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Abstract. We consider sheared flows in magnetospheric
boundary layers of tangential discontinuity type, forming a
structure that is embedded in a large-scale convergent per-
pendicular electric field. We construct a kinetic model that
couples the magnetospheric structure with the topside iono-
sphere. The contribution of magnetospheric electrons and
ionospheric electrons and ions is taken into account into the
current-voltage relationship derived for an electric potential
monotonically decreasing with the altitude. The solution
of the current continuity equation gives the distribution of
the ionospheric potential consistent with the given magneto-
spheric electric potential. The model shows that a sheared
magnetospheric flow generates current sheets correspond-
ing to upward field-aligned currents, field-aligned potential
drops and narrow bands of precipitating energy, as in discrete
auroral arcs. Higher velocity magnetospheric sheared flows
have the tendency to produce brighter and slightly broader
arcs. An increase in arc luminosity is also associated with
enhancements of magnetospheric plasma density, in which
case the structures are narrower. Finally, the model predicts
that an increase of the electron temperature of the magneto-
spheric flowing plasma corresponds to slightly wider arcs but
does not modify their luminosity.

Keywords. Magnetospheric physics (Auroral phenomena;
Current systems; Magnetosphere-ionosphere interactions)

1 Introduction

Auroras reflect complex phenomena linking the solar wind,
the magnetosphere and the upper atmosphere. These com-
plicated links are often compared to a television set, where
the solar wind is the source of electricity and the auroral oval
reflects the vivid images drawn on the TV screen (the up-
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per atmosphere) by field-aligned accelerated electrons emit-
ted by an electron gun located in the magnetosphere. This
whole complex system is responsible for some of the most
spectacular events: discrete auroral arcs. They are dynamic
and challenging auroral phenomena still not completely un-
derstood. In this paper we develop a quantitative model that
describes the quasi-static coupling between sheared plasma
flows in the magnetosphere and the activation of discrete au-
roral arcs. The model provides ionospheric parameters, like
the latitudinal distribution of the electric potential, net paral-
lel current, density and flux of precipitating energy as a func-
tion of plasma variables in the magnetosphere, like density,
temperature and bulk velocity.

In this study we consider that the magnetospheric plasma
bulk velocity has a gradient, or shear, in the direction perpen-
dicular to a plasma interface of tangential discontinuity (TD)
type, i.e., in a direction perpendicular to the magnetic field.
We consider a simplified geometry consisting of a plane TD
parallel to theyz plane; the magnetic field is everywhere par-
allel to the z-axis and the plasma bulk velocity is aligned with
the y-axis. Plasma variables and field vary withx, the coor-
dinate normal to the TD surface. A diagram that illustrates
the magnetospheric sheared flow is given in Fig.1a.

In-situ investigation provides observations of this type of
flow in the terrestrial magnetosphere. We distinguish two
types of configurations of sheared plasma flows in the Earth’s
magnetosphere.

(I) Sheared plasma flows were detected by satellites inside
the Low Latitude Boundary Layer (LLBL) proper and/or at
its interface with the plasma sheet or lobes (e.g.Lundin and
Evans, 1985; Phan et al., 1997; Vaisberg et al., 2001). The
total variation of the bulk velocity across the layer is limited
for this class of events by the solar wind convection velocity.
Lundin and Evans(1985) made correlations between satellite
observations of plasma structures injected in the LLBL and
the occurrence of high latitude, early afternoon, discrete au-
roral arcs.Roth et al.(1993) demonstrated from a theoretical

Published by Copernicus GmbH on behalf of the European Geosciences Union.



318 M. M. Echim et al.: Sheared magnetospheric flows and discrete auroral arcs

(a)

N

x i

J
||

V

B

z
y

visible arc

MSPH

LLBL

(b)

B

zm

zi

xm

xi

JPedersen

V

LLBLMSPH

||J

Fig. 1. Diagram illustrating the coupling between the magnetospheric sheared flow and the ionosphere.(a) A schematic 3-D view of the
dusk flank;(b) A simpler, conical geometry has been adopted to describe a flux tube extended from lower/ionospheric altitudes (zi ) to
upper/magnetospheric level (zm). The upper boundary of the flux tube coincides with a magnetospheric sector that includes the sheared flow
layer at the interface between the LLBL and Earthward region; the latter is labelled MSPH. The shear flow layer is described by a TD and
plays the role of an auroral generator, as explained in the text. The velocity profile is illustrated by circles whose radius is proportional to the
local value of the bulk velocity; the velocity is oriented anti-sunward, along the y-axis, into the page plane; the magnetic field lines and the
parallel and horizontal currents are also illustrated.

kinetic point of view that the tangential discontinuities (TD)
formed at the interface between plasmas with different tem-
peratures and/or densities can be the site of an electromotive
force. They argued that such TDs can play the role of genera-
tor for discrete auroral arcs, but did not investigate the effects
of sheared flows.

(II) The Plasma Sheet and its boundary layers as well as
the magnetotail are sites where high speed plasma flows and
bursty bulk flows were observed on a wide range of locations
(e.g.Baumjohann et al., 1990; Angelopoulos et al.,1992; Cao
et al.,2006). High speed ion beams were reported byGrig-
orenko et al.(2002) at smaller scales. The effects of mag-
netospheric sheared flows on the aurora are subject of re-
cent theoretical and experimental investigation.Sergeev et
al. (1999); Fairfield et al.(1999); Zesta et al.(2000); Naka-
mura et al.(2001) showed that auroral activations correlate
well with this type of sheared plasma flows in the Earth’s
magnetosphere.De Keyser(1999) has demonstrated that the
polarization electric field of a tangential discontinuity in the
plasma sheet can explain the ion drifts observed at subauroral
latitudes during substorms.

In this study we investigate magnetospheric plasma flows
and fields that correspond to the first configuration described
above, i.e. the plasma interface in the LLBL region. We
describe the boundary layer formed between a fast moving
plasma and the background plasma at the dusk sector of the
LLBL. A diagram of the plasma flow and fields modeled in
this paper is given in Fig.1. The plasma velocity has a strong
shear across a boundary layer that is described by a tangential
discontinuity.

The geomagnetic field lines couple the region of mag-
netospheric sheared flow with the topside ionosphere. We
develop a quasi-static model that computes the ionospheric
electrodynamic parameters (electrostatic potential, field-
aligned current density, flux of precipitating energy) corre-
sponding to a magnetospheric generator similar to the one
described byRoth et al.(1993) andDe Keyser(1999), with
an added velocity shear. The electromotive force of the gen-
erator is given by the polarization electric field of the TD
formed between magnetospheric sheared flows. We do not
discuss here the causes and/or the driver of these enhanced
flows; their existence is plausible from experimental data.

In the next section we briefly describe the kinetic TD struc-
ture and explain why it can play the role of an auroral gener-
ator. We also discuss the ionospheric load and the coupling
mechanism with the high altitude potential. In Sect. 3 we
discuss the vertical distribution of the plasma and fields. In
Sect. 4 the ionospheric electrodynamic variables are numer-
ically computed as a function of the magnetospheric plasma
parameters. We discuss the relevance of these results for the
formation of discrete auroral arcs. The paper concludes with
a summary.

2 Coupling of the high altitude sheared flows and the
polar ionosphere

In this section we describe the two main components of the
auroral current circuit: the magnetospheric generator and
the ionospheric load. We also discuss the coupling mecha-
nism in a steady-state situation. We consider a high-altitude,

Ann. Geophys., 25, 317–330, 2007 www.ann-geophys.net/25/317/2007/



M. M. Echim et al.: Sheared magnetospheric flows and discrete auroral arcs 319

relatively hot and tenuous magnetospheric plasma, with a
shear of the bulk velocity, connected by the same magnetic
flux tube to the colder and denser ionospheric plasma. The
geometry of the problem is illustrated in Fig.1b. The equilib-
rium solution for the system of the two constituent plasmas
is computed for a steady-state situation.

2.1 An auroral generator

In the plane TD layer the plasma flow is tangential to the dis-
continuity surface and the magnetic field component normal
to it is equal to zero. However, because of charge separation
effects there is a unidirectional electric field, perpendicular to
the TD interface. In kinetic models of TDs the internal struc-
ture is solved, i.e. the profile of variation between the two
asymptotic states at the two sides of a TD can be computed
self-consistently.

In the TD considered in this study, the magnetospheric
(MSPH) plasma is at rest at the left hand side, where it has
densityNM and temperatureTM , typical for the plasma sheet
(PS). At the right hand side the plasma is in motion with a
velocity V (perpendicular to the B-field and in the positive
direction of the y-axis) and has densityNL and temperature
TL . It will be called the LLBL plasma since it has proper-
ties typical for the Low Latitude Boundary Layer. The typ-
ical values of MSPH and LLBL plasma parameters used in
this study are given in Table1. Inside the transition layer
all the variables vary withx, the coordinate normal to the
TD plane, as illustrated in Fig.1b. The relative orientation
of the plasma bulk velocity and magnetic field correspond to
a magnetospheric plasma flow on the dusk-side flank of the
magnetosphere. It is assumed that the plasma flow (and its
coupling to the ionosphere) is quasi-static, i.e. the external
driver sustains the flow shear over time scales longer than
the typical time needed for an electron to travel between the
magnetosphere and the ionosphere.

A complete description of the TD kinetic model is beyond
the scope of this study and can be found in the paper of
Roth et al.(1996). A discussion of the effect of flow shears
on the TD equilibrium conditions for the terrestrial magne-
topause can be found in De Keyser and Roth (1997a, b).
Two-dimensional solutions have been published byEchim
and Lemaire(2005). Let us briefly recall the main princi-
ples.

We consider a TD for which the magnetic field is every-
where perpendicular to the plasma bulk velocity, thus we
choose a unidirectional magnetic field parallel to the z-axis.
As the velocity is aligned with the y-direction the convection
electric field is parallel to the x-axis. Thus the z-component
of the velocity of a charged particle is a constant and we are
therefore free to consider the motion of this particle to be
in the (xy) plane. In this plane, a particle (of massmα and
chargeZαe, with e the magnitude of the elementary charge)
is characterized by two constants of motion: the total energy,
H=1/2mαv2

+Zαe8, and the y-component of the canonical

Table 1. Asymptotic values of the number density, temperature,
bulk velocity of electrons (“−”) and protons (“+”) used to obtain
the TD solutions illustrated by Figs.2–3. The values of the pa-
rametersl±

M,L
of each considered species are also given;l±

M,L
is a

parameter of the VDF that controls the width of the TD layer, as
shown in the Appendix.

n−=n+ T − T + V l− l+

[cm−3] [eV] [eV] [km/s]

x=−∞ (MSPH) 0.5 200 1000 0 20 5
x=+∞ (LLBL) 5 10 100 190 20 5

momentum:py=mαvy+Zαea with 8 the electric potential
anda the single component of the magnetic vector potential
(in the geometry of Fig.1, A is a unidirectional vector along
the y-axis).

In the steady-state Vlasov kinetic approach, any function
f (H, py) can be a velocity distribution function. In prac-
tice, steady-state solutions are constructed using piecewise
Maxwellian VDFs (Roth et al., 1996) that satisfy the asymp-
totic conditions describing the geometry of the problem. The
analytical expressions of the VDFs used in this study as well
as of their first order moments, including the charge and cur-
rent densities, are given as functions of (8, a) in the Ap-
pendix; the electric and magnetic fields and their correspond-
ing potentials (8, a) are computed numerically from the
Maxwell’s equations. Reintroducing the computed potentials
in the analytical moments of the VDFs gives a complete de-
scription of the transition layer. Since space plasmas are in
general quasineutral, the Maxwell-Poisson’s equation for the
unknown electric potential can be replaced by the quasineu-
trality equation.

Figures2 and 3 show the TD solutions obtained for the
interface between a stagnant plasma and a plasma in motion
having different velocities and densities. The asymptotic pa-
rameters of the two populations, typical for a MSPH/LLBL
transition, are given in Table1. Figure2 shows the structure
of the transition layer obtained for three different flow speeds
at the right hand side when all the other parameters keep the
constant values given in Table1. Figure3 indicates what
happens when the density of the moving plasma at the right
hand side is varied while the other parameters of Table1 are
constant. A key feature of the solution is the linearly increas-
ing electric potential in the LLBL, that gives the electric field
in this region (first panels in Figs.2 and 3). As such, the
boundary layer is an unloaded source of electromotive force.
Another characteristic of the TD is the scaling of the tran-
sition layer with the asymptotic temperatures. It is possible
to obtain broader or thinner transition layers as a function of
the asymptotic plasma temperature and/or bulk velocity as
discussed in the Appendix. As Fig.3 shows the profile of
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Fig. 2. Kinetic tangential discontinuity (TD) solution for the transition between magnetospheric (plasma sheet) plasma at rest (left hand
side) and LLBL plasma moving in the y-direction (right hand side). The colors correspond to three different values of the plasma bulk
speedV =Vy (Vx=Vz=0 everywhere). The planar TD is centered atx=0, parallel to theyz plane. The panels show the variation with the
x-coordinate (normal to the TD surface) of the magnetospheric electrostatic potential,8m, number density,n and the plasma bulk velocity
V .

the TD electric potential is not very sensitive to the plasma
density in the LLBL.

In reality, however, this source of electromotive force is
connected to the conducting ionosphere by the geomagnetic
field lines, thus the current circuit is closed and the boundary
layer plays the role of a generator in this circuit. When the
TD generator is loaded, electric charges will be drained by
field-aligned and dissipative ionospheric currents. Although
the drainage of charges by field aligned currents may alter the
TD profile, the electrostatic potential is maintained as long as
the discharging currents are small enough and as long as the
external driver sustains the gradient of the temperature and/or
density and the shear of flow.Roth et al.(1993) have shown
that for a TD formed at the interface of a magnetospheric
plasma, with density of the order of 0.5 cm−3 and temper-
ature of the order of 2.5 keV, coupled to the ionosphere, the
time needed to alter significantly the TD structure is of the or-
der of 1000 s. From this order of magnitude estimate one can
argue that the TD generator can supply emf for sufficiently
long intervals.

2.2 Horizontal Pedersen currents and coupling

An analysis of the magnetospheric generator based on the
thermo-electric and gradient density effects at the interface
between different plasma populations and the relationship
of this generator to auroral arcs can be found inRoth et al.

(1993). This paper gives a quantitative analysis of the iono-
spheric effects induced by a high altitude sheared flow across
the TD. The electrostatic potential, density and tempera-
ture obtained from the kinetic description discussed above
are used as input parameters for a quasi-static model of the
magnetosphere-ionosphere coupling as described below.

In the ionosphere, where collisions are important, the
ionospheric Hall and Pedersen electric conductivities take
large values, in the plane normal to the magnetic field di-
rection. Horizontal currents flow both in latitudinal and
azimuthal directions.Lyons (1980, 1981) solved the one-
dimensional current continuity equation that couples the
field-aligned currents driven by a magnetospheric generator
with the height-integrated horizontal ionospheric Pedersen
current (Ip). Assuming that an auroral arc is aligned az-
imuthally and that the Hall current is neglected, the current
continuity equation can be written as:

j|| = −
dIP

dxi

=
d

dxi

(
6P

d8i

dxi

)
(1)

In Eq. (1) the height-integrated Pedersen conductivity,6P ,
can be a function of the flux of precipitating energy (Harel et
al., 1977; Robinson et al.,1987) and implicitly of the poten-
tial drop, but here it is taken constant.

The ionospheric potential,8i , has been computed by
Lyons (1980) from the non-linear continuity differential
equation (1) for an ad-hoc profile of8m, the electrostatic
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Fig. 3. Kinetic tangential discontinuity solution obtained for different values of the LLBL density (right side of the discontinuity); see caption
of Fig. 2 for a description of the different panels.

potential in the magnetosphere. In Lyons’ model,8m(xm)

has been defined such that the resulting electric field is con-
vergent,∇·E<0. We will replace this ad-hoc solution by
8m computed from the TD model, which gives a potential
profile with a fine structure embedded in a large-scale con-
vergent electric field.

3 Vertical distribution of plasma and fields

Lyons’ solution is obtained by taking into account only the
precipitating magnetospheric electrons. The latter is the
most important component when the field-aligned potential
drop has significant values. In our model we add additional
species as described below.

The variation with altitude of the velocity distribution
function of the species that populate the same flux tube is
derived from Liouville’s theorem. A velocity distribution
function that is a function of the constants of motion is a
solution at each altitude (Lemaire and Scherer, 1971). Thus
a Maxwellian VDF defined at ionospheric or magnetospheric
altitude:

f α
ν = Nα

ν

(
mα

2πkT α
ν

) 3
2

e
−

H−ZαePhi

2kT a
ν lpha (2)

is a solution of the stationary Vlasov equation at each alti-
tude,z. In Eq. (2) the subscriptν identifies the ionospheric
or magnetospheric origin of the different plasma speciesα,
with temperatureT α

ν , massmα and chargeZαe. Such an

Table 2. Reference density and temperature of the ionospheric
species considered in the current-voltage relationship (Eqs.5, 6).
The charge densities were adjusted such that charge neutrality is
satisfied.

e− O+ H+

T[keV] 0.2 0.02 0.02
n[cm−3] 7×103 6.5×103 5×102

exospheric-type kinetic solution is valid in phase space re-
gions that vary with the local electric and magnetic poten-
tials. Exospheric solutions have been successfully used to
develop models of the polar wind with asymptotic VDFs that
are Maxwellian (Lemaire and Scherer, 1971) or Kappa func-
tions (Pierrard, 1996). The exospheric method has also been
used to derive the parallel electric fields along auroral field
lines (Knight, 1973; Lemaire and Scherer, 1973; Fridman
and Lemaire, 1980).

When the variation of the potential with the altitude,8(z),
is monotonic, the conservation of the total energy and of the
magnetic moment completely determines the region of the
phase space that is accessible for particles coming from both
ends (Whipple, 1977). Thus the moments of the VDF can
be computed as a function of the local electric potential and
magnetic field and the parallel flux of particles is derived
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from:

j||αν = qα

∫ ∫ ∫
︸ ︷︷ ︸

0(z)

v||fανd
3v (3)

The integration is carried out over the phase space region,
0(z), accessible to the particles at altitudez. Equation (3)
gives the current – voltage relationship. The field-aligned
current density,j||(18, b), is a function of18=8−8m,
the potential difference between altitudez and the magne-
tospheric end of the flux tube, andb=B/Bm, the ratio be-
tween the local and the magnetospheric magnetic field inten-
sity. Four different populations can be considered:

(A) The magnetospheric electronsmoving toward the
ionosphere are accelerated by a positive potential drop
(8i−8m>0) along magnetic field lines. The magnetic mo-
ment,µ=mαv⊥/µ0B, as well as the total energy are con-
served, thus the longitudinal motion is decelerated by the
mirror force of the magnetic field increasing with decreas-
ing altitude. Magnetospheric electrons form the precipitating
population that carry energy from the magnetosphere to the
ionosphere and also gain energy in the region of the acceler-
ating potential. These particles provide the major contribu-
tion to the upward (or direct) current of the auroral circuit.
The current density is equal to

j−

||m = ebN−
m

√
kT −

m

2πm−

{
1 −

b − 1

b
e
−

e(8−8m)

(b−1)kT
−
m

}
(4)

whereN−
m , T −

m are the density and temperature of the mag-
netospheric electrons,e is the elementary charge without al-
gebraic sign,b=B(z)/Bm and8(z) depend on the altitude.
In this paper, an upward current is considered to be positive.

(B) The ionospheric electronshave densities of the order
of 104 cm−3 at 200 km altitude. Upward moving ionospheric
electrons are decelerated by the positive potential drop cor-
responding to an upward electric field and accelerated by the
mirror force. This population contributes to the downward
(or return) current. However, their partial current density is
very small for positive potential drops greater than 10 Volt.
The latter is a threshold determined by the non-linear current-
voltage relationship for these species

j−

||i=−ebN−

i

√
kT −

i

2πm−
e
−

e(8−8m)

kT
−

i

{
1−

b−1

b
e
−

e(8−8m)

(b−1)kT
−

i

}
(5)

whereN−

i , T −

i are the density and temperature of the iono-
spheric electrons. The two partial current densities given in
Eqs. (4) and (5) correspond to the current-voltage relation-
ship derived byKnight (1973).

(C) The upward moving ionospheric ionsare accelerated
by both the electrostatic and the mirror force. Thus their up-
ward flux is determined only by their density and tempera-
ture at the ionospheric lower boundary of the flux tube. They

contribute to the upward leg of the auroral circuit a current
density

j+

||i =

∑
α

|Zα
|eNαi

√
kTαi

2πmα

(6)

with a summation over ionospheric positively charged
species. Expression (6) is a Jeans flux, derived, for instance,
by Lemaire and Scherer(1971) in their exospheric model of
the polar wind. In the following we take into account the
contributions of H+, O+ and He+. Since the energy of the
ionospheric ions is less than 0.1 eV and their density is of
the order of 104 cm−3, the resulting partial current density
is of the order of 10−7 µA/m2, an order of magnitude less
than the typical current density of the magnetospheric elec-
trons. A description of the ionospheric parameters used in
this study is given in Table2.

(D) The magnetospheric ionsare braked both by the mir-
ror force and the positive potential drop between the iono-
sphere and magnetosphere. Their field-aligned current den-
sity is equal to

j+

||m = −

∑
α

|Zα|eNαm

√
kTαm

2πmαm

(
Bm

B

)
e
−

|Zα
|e(8−8m)
kTαm . (7)

The summation is over all the magnetospheric ion species.
Note, however, that for ion densities of the order of 10 cm−3,
ion temperatures of the order of 500 eV, and a potential dif-
ference between the ionosphere and magnetosphere on the
order of 1 kV, the parallel current due to the magnetospheric
ions is of the order ofj+

||m≈10−6 (Bm/Bi). As we consider

a magnetic field ratio less than 10−2 the contribution of the
magnetospheric ions is negligible and will not be further in-
cluded in the computations discussed in this paper.

The total, or net, field-aligned current density is then equal
to

j|| = j−

||m + j−

||i + j+

||m + j+

||i . (8)

The relationships (4–7) are valid for a positive potential drop,
18=8−8m>0. When18 becomes negative the phase
space regions,0(z), accessible for the populations (A–D)
change. Thus the integrals (3) have to be recomputed as
shown byLemaire and Scherer(1971).

The current voltage relationship described by expres-
sions (4–8) is derived assuming that the variation with al-
titude of the potential is monotonic. A non-monotonic po-
tential variation with the altitude is expected for negative po-
tential drops (8i<8m) since the potential has a minimum
where the ambipolar electric field goes to zero (Temerin and
Carlson, 1998). The current-voltage relationship for a non-
monotonic altitude profile of the potential has been investi-
gated byTemerin and Carlson(1998), Cran-McGreehin and
Wright (2005) and Vedin and R̈onnmark(2005). In this
study, however, we consider only positive potential drops
with a monotonic variation with the altitude.
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4 Numerical results

In the following we discuss solutions of the current continu-
ity equation obtained for a potential distribution8m, corre-
sponding to a magnetospheric TD.

The solution of the nonlinear equation (1) is integrated
numerically in the horizontal direction, over an interval
[xi1, xi2]. We impose a Dirichlet boundary condition inxi1
andxi2, derived from the condition that the net field-aligned
current is equal to zero:j−

||m+j−

||i+j+

||i=0. In the examples
discussed below the boundary value of the potential drop sat-
isfying this condition was in the range of 3–4 Volt. Equa-
tion (1) has been discretized using a finite difference method
and has been solved numerically with a damped Newton iter-
ative scheme. All the solutions discussed in this paper were
obtained for a uniform Pedersen conductivity6P =5 S.

The current continuity equation is evaluated at the iono-
spheric altitudezi=200 km. The altitude of the magneto-
spheric generator iszm=90 000 km, that is the altitude where,
in the conical geometry used for mapping, the intensity of
the magnetic field is equal to 30 nT, i.e. the magnetic field
intensity used to derive the TD solution. From the condition
that the magnetic flux is conserved and assuming a cylindri-
cal mapping (Lyons, 1980), the distancexm at the magneto-
spheric altitudezm, where the magnetic field isBm, maps at
the ionospheric altitudezi , where theB-field isBi , according
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Fig. 5. Variation of arc characteristics as a function of the bulk ve-
locity at the LLBL side of the TD:(a) the variation of the maximum
of the field-aligned potential drop;(b) the variation of the maximum
of the flux of precipitating energy;(c) the variation of the maximum
field-aligned current density;(d) the width at half maximum of the
current sheet (circles) and of the auroral arc (squares).
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to: xi=xm

√
Bm/Bi . The current densities at ionospheric alti-

tudes are computed from Eqs. (4–6) by replacing8=8i and
B=Bi .

4.1 Effects of the velocity shear

Figure 4 summarizes the results obtained for five different
values of the velocityV at the LLBL side, varying from
60 km/s to 480 km/s, thus reflecting different conditions in
the solar wind. The region with sheared flow extends over
11 000 km in the transverse direction. It maps into a 600 km
interval,xi=[−400,+200] km, at ionospheric altitudes. The
magnetospheric plasma is at rest at the left-hand side of the
transition. All the other parameters were kept constant (see
Table1).

The potential distribution obtained from the TD model
for various LLBL velocities (illustrated in the first panel of
Fig. 2) has been introduced into the expressions (4–7) such
that the total field-aligned density can be expressed from
Eq. (8) as a function of8m (known) and8i (unknown);j|| is
then introduced into the current continuity equation (1). The
latter is solved for the unknown8i . A first set of solutions is
displayed in Fig.4a. A significant positive field-aligned po-
tential drop between the ionosphere and the magnetosphere,
18=8i(xi)−8(xm)>0, is observed in panel (b). It is this
positive potential drop that accelerates the magnetospheric
electrons. Within a broad ionospheric region, extending over
a distance of 200–250 km, the parallel potential drop takes
values larger than 100 V. Embedded into the larger struc-
ture there is a narrower layer where18 reaches values of
the order of several kilovolt, for LLBL velocities larger than
100 km/s.

Figure4c illustrates the formation of a narrow sheet of up-
ward field-aligned current located at the ionospheric projec-
tion of the LLBL segment of the magnetospheric TD. The
width of the current sheet is between 10 to 15 km, depend-
ing on the velocity shear. The current density is orders of
magnitude greater in the ionospheric projection of the LLBL
(xi>0) than in the neighboring ionospheric projection of the
MSPH region (xi<0).

The luminous intensity of the visible auroral arc is pro-
portional to the incident flux of energy due to precipitating
particles,εem (Germany et al., 1997). The latter is illustrated
in Fig. 4d. In the broader region associated with potential
drops larger than 100 V the flux of precipitating energy takes
rather small values. This region could be associated with the
faint, diffuse aurora. The region with intense parallel elec-
tric field and strong field-aligned currents contains an even
narrower region of enhanced flux of precipitating energy that
corresponds to an auroral arc. The horizontal distribution of
εem suggests that the arc would be brighter (increased precip-
itating energy) for an increasing shear of the LLBL plasma
velocity. The thickness of the visible arc also seems to in-
crease with the velocity shear. Note also that the profile of the
precipitating energy,εem, gives information about the per-

turbation produced by incoming electrons to the ionospheric
Pedersen conductivity since6P ∝

√
εem (Harel et al., 1977;

Robinson et al., 1987).
The variation of the arc characteristics with the velocity of

the LLBL plasma is summarized in Fig.5. The peak field-
aligned potential drop increases almost linearly with the ve-
locity shear (panel a), as well as the peak of the field-aligned
current density (panel c). A nonlinear increase is observed
in panel (b) for the maximum of the precipitating energy flux
as a function of the the LLBL velocity. This effect is due
primarily to an increase of the convection electric field at
the LLBL side of the magnetospheric boundary layer. The
field-aligned current sheet expands for larger velocities of the
LLBL plasma (circles in panel d).

The thickness of the auroral arc is estimated as the width at
half maximum of the precipitating energy flux,εem(xi). One
notes a slight expansion of the arc thickness with increasing
LLBL velocity (squares in panel d), in a range of 7 to 9 km.
Same panel shows that the field-aligned current sheet is al-
ways wider than the arc itself.

4.2 Effects of increasing LLBL density

Figure6 shows the results obtained for different profiles of
the magnetospheric potential, resulting from the TD solu-
tions derived for different values of the LLBL plasma den-
sity (see Fig.3). The TD solution is obtained for the mag-
netospheric parameters given in Table1. The general profile
of the solution reproduces some of the main characteristics
already observed in Figs.4–5. The field-aligned potential
drop tends to decrease with increasing magnetospheric den-
sity as shown by Fig.6b. The field-aligned current density
increases with increasing density. A narrow structure in the
flux of precipitating energy, which we identify as the auro-
ral arc, is embedded into the larger current sheet (panel d).
The precipitating energy flux increases slightly with plasma
density at the LLBL side.

The variation of the field-aligned potential drop results
mainly from the variation of the ionospheric potential with
the LLBL number density (panel a) since the magnetospheric
potential is quite insensitive to this change (see top panel of
Fig. 3) A more quantitative assessment of the effect of in-
creasing the LLBL density is given in Fig.7. On one hand,
the peak of the field-aligned potential drop decreases with
increasing density (panel a). On the other hand, the max-
imum field-aligned current density increases (panel c) with
NL . As the number density of magnetospheric charge carri-
ers has increased there will be a corresponding increment of
the current density given by Eq. (4).

Equation (1) shows that an increase ofj||, the parallel
current density, drives a stronger horizontal variation of the
ionospheric electric field (i.e.,d28i/dx2

i increases, when
6P is constant). Therefore when the LLBL number den-
sity increases the ionospheric potential,8i(xi), takes values
closer to the mapped magnetospheric counterpart,8m(xi).
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Thus the difference between the two, or the field-aligned po-
tential drop, is smaller when the density increases, as shown
by Fig. 7a. Not only the potential drop is smaller but it is
confined to a narrower region. Consequently the width of the
field-aligned current sheet and of the discrete arc decrease
when the LLBL density increases as seen in panel (d). A
slight increase of the arc luminosity may be associated with
an increase of LLBL density, as suggested by panel (b) of
Fig. 7.

4.3 Effects of increasing LLBL electron temperature

The effects of an increment ofT −

L , the temperature of the
LLBL electrons, have also been investigated. Note that a
change of the electron temperature implies a variation of the
electron gyroradius. The gyroradius of the LLBL electrons
corresponds to the smallest spatial scale intervening in the
TD solution. The latter has been recomputed for three differ-
ent temperatures/gyroradii of the LLBL electrons. As in the
previous cases, all the other parameters remain the same (see
Table1) and the LLBL velocity is equal to 190 km/s. The
magnetospheric potential profile provided by the TD solu-
tion has been again replaced in the current-voltage relation-
ship and the current continuity has been solved. The results
are displayed in Figs.8 and9.
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The flux of precipitating energy remains roughly constant
for an increase ofT −

L of one order of magnitude (see Figs. 8d
and9b). Thus the intensity of the auroral arc remains virtu-
ally unchanged when the electron temperature of the magne-
tospheric moving plasma increases.

The current density however diminishes (Figs. 8c and9c).
This can be understood by inspecting Eq. (4) where one notes
that the nonlinear term is dominant. Therefore an increase of
the LLBL electron temperature indeed implies a reduction
of the corresponding field-aligned current density. One also
notes from the current continuity equation that the reduction
of the parallel current density implies that the ionospheric
electric field has a smoother variation withxi (smaller “cur-
vature”,d28i/dx2

i , of the potential profile). Thus the higher
T −

L , the larger is the difference between8i(xi) and8m(xi),
i.e. the larger is the field-aligned potential drop. An in-
crement of18 with increasingT −

L is indeed observed in
Figs. 8b and9a.

The region with a significant field-aligned potential drop is
broader for larger LLBL electron temperature (Fig. 8b). On
one hand this is a consequence of a smallerj|| as explained

above. On the other hand, the width of the generator TD is
larger whenT −

L increases. The spatial scale of the TD is de-
termined by the magnetospheric VDF through the parameters
l
+/−
M,L (see Appendix A) and the Larmor radii. An increase

of the electron Larmor radius produces a broader transition
layer. The increment of the width of both the parallel cur-
rent sheet and the auroral arc is observed in Fig.9d. The arc
width stays under a threshold of 10 km, while the width of
the field-aligned current sheet increases up to 20 km as Fig.9
shows.

5 Summary and conclusions

We have shown that magnetospheric sheared flows confined
in a transition layer at the LLBL/MSPH interface can act as a
generator identified with the electromotive force required for
the auroral current circuit. The source of energy is the exter-
nal driver that sustains the flow and the gradients of velocity,
density and/or temperature. If this driver is able to main-
tain such gradients over time intervals longer than the Alfven
travel time between the magnetosphere and ionosphere, one
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can find a quasi-static solution. In this case, kinetic solutions
for sheared flows in the generator can be found for transitions
of tangential discontinuity type. These solutions provide the
electrostatic field and all moments of the VDF (in particular
number and current density), given the asymptotic conditions
for the plasma state and for the fields.

The parallel flux of charged particles emerging both from
the magnetospheric generator and the ionosphere can be
computed analytically as functions of the potential difference
between the generator and the load (the ionosphere). The
fundamental equation that couples the “field-aligned” and
“horizontal” quantities is the current continuity equation at
the top of the ionosphere. Numerical solutions of this equa-
tion have been found by imposing the boundary condition
that the total parallel current is equal to zero at the left and
right-hand sides of the integration domain.

We were able to investigate the “natural” scaling of the
auroral structure, determined by the characteristics of the TD
generator, the current-voltage relationship, the characteris-
tics of the magnetospheric and ionospheric populations and
the mapping between the two ends of the flux tube. In this
work we have developed a parameter study in which we have
investigated the effects on the intensity and scale of the auro-
ral structures of magnetospheric parameters like the velocity
shear, density and temperature. In all the computations dis-
cussed in this paper the Pedersen conductivity was assumed
uniform and constant. In reality the conductivity may be non-
uniform. Furthermore, the flux of precipitating electrons may
produce excess ionization, thus increasing6P and generat-
ing a feed-back on the overall circuit balance. As argued by
Roth et al.(1993), in a steady-state situation that implies a
zero circulation of the E-field along the auroral circuit, an
increase of6P will diminish the ionospheric potential dif-
ferences but will enhance the field-aligned ones. Thus we
conjecture that the ionospheric feed-back will enhance the
ionospheric effects obtained with our steady-state model.

A positive potential drop with a peak of the order of several
kilovolt has been found in almost all the cases discussed in
this study. The maximum potential drop ranges from 700 and
5500 V when the LLBL velocity varies from 60 to 480 km/s.
The region of field-aligned potential drop expands when the
LLBL plasma velocity increases. However, only within a
narrower region the potential drop takes values exceeding
1 kV. Significant field-aligned currents flow out of the iono-
sphere in a much narrower sheet. The width of the field-
aligned current sheet ranges from 14 to 20 km at 200 km al-
titude. The current density increases with increasing LLBL
plasma velocity and density. It decreases when the LLBL
plasma temperature increases. The spatial characteristics of
the magnetospheric TD determine the overall behavior of the
ionospheric current density. The jump in the parallel current
density out of the ionosphere (panels c in Figs.4, 6 and8)
coincides with the mapped position of the jump observed in
the magnetospheric plasma density (middle panels in Figs.2
and3).
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Fig. 9. Variation of arc characteristics as a function of the tem-
perature at the LLBL side of the TD. See caption of Fig.5 for a
description of panels.

The contribution of the ionospheric species to the field-
aligned current density is rather small in the cases investi-
gated in this study, except for the boundary regions. It is the
contribution close to the edges of the integration domain that
enabled us to satisfy the imposed boundary conditions and
to obtain convergent solutions using the exact expressions of
the current-voltage relationship and not linearized ones as in
previous studies (Lyons, 1980, 1981).

The region where the energy precipitation reaches signif-
icant values is the narrowest structure observed in the so-
lution. It would correspond to a discrete auroral arc. In
our solutions the thickness of the arc takes typical values in
the range of 5 to 10 km, depending on the parameters of the
LLBL/MSPH transition layer. It corresponds to typical dis-
crete auroral arcs of the order of 1–10 km in latitudinal ex-
tent that dominate in visible spectrum (Evans, 1974; Knud-
sen et al., 2001). We have also shown that the arc tends to
be brighter and wider when the convection in the LLBL is
faster, i.e. for rapid solar wind. The model predicts that the
arc tends to become thinner and more intense when the den-
sity of the LLBL plasma increases (and the LLBL velocity
remains unchanged). Finally, our results suggest that the arc
keeps the same luminosity but expands in width when the
LLBL temperature increases while the LLBL density and ve-
locity remain unchanged.

This study demonstrates that sheared plasma flows in outer
layers of the magnetosphere, driven by the interaction with a
variable solar wind, can provide the required energy for the
activation of discrete auroral arcs. It also shows how the in-
tensity and scale of the ionospheric phenomena vary with the
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plasma parameters at the magnetospheric shear flow inter-
face. The model contributes to the quantitative description
of the quasi-static coupling of the magnetosphere with the
polar ionosphere and provides interesting opportunities for
verification by in-situ and ground based data.

Appendix A

In Sect. 2 we have briefly discussed the kinetic model of a
tangential discontinuity applied to a one-dimensional bound-
ary layer interfacing sheared plasma flows. Here we give
the expressions for the velocity distribution function (VDF)
of each constituent as well as for some of its moments: the
number and current density. These results are obtained from
the general formulation of the kinetic TD model ofRoth et
al. (1996).

The plasma interface is considered as a planar plasma
transition layer of finite thickness. Whenxm→∓∞ it is
assumed that the plasma, composed of protons and elec-
trons, is described by a displaced Maxwellian velocity dis-
tribution functions. At any point inside the transition layer
the velocity distribution functions correspond to the inter-
penetration of these two hydrogen plasmas in the form given
in Roth et al. (1996). The plasma boundary conditions
describe, on the left-hand side (xm→−∞), the magneto-
spheric plasma (subscript M) with uniform number densi-
ties (N−

M=N+

M=NM) and temperatures (T −

M , T +

M ), and on the
right-hand side (xm→+∞), the LLBL plasma (subscript L)
with uniform number densities (N−

L =N+

L =NL) and temper-
atures (T −

L , T +

L ).

The magnetic field direction is everywhere parallel to the
z-axis. This implies that the vector potential is directed
along the y-axis (A=aey). For both plasma populations
(MSPH and LLBL) the partial electric current densities of
protons (+) and electrons (−) are parallel to the y-axis
(j+,−

M =j
+,−
M ey , j+,−

L =j
+,−
L ey). The electric field is in the

xm-direction (E=Exex). The plasma flow (V) is parallel to
the y-axis and is equal respectively toVM on MSPH side
(wherexm→−∞) andVL on LLBL side (wherexm→+∞).
Note that in all the cases discussed in this study the plasma
velocity at the left-hand side vanishes,VM=0.

The solution of the Vlasov equation for each constituent
α is a combination betweenF α

M(mα, Nα
M, T α

M, VM,y, l
α
M) de-

scribing the plasma at the left (magnetospheric) side and
F α

L (mα, Nα
L , T α

L , VL,y, l
α
L ) at the right (LLBL) side. The ve-

locity distribution function may be then written as a function
of the constants of motion (H andpy , see Sect. 2.1) as below:

F α
= cα

Me
−

[
H

kT α
M

+
mαV 2

M
2kT α

M
−

pyVM
kT α

M

]
erfc(Uα

M) +

cα
Le

−

[
H

kT α
L

+
mαV 2

L
2kT α

L
−

pyVL
kT α

L

]
erfc(−Uα

L ) (A1)

where we defined:

cα
M =

Nα
M

2

(
mα

2πkT α
M

)3/2

cα
L =

Nα
L

2

(
mα

2πkT α
L

)3/2

The functionsUα
M andUα

L depend on the canonical momen-
tum componentpy :

Uα
M =

py − mαV α
M

ZαeBMρα
M

√
(lαM)2 − 1

Uα
L =

py − mαV α
L

ZαeBLρα
L

√
(lαL )2 − 1

whereρα
M , ρα

L are the Larmor radius at the two sides of the
discontinuity:

ρα
M =

√
2mαkT α

M

|Zα|eBM
ρα

L =

√
2mαkT α

L

|Zα|eBL

In the above notationsα stands for the species (− for elec-
trons and+ for protons). The parameterslαM and lαL were
introduced to control the thickness of the TD. The values of
lαM andlαL used to obtained the solutions shown in Figs.2–3
are given in Table 1.

The partial number densitiesn−
=n−

M+n−

L ; n+
=n+

M+n+

L
and the partial current densitiesj−

y =j−

M+j−

L ; j+
y =j+

M+j+

L ,
are analytical functions of8m anda obtained as moments of
the VDF given in Eq. (A1). The partial number densities are
given by:

n−

M =
NM

2
e
+

e(8m−aVM )

kT
−

M erfc

(
+

a

l−Mρ−

MBM

)
(A2)

n+

M =
NM

2
e
−

e(8m−aVM )

kT
+

M erfc

(
+

a

l+Mρ+

MBM

)
(A3)

n−

L =
NL

2
e
+

e(8m−aVL )

kT
−

L erfc

(
−

a

l−L ρ−

L BL

)
(A4)

n+

L =
NL

2
e
−

e(8m−aVL )

kT
+

L erfc

(
−

a

l+L ρ+

L BL

)
(A5)

The partial current densities are equal to:

j−

M = −J−

MG−

M − en−

MVM (A6)

j+

M = −J+

MG+

M + en+

MVM (A7)

j−

L = J−

L G−

L − en−

LVL (A8)

j+

L = J+

L G+

L + en+

LVL (A9)

where the functionsJ andG are defined as:

J α
ν =

|Zα
|eNα

ν

lαν

(
kT α

ν

2πmα

)1/2

(A10)

Gα
ν = exp

{
−

[
Zαe(8m − aVν)

kT α
ν

+

(
a

lαν ρα
ν Bν

)2
]}

(A11)
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with ν an index corresponding to the origin of the population
(M for left-hand side or magnetospheric andL for right-hand
side or LLBL). In Eqs. (A2) through (A9) erfc is the com-
plementary error function,e is the magnitude of elementary
charge,k is the Boltzmann constant,BM andBL are respec-
tively the magnitude of the magnetic field deep at the left
hand side (at large negative values ofxm) and at right hand
side (at large positive values ofx). The parametersl−M , l+M ,
l−L andl+L measure the “thickness” of the four transitions that
the different particle populations undergo taking as thick-
ness unit the asymptotic thermal Larmor gyroradii,ρ−

M,L and

ρ+

M,L. Their exact values are chosen on the basis of both the-
oretical and observational facts. It is clear that the transition
thickness is expected to be scaled according to some small
microscopic parameter. In magnetized collisionless plasmas
this small parameter is the particle Larmor radius, at least
when the plasma is quasi-neutral.
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