋆ is discussed in ref. [27] and Ap-

pendix A.2. For fpre ≫ fc, fext we obtain from eqs. (56b,32)
the expansion:

∆R‖(t) = −
(

18Lt

ℓ2
p

)1/3

+ LO
(

(t/t⋆)
2/3

)

. (36)

5.2 Numerical results

Using the algorithm outlined in sec. 4, we solved eq. (29)
assuming a polymer of finite length L for various values
of the two parameters c and Λ2. The observable ∆R‖(t) is
then extracted from the slope of the profile at s = 0 and
s = L via eq. (32). As we analyzed the effect of the ratio
fpre/fext of the two force scales present in our scenario in
the previous sec. 5.1, we concentrate now on the magni-
tude of the force fext relative to the critical force fc via the
control parameter Λ2 =

√

fc/fext for fixed ratio fpre/fext.
In fig. 7, we depict results for fpre/fext = 10−4 and vari-
ous values of Λ2, i.e., for a sudden increase in stretching
force. One can discern the intermediate regime at times
f−2
ext ≪ t ≪ (fextfpre)

−1, which vanishes if the stretch-
ing force is changed only slightly. In the limit fpre = 0, it

connects to the “nonlinear MSPT” propagation (t ≪ t
‖
L)

and “nonlinear OPT” relaxation (t ≫ t⋆) regimes of the
“pulling”-scenario discussed in ref. [19], respectively. Fig. 8
shows results for the inverse scenario, a sudden decrease in
the stretching force, with fpre/fext = 104. Here, the time

window f−2
pre ≪ t ≪ f−2

ext produces a separate asymptotic
regime only in the relaxation phase which connects to the
regime of nonlinear OPT relaxation [19] of the “release”-

scenario if fext = 0. The time window t
‖
L ≪ t ≪ t⋆ for the

regime of homogeneous tension relaxation with its t1/3-
scaling gets broader as fpre/fext → ∞.

Because of purely numerical noise in figs. 7 and 8,
we have replaced the long-time asymptote of ∆R‖(t) for

Λ2 ≫ 1 with dotted straight lines, because the subdomi-
nant O(t−1/2)-corrections in eq. (35) become smaller than
the numerical resolution and it is not possible anymore to
reliably evaluate eq. (32). The dashed lines in figs. 7 and
8 indicate the asymptotic growth laws for ∆R‖(t) in the
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(lower). See table 1. The dashed lines indicate the asymptotic
power laws of figs. 5 and 6, and of eq. (36).

respective regimes summarized in figs. 5 and 6. By actu-
ally collapsing the corresponding tension profiles onto the
scaling functions derived in sec. 3 and appendix A.2, we
find excellent quantitative confirmation of our analytical
approximations in the suitable asymptotic limits (results
not shown).

5.3 Experimental implications

The numerical results for ∆R‖(t) as shown in figs. 7 and
8 over 20 time decades confirm the intermediate asymp-

totics of eq. (10). They can also be used to fit actual
experiments, if one keeps in mind that these unbounded
asymptotic growth laws arise from superponing the ex-
ponential relaxation of (infinitely) many modes of wave-
length 0 < q < ∞ with relaxation times τq ≃ q−2/(q2+f),
see the response function χ⊥(q; t, t′) [eq. (4)]. A real poly-
mer provides mode cutoffs at qmax ≃ π/a where a is some
microscopic length scale (say, the polymer thickness) and
at qmin ≃ π/L. The latter cutoff defines a time scale t⊥L ,
which is the relaxation time of the longest bending mode:

t⊥L ≃
{

L4, if fext ≪ L−2,

L2f−1
ext , if fext ≫ L−2.

(37)

For times beyond t⊥L , the continuum limit L → ∞, i.e.,
disregarding the proper boundary condition and the dis-
creteness of the mode spectrum, becomes invalid; the al-
gebraic relaxation ends and is followed by normal expo-

nential relaxation. Since the crossover times t
‖
L, t⋆, and t⊥L

depend quite strongly on experimental control parameters
such as stretching force, filament length, and persistence
length, it is nevertheless possible to cover a broad win-
dow of stretching and relaxation dynamics (t ≪ t⊥L ) by
adjusting these parameters. Our numerical solutions can
easily be adapted to the specific experimental setup at
hand and provide a quantitative description without free
parameters.

6 Conclusions

We have analyzed the generic scenario of a semiflexible
filament prestretched with a force fpre that is suddenly
changed to fext. Related setups involving only one force
scale have been discussed previously [13–16], but with di-
verse results based on partially contradicting approxima-
tions. Extending a systematic theory in terms of backbone
tension [19] to include two force scales allows to resolve
these discrepancies. Based on this tension formalism (for
its detailed formulation see ref. [25]), we derived equations
of motion and motivated an intuitive blob-picture in or-
der to estimate growth laws for a central quantity, the
boundary layer size or tension propagation length ℓ‖(t),
which is a measure for how far (or how fast) longitudinal
correlations spread along the filament. The scaling laws
[eq. (13)] for ℓ‖(t) have been confirmed by computing ten-
sion profiles as scaling solutions to asymptotic differential
equations. We find that, for times beyond the initial linear
regime, which is dominated by the relaxation of very stiff
bending modes, the prestretching force fpre has a signifi-
cant influence. If fpre = 0, slowly relaxing long-wavelength
contributions in the initial conformation resist equilibra-
tion and dominate the relaxation process: the taut-string
approximation applies. If fpre is finite, these modes are re-
moved from the initial configuration. Hence, the dynam-
ics equilibrates locally, which allows for a quasi-static ap-
proximation. Only if fpre ≪ fext is very small, there is
a crossover from the former to the latter situation. The
limiting single-force cases fext = 0 and fpre = 0, respec-
tively, analyzed in detail in ref. [27], were also recovered.
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However, the associated limits were found to be highly
nontrivial, which is reflected quite subtly in the corre-
sponding equations of motion for the tension. These equa-
tions follow systematically from the general eq. (10), while
the blob picture provides a more intuitive understanding
of the underlying process and the complicated interme-
diate asymptotics it produces. We presented a numerical
algorithm to solve eq. (10) for very general initial and
boundary conditions, derived new predictions for exper-
imentally relevant observables and checked them against
numerical solutions. Finally, the applicability of our re-
sults to experiments was discussed. Our findings for the
scenario analyzed in this work should be relevant for the
viscoelastic response of more complex structures such as
biopolymer networks [2, 5]. Further, we argue that the
above established dependence of the relaxation process on
the initial conditions also generalizes to other force pro-
tocols, such as (weakly) time-dependent external forces,
transverse forces, elongational flows, or scenarios involv-
ing sudden temperature changes.

We gratefully acknowledge financial support via the German
Academic Exchange Program (DAAD) (OH), by the Deutsche
Forschungsgemeinschaft through grant no. Ha 5163/1 (OH)
and SFB 486 (BO, EF), of the German Excellence Initiative
via the program “Nanosystems Initiative Munich (NIM)” (BO,
EF), and through BayEFG (BO).

A Analytical approach (details)

A.1 Asymptotes of eq. (10)

Following the analysis of ref. [27], we note that the Fourier
integrals in eq. (10) are dominated by wavenumbers near a
qm where the exponents are of order 1. Explicitly, we find
for given time t and integrated tension F the asymptotes:

qm ≃
{

t−1/4, if F 2/t ≪ 1

F−1/2, if F 2/t ≫ 1

(38a)

(38b)

Observing that qm ≃ ℓ−1
⊥ scales like the inverse of the

equilibration length ℓ⊥ [eq. (12)], we conclude that the
first asymptote comprises free (bending-dominated) relax-
ation where in the response function [eq. (4)] the tension
contribution q2F is subdominant, whereas the second one
corresponds to forced (tension-driven) relaxation with the
subdominant bending contribution q4t.

Secondly, we write eq. (10) as

∂2
sF = D − S. (39)

The two contributions creating curvature in the tension
profile have a direct physical interpretation.

D =

∫ ∞

0

dq

πℓp

1 − e−2q2[q2t+F (s,t)]

q2 + fpre
, (40a)

is of deterministic origin since it expresses the relaxation
of initially excited modes for a polymer equilibrated under

the force fpre. The second term

S =

∫ ∞

0

dq

πℓp
2q2

∫ t

0

dt′ e−2q2[q2(t−t′)+F (s,t)−F (s,t′)] (40b)

is of stochastic origin since it comprises the accumulated
influence of thermal excitations from times t′ < t mediated
with the response function χ⊥ [eq. (4)]. With the general
distinction [eq. (38)] in mind, we first turn our attention
to the term D. In the bending-dominated case [eq. (38a)]
with F 2/t ≪ 1, we neglect the tension contribution q2F
in the exponent and obtain

D ≈ D1 =

∫ ∞

0

dq

πℓp

1 − e−2q4t

q2 + fpre
if F 2/t ≪ 1, (41)

which possesses, depending on the magnitude of fpre, the
two asymptotes

D1,a ≈ 23/4t1/4

Γ (1/4) ℓp
if f2

pret ≪ 1, F 2/t ≪ 1 (42a)

D1,b ≈
1

2ℓpf
1/2
pre

if f2
pret ≫ 1, F 2/t ≪ 1. (42b)

In the tension-driven regime F 2/t ≫ 1, on the other hand,
we get for D by neglecting the bending contribution q4t

D ≈ D2 =

∫ ∞

0

dq

πℓp

1 − e−2q2F

q2 + fpre
if F 2/t ≫ 1, (43)

which can be expanded for asymptotically small or large
ratios of the product Ffpre. The leading-order terms are

D2,a ≈
√

2F

πℓ2
p

if Ffpre ≪ 1, F 2/t ≫ 1 (44a)

D2,b ≈
1

2ℓpf
1/2
pre

if Ffpre ≫ 1, F 2/t ≫ 1. (44b)

The stochastic term S is simpler. In the regime F 2/t ≪
1 we neglect the tension terms and simplify

S ≈ S1 =

∫ ∞

0

dq

πℓp
2q2

∫ t

0

dt′ e−2q4(t−t′)

=

∫ ∞

0

dq

πℓp

1 − e−2q4t

q2

=
23/4t1/4

Γ (1/4) ℓp
, if F 2/t ≪ 1.

(45)

For F 2/t ≫ 1, the t′-integral in the stochastic term S is
dominated by contributions near the upper limit and we
can linearize F (s, t) − F (s, t′) ≈ ∂tF (s, t)(t − t′):

S ≈ S2 =

∫ ∞

0

dq

πℓp
2q2

∫ t

0

dt′ e−2q2(t−t′)[q2+∂tF ]

=

∫ ∞

0

dq

πℓp

1 − e−2q2t[q2+∂tF ]

q2 + ∂tF

≈
∫ ∞

0

dq

πℓp

1

q2 + ∂tF

=
1

2ℓp

√
∂tF

, if F 2/t ≫ 1.

(46)
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In the third line we neglected the exponential in the limit
F 2/t ≫ 1, which expresses the instantaneous equilibration
underlying the quasi-static approximation of ref. [16]; this
is an expansion similar to the one leading to eq. (44b).

A.2 Aymptotic equations of motion and solutions for
the relaxation regime

The asymptotic forms of eq. (10) used in sec. 3 were mo-
tivated physically and based on approximations employed
previously [13, 15, 16], but can also systematically be de-
rived. The right hand side D−S of eq. (39) was analyzed in
app. A.1 for asymptotes of the deterministic and stochas-
tic term D and S, respectively, see eqs. (42,44,45,46). Now
we can treat these various limits separately and find so-
lutions for the relaxation regimes omitted in sec. 3. For
t ≫ t⋆ we can exploit the fact that in this time regime
the tension deviates only by a small correction δF from
the flat equilibrium profile fextt. It is therefore possible to
expand the right hand side of eq. (10) about this constant,
which to lowest order gives ∂2

sδF ≈ [D − S]F→fextt
.

1. If F 2/t ≪ 1 and f2
pret ≪ 1, we obtain D ≈ D1,a and

S ≈ S1, which cancel to leading order. But since the
preconditions imply small F and fpre, the right-hand-
side of eq. (39) can be linearized with respect to these
quantities. This was performed in sec. 3.1, see eq. (14),
and lead via a Laplace transform to the tension profile
eq. (17). In the relaxation regime L ≪ λ with λ(z) =

23/8ℓ
1/2
p z−1/8, we obtain the following tension profile:

F̃ (s, z) =
fext

z2
+

∆f

z2

s(s − L)

2λ2
. (47)

Backtransforming, we get

F (s, t) = fextt +
∆f t3/4

27/4Γ (7/4) ℓp
s(s − L), (48)

i.e., a small correction δF to the equilibrium tension
fextt if t ≫ t⋆ = L8/ℓ4

p.

2. F 2/t ≪ 1 and f2
pret ≫ 1 gives D ≈ D1,b and S ≈ S1,

hence
∂2

sF = D1,b − S1 ≈ −S1. (49)

This implies constant curvature (no propagation) in
the time regime f−2

pre ≪ t ≪ f−2
ext . The tension reads

F (s, t) = fextt +
2−1/4t1/4s(s − L)

Γ (1/4) ℓp
. (50)

3. F 2/t ≫ 1 and Ffpre ≪ 1 yields

∂2
sF ≈ D2,a − S2 ≈ D2,a, (51)

which comprises the taut-string case [eq. (21a)]. We
discussed the propagation regime in sec. (3.2); the re-
laxation regime follows by writing F (s, t) = fextt +
δF (s, t) and expanding, which yields

δF (s, t) =
(fextt)

1/2

√
8πℓp

s(s − L). (52)

4. F 2/t ≫ 1 and Ffpre ≫ 1 leads to

∂2
sF ≈ D2,b − S2, (53)

which corresponds to the quasi-static approximation

[eq. (23)]. We discussed the propagation regime t ≪ t
‖
L

and the regime of premature tension saturation t ≫ t⋆
in sec. 3.3. In the latter case, we used for eq. (26’) the
next-to-leading order terms of the asymptotic expan-
sions eqs. (44b,46). For fpre ≫ fext and fpre ≫ fc re-

mains an intermediate regime t
‖
L ≪ t ≪ t⋆ of homoge-

neous tension relaxation, see table 1. It turns out to be
very related to the “release”-case fext = 0 of ref. [27].
It is not possible to expand F (s, t) = fext t+ δF , since
the correction δF is for t ≪ t⋆ not (yet) small com-
pared to fext t. However, as in ref. [27] for fext = 0, we
can solve eq. (24) using the separation ansatz f(s, t) =
g(t)h(s/L) and compute correction terms in the limit
fpre ≫ fext. Disregarding the proper initial conditions
and assuming Dirichlet boundary conditions for the
moment, we find that asymptotically

g(t) ∼
(

L2

ℓpt

)2/3

. (54)

Although this is a decreasing function of time, we find
that if t ≪ L8/ℓ4

p the preconditions (f2t ≫ 1 and
Ffpre ≫ 1) that lead to the asymptotic eq. (24) are
fulfilled. In order to correct the Dirichlet boundary
conditions assumed above to h(0) = h(1) = γ(t) ≡
fext/g(t), we require that t ≪ L2/(ℓpf

3/2
ext ) which makes

γ ≪ 1. Both conditions reduce to t ≪ t⋆, cf. table 1.
The roughly parabolic profile h(σ) is a solution of

h′′ = − 1

6h1/2
, with h(0) = h(1) = γ(t), (55)

where a subdominant time-dependence stems from the
small correction term γ(t) to the Dirichlet boundary
conditions. It has the following characteristics:

h(1/2) =
1

16

(

3

2

)2/3

+
1

2
γ + O(γ3/2), (56a)

h′(0) = 12−1/3 −
(

2
3

)2/3
γ1/2 + O(γ3/2). (56b)

B Numerical approach (details)

B.1 Evaluation of the nonlinear term

The computation of the nonlinear term G with its de-
pendence on Φ(σ, τk) requires to evaluate the z-integral
in eq. (29). This can be done analytically, if a piecewise
linear interpolation is used in the exponent:

Φ(σ, τn) − zΦ(σ, zτn) ≈ Ak + Bk(zk+1 − z), (57)

for an index k ∈ [0, n − 1] such that τk ≤ τnz ≤ τk+1 and
with zk = τk/τn. The linearization coefficients are

Ak = Φ(σ, τn) − zk+1Φ(σ, τk+1)

Bk = Φ(σ, τk+1) + zk+1
Φ(σ, τk+1) − Φ(σ, τk)

zk+1 − zk
.

(58)
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With the linearization (57), G[Φ(σ, τn)] is expressed as:

G[Φ(σ, τn)] =

∫ ∞

0

dq̃

π

[

1 − e−2q̃2τn[q̃2+Φ(σ,τn)]

τn(q̃2 + c)

]

+
n−1
∑

k=0

∫ ∞

0

dq̃

π

[

e−2q̃2τn[q̃2(1−zk+1)+Ak]

× e−2q̃2τn(zk+1−zk)[q̃2+Bk] − 1

τn(q̃2 + Bk)

]

. (59)

It turns out that the nonlinear problems [eq. (31)] are
ill-conditioned in many cases. Their solutions are strongly
affected by numerical errors and often the algorithms used
to solve these problems fail to converge. Hence, it is neces-
sary to evaluate the nonlinear term [eq. (59)] as accurately
as possible. In order to represent the intermediate asymp-
totic regimes, the variables τ and Φ have to vary over many
orders of magnitude. Thus, in eq. (59), we have to take
care of overflow/underflow artefacts from the exponential
functions. For the numerical evaluation of the q̃-integrals,
we need to make sure that the dominant contribution from
modes near qm = q̃m

√
fext is properly taken into account;

see eq. (38).

B.2 Nonlinear boundary value problems

When solving a two-point boundary value problem with
general mixed linear boundary conditions such as eq. (31)
(where we omit the dependence on τn), the problem is
mapped to a system of nonlinear equations. Writing the
values Φ(σm) ≡ Φm, where m = 0, . . . , M , as vector Φ =
(Φ0, . . . , ΦM )T , the problem can be posed as

T (Φ) = 0. (60)

The nonlinear operator T is defined via the residuals of
eq. (31):

(T (Φ))m = ∆mΦ − G[Φm], m = 1, . . . , M − 1

(T (Φ))0 = α00Φ0 + α01D
+
0 Φ − α02 (61)

(T (Φ))M = α10ΦM + α11D
−
MΦ − α12

Here, we have used discrete representations of the differ-
ential operators ∂σ and ∂2

σ. For the possibly non-uniformly
discretized coordinate σm with local stepsize h+

m = σm+1−
σm and h−

m = σm − σm−1, they are given by:

∆mΦ =
2

h−
m(h−

m + h+
m)

Φm−1 −
2

h−
mh+

m
Φm

+
2

h+
m(h−

m + h+
m)

Φm+1

D+
0 Φ =

1

h+
0

(Φ1 − Φ0)

D−
MΦ =

1

h−
M

(ΦM − ΦM−1)

(62)

In the formulation [eq. (60)] our task is to find the
zero of T in the vector space of discrete function rep-
resentations Φ. The common strategies are all based on
Newton’s method [28]. Given an initial guess Φ0, this it-
erative method seeks a correction d such that Φ0 + d is
the solution. If the initial guess is good, the correction is
small and we can write

T (Φ0 + d) ≈ T (Φ0) + J(Φ0)d = 0 (63)

with the Jacobian matrix

Jij(Φ) =
∂T (Φ)i

∂Φj
. (64)

This matrix can be computed either analytically or by
finite-difference approximation. In principle, the linear equa-
tion [eq. (63)] can be solved straightforwardly for the op-
timal correction d:

d = −J−1(Φ0)T (Φ0). (65)

Finally, by iterating

Φk+1 = Φk − J−1(Φk)T (Φk), (66)

one should finally find the solution Φ⋆ = limk→∞ Φk with
T (Φ⋆) = 0. For “well-behaved” operators T , this iteration
converges quadratically in the vicinity of the solution. Un-
fortunately, in our case T is often ill-conditioned near the
solution. More sophisticated methods therefore modify the
iteration [eq. (66)] [28]. Still, a very accurate evaluation
of the nonlinear term G[Φ] in eq. (61) is crucial to ensure
convergence. For our implementation, two different algo-
rithms in the GNU scientific library4 and in the NLEQ
package5 have been used.

B.3 Error control

We can control discretization errors stemming from rep-
resenting the continuous problem [eq. (29)] as system of
nonlinear equations [eq. (60)] by reliable error estimates.

An estimate for the spatial discretization error can
be obtained via a deferred corrections approach [31]. The
nonlinear system [eq. (60)] is written with the low-order
accurate representation [eq. (62)] for the spatial deriva-
tives. Given its low-order accurate solution Φ and another,
high-order accurate operator T ∗, we can solve the per-
turbed system T (Φ∗) = −T ∗(Φ) to obtain a high-order
accurate solution Φ∗. The discretization error of Φ is es-
timated by the difference Φ∗ − Φ. The important point
is that not the (possibly complicated) high-order system
associated with T ∗, but only the perturbed low-order sys-
tem needs to be solved. A high-order accurate operator T ∗

is obtained by using more accurate representations of the

4 The GSL is available from www.gnu.org/software/gsl and
uses Powell’s hybrid algorithm [29].

5 The NLEQ package is available from www.zib.de and doc-
umented in ref. [30].
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derivatives than those in eq. (62), in our case by means of
Noumerov’s method. Altogether, we obtain at least three
digits of accuracy for our choice of discretization. We use
“graded” grids, σm = σM (m/M)β for m = 0, . . . , M − 1.
For the semiinfinite polymers, we take β = 1.25 and dy-
namically adpat σM ; otherwise we take β = 1 and σM = 1.

The discretization error stemming from the τ -discre-
tization needs to be estimated because we want to cover
many orders of magnitude in the time variable. Our re-
sults show that an exponential growth in τn does not in-
crease the discretization error (this is due to the right hand
side of eq. (10) becoming asymptotically independent of
shorttime effects in the nonlinear regime, cf. eq. (46)).
Hence, we choose τn = ∆(δn − 1)/(δ− 1) for n = 0, . . . , N
with the initial stepsize ∆ and the growth factor δ > 1.
To estimate the discretization error, we take “fine” steps
τ̃n = τ0(δ

n/2 − 1)/(δ − 1) with n = 0, . . . , 2N such that
τ̃2n = τn. In the step n two additional “fine” solutions
Φ̃(σ, τ̃2n−1) and Φ̃(σ, τ̃2n) are computed. The error esti-

mate follows from the difference Φ̃(σ, τ̃2n) − Φ(σ, τn). Al-
together, we get at least three digits of accuracy for our
choice of the crucial parameter δ: for the semiinfinite poly-
mers, we take δ = 1.1 (only tension propagation), other-
wise δ = 1.05 (also tension relaxation).

References

1. A. R. Bausch and K. Kroy, Nat. Phys. 2, 231 (2006).
2. M. L. Gardel et al., Proc. Natl. Acad. Sci. USA 103, 1762

(2006).
3. R. Granek, J. Phys. I (Paris) 7, 1761 (1997).
4. N. Rosenblatt et al., Phys. Rev. Lett. 97, 168101 (2006).
5. D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKin-

tosh, Science 315, 370 (2007).
6. C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421,

423 (2003).
7. J.-C. Meiners and S. R. Quake, Phys. Rev. Lett. 84, 5014

(2000).
8. D. Lumma, S. Keller, T. Vilgis, and J. O. Rädler,
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