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This paper focuses on the problemof robust𝐻
∞
control for a class of switched nonlinear systemswithmultiple time delayswhich are

allowed to appear not only in state but also in input.Wewill design a controller and a switching lawunderwhich the system is “robust
stable” and has performance 𝐿

2
-gain 𝛾. Besides, multiple Lyapunov-Razumikhin functions which are relatively less conservative are

introduced to investigate the stability of the candidate switched system. In detail, firstly, for uncertain nonlinear switched system
with time-varying delays, sufficient condition is given by inequalities which are equivalent to LMIs, so it is easy to be solved; then,
as a special case, nonlinear switched system with constant time delay is also considered. Finally, by providing numerical examples,
the feasibility of the proposed approach is demonstrated.

1. Introduction

Switched systems have constituted a very active field of
current scientific research; many real world processes and
systems can be modeled as switched systems, such as chem-
ical processes and computer controlled systems. Besides,
switched systems are extensively applied in many domains,
including mechanical systems, automation, aircraft and air
traffic control, and many other fields. And stability analysis
and control, as the most important topics for the study of
switched systems, have been studied widely [1–11]. Up to now,
some methods are given to solve the stability analysis for
switched system. For example, by constructing a common
Lyapunov function, stability under arbitrary switching can be
obtained. However, most switched systems still may be stable
under certain switching laws, though they do not own a com-
monLyapunov function.Thekey idea to select such switching
laws is the dwell time [12, 13]. Lately, 𝐻

∞
control theory,

which is another effective tool to solve robust stabilization
problems, has been well built [14].

On the other hand, time-delay phenomenon is very
common in many kinds of engineering systems, for instance,
long-distance transportation systems, hydraulic pressure

systems, network control systems, and so on. It is regularly
a source of instability and often causes undesirable perfor-
mance and even makes the system out of control. So time-
delay systems have also drawn more and more attention
[15–23]. Based on the above two aspects, the problem of
stability analysis and controller synthesis for switched system
with time delay (switched delay system) has aroused growing
interest. And switched delay system, as a new brand, can
be found in many applications and there are quite a lot of
related results [24–34]. However, in the above papers, systems
with only one delay are considered. And systemwithmultiple
delays, which is widely used in practice, has gained more and
more attention [35–38]. For switched systems with multiple
time delays, the problem of robust stability is considered in
[39]. In [39], delays are constant and appear only in state.
In fact, in engineering control design for the actual system,
time-varying delays are universal, and due to various reasons
delays can also appear in control input. On this occasion, the
system will become more complicated and then the response
of state may also be affected. In [40], the problem of robust
𝐻
∞

control for nonswitched system with input delays is
considered. Motivated by this, it is meaningful to investigate
the following problem: if the system in [40] is switched, how
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is its stability and also how do we design a controller and a
switching law to make the system stable? As yet, as far as we
know, it has not been fully investigated despite its potential in
practical applications, and the purpose of this paper is there-
fore to shorten such a gap by providing a rather general
framework.

The contribution of this paper lies in the following
aspects. First, we address the problem of 𝐻

∞
control for a

more general class of switched systems with multiple time-
varying delays, in which delays not only appear in the state
but also appear in the input. Second, by choosing a new
set of multiple Lyapunov-Razumikhin functionals (which is
relatively less conservative than the CLF approach), we derive
sufficient conditions of the existence of 𝐻

∞
state-feedback

controller for a class of switching signals with average dwell
time scheme; besides, the specific expression of controller is
also given in the paper.Third, in this paper, the inequality we
derived is easy to compute for it can be rewritten as LMIs.

The remainder of this paper is organized as follows.
Firstly, problem formulation and preliminaries are stated
in Section 2. In the following section, the main results are
addressed. And a numerical example is given in Section 4.
Section 5 draws the conclusion.

Notations. Throughout this paper, the notation 𝑃 > 0 (≥, ≤,
<) means that 𝑃 is a positive definite (positive-semidefinite,
negative-semidefinite, and negative definite) matrix 𝑃.
𝜆max(𝑃) and 𝜆min(𝑃) denote the maximum and minimum
eigenvalues of 𝑃, respectively; the superscript “𝑇” stands for
the transpose; ‖𝑥(𝑡)‖ denotes the Euclidean norm; 𝐿

2
[0,∞)

represents the space of square integrable vector functions
over [0,∞); 𝐼 is an identity matrix with appropriate dimen-
sion, and if not stated, matrices are assumed to have com-
patible dimensions. ( 𝐴 𝐵

∗ 𝐶
) denotes a symmetric matrix.

2. Problem Formulation and Preliminaries

Consider a class of uncertain switched delay systems of the
form

𝑥̇ (𝑡) = 𝐴
𝜎(𝑡)
𝑥 (𝑡) + 𝐴

1𝜎(𝑡)
𝑥 (𝑡 − 𝜏

1
(𝑡))

+ 𝐸
𝜎(𝑡)
𝑓
0𝜎(𝑡)

(𝑥 (𝑡) , 𝑡)

+ 𝐸
1𝜎(𝑡)
𝑓
1𝜎(𝑡)

(𝑥 (𝑡 − 𝜏
2
(𝑡)) , 𝑡)

+ 𝐸
2𝜎(𝑡)
𝑓
2𝜎(𝑡)

(𝑥 (𝑡 − 𝜏
3
(𝑡)) , 𝑡) + 𝐵

𝜎(𝑡)
𝜔 (𝑡)

+ 𝐵
1𝜎(𝑡)
𝑢
𝜎(𝑡)
(𝑡) + 𝐵

2𝜎(𝑡)
𝑢
𝜎(𝑡)
(𝑡 − 𝜏
4
(𝑡)) ,

𝑧 (𝑡) = 𝐶
𝜎(𝑡)
𝑥 (𝑡) ,

𝑥 (𝑡) = 0, 𝑡 ≤ 0,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛, 𝑢(𝑡) ∈ 𝑅𝑞, and 𝑧(𝑡) ∈ 𝑅𝑝 are the state vector,
input, and output, respectively. 𝜔(𝑡) ∈ 𝑅𝑙 which is assumed
to belong to 𝐿

2
[0,∞) is external disturbance input; 𝜎(𝑡) :

[0,∞) → 𝑀 = {1, 2, . . . , 𝑚} is the switching signal; 𝐴
𝑖
, 𝐴
1𝑖
,

𝐵
𝑖
, 𝐸
𝑖
, and 𝐸

1𝑖
are given constant matrices with appropriate

dimensions; 𝜏
𝑖
(𝑡) (𝑖 = 1, 2, 3, 4) are the time-varying delays

which satisfy the following assumption.

Assumption 1. Consider 0 ≤ 𝜏
𝑖
(𝑡) ≤ 𝑑

𝑖
< ∞, ̇𝜏

𝑖
(𝑡) ≤ 𝛼

𝑖
< 1,

𝑖 = 1, 2, 3, 4, for all 𝑡 > 0.

Remark 2. With regard to the switching signal 𝜎(𝑡), there
exists a switching sequence {𝑥

𝑡0
; (𝑖
0
, 𝑡
0
), . . . , (𝑖

𝑘
, 𝑡
𝑘
), . . . , | 𝑖

𝑘
∈

𝑀, 𝑘 = 0, 1, . . .}, which means that when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
), the

𝑖
𝑘
th subsystem is activated.

Remark 3. In general, the nonlinear uncertainties 𝑓
0𝜎(𝑡)
(𝑥(𝑡),

𝑡), 𝑓
1𝜎(𝑡)
(𝑥(𝑡 − 𝜏

2
(𝑡))), and 𝑓

2𝜎(𝑡)
(𝑥(𝑡 − 𝜏

3
(𝑡))) which refer to

the nonlinear internal parameter uncertainties with respect
to the current state and delayed states are assumed to satisfy
the following inequalities.

Assumption 4. Consider

󵄩
󵄩
󵄩
󵄩
𝑓
0𝜎(𝑡)

(𝑥 (𝑡) , 𝑡)
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝐹
𝜎
(𝑡) 𝑥 (𝑡)

󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
𝑓
1𝜎(𝑡)

(𝑥 (𝑡 − 𝜏
2
(𝑡)))

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝐹
1𝜎(𝑡)
𝑥 (𝑡 − 𝜏

2
(𝑡))
󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
𝑓
2𝜎(𝑡)

(𝑥 (𝑡 − 𝜏
3
(𝑡)))

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝐹
2𝜎(𝑡)
𝑥 (𝑡 − 𝜏

3
(𝑡))
󵄩
󵄩
󵄩
󵄩
,

(2)

where 𝐹
𝜎
(𝑡), 𝐹
1𝜎(𝑡)

, and 𝐹
2𝜎(𝑡)

are known constant matrices.

Remark 5. Compared with the switched system in [39]
(where the control input is not contained), in this paper,
delays are time varying and control input is also contained
with delays, so system (1) is more general and more practical
for we can choose a controller to make an unstable system
stable.

In this paper, we are interested in designing a state-
feedback controller which is described by 𝑢(𝑡) = 𝐾𝑥(𝑡) and
a switching law 𝜎(𝑡) such that system (1) is “robust stable.”
Firstly, the relevant definitions are given below.

Definition 6. System (1) is said to be exponentially stable
under controller 𝑢(𝑡) and switching law 𝜎(𝑡), if, with 𝜔 = 0,
the solution 𝑥(𝑡) of system (1) satisfies

‖𝑥 (𝑡)‖ ≤ 𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
−𝜆(𝑡−𝑡0)

, ∀𝑡 ≥ 𝑡
0
, (3)

where 𝑘 ≥ 1 and 𝜆 > 0.

Definition 7 (see [11]). For any 𝑇
2
> 𝑇
1
≥ 0, let 𝑁

𝜎
(𝑇
1
,

𝑇
2
) represent the switching number of 𝜎(𝑡) on (𝑇

1
, 𝑇
2
). If

𝑁
𝜎
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+ (𝑇
2
−𝑇
1
)/𝜏
𝑎
holds for 𝜏

𝑎
> 0,𝑁

0
≥ 0, then

𝜏
𝑎
is called average dwell time.

Remark 8. The concept of average dwell time, which was an
effective tool for the stability analysis of switched systems,
was put forward for continuous switched systems firstly by
Hespanha and Morse (see [11]). As commonly used in the
literature, we choose𝑁

0
= 0 in this paper.

Definition 9 (see [41]). For 𝛾 > 0, 𝛼 > 0, consider system (1)
and design a switching law 𝑖 = 𝜎(𝑡) and controller 𝑢(𝑡), if it
holds that

(1) system (1) is exponentially stable when 𝜔(𝑡) ≡ 0;
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(2) under zero initial conditions system (1) satisfies

∫

∞

0

𝑒
−𝛼𝑠

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠 ≤ 𝛾
2

∫

∞

0

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠. (4)

Then system (1) is said to have exponential𝐻
∞

performance
𝛾 (weighted 𝐿

2
-gain).

Now the following lemma which will be used to draw the
main results in this paper is presented.

Lemma 10 (see [40]). For any function vector𝐹(𝑥), symmetric
matrix 𝑃, and constant matrix𝐷, it holds that

2𝑥
𝑇

𝑃𝐷𝐹 (𝑥) ≤ 𝛽
2

𝑥
𝑇

𝑃𝐷𝐷
𝑇

𝑃𝑥 + 𝛽
−2

𝐹
𝑇

(𝑥) 𝐹 (𝑥) ,

∀𝑥 ∈ 𝑅
𝑛

, ∀𝛽 > 0.

(5)

3. Main Results

In this paper, we focus on the switched delay system with
time-varying delays and constant delays, respectively. Andwe
will tackle the robust𝐻

∞
control problem for switched delay

system (1).When 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
), the “𝑖

𝑘
th” subsystem of system

(1) is activated. At this moment it can be seen as a “non-
switched” system corresponding to system (1). Based on this,
we will first consider the nonswitched system:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝜏

1
(𝑡)) + 𝐸𝑓

0
(𝑥 (𝑡) , 𝑡)

+ 𝐸
1
𝑓
1
(𝑥 (𝑡 − 𝜏

2
(𝑡)) , 𝑡)

+ 𝐸
2
𝑓
2
(𝑥 (𝑡 − 𝜏

3
(𝑡)) , 𝑡) + 𝐵𝜔 (𝑡) + 𝐵

1
𝑢 (𝑡)

+ 𝐵
2
𝑢 (𝑡 − 𝜏

4
(𝑡)) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑥 (𝑡) = 0, 𝑡 ≤ 0.

(6)

Lemma 11. Consider the nonswitched system (6). For a given
positive definite matrix 𝑅 > 0 and constants 𝛼 > 0, 𝛾 > 0,
𝜇 > 0, and 𝜀

𝑖
> 0, 𝑖 = 1, 2, 3, 4, 5, define

𝑉 (𝑥, 𝑡) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+

4

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

𝑒
𝛼(𝑠−𝑡)

𝑥
𝑇

(𝑠) 𝑄
𝑖
𝑥 (𝑠) 𝑑𝑠

(7)

with

𝑄
1
=

𝑒
𝛼𝑑1

𝜀
2

1
(1 − 𝛼

1
)

𝐼,

𝑄
2
=

𝑒
𝛼𝑑2

𝜀
2

3
(1 − 𝛼

2
)

𝐹
𝑇

1
𝐹
1
,

𝑄
3
=

𝑒
𝛼𝑑3

𝜀
2

4
(1 − 𝛼

3
)

𝐹
𝑇

2
𝐹
2
,

𝑄
4
=

𝑒
𝛼𝑑4

𝜀
2

5
(1 − 𝛼

4
)

𝐾
𝑇

𝐾;

(8)

the linear feedback controller is designed by 𝑢(𝑡) = 𝐾𝑥(𝑡), 𝐾 =
−(1/2𝜇)𝑅

−1

𝐵
𝑇

1
𝑃, such that the inequality

𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝛼𝑃 −

1

𝜇

𝑃𝐵
1
𝑅
−1

𝐵
𝑇

1
𝑃 + 𝐶

𝑇

𝐶 + 𝑄 + 𝑃𝑁𝑃

< 0

(9)

has a positive definite solution 𝑃, where

𝑄 =

4

∑

𝑖=1

𝑄
𝑖
+ 𝜀
−2

2
𝐹
𝑇

𝐹,

𝑁 = 𝜀
2

1
𝐴
1
𝐴
𝑇

1
+ 𝜀
2

2
𝐸𝐸
𝑇

+ 𝜀
2

3
𝐸
1
𝐸
𝑇

1
+ 𝜀
2

4
𝐸
2
𝐸
𝑇

2
+ 𝜀
2

5
𝐵
2
𝐵
𝑇

2

+ 𝛾
−2

𝐵𝐵
𝑇

.

(10)

Then, along the trajectory of the system, when 𝜔(𝑡) = 0,

𝑉 (𝑡) ≤ 𝑒
(−𝛼)(𝑡−𝑡0)

𝑉 (𝑡
0
) . (11)

For general 𝜔(𝑡),

𝑉 (𝑡) ≤ 𝑒
(−𝛼)(𝑡−𝑡0)

𝑉 (𝑡
0
) − ∫

𝑡

𝑡0

𝑒
(−𝛼)(𝑡−𝑠)

Γ (𝑠) 𝑑𝑠, (12)

where Γ(𝑡) = ‖𝑧(𝑡)‖2 − 𝛾2‖𝜔(𝑡)‖2.

Proof. The following proof is motivated by the method in
[40].

For the function 𝑉(𝑥, 𝑡) defined by (7),

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) + ‖𝑧‖
2

− 𝛾
2

‖𝜔‖
2

= 𝑥
𝑇

(𝑡)

⋅ ((𝐴 + 𝐵
1
𝐾)
𝑇

𝑃

+ 𝑃 (𝐴 + 𝐵
1
𝐾) + 𝛼𝑃 + 𝐶

𝑇

𝐶) 𝑥 (𝑡) + 2𝑥
𝑇

(𝑡)

⋅ 𝑃𝐴
1
𝑥 (𝑡 − 𝜏

1
(𝑡)) + 2𝑥

𝑇

(𝑡) 𝑃𝐵
2
𝐾𝑥 (𝑡

− 𝜏
4
(𝑡)) + 2𝑥

𝑇

(𝑡) 𝑃𝐵𝜔 (𝑡) + 2𝑥
𝑇

(𝑡) 𝑃𝐸𝑓
0
(𝑥 (𝑡) , 𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃𝐸
1
𝑓
1
(𝑥 (𝑡 − 𝜏

2
(𝑡))) + 2𝑥

𝑇

(𝑡)

⋅ 𝑃𝐸
2
𝑓
2
(𝑥 (𝑡 − 𝜏

3
(𝑡))) +

4

∑

𝑖=1

𝑥
𝑇

(𝑡) 𝑄
𝑖
𝑥 (𝑡)

−

4

∑

𝑖=1

(1 − ̇𝜏
𝑖
(𝑡)) 𝑒
−𝛼𝜏𝑖(𝑡)

𝑥
𝑇

(𝑡 − 𝜏
𝑖
(𝑡)) 𝑄

𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

− 𝛾
2

‖𝜔‖
2

.

(13)
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Using Assumptions 1 and 4 and Lemma 10, we get the
following inequalities:

− (1 − ̇𝜏
𝑖
(𝑡)) ≤ 𝛼

𝑖
− 1 < 0,

2𝑥
𝑇

(𝑡) 𝑃𝐴
1
𝑥 (𝑡 − 𝜏

1
(𝑡))

≤ 𝜀
2

1
𝑥
𝑇

(𝑡) 𝑃𝐴
1
𝐴
𝑇

1
𝑃𝑥 (𝑡)

+ 𝜀
−2

1
𝑥
𝑇

(𝑡 − 𝜏
1
(𝑡)) 𝑥 (𝑡 − 𝜏

1
(𝑡)) ,

2𝑥
𝑇

(𝑡) 𝑃𝐸𝑓
0
(𝑥 (𝑡) , 𝑡)

≤ 𝑥
𝑇

(𝑡) (𝜀
2

2
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
−2

2
𝐹
𝑇

𝐹) 𝑥 (𝑡) ,

2𝑥
𝑇

(𝑡) 𝑃𝐸
1
𝑓
1
(𝑥 (𝑡 − 𝜏

2
(𝑡)))

≤ 𝜀
2

3
𝑥
𝑇

(𝑡) 𝑃𝐸
1
𝐸
𝑇

1
𝑃𝑥 (𝑡)

+ 𝜀
−2

3
𝑥
𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝐹
𝑇

1
𝐹
1
𝑥 (𝑡 − 𝜏

2
(𝑡)) ,

2𝑥
𝑇

(𝑡) 𝑃𝐸
2
𝑓
2
(𝑥 (𝑡 − 𝜏

3
(𝑡)))

≤ 𝜀
2

4
𝑥
𝑇

(𝑡) 𝑃𝐸
2
𝐸
𝑇

2
𝑃𝑥 (𝑡)

+ 𝜀
−2

4
𝑥
𝑇

(𝑡 − 𝜏
3
(𝑡)) 𝐹
𝑇

2
𝐹
2
𝑥 (𝑡 − 𝜏

3
(𝑡)) ,

2𝑥
𝑇

(𝑡) 𝑃𝐵𝜔 (𝑡)

≤ 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + 𝛾
−2

𝑥
𝑇

(𝑡) 𝑃𝐵𝐵
𝑇

𝑃𝑥 (𝑡) ,

2𝑥
𝑇

(𝑡) 𝑃𝐵
2
𝐾𝑥 (𝑡 − 𝜏

4
(𝑡))

≤ 𝜀
2

5
𝑥
𝑇

(𝑡) 𝑃𝐵
2
𝐵
𝑇

2
𝑃𝑥 (𝑡)

+ 𝜀
−2

5
𝑥
𝑇

(𝑡 − 𝜏
4
(𝑡))𝐾

𝑇

𝐾𝑥 (𝑡 − 𝜏
4
(𝑡)) .

(14)

Substituting inequalities (14) into (13), it holds that

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) + ‖𝑧‖
2

− 𝛾
2

‖𝜔‖
2

≤ 𝑥
𝑇

(𝑡) [(𝐴

+ 𝐵
1
𝐾)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵
1
𝐾) + 𝛼𝑃 + 𝐶

𝑇

𝐶 +

4

∑

𝑖=1

𝑄
𝑖

+ 𝜀
−2

2
𝐹
𝑇

𝐹 + 𝑃 (𝜀
2

1
𝐴
1
𝐴
𝑇

1
+ 𝜀
2

2
𝐸𝐸
𝑇

+ 𝜀
2

3
𝐸
1
𝐸
𝑇

1

+ 𝜀
2

4
𝐸
2
𝐸
𝑇

2
+ 𝜀
2

5
𝐵
2
𝐵
𝑇

2
+ 𝛾
−2

𝐵𝐵
𝑇

) 𝑃]𝑥 (𝑡) + 𝜀
−2

1
𝑥
𝑇

(𝑡

− 𝜏
1
(𝑡)) 𝑥 (𝑡 − 𝜏

1
(𝑡)) + 𝜀

−2

3
𝑥
𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝐹
𝑇

1
𝐹
1
𝑥 (𝑡

− 𝜏
2
(𝑡)) + 𝜀

−2

4
𝑥
𝑇

(𝑡 − 𝜏
3
(𝑡)) 𝐹
𝑇

2
𝐹
2
𝑥 (𝑡 − 𝜏

3
(𝑡))

+ 𝜀
−2

5
𝑥
𝑇

(𝑡 − 𝜏
4
(𝑡))𝐾

𝑇

𝐾𝑥 (𝑡 − 𝜏
4
(𝑡)) −

4

∑

𝑖=1

(1 − 𝛼
𝑖
)

⋅ 𝑒
−𝛼𝑑𝑖
𝑥
𝑇

(𝑡 − 𝜏
𝑖
(𝑡)) 𝑄

𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) .

(15)

Considering (8), inequality (15) can be expressed as

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) + ‖𝑧‖
2

− 𝛾
2

‖𝜔‖
2

≤ 𝑥
𝑇

(𝑡) [(𝐴

+ 𝐵
1
𝐾)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵
1
𝐾) + 𝛼𝑃 + 𝐶

𝑇

𝐶 + 𝜀
−2

2
𝐹
𝑇

𝐹

+

4

∑

𝑖=1

𝑄
𝑖
+ 𝑃 (𝜀

2

1
𝐴
1
𝐴
𝑇

1
+ 𝜀
2

2
𝐸𝐸
𝑇

+ 𝜀
2

3
𝐸
1
𝐸
𝑇

1
+ 𝜀
2

4
𝐸
2
𝐸
𝑇

2

+ 𝜀
2

5
𝐵
2
𝐵
𝑇

2
+ 𝛾
−2

𝐵𝐵
𝑇

) 𝑃]𝑥 (𝑡) .

(16)

Let 𝐾 = −(1/2𝜇)𝑅−1𝐵𝑇
1
𝑃 in (16); we can get

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) + ‖𝑧‖
2

− 𝛾
2

‖𝜔‖
2

≤ 𝑥
𝑇

(𝑡) [𝐴
𝑇

𝑃

+ 𝑃𝐴 + 𝛼𝑃 −

1

𝜇

𝑃𝐵
1
𝑅
−1

𝐵
𝑇

1
𝑃 + 𝐶

𝑇

𝐶 + 𝜀
−2

2
𝐹
𝑇

𝐹

+

4

∑

𝑖=1

𝑄
𝑖
+ 𝑃 (𝜀

2

1
𝐴
1
𝐴
𝑇

1
+ 𝜀
2

2
𝐸𝐸
𝑇

+ 𝜀
2

3
𝐸
1
𝐸
𝑇

1
+ 𝜀
2

4
𝐸
2
𝐸
𝑇

2

+ 𝜀
2

5
𝐵
2
𝐵
𝑇

2
+ 𝛾
−2

𝐵𝐵
𝑇

) 𝑃]𝑥 (𝑡) .

(17)

Hence

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) + ‖𝑧‖
2

− 𝛾
2

‖𝜔‖
2

< 0. (18)

When 𝜔(𝑡) = 0, it yields that

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) < ‖𝑧‖
2

< 0. (19)

Then, integrating inequalities (18) and (19), respectively, we
can get inequalities (11) and (12) in Lemma 11.This completes
the proof.

When the delays in the nonswitched system (6) are
constant, we assume that the following conditions hold:

󵄩
󵄩
󵄩
󵄩
𝑓
0
(𝑥 (𝑡) , 𝑡)

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝛽
0
𝑥 (𝑡)

󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
𝑓
1
(𝑥 (𝑡 − 𝜏

2
))
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝛽
1
𝑥 (𝑡 − 𝜏

2
)
󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
𝑓
2
(𝑥 (𝑡 − 𝜏

3
))
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝛽
2
𝑥 (𝑡 − 𝜏

3
)
󵄩
󵄩
󵄩
󵄩
,

(20)

where 𝛽
0
, 𝛽
1
, and 𝛽

2
are positive real constants.

Lemma 12. For given constants 𝛼 > 0, 𝛾 > 0, 𝛽
0
> 0, 𝛽

1
> 0,

𝛽
2
> 0, 𝑝 > 0, and 𝑢(𝑡) = 𝐾𝑥(𝑡), such that

𝛽
0
‖𝐸‖ + 𝛽

1

󵄩
󵄩
󵄩
󵄩
𝐸
1

󵄩
󵄩
󵄩
󵄩
+ 𝛽
2

󵄩
󵄩
󵄩
󵄩
𝐸
2

󵄩
󵄩
󵄩
󵄩
<

𝑝

2 ‖𝑃‖

, (21)

define

𝑉 (𝑥, 𝑡) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) , (22)
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where 𝑃 is a positive symmetric definite matrix of the following
inequality:

(𝐴 + 𝐵
1
𝐾)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵
1
𝐾) + 𝛼𝑃

+ 𝑃 (𝐴
1
𝐴
𝑇

1
+ 𝐵
2
𝐾𝐾
𝑇

𝐵
2
) 𝑃 + 𝛾

−2

𝑃𝐵𝐵
𝑇

𝑃 + 𝐶
𝑇

𝐶

< −𝑝𝐼.

(23)

Then, along the trajectory of system (6), when 𝜔(𝑡) = 0,

𝑉 (𝑡) ≤ 𝑒
(−𝛼)(𝑡−𝑡0)

𝑉 (𝑡
0
) (24)

and, for general 𝜔(𝑡),

𝑉 (𝑡) ≤ 𝑒
(−𝛼)(𝑡−𝑡0)

𝑉 (𝑡
0
) − ∫

𝑡

𝑡0

𝑒
(−𝛼)(𝑡−𝑠)

Γ (𝑠) 𝑑𝑠, (25)

where Γ(𝑡) = ‖𝑧(𝑡)‖2 − 𝛾2‖𝜔(𝑡)‖2.

Proof. The proof is similar to that of Lemma 11.
For 𝑉(𝑥, 𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡) and 𝑢(𝑡) = 𝐾𝑥(𝑡),

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) + ‖𝑧‖
2

− 𝛾
2

‖𝜔‖
2

= 𝑥
𝑇

(𝑡)

⋅ ((𝐴 + 𝐵
1
𝐾)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵
1
𝐾) + 𝛼𝑃 + 𝐶

𝑇

𝐶)

⋅ 𝑥 (𝑡) + 2𝑥
𝑇

(𝑡) 𝑃𝐴
1
𝑥 (𝑡 − 𝜏

1
) + 2𝑥

𝑇

(𝑡)

⋅ 𝑃𝐸𝑓
0
(𝑥 (𝑡) , 𝑡) + 2𝑥

𝑇

(𝑡) 𝑃𝐸
1
𝑓
1
(𝑥 (𝑡 − 𝜏

2
))

+ 2𝑥
𝑇

(𝑡) 𝑃𝐸
2
𝑓
2
(𝑥 (𝑡 − 𝜏

3
)) + 2𝑥

𝑇

(𝑡)

⋅ 𝑃𝐵
2
𝐾(𝑥 (𝑡 − 𝜏

4
)) + 2𝑥

𝑇

(𝑡) 𝑃𝐵𝜔 (𝑡) − 𝛾
2

‖𝜔‖
2

.

(26)

Using a similar step of the proof in Lemma 11, we can obtain
the following equality:

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) + ‖𝑧‖
2

− 𝛾
2

‖𝜔‖
2

≤ 𝑥
𝑇

(𝑡)

⋅ [(𝐴 + 𝐵
1
𝐾)
𝑇

𝑃

+ 𝑃 (𝐴 + 𝐵
1
𝐾) + 𝛼𝑃 + 𝐶

𝑇

𝐶

+ 𝑃 (𝐴
1
𝐴
𝑇

1
+ 𝐵
2
𝐾𝐾
𝑇

𝐵
𝑇

2
) 𝑃 + 𝛾

−2

𝑃𝐵𝐵
𝑇

𝑃] 𝑥 (𝑡)

+ 2𝛽
0
‖𝑃‖ ‖𝐸‖ ‖𝑥 (𝑡)‖

2

+ 2𝛽
1
‖𝑃‖

󵄩
󵄩
󵄩
󵄩
𝐸
1

󵄩
󵄩
󵄩
󵄩
‖𝑥 (𝑡)‖

⋅
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡 − 𝜏

2
)
󵄩
󵄩
󵄩
󵄩

+ 2𝛽
2
‖𝑃‖

󵄩
󵄩
󵄩
󵄩
𝐸
2

󵄩
󵄩
󵄩
󵄩
‖𝑥 (𝑡)‖

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡 − 𝜏

3
)
󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡 − 𝜏

4
)
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡 − 𝜏

1
)
󵄩
󵄩
󵄩
󵄩

2

.

(27)

If we assume

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡 − 𝜏

𝑖
)
󵄩
󵄩
󵄩
󵄩
≤ 𝑞
𝑖
‖𝑥 (𝑡)‖ , 𝑞

𝑖
> 1, 𝑖 = 1, 2, 3, 4, (28)

inequality (27) becomes

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) + ‖𝑧‖
2

− 𝛾
2

‖𝜔‖
2

≤ 𝑥
𝑇

(𝑡)

⋅ [(𝐴 + 𝐵
1
𝐾)
𝑇

𝑃

+ 𝑃 (𝐴 + 𝐵
1
𝐾) + 𝛼𝑃 + 𝐶

𝑇

𝐶

+ 𝑃 (𝐴
1
𝐴
𝑇

1
+ 𝐵
2
𝐾𝐾
𝑇

𝐵
𝑇

2
) 𝑃 + 𝛾

−2

𝐵𝐵
𝑇

𝑃] 𝑥 (𝑡)

+ (2𝛽
0
‖𝑃‖ ‖𝐸‖ + 2𝛽

1
‖𝑃‖

󵄩
󵄩
󵄩
󵄩
𝐸
1

󵄩
󵄩
󵄩
󵄩
𝑞
2

+ 2𝛽
2
‖𝑃‖

󵄩
󵄩
󵄩
󵄩
𝐸
2

󵄩
󵄩
󵄩
󵄩
𝑞
3
+ 𝑞
2

1
+ 𝑞
2

4
) ‖𝑥 (𝑡)‖

2

.

(29)

Considering that 𝑞
𝑖
> 1, it holds that

− 2 (𝛽
0
‖𝑃‖ ‖𝐸‖ + 𝛽

1
‖𝑃‖

󵄩
󵄩
󵄩
󵄩
𝐸
1

󵄩
󵄩
󵄩
󵄩
| 𝑞
2
+ 𝛽
2
‖𝑃‖

󵄩
󵄩
󵄩
󵄩
𝐸
2

󵄩
󵄩
󵄩
󵄩
𝑞
3
)

− 𝑞
2

1
− 𝑞
2

4
< −2 (𝛽

0
‖𝑃‖ ‖𝐸‖ + 𝛽

1
‖𝑃‖

󵄩
󵄩
󵄩
󵄩
𝐸
1

󵄩
󵄩
󵄩
󵄩

+ 𝛽
2
‖𝑃‖

󵄩
󵄩
󵄩
󵄩
𝐸
2

󵄩
󵄩
󵄩
󵄩
) − 𝑞
2

4
− 𝑞
2

1
< −2 (𝛽

0
‖𝑃‖ ‖𝐸‖

+ 𝛽
1
‖𝑃‖

󵄩
󵄩
󵄩
󵄩
𝐸
1

󵄩
󵄩
󵄩
󵄩
+ 𝛽
2
‖𝑃‖

󵄩
󵄩
󵄩
󵄩
𝐸
2

󵄩
󵄩
󵄩
󵄩
) = −2 ‖𝑃‖ (𝛽

0
‖𝐸‖

+ 𝛽
1

󵄩
󵄩
󵄩
󵄩
𝐸
1

󵄩
󵄩
󵄩
󵄩
+ 𝛽
2

󵄩
󵄩
󵄩
󵄩
𝐸
2

󵄩
󵄩
󵄩
󵄩
) < −𝑝.

(30)

Hence from inequalities (29) and (30), we have

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) + ‖𝑧‖
2

− 𝛾
2

‖𝜔‖
2

< 0. (31)

Then, when 𝜔(𝑡) = 0,

𝑉̇ (𝑥, 𝑡) + 𝛼𝑉 (𝑥, 𝑡) < 0. (32)

Similar to Lemma 11, we can get (24) and (25).

Remark 13. Assumption (28), that is, ‖𝑥(𝑡 − 𝜏
𝑖
)‖ ≤ 𝑞

𝑖
‖𝑥(𝑡)‖,

𝑞
𝑖
> 1, 𝑖 = 1, 2, 3, 4, in the above proof is commonly used in

papers (see [42]).

Now, we will design a controller 𝑢(𝑡) and a switching
law 𝜎(𝑡), under which switched system (1) has exponential
𝐻
∞

performance 𝛾. Firstly, for system (1) with time-varying
delays, the following theorem is given.

Theorem 14. For a given matrix 𝑅
𝑖
> 0 and constants 𝛼 > 0,

𝛾 > 0, and 𝜀
𝑖𝑗
> 0, 𝑗 = 1, 2, 3, 4, 5, ] > 0, if there exist matrices

𝑃
𝑖
> 0, 𝑖 ∈ 𝑀, and a linear state-feedback controller 𝑢

𝑖
(𝑡) =

𝐾
𝑖
𝑥(𝑡), 𝐾

𝑖
= −(1/2])𝑅−1

𝑖
𝐵
𝑇

1𝑖
𝑃
𝑖
, such that

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝛼𝑃
𝑖
−

1

]
𝑃
𝑖
𝐵
1𝑖
𝑅
−1

𝑖
𝐵
𝑇

1𝑖
𝑃
𝑖
+ 𝐶
𝑇

𝑖
𝐶
𝑖
+ 𝑄
𝑖

+ 𝑃
𝑖
𝑁
𝑖
𝑃
𝑖
< 0

(33)

has a positive definite solution 𝑃
𝑖
, where

𝑄
𝑖
=

4

∑

𝑗=1

𝑄
𝑗𝑖
+ 𝜀
−2

𝑖2
𝐹
𝑇

𝑖
𝐹
𝑖
,

𝑁
𝑖
= 𝜀
2

𝑖1
𝐴
1𝑖
𝐴
𝑇

1𝑖
+ 𝜀
2

𝑖2
𝐸
𝑖
𝐸
𝑇

𝑖
+ 𝜀
2

𝑖3
𝐸
1𝑖
𝐸
𝑇

1𝑖
+ 𝜀
2

𝑖4
𝐸
2𝑖
𝐸
𝑇

2𝑖

+ 𝜀
2

𝑖5
𝐵
2𝑖
𝐵
𝑇

2𝑖
+ 𝛾
−2

𝐵
𝑖
𝐵
𝑇

𝑖
,

(34)
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then system (1) is exponentially stable and hasweighted𝐿
2
-gain

𝛾 for any switching signal with average dwell time satisfying
𝜏
𝑎
> 𝜏
∗

𝑎
= (ln 𝜇)/𝛼, where 𝜇 ≥ 1 satisfies𝑃

𝑖
≤ 𝜇𝑃
𝑗
,𝑄
1𝑖
≤ 𝜇𝑄
1𝑗
,

𝑄
2𝑖
≤ 𝜇𝑄
2𝑗
, 𝑄
3𝑖
≤ 𝜇𝑄
3𝑗
, 𝑄
4𝑖
≤ 𝜇𝑄
4𝑗
, ∀𝑖, 𝑗 ∈ 𝑀, where

𝑄
1𝑖
=

𝑒
𝛼𝑑1

𝜀
2

𝑖1
(1 − 𝛼

1
)

𝐼,

𝑄
2𝑖
=

𝑒
𝛼𝑑2

𝜀
2

𝑖3
(1 − 𝛼

2
)

𝐹
𝑇

1𝑖
𝐹
1𝑖
,

𝑄
3𝑖
=

𝑒
𝛼𝑑3

𝜀
2

𝑖4
(1 − 𝛼

3
)

𝐹
𝑇

2𝑖
𝐹
2𝑖
,

𝑄
4𝑖
=

𝑒
𝛼𝑑4

𝜀
2

𝑖5
(1 − 𝛼

4
)

𝐾
𝑇

𝑖
𝐾
𝑖
.

(35)

Proof. Define a set of Lyapunov-Razumikhin function candi-
dates as follows:

𝑉 (𝑥 (𝑡)) = 𝑉
𝜎
(𝑡) (𝑥 (𝑡))

= 𝑥
𝑇

(𝑡) 𝑃
𝜎
(𝑡) 𝑥 (𝑡)

+

4

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

𝑒
𝛼(𝑠−𝑡)

𝑥
𝑇

(𝑠) 𝑄
𝑖𝜎(𝑡)
𝑥
𝑇

(𝑠) 𝑑𝑠.

(36)

Then when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
) and 𝜔(𝑡) = 0, it follows from

Lemma 11 that

𝑉
𝜎(𝑡𝑘)

(𝑥 (𝑡)) ≤ 𝑒
(−𝛼)(𝑡−𝑡𝑘)

𝑉
𝜎(𝑡𝑘)

(𝑥
𝑡𝑘
) , (37)

and from (36) the following inequality holds at switching
instant 𝑡

𝑖
:

𝑉
𝜎(𝑡𝑖)
(𝑥 (𝑡
𝑖
)) ≤ 𝜇𝑉

𝜎(𝑡𝑖

−
)
(𝑥 (𝑡
𝑖

−

)) . (38)

Letting 𝑘 = 𝑁
𝜎
(𝑡
0
, 𝑡) ≤ (𝑡 − 𝑡

0
)/𝜏
𝑎
, it follows from

inequalities (37) and (38) that

𝑉
𝜎(𝑡𝑘)

(𝑥 (𝑡)) (𝑥 (𝑡))

≤ 𝑒
(−𝛼)(𝑡−𝑡𝑘)

𝜇𝑉
𝜎(𝑡𝑘

−
)
(𝑥 (𝑡
𝑘

−

))

≤ ⋅ ⋅ ⋅ 𝑒
(−𝛼)(𝑡−𝑡0)

𝜇
𝑘

𝑉
𝜎(𝑡0)

(𝑥 (𝑡
0
))

≤ 𝑒
−(𝛼−(ln 𝜇)/𝜏𝑎)

(𝑡 − 𝑡
0
) 𝑉
𝜎(𝑡0)

(𝑥 (𝑡
0
)) .

(39)

Let

𝑎 = min
∀𝑖∈𝑀

𝜆min (𝑃𝑖) ,

𝑏 = max
∀𝑖∈𝑀

𝜆max [𝑃𝑖 +
𝑑
1

𝜀
2

𝑖1
(1 − 𝛼

1
)

𝐼

+

𝑑
2

𝜀
2

𝑖3
(1 − 𝛼

2
)

(𝐹
𝑇

1𝑖
𝐹
1𝑖
) +

𝑑
3

𝜀
2

𝑖4
(1 − 𝛼

3
)

(𝐹
𝑇

2𝑖
𝐹
2𝑖
)

+

𝑑
4

𝜀
2

𝑖5
(1 − 𝛼

4
)

𝐾
𝑇

𝑖
𝐾
𝑖
] .

(40)

Then

𝑎 ‖𝑥 (𝑡)‖
2

≤ 𝑉 (𝑥 (𝑡)) ,

𝑉
𝜎(𝑡0)

(𝑥 (𝑡
0
)) ≤ 𝑏

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩

2

.

(41)

Combining inequalities (39) and (41), we obtain

‖𝑥 (𝑡)‖
2

≤

𝑉 (𝑥 (𝑡))

𝑎

≤

𝑎

𝑏

𝑒
−(𝛼−(ln 𝜇)/𝜏𝑎)

(𝑡 − 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡
0
)
󵄩
󵄩
󵄩
󵄩

2

(42)

which leads to the exponential stability of the switched system
(1) with 𝜔(𝑡) = 0.

Now we will show the weighted 𝐿
2
-gain of system (1).

Firstly for any 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
), using Lemma 10, we have

𝑉 (𝑥
𝑡
) ≤ 𝑒
(−𝛼)(𝑡−𝑡𝑘)

𝑉 (𝑡
𝑘
) − ∫

𝑡

𝑡𝑘

𝑒
(−𝛼)(𝑡−𝑠)

Γ (𝑠) 𝑑𝑠. (43)

Then considering both inequalities (38) and (43), it holds that

𝑉 (𝑥
𝑡
) ≤ 𝜇𝑉 (𝑥 (𝑡

𝑘
)) 𝑒
(−𝛼)(𝑡−𝑡𝑘)

𝑉 (𝑡
𝑘
)

− ∫

𝑡

𝑡𝑘

𝑒
(−𝛼)(𝑡−𝑠)

Γ (𝑠) 𝑑𝑠

≤ 𝜇
𝑘

𝑉 (𝑥 (𝑡
0
)) 𝑒
−𝛼𝑡

− 𝜇
𝑘

∫

𝑡1

0

𝑒
(−𝛼)(𝑡−𝑠)

Γ (𝑠) 𝑑𝑠

− 𝜇
𝑘−1

∫

𝑡2

𝑡1

𝑒
(−𝛼)(𝑡−𝑠)

Γ (𝑠) 𝑑𝑠 − ⋅ ⋅ ⋅

− ∫

𝑡

𝑡𝑘

𝑒
(−𝛼)(𝑡−𝑠)

Γ (𝑠) 𝑑𝑠

= 𝑒
−𝛼𝑡+𝑁𝜎(0,𝑡) ln 𝜇

𝑉 (𝑥
0
)

− ∫

𝑡

0

𝑒
(−𝛼)(𝑡−𝑠)+𝑁𝜎(𝑠,𝑡) ln 𝜇

Γ (𝑠) 𝑑𝑠.

(44)

This gives

−∫

𝑡

0

𝑒
(−𝛼)(𝑡−𝑠)+𝑁𝜎(𝑠,𝑡) ln 𝜇

Γ (𝑠) 𝑑𝑠 ≥ 0. (45)

Multiplying both sides in (45) by 𝑒−𝑁𝜎(0,𝑡) ln 𝜇, it yields

∫

𝑡

0

𝑒
(−𝛼)(𝑡−𝑠)−𝑁𝜎(0,𝑠) ln 𝜇

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠

≤ ∫

𝑡

0

𝑒
(−𝛼)(𝑡−𝑠)−𝑁𝜎(0,𝑠) ln 𝜇

𝛾
2

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(46)
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Observing that 𝑁
𝜎
(0, 𝑠) ≤ 𝑠/𝜏

𝑎
and 𝜏
𝑎
> 𝜏
∗

𝑎
= (ln 𝜇)/𝛼, we

have𝑁
𝜎
(0, 𝑠) ln 𝜇 ≤ 𝛼𝑠; consequently

∫

𝑡

0

𝑒
(−𝛼)(𝑡−𝑠)−𝛼𝑠

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠

≤ ∫

𝑡

0

𝑒
(−𝛼)(𝑡−𝑠)

𝛾
2

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(47)

Integrating both sides of inequality (47) from 𝑡 = 0 to∞, we
obtain

∫

∞

0

𝑒
−𝛼𝑠

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠 ≤ ∫

∞

0

𝛾
2

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠. (48)

This ends the proof.

Remark 15. Inequality (33) in Theorem 14 is equivalent to
LMIs as follows:

(

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝛼𝑃
𝑖
+ 𝐶
𝑇

𝑖
𝐶
𝑖
+ 𝑄
𝑖
−

𝛼𝑑
4

𝜀
2

𝑖5
(1 − 𝛼

4
)

𝐾
𝑇

𝑖
𝐾
𝑖
𝑃𝑁̃
𝑖
𝑃𝐵
1𝑖

∗ −𝑁̃
𝑖

0

∗ 0 −

1

]
𝑅
𝑖

)< 0, (49)

where 𝑁̃
𝑖
= 𝑁
𝑖
+ (𝛼𝑑

4
/4]2𝜀2
𝑖5
(1 − 𝛼

4
))𝐵
𝑇

1𝑖
(𝑅
−1

𝑖
)

𝑇

𝑅
𝑖

−1

𝐵
1𝑖
. So it

can be calculated easily.

When the delays in system (1) are constant, we can get the
following corollary.

Corollary 16. For given constants 𝛼 > 0, 𝛾 > 0, 𝛽
0
> 0, 𝛽

1
>

0, 𝛽
2
> 0, and 𝑝 > 0, 𝑖 ∈ 𝑀, if there exists a linear state

feedback controller 𝑢
𝑖
(𝑡) = 𝐾

𝑖
𝑥(𝑡) such that

𝛽
0

󵄩
󵄩
󵄩
󵄩
𝐸
𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝛽
1

󵄩
󵄩
󵄩
󵄩
𝐸
1𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝛽
2

󵄩
󵄩
󵄩
󵄩
𝐸
2𝑖

󵄩
󵄩
󵄩
󵄩
<

𝑝

2
󵄩
󵄩
󵄩
󵄩
𝑃
𝑖

󵄩
󵄩
󵄩
󵄩

, (50)

where 𝑃
𝑖
is a positive symmetric definite matrix of the following

inequality:

(𝐴
𝑖
+ 𝐵
1𝑖
𝐾
𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑖
+ 𝐵
1𝑖
𝐾
𝑖
) + 𝛼𝑃

𝑖

+ 𝑃
𝑖
(𝐴
1𝑖
𝐴
𝑇

1𝑖
+ 𝐵
2𝑖
𝐾
𝑖
𝐾
𝑇

𝑖
𝐵
2𝑖
) 𝑃
𝑖
+ 𝛾
−2

𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖

+ 𝐶
𝑇

𝑖
𝐶
𝑖
< −𝑝𝐼,

(51)

then switched system (1) with constant delays is exponentially
stable and has weighted 𝐿

2
-gain 𝛾 for any switching signal with

average dwell time satisfying 𝜏
𝑎
> 𝜏
∗

𝑎
= (ln 𝜇)/𝛼, where 𝜇 ≥ 1

satisfies 𝑃
𝑖
≤ 𝜇𝑃
𝑗
, ∀𝑖, 𝑗 ∈ 𝑀.

Proof. Define the Lyapunov-Razumikhin function candidate
inTheorem 14 as follows:

𝑉 (𝑥 (𝑡)) = 𝑉
𝜎
(𝑡) (𝑥 (𝑡)) = 𝑥

𝑇

(𝑡) 𝑃
𝜎
(𝑡) 𝑥 (𝑡) ; (52)

the proof is similar to that of Theorem 14 by Lemma 12.

Remark 17. Inequality (51) is easy to be solved for it can be
rewritten as a LMI:

(

𝐺 𝑃
𝑖
𝐴
1𝑖
𝑃
𝑖
𝐵
2𝑖
𝐾
𝑖
𝛾
−2

𝑃
𝑖
𝐵
𝑖

∗ −𝐼 0 0

∗ ∗ −𝐼 0

∗ ∗ ∗ −𝐼

) < 0, (53)

where 𝐺 = (𝐴
𝑖
+ 𝐵
1𝑖
𝐾
𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑖
+ 𝐵
1𝑖
𝐾
𝑖
) + 𝛼𝑃

𝑖
+ 𝐶
𝑇

𝑖
𝐶
𝑖
+

𝑝𝐼.

Remark 18. In [40], conditions are given to guarantee that
the nonswitched system with input delays is asymptotically
stable. Compared with [40], we get the conditions when the
switched system is exponentially stable.

4. Examples

To illustrate the main results, we consider the following
examples.

Example 1. Consider the time-varying delay switched system

𝑥̇ (𝑡) = 𝐴
𝜎(𝑡)
𝑥 (𝑡) + 𝐴

1𝜎(𝑡)
𝑥 (𝑡 − 𝜏

1
(𝑡))

+ 𝐸
𝜎(𝑡)
𝑓
0𝜎(𝑡)

(𝑥 (𝑡) , 𝑡)

+ 𝐸
1𝜎(𝑡)
𝑓
1𝜎(𝑡)

(𝑥 (𝑡 − 𝜏
2
(𝑡)) , 𝑡)

+ 𝐸
2𝜎(𝑡)
𝑓
2𝜎(𝑡)

(𝑥 (𝑡 − 𝜏
3
(𝑡)) , 𝑡) + 𝐵

𝜎(𝑡)
𝜔 (𝑡)

+ 𝐵
1𝜎(𝑡)
𝑢
𝜎(𝑡)
(𝑡) + 𝐵

2𝜎(𝑡)
𝑢
𝜎(𝑡)
(𝑡 − 𝜏
4
(𝑡)) ,

𝑧 (𝑡) = 𝐶
𝜎(𝑡)
𝑥 (𝑡) ,

𝑥 (𝑡) = 0, 𝑡 ≤ 0,

(54)

where 𝑖 = 1, 2 and 𝜏
1
(𝑡) = 0.2 sin 𝑡+0.3, 𝜏

2
(𝑡) = 0.3 cos 𝑡+0.4,

𝜏
3
(𝑡) = 0.4 sin 𝑡 + 0.5, 𝜏

4
(𝑡) = 0.5 cos 𝑡 + 0.7; thus 0 ≤ 𝜏

1
(𝑡) ≤

0.5, 0 ≤ 𝜏
2
(𝑡) ≤ 0.7, 0 ≤ 𝜏

3
(𝑡) ≤ 0.9, 0 ≤ 𝜏

4
(𝑡) ≤ 1.2,

and, ̇𝜏
1
(𝑡) ≤ 0.2 < 1, ̇𝜏

2
(𝑡) ≤ 0.3 < 1, ̇𝜏

3
(𝑡) ≤ 0.4 < 1,

̇𝜏
4
(𝑡) ≤ 0.5 < 1. So we have 𝛼

1
= 0.2, 𝛼

2
= 0.3, 𝛼

3
= 0.4,

𝛼
4
= 0.5, 𝑑

1
= 0.5, 𝑑

2
= 0.7, 𝑑

3
= 0.9, 𝑑

4
= 1.2. And

𝐴
1
= (
−4 1

2 −4
), 𝐴
11
= (
1 0

−1 3
), 𝐸
1
= (
1 0

2 −3
), 𝐸
11
= 𝐸
12
= (
1 0

0 1
),

𝐸
21
= (
2 −1

0 2
), 𝐵
1
= (
1 0

3 4
), 𝐵
11
= (
1 −1

0 3
), 𝐵
21
= (
2 −1

−2 3
), 𝐶
1
=

(2 4), 𝑅
1
= (
2 0

0 2
), 𝐴
2
= (
−3 1

1 −2
), 𝐴
12
= (
2 0

−1 1
), 𝐸
22
= (
2 −1

0 2
),

𝐵
2
= (
1 0

4 3
), 𝐵
12
= (
2 −1

−1 3
), 𝐵
22
= (
3 −2

−1 3
), 𝐶
2
= (2 3),

𝑅
2
= (
3 0

0 3
), 𝑓
0𝑖
= (
𝑎(𝑡) sin𝑥1(𝑡)
0

), 𝑓
1𝑖
= (

0

𝑏(𝑡) sin𝑥2(𝑡−𝜏2) ), 𝑓2𝑖 =
(
𝑐(𝑡) cos𝑥1(𝑡−𝜏2)
0

), with |𝑎(𝑡)| ≤ 1, |𝑏(𝑡)| ≤ 1, |𝑐(𝑡)| ≤ 1. Then
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Figure 1: The state response of the closed-loop system (54) in
Example 1.

𝐹
𝑖
= 𝐹
1𝑖
= 𝐹
2𝑖
= 𝐼
2
. Let 𝜀

𝑖1
= 1, 𝜀

𝑖2
= 𝜀
𝑖3
= 𝜀
𝑖4
= 𝜀
𝑖5
= 0.01

and 𝛼 = 2, 𝛾 = 1; solving (33) using Matlab software, we
can get 𝑃

1
= (1.0𝑒 + 0.003) (

5.6571 0.0619

0.0619 1.6519
) and 𝑃

2
= (1.0𝑒 +

0.003) (
4.6105 1.2150

1.2150 4.1704
); besides 𝑄

11
= 𝑄
21
= (
2.1746 0

0 2.1746
),

𝑄
12
= 𝑄
22
= (1.0𝑒 + 0.004) (

2.8386 0

0 2.8386
), 𝑄
13
= 𝑄
23
=

(1.0𝑒 + 0.004) (
3.6298 0

0 3.6298
),𝑄
14
= (1.0𝑒 + 0.004) (

0.15 −0.15

−0.15 1.5
),

𝑄
24
= (1.0𝑒 + 0.003) (

3.3333 −3.3333

−3.3333 6.6667
). And we can get 𝜇 = 20

satisfying the condition of Theorem 14.
Therefore according to Theorem 14, system (54) is expo-

nentially stable and has 𝐿
2
-gain 𝛾 for any switching signal

with average dwell time satisfying 𝜏
𝑎
> 𝜏
∗

𝑎
= (ln 𝜇)/𝛼 =

(ln 20)/2. The simulation result is depicted in Figure 1.

Example 2. Consider the constant time-delay switched sys-
tem with 𝐴

1
= (
−4 0

0 −4
), 𝐴
11
= (
0 0.5

0.5 0
), 𝐵
11
= (
1 0

0 0
), 𝐵
21
=

(
1 0

1 0
), 𝐶
1
= (2 3), 𝐵

1
= (
2 3

−1 1
), 𝐴
2
= (
−4 1

0 −4
), 𝐴
12
= (
−2 1

3 2
),

𝐵
12
= (
1 0

0 0
), 𝐵
22
= (
−2 0

1 0
), 𝐶
2
= (2 3), 𝐵

2
= (
1 −3

−1 −2
),

𝐸
1
= 𝐸
2
= 𝐸
11
= 𝐸
12
= 𝐸
21
= 𝐸
22
= 𝐼, 𝜏
1
= 1, 𝜏
2
= 1.5, 𝜏

3
= 2,

𝜏
4
= 0.5, 𝑓

0𝑖
= (
𝑎(𝑡) sin𝑥1(𝑡)
0

), 𝑓
1𝑖
= (

0

𝑏(𝑡) sin𝑥2(𝑡−𝜏2) ), 𝑓2𝑖 =
(
𝑐(𝑡) sin𝑥1(𝑡−𝜏3)
0

), with |𝑎(𝑡)| ≤ 0.01, |𝑏(𝑡)| ≤ 0.1, |𝑐(𝑡)| ≤ 0.08.
Then let 𝛽

0
= 0.01, 𝛽

1
= 0.1, and 𝛽

2
= 0.08, and let 𝑝 = 1, 𝛼 =

2, 𝛾 = 1,𝐾
1
= (
−1 −1

0 0
),𝐾
2
= (
−1 2

0 0
); solving (51) by theMatlab

software, we can get𝑃
1
= (
0.6896 0.8038

0.8038 1.9159
) and𝑃

2
= (
0.2115 0.3434

0.3434 1.9159
)

and ‖𝑃
1
‖ = 2.3137, ‖𝑃

2
‖ = 1.1453.

It is obvious that 𝛽
0
‖𝐸
𝑖
‖ + 𝛽
1
‖𝐸
1𝑖
‖ + 𝛽
2
‖𝐸
2𝑖
‖ < 𝑝/2‖𝑃

𝑖
‖,

𝑖 = 1, 2, and we can get 𝜇 = 4 satisfying 𝑃
2
< 𝜇𝑃
1
, 𝑃
1
< 𝜇𝑃
2
.

Therefore according to Corollary 16, this system is exponen-
tially stable and has 𝐿

2
-gain 𝛾 for any switching signal with

average dwell time satisfying 𝜏
𝑎
> 𝜏
∗

𝑎
= (ln 𝜇)/𝛼. The

simulation result is depicted in Figure 2.

Remark 19. In the figures, horizontal axis stands for time and
vertical axis stands for the states 𝑥

1
(𝑡) and 𝑥

2
(𝑡). The red

and blue lines denote the state response of 𝑥
1
(𝑡) and 𝑥

2
(𝑡),

respectively. We can see from the figures that the two systems
are both exponentially stable under given controllers and
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Figure 2: The state response of the closed-loop system (54) in
Example 2.

switching law and this shows that the method proposed in
this paper is feasible.

Remark 20. It is easy to verify that both subsystems are unsta-
ble. And using the method given in [40], controllers are only
given to make the systems asymptotically stable. However,
compared with [40], in this paper, we can see that, under
given controllers, the switched systems in the examples are
exponentially stable from the simulation results.

5. Summary

In this paper, we considered the problem of robust𝐻
∞

con-
trol for a class of uncertain nonlinear switched systems with
state and input delays. The controller and switching law are
designed and sufficient conditions have been presented for
uncertain nonlinear switched delay systems under which the
system is robust stable and has 𝐻

∞
performance 𝛾. Firstly,

we considered the systemwith time-varying delays; then, as a
special case, systemwith constant delays was also considered.
The feasibility of the developed results has been proved using
numerical examples.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research is supported by the National Natural Science
Foundation of China (11171131) and Jilin Provincial Natural
Science Foundation of China (201115043). The authors are
very much thankful to the Associate Editor and anonymous
reviewers for their careful reading, constructive comments,
and fruitful suggestions to improve the quality of this paper.



Mathematical Problems in Engineering 9

References

[1] B. A. Francis, A Course in H
∞
Control Theory, vol. 88 of Lecture

Notes in Control and Information Sciences, Springer, Berlin,
Germany, 1987.

[2] K. S.Narendra and J. Balakrishnan, “A commonLyapunov func-
tion for stable LTI systems with commuting A-matrices,” IEEE
Transactions on Automatic Control, vol. 39, no. 12, pp. 2469–
2471, 1994.

[3] D. Liberzon, J. P. Hespanha, and A. S. Morse, “Stability of
switched systems: a Lie-algebraic condition,” Systems & Control
Letters, vol. 37, no. 3, pp. 117–122, 1999.

[4] D. Cheng, L. Guo, and J. Huang, “On quadratic Lyapunov
functions,” IEEE Transactions on Automatic Control, vol. 48, no.
5, pp. 885–890, 2003.

[5] D. Angeli and D. Liberzon, “A note on uniform global asymp-
totically stability of nonlinear switched systems in triangular
form,” in Proceedings of the International Symposium on Mathe-
maticalTheory of Networks and Systems (MTNS ’00), Perpignan,
France, 2000.

[6] J. P. Hespanha and A. S. Morse, “Switching between stabilizing
controllers,” Automatica, vol. 38, no. 11, pp. 1905–1917, 2002.

[7] P. Peleties and R. DeCarlo, “Asymptotic stability of m-switched
systems using Lyapunov-like functions,” in Proceedings of the
1991 American Control Conference, pp. 1679–1684, San Diego,
Calif, USA, June 1991.

[8] M. S. Branicky, “Multiple Lyapunov functions and other analysis
tools for switched and hybrid systems,” IEEE Transactions on
Automatic Control, vol. 43, no. 4, pp. 475–482, 1998.

[9] J. P. Hespanha and A. S. Morse, “Stability of switched systems
with average dwell-time,” in Proceedings of the 38th IEEE
Conference on Decision and Control (CDC ’99), pp. 2655–2660,
Phoenix, Ariz, USA, December 1999.

[10] B. Niu and J. Zhao, “Robust stabilization and tracking control
for a class of switched nonlinear systems,” Asian Journal of
Control, vol. 15, no. 5, pp. 1496–1502, 2013.

[11] D. Liberzon, Switching in Systems and Control, Birkhäuser,
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