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Variational principles are derived for multiwalled carbon nanotubes undergoing linear vibrations using the semi-inverse method
with the governing equations based on nonlocal Timoshenko beam theory which takes small scale effects and shear deformation
into account. Physical models based on the nonlocal theory approximate the nanoscale phenomenon more accurately than the
local theories by taking small scale phenomenon into account. Variational formulation is used to derive the natural and geometric
boundary conditions which give a set of coupled boundary conditions in the case of free boundaries which become uncoupled in
the case of the local theory. Hamilton’s principle applicable to this case is also given.

1. Introduction

In the present study, the variational principles and the
natural boundary conditions are derived for multiwalled
carbon nanotubes undergoing the transverse vibrations.
The governing equations are based on the nonlocal theory
of elasticity which gives more accurate results than local
elastic theory by taking the small scale effects into account
in the formulation. Variational principles applicable to
the multiwalled nanotubes undergoing vibrations and the
related boundary conditions were derived in [1] using a
continuum model based on the nonlocal theory of Euler-
Bernoulli beams. In the present study these results are
extended to the case of multiwalled nanotubes undergoing
transverse vibrations and the Hamilton’s principle is derived.

The laws of continuum mechanics are known to be
robust enough to treat intrinsically discrete objects only a
few atoms in diameter [2]. Subsequent studies established the
accuracy of continuum-based approaches to the mechanics
of nanotubes. A study of the range of applicability of elastic

beam theory to model nanotubes and nanorods was given in
[3]. Beam models used to study the buckling and vibration
behavior of carbon nanotubes (CNTs) mostly employed
the Euler-Bernoulli or Timoshenko beam theories. The
equation for an Euler-Bernoulli beam is expressed in terms
of only one unknown, namely, the deflection of the beam,
and neglects the effect of transverse shear deformation.
However, for nanotubes with low length to diameter ratio,
shear deformation can be substantial and can be taken into
account using a Timoshenko beam model. In this case the
governing equations have two dependent variables, namely,
the slope and deflection of the beam and are able to predict
the mechanical behavior of CNTs more accurately. Several
studies on the buckling of nanotubes used these two beam
models with the Euler-Bernoulli beam model used in [4–8]
and the Timoshenko model in [9]. Vibration of multiwalled
nanotubes was studied in [10] using a Timoshenko beam
model.

However, small scale effects were not taken into account
in these papers. The importance of size effects for nanosized
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structures has been emphasized in [11–15] where properties
of nano materials have been obtained. Beam theories capable
of taking the small scale effects into account are based on the
nonlocal theory of elasticity which was developed in early
seventies [16, 17]. The nonlocal theory was applied to the
study of nanoscale Euler-Bernoulli and Timoshenko beams
in a number of papers [18–27]. Variational formulations
for various nonlocal beam models were given in [23]. The
nonlocal Euler-Bernoulli and Timoshenko beam models
were employed to investigate the buckling and vibration
characteristics of CNTs in [28–33] and comparisons between
the two models were given in these papers. These studies
considered single and double-walled nanotubes involving
mostly simply supported boundary conditions and ana-
lytical solutions of the differential equations. Variational
formulations allow the implementation of approximate and
numerical methods of solutions and facilitate the con-
sideration of complicated boundary conditions, especially
in the case of multiwalled nanotubes. Recently variational
principles and the natural boundary conditions were derived
for multiwalled CNTs modeled as nonlocal Euler-Bernoulli
beams in a number of studies with CNTs subject to vibrations
[1] and a buckling load [34] where the linear elastic theory
was employed. Variational principles were derived for CNTs
undergoing nonlinear vibrations in [35] using a local Euler-
Bernoulli beam CNT model.

Present study differs from the studies [1, 34, 35] where
CNTs were modeled as Euler-Bernoulli beams with the
nonlocal elastic theory employed in the case of CTNs
undergoing linear vibrations [1] and buckling [34]. In the
case of CTNs undergoing nonlinear vibrations again Euler-
Bernoulli beam was used as a model which was based on the
local elastic theory [35]. Euler-Bernoulli models are mostly
applicable to nanotubes with a large length to diameter ratio
and become inaccurate as the nanotubes become shorter. In
the present study multiwalled CNTs are modeled as nonlocal
Timoshenko beams which are applicable to nanotubes with
a small length to diameter ratio and as such give accurate
solutions for short CNTs [9, 10, 23–25].

The approach used in the present study to derive the
variational principles is the semi-inverse method developed
by He [36, 37]. Several examples of variational principles for
systems of differential equations obtained by this method
can be found in [38–42] and in the references therein. In
the present study first the coupled differential equations
governing the vibrations of multiwalled nanotubes based on
nonlocal Timoshenko beam theory are given. Next a trial
variational functional is formulated and a set of integrability
conditions is derived which ensure that a classical variational
principle can be obtained for the problem. Finally the vari-
ational principle and the Hamilton’s principle are obtained
by the semi-inverse method and natural and geometric
boundary conditions are derived.

2. Multiwalled Carbon Nanotubes

A multiwalled carbon nanotube of length L consisting of
n nanotubes of cylindrical shape is considered. It lies on a

Winkler foundation of modulus k and is subject to an axial
stress σx which can be tensile or compressive in which case
σx is less than the critical buckling load. We introduce a
difference operator defined as

Δwij = wi −wj , (1)

where wi and wj are the deflections of the ith and
jth nanotubes. The differential equations governing the
vibrations of multiwalled nanotubes based on the non-
local Timoshenko beam theory can be expressed as
[10, 24]

Da1
(
w1,ϕ1,w2

) = La1
(
w1,ϕ1

)− c12Δw21

+ η2c12
∂2Δw21

∂x2
= 0,

(2)

Db1
(
w1,ϕ1

) = Lb1
(
w1,ϕ1

) = 0, (3)

Da2
(
w1,w2,ϕ2,w3

) = La2
(
w2,ϕ2

)
+ c12Δw21 − c23Δw32

+ η2

(

−c12
∂2Δw21

∂x2
+ c23

∂2Δw32

∂x2

)

= 0,
(4)

Db2
(
w2,ϕ2

) = Lb2
(
w2,ϕ2

) = 0,

...

(5)

Dai
(
wi−1,wi,ϕi,wi+1

) = Lai
(
wi,ϕi

)
+ c(i−1)iΔwi(i−1)

− ci(i+1)Δw(i+1)i

− η2c(i−1)i
∂2Δwi(i−1)

∂x2

+ η2ci(i+1)
∂2Δw(i+1)i

∂x2
= 0,

(6)

Dbi
(
wi,ϕi

) = Lbi
(
wi,ϕi

) = 0

for i = 3, 4, . . . ,n− 1,

...

(7)

Dan
(
wn−1,wn,ϕn

) = Lan
(
wn,ϕn

)
+ c(n−1)nΔwn(n−1)

− η2c(n−1)n
∂2Δwn(n−1)

∂x2
= f (x, t),

(8)

Dbn
(
wn,ϕn

) = Lbn
(
wn,ϕn

) = 0, (9)
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where ϕi is the angle of rotation and the operators
Lai(wi,ϕi) and Lbi(wi,ϕi) are given by

Lai
(
wi,ϕi

) = ρAi
∂2wi

∂t2
− ρAiη

2 ∂4wi

∂t2∂x2
+ κGAi

∂

∂x

(
ϕi − ∂wi

∂x

)

+Aiσx
∂2wi

∂x2
−Aiσxη

2 ∂
4wi

∂x4
+δin

(

kwn−kη2 ∂
2wn

∂x2

)

,

(10)

Lbi
(
wi,ϕi

)

= ρIi
∂2ϕi

∂t2
− ρIiη

2 ∂4ϕi

∂t2∂x2
+ κGAi

(
ϕi − ∂wi

∂x

)
− EIi

∂2ϕi

∂x2
,

(11)

where the index i = 1, 2, . . . ,n refers to the order of the
nanotubes with the innermost nanotube indicated by i = 1
and the outermost nanotube by i = n with 0 ≤ x ≤ L.
In (8) f (x, t) is a forcing function, and in (10) δin is the
Kronecker’s delta with δin = 0 for i /=n and δnn = 1. In
(10) and (11), E is the Young’s modulus, G is the shear
modulus, κ is the shear correction factor, Ii is the moment
of inertia, Ai is the cross-sectional area of the ith nanotube
and ρ is the density. The coefficient c(i−1)i is the interaction
coefficient of van der Waals forces between the (i − 1)th and
ith nanotubes with i = 2, . . . ,n [7–10, 28]. The parameter
η = e0a appears in the nonlocal theory of beams and helps
define the small scale effects accurately where e0 is a constant
for adjusting the model by experimental results and a is an
internal characteristic length [17–26].

3. Variational Formulation

According to the semi-inverse method [36, 37], a variational
trial-functional V(wi,ϕi) can be constructed as follows with
the motion taking place between the initial time t1 and the
final time t2

V
(
wi,ϕi

) = V1
(
w1,ϕ1,w2

)
+ V2

(
w1,w2,ϕ2,w3

)

+ · · · + Vn−1
(
wn−2,wn−1,ϕn−1,wn

)

+ Vn
(
wn−1,wn,ϕn

)
,

(12)

where

V1
(
w1,ϕ1,w2

)=U1
(
w1,ϕ1

)
+
∫ t2

t1

∫ L

0
F1(w1,w2)dx dt,

V2
(
w1,w2,ϕ2,w3

)=U2
(
w2,ϕ2

)
+
∫ t2

t1

∫ L

0
F2(w1,w2,w3)dx dt,

Vi
(
wi−1,wi,ϕi,wi+1

)=Ui
(
wi,ϕi

)
+
∫ t2

t1

∫ L

0
Fi(wi−1,wi,wi+1)dx dt

for i = 3, 4, . . . ,n− 1,

Vn
(
wn−1,wn,ϕn

)=Un
(
wn,ϕn

)

+
1
2

∫ t2

t1

∫ L

0

(

kw2
n + kη2

(
∂wn

∂x

)2
)

dx dt

+
∫ t2

t1

∫ L

0

(− f wn + Fn(wn−1,wn)
)
dx dt

(13)

with Ui(wi,ϕi) given by

Ui
(
wi,ϕi

)

= 1
2

∫ t2

t1

∫ L

0

⎛

⎝κGAi

(
ϕi − ∂wi

∂x

)2

+ EIi

(
∂ϕi

∂x

)2

− Aiσx

(
∂wi

∂x

)2

− Aiσxη
2

(
∂2wi

∂x2

)2
⎞

⎠dx dt

+
1
2

∫ t2

t1

∫ L

0

⎛

⎝−ρAi

(
∂wi

∂t

)2

− ρAiη
2

(
∂2wi

∂t∂x

)2

− ρIi

(
∂ϕi

∂t

)2

− ρIiη
2

(
∂2ϕi

∂t∂x

)2
⎞

⎠dx dt,

(14)

where i = 1, 2, . . . ,n and Fi(wi−1,wi,wi+1) denotes the
unknown functions of wi and its derivatives to be determined
such that the differential equations (2)–(9) correspond to the
Euler-Lagrange equations of the variational functional (12).
These equations are given by

La1
(
w1,ϕ1

)
+

2∑

j=1

δFj

δw1

= La1
(
w1,ϕ1

)

+
2∑

j=1

[
∂Fj

∂w1
− ∂

∂x

(
∂Fj

∂w1x

)

− ∂

∂t

(
∂Fj

∂w1t

)

+ · · ·
]

= 0,

La2
(
w2,ϕ2

)
+

3∑

j=1

δFj

δw2

= La2
(
w2,ϕ2

)

+
3∑

j=1

[
∂Fj

∂w2
− ∂

∂x

(
∂Fj

∂w2x

)

− ∂

∂t

(
∂Fj

∂w1t

)

+ · · ·
]

= 0,

Lai
(
wi,ϕi

)
+

i+1∑

j=i−1

δFj

δwi

= Lai
(
wi,ϕi

)

+
i+1∑

j=i−1

[
∂Fj

∂wi
− ∂

∂x

(
∂Fj

∂wix

)

− ∂

∂t

(
∂Fj

∂wit

)

+ · · ·
]

= 0,

for i = 3, 4, . . . ,n− 1,
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Lan
(
wn,ϕn

)
+

n∑

j=n−1

δFj

δwn

= Lan
(
wn,ϕn

)

+
n∑

j=n−1

[
∂Fj

∂wn
− ∂

∂x

(
∂Fj

∂wnx

)

− ∂

∂t

(
∂Fj

∂wnt

)

+ · · ·
]

= 0,

Lbi
(
wi,ϕi

) = 0 for i = 1, 2, . . . ,n,

(15)

where the subscripts x and t denote differentiation with
respect to x and t, and the variational derivative δFi/δwi is
defined as [36, 37]

δFi
δwi

= ∂Fi
∂wi

− ∂

∂x

(
∂Fi
∂wix

)
− ∂

∂x

(
∂Fi
∂wit

)
+

∂2

∂x2

(
∂Fi
∂wixx

)

+
∂2

∂x∂t

(
∂Fi
∂wixt

)
· · ·− ∂

∂t

(
∂Fi
∂wit

)
+
∂2

∂t2

(
∂Fi
∂witt

)
+· · · .

(16)

Comparison of (15) with (2)–(9) indicates that the following
equations have to be satisfied for Euler-Lagrange equations to
represent the governing (2)–(9)

2∑

j=1

δFj

δw1
= −c12Δw21 + η2c12

∂2Δw21

∂x2
,

3∑

j=1

δFj

δw2
= c12Δw21 − c23Δw32 − η2c12

∂2Δw21

∂x2

+ η2c23
∂2Δw32

∂x2
,

i+1∑

j=i−1

δFj

δwi
= c(i−1)iΔwi(i−1) − ci(i+1)Δw(i+1)i

− η2c(i−1)i
∂2Δwi(i−1)

∂x2
+ η2ci(i+1)

∂2Δw(i+1)i

∂x2
,

n∑

j=n−1

δFj

δwn
= c(n−1)nΔwn(n−1) − η2c(n−1)n

∂2Δwn(n−1)

∂x2
.

(17)

Integrability relations between these equations can be
obtained by noting that

(
∂

∂w2
+

∂

∂w2xx

) 2∑

j=1

δFj

δw1
= −c12 + η2c12, (18)

(
∂

∂w1
+

∂

∂w1xx

) 3∑

j=1

δFj

δw2
= −c12 + η2c12, (19)

(
∂

∂wi+1
+

∂

∂w(i+1)xx

) i+1∑

j=i−1

δFj

δwi
= −ci(i+1) + η2ci(i+1), (20)

(
∂

∂wi
+

∂

∂wixx

) i+2∑

j=i

δFj

δwi+1
= −ci(i+1) + η2ci(i+1), (21)

(
∂

∂wn
+

∂

∂wnxx

) n∑

j=n−2

δFj

δwn−1
= −c(n−1)n + η2c(n−1)n, (22)

(
∂

∂wn−1
+

∂

∂w(n−1)xx

) n∑

j=n−1

δFj

δwn
= −c(n−1)n + η2c(n−1)n.

(23)

Having (18)-(19), (20)-(21), and (22)-(23) with the same
right-hand sides ensures that the variational principle can be
derived for the present problem. From (17), it follows that

F1(w1,w2) = c12

4
Δw2

21 +
c12

4
η2
(
∂Δw21

∂x

)2

,

Fi(wi−1,wi,wi+1) = c(i−1)i

4
Δw2

i(i−1) +
ci(i+1)

4
Δw2

(i+1)i

+
η2c(i−1)i

4

(
∂Δwi(i−1)

∂x

)2

+
η2ci(i+1)

4

(
∂Δw(i+1)i

∂x

)2

for i = 2, 3, . . . ,n− 1,

Fn(wn−1,wn)= c(n−1)n

4
Δw2

n(n−1) +
η2c(n−1)n

4

(
∂Δwn(n−1)

∂x

)2

.

(24)

With Fi, i = 1, 2, . . . ,n given by (24), we observe that (15) are
equivalent to (2)–(9).

4. Hamilton’s Principle

The Hamilton’ principle can be expressed as

∫ t2

t1
(δKE(t)− (δWE(t) + δPE1(t) + δPE2(t)))dt = 0,

(25)

where

KE(t) = 1
2

i=n∑

i=1

∫ L

0

⎛

⎝ρAi

(
∂wi

∂t

)2

+ η2ρAi

(
∂2wi

∂x∂t

)2

− ρIi

(
∂ϕi

∂t

)2

+ η2ρIi

(
∂2ϕi

∂t∂x

)2
⎞

⎠dx,
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WE(t) = 1
2

i=n∑

i=1

∫ L

0

⎛

⎝−Aiσx

(
∂wi

∂x

)2

− η2Aiσx

(
∂2wi

∂x2

)2

− f (x, t)wn(x, t)

⎞

⎠dx,

PE1(t) = 1
2

i=n∑

i=1

∫ L

0

⎛

⎝κGAi

(
ϕi − ∂wi

∂x

)2

+ EIi

(
∂ϕi

∂x

)2

+ kw2
n

+ kη2
(
∂wn

∂x

)2
)

dx,

PE2(t) = 1
2

i=n∑

i=1

∫ L

0

⎛

⎝c(i−1)i(wi −wi−1)2

+ η2c(i−1)i

(
∂wi

∂x
− ∂wi−1

∂x

)2
)

dx.

(26)

In (25)–(26), KE is the kinetic energy, WE is the work done
by external forces, PE1 is the potential energy of deformation
and PE2 is the potential energy due to van der Waals forces
between the nanotubes.

5. Boundary Conditions

Next the variations of the functional V(wi,ϕi) in (12) are
evaluated with respect to wi and ϕi in order to derive the
natural and geometric boundary conditions. Let δwi and
δϕi denote the variations of wi and ϕi such that δwi(x, t1) =
δwi(x, t2) = δϕi(x, t1) = δϕi(x, t2) = 0. The first variations
of V(wi,ϕi) with respect to wi and ϕi, denoted by δwiV and
δϕiV , respectively, can be obtained by integration by parts
and expressed as

δw1V= δw1V1 + δw1V2

=
∫ t2

t1

∫ L

0
Da1

(
w1,ϕ1,w2

)
δw1dx dt + ∂Ωa1(0,L, t),

δϕ1V= δϕ1V1 =
∫ t2

t1

∫ L

0
Db1

(
w1,ϕ1

)
δϕ1dx dt + ∂Ωb1(0,L, t),

δwiV=
i+1∑

j=i−1

δwiVj =
∫ t2

t1

∫ L

0
Dai
(
wi−1,wi,ϕi,wi+1

)
δwidx dt

+ ∂Ωai(0,L, t) for i = 2, . . . ,n− 1,

δϕiV= δϕiVi =
∫ t2

t1

∫ L

0
Dbi
(
wi,ϕi

)
δϕidx dt

+ ∂Ωbi(0,L, t) for i = 2, . . . ,n− 1,

δwnV= δwnVn−1 + δwnVn =
∫ t2

t1

∫ L

0
Dan

(
wn−1,wn,ϕn

)
δwndx dt

+ ∂Ωan(0,L, t),

δϕnV= δϕnVn =
∫ t2

t1

∫ L

0
Dbn

(
wn,ϕn

)
δϕndx dt + ∂Ωbn(0,L, t),

(27)

where ∂Ωia(0,L, t) and ∂Ωib(0,L, t) are the boundary terms
defined as

∂Ωa1(0,L, t)

= −A1σxη
2 ∂

2w1

∂x2
δw′1

∣∣
∣
∣
∣

x=L

x=0

+ A1σxη
2 ∂

3w1

∂x3
δw1

∣∣
∣
∣
∣

x=L

x=0

+ ρA1η
2 ∂

3w1

∂x∂t2
δw1

∣∣
∣
∣∣

x=L

x=0

+
(
−κGA1

(
ϕ1 − ∂w1

∂x

)
+
(−A1σx + η2c12

)∂w1

∂x

−η2c12
∂w2

∂x

)
δw1

∣∣
∣
∣

x=L

x=0
,

∂Ωai(0,L, t)

= −Aiσxη
2 ∂

2wi

∂x2
δw′1

∣
∣
∣∣
∣

x=L

x=0

+ Aiσxη
2 ∂

3wi

∂x3
δwi

∣
∣
∣∣
∣

x=L

x=0

+ ρAiη
2 ∂3wi

∂x∂t2
δwi

∣
∣∣
∣
∣

x=L

x=0

+
[
−κGAi

(
ϕi − ∂wi

∂x

)
+
(−Aiσx + η2(c(i−1)i + ci(i+1)

))

× ∂wi

∂x
− η2

(
c(i−1)i

∂wi−1

∂x
+ ci(i+1)

∂wi+1

∂x

)]
δwi

∣
∣∣
∣

x=L

x=0

for i = 2, 3, . . . ,n− 1

∂Ωan(0,L, t)

= −Anσxη
2 ∂

2wn

∂x2
δw′n

∣
∣
∣∣
∣

x=L

x=0

+ Anσxη
2 ∂

3wn

∂x3
δwn

∣
∣
∣∣
∣

x=L

x=0

+ ρAnη
2 ∂

3wn

∂x∂t2
δwn

∣
∣∣
∣
∣

x=L

x=0

+
[
−κGAn

(
ϕn − ∂wn

∂x

)
+
(−Anσx + η2(c(n−1)n + k

))

×−∂wn

∂x
η2c(n−1)n

∂wn−1

∂x

]
δwn

∣
∣∣
∣

x=L

x=0
,

∂Ωbi(0,L, t)

=
(

EIi
∂ϕi

∂x
+ ρIiη

2 ∂3ϕi

∂x∂t2

)

δϕi

∣
∣
∣
∣∣

x=L

x=0

for i = 1, 2, . . . ,n,

(28)

where δw′i is the derivative of δwi with respect to x. Thus the
boundary conditions at x = 0,L are given by

EIi
∂ϕi

∂x
+ ρIiη

2 ∂3ϕi

∂x∂t2
= 0 or ϕi = 0

for i = 1, 2, . . . ,n,

(29)
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(−Aiσxη
2)∂

2wi

∂x2
= 0 or

∂wi

∂x
= 0

for σx /= 0, i = 1, 2, . . . ,n,

(30)

A1σxη
2 ∂

3w1

∂x3
+ ρA1η

2 ∂
3w1

∂x∂t2
− κGA1

(
ϕ1 − ∂w1

∂x

)

+
(−A1σx + η2c12

)∂w1

∂x

− η2c12
∂w2

∂x
= 0 or w1 = 0,

(31)

Aiσxη
2 ∂

3wi

∂x3
+ ρAiη

2 ∂3wi

∂x∂t2
− κGAi

(
ϕi − ∂wi

∂x

)

+
(−Aiσx + η2(c(i−1)i + ci(i+1)

))∂wi

∂x

− η2
(
c(i−1)i

∂wi−1

∂x
+ ci(+1)

∂wi+1

∂x

)
= 0

or wi = 0 for i = 2, . . . ,n− 1

(32)

Anσxη
2 ∂

3wn

∂x3
+ ρAnη

2 ∂
3wn

∂x∂t2
− κGAn

(
ϕn − ∂wn

∂x

)

+
(−Anσx + η2(c(n−1)n + k

))∂wn

∂x

− η2c(n−1)n
∂wn−1

∂x
= 0 or wn = 0.

(33)

Note that for σx = 0, the boundary condition (30) is not
needed. It is observed that for the small scale parameter
η > 0 (nonlocal theory) the natural boundary conditions
are coupled and time derivative appears in the boundary
conditions. These boundary conditions uncouple for η = 0
(local theory) and time derivatives drop out.

6. Conclusions

Variational principles are derived using a semi-inverse varia-
tional method for multiwalled CNTs undergoing vibrations
and modeled as nonlocal Timoshenko beams. Variational
formulation of the problem facilitates the implementation of
a number of computational approaches which, in most cases,
simplify the method of solution as compared to the solution
of a system of 2n differential equations. The nonlocal
elasticity theory accounts for small scale effects applicable
to nanosized objects and Timoshenko beam model takes
shear deformation into account which is not negligible in
the case of nanotubes with small length-to-diameter ratio.
As such they provide a more accurate model as compared to
the Euler-Bernoulli model in the case of short nanotubes as
pointed out in the papers [9, 10, 23–25]. The corresponding
Hamilton’s principle as well as the natural and geometric
boundary conditions are derived. It is observed that the
natural boundary conditions are coupled at the free end
due to small scale effects being taken into account. The
integrability conditions are also obtained which indicate
whether a variational principle in the classical sense exists for

the system of differential equations governing the vibrations
of multiwalled nanotubes.

References

[1] S. Adali, “Variational principles for transversely vibrating
multiwalled carbon nanotubes based on nonlocal euler-
bernoulli beam model,” Nano Letters, vol. 9, no. 5, pp. 1737–
1741, 2009.

[2] B. I. Yakobson and R. E. Smalley, “Fullerene nanotubes:
C1,000,000 and beyond,” American Scientist, vol. 85, no. 4, pp.
324–337, 1997.

[3] V. M. Harik, “Ranges of applicability for the continuum beam
model in the mechanics of carbon nanotubes and nanorods,”
Solid State Communications, vol. 120, no. 7-8, pp. 331–335,
2001.

[4] C. Q. Ru, “Column buckling of multiwalled carbon nanotubes
with interlayer radial displacements,” Physical Review B, vol.
62, no. 24, pp. 16962–16967, 2000.

[5] Q. Wang and V. K. Varadan, “Stability analysis of carbon
nanotubes via continuum models,” Smart Materials and
Structures, vol. 14, no. 1, pp. 281–286, 2005.

[6] Q. Wang, T. Hu, G. Chen, and Q. Jiang, “Bending instability
characteristics of double-walled carbon nanotubes,” Physical
Review B, vol. 71, no. 4, Article ID :045403, 8 pages, 2005.

[7] A. Sears and R. C. Batra, “Buckling of multiwalled carbon
nanotubes under axial compression,” Physical Review B, vol.
73, no. 8, Article ID 085410, 11 pages, 2006.

[8] Y. Q. Zhang, X. Liu, and J. H. Zhao, “Influence of tem-
perature change on column buckling of multiwalled carbon
nanotubes,” Physics Letters A, vol. 372, no. 10, pp. 1676–1681,
2008.

[9] Y. Y. Zhang, C. M. Wang, and V. B. C. Tan, “Buckling
of multiwalled carbon nanotubes using Timoshenko beam
theory,” Journal of Engineering Mechanics, vol. 132, no. 9, pp.
952–958, 2006.

[10] C. M. Wang, V. B. C. Tan, and Y. Y. Zhang, “Timoshenko
beam model for vibration analysis of multi-walled carbon
nanotubes,” Journal of Sound and Vibration, vol. 294, no. 4,
pp. 1060–1072, 2006.

[11] R. E. Miller and V. B. Shenoy, “Size-dependent elastic prop-
erties of nanosized structural elements,” Nanotechnology, vol.
11, no. 3, pp. 139–147, 2000.

[12] T. Chang and H. Gao, “Size-dependent elastic properties of
a single-walled carbon nanotube via a molecular mechanics
model,” Journal of the Mechanics and Physics of Solids, vol. 51,
no. 6, pp. 1059–1074, 2003.

[13] C. T. Sun and H. Zhang, “Size-dependent elastic moduli of
platelike nanomaterials,” Journal of Applied Physics, vol. 93, no.
2, pp. 1212–1218, 2003.

[14] C. W. Lim and L. H. He, “Size-dependent nonlinear response
of thin elastic films with nano-scale thickness,” International
Journal of Mechanical Sciences, vol. 46, no. 11, pp. 1715–1726,
2004.

[15] D. W. Huang, “Size-dependent response of ultra-thin films
with surface effects,” International Journal of Solids and
Structures, vol. 45, no. 2, pp. 568–579, 2008.

[16] D. G. B. Edelen and N. Laws, “On the thermodynamics of
systems with nonlocality,” Archive for Rational Mechanics and
Analysis, vol. 43, no. 1, pp. 24–35, 1971.

[17] A. C. Eringen, “Linear theory of nonlocal elasticity and
dispersion of plane waves,” International Journal of Engineering
Science, vol. 10, no. 5, pp. 425–435, 1972.



Journal of Nanomaterials 7

[18] J. Peddieson, G. R. Buchanan, and R. P. McNitt, “Application
of nonlocal continuum models to nanotechnology,” Interna-
tional Journal of Engineering Science, vol. 41, no. 3–5, pp. 305–
312, 2003.

[19] M. Xu, “Free transverse vibrations of nano-to-micron scale
beams,” Proceedings of the Royal Society A, vol. 462, no. 2074,
pp. 2977–2995, 2006.

[20] C. M. Wang, Y. Y. Zhang, S. S. Ramesh, and S. Kitipornchai,
“Buckling analysis of micro- and nano-rods/tubes based on
nonlocal Timoshenko beam theory,” Journal of Physics D, vol.
39, no. 17, pp. 3904–3909, 2006.

[21] Q. Wang and Y. Shindo, “Nonlocal continuum models for
carbon nanotubes subjected to static loading,” Journal of
Mechanics of Materials and Structures, vol. 1, no. 4, pp. 663–
680, 2006.

[22] Q. Wang and K. M. Liew, “Application of nonlocal continuum
mechanics to static analysis of micro- and nano-structures,”
Physics Letters A, vol. 363, no. 3, pp. 236–242, 2007.

[23] J. N. Reddy, “Nonlocal theories for bending, buckling and
vibration of beams,” International Journal of Engineering
Science, vol. 45, no. 2–8, pp. 288–307, 2007.

[24] C. M. Wang, Y. Y. Zhang, and X. Q. He, “Vibration of nonlocal
Timoshenko beams,” Nanotechnology, vol. 18, no. 10, Article
ID 105401, 9 pages, 2007.

[25] C. M. Wang, S. Kitipornchai, C. W. Lim, and M. Eisenberger,
“Beam bending solutions based on nonlocal Timoshenko
beam theory,” Journal of Engineering Mechanics, vol. 134, no.
6, pp. 475–481, 2008.

[26] R. Artan and A. Tepe, “The initial values method for buckling
of nonlocal bars with application in nanotechnology,” Euro-
pean Journal of Mechanics A, vol. 27, no. 3, pp. 469–477, 2008.

[27] J.-C. Hsu, R.-P. Chang, and W.-J. Chang, “Resonance fre-
quency of chiral single-walled carbon nanotubes using Tim-
oshenko beam theory,” Physics Letters A, vol. 372, no. 16, pp.
2757–2759, 2008.

[28] L. J. Sudak, “Column buckling of multiwalled carbon nan-
otubes using nonlocal continuum mechanics,” Journal of
Applied Physics, vol. 94, no. 11, pp. 7281–7287, 2003.

[29] Q. Wang, “Wave propagation in carbon nanotubes via nonlo-
cal continuum mechanics,” Journal of Applied Physics, vol. 98,
no. 12, Article ID 124301, 6 pages, 2005.

[30] L. Wang and H. Hu, “Flexural wave propagation in single-
walled carbon nanotubes,” Physical Review B, vol. 71, no. 19,
Article ID 195412, 7 pages, 2005.

[31] Q. Wang, G. Y. Zhou, and K. C. Lin, “Scale effect on wave
propagation of double-walled carbon nanotubes,” Interna-
tional Journal of Solids and Structures, vol. 43, no. 20, pp. 6071–
6084, 2006.

[32] P. Lu, H. P. Lee, C. Lu, and P. Q. Zhang, “Application of
nonlocal beam models for carbon nanotubes,” International
Journal of Solids and Structures, vol. 44, no. 16, pp. 5289–5300,
2007.

[33] H. Heireche, A. Tounsi, A. Benzair, M. Maachou, and E. A.
Adda Bedia, “Sound wave propagation in single-walled carbon
nanotubes using nonlocal elasticity,” Physica E, vol. 40, no. 8,
pp. 2791–2799, 2008.

[34] S. Adali, “Variational principles for multi-walled carbon
nanotubes undergoing buckling based on nonlocal elasticity
theory,” Physics Letters A, vol. 372, no. 35, pp. 5701–5705,
2008.

[35] S. Adali, “Variational principles for multi-walled carbon
nanotubes undergoing nonlinear vibrations by semi-inverse
method,” Micro and Nano Letters, vol. 4, no. 4, pp. 198–203,
2009.

[36] J.-H. He, “Semi-inverse method of establishing generalized
variational principles for fluid mechanics with emphasis on
turbomachinery aerodynamics,” International Journal of Turbo
and Jet Engines, vol. 14, no. 1, pp. 23–28, 1997.

[37] J.-H. He, “Variational principles for some nonlinear partial
differential equations with variable coefficients,” Chaos, Soli-
tons and Fractals, vol. 19, no. 4, pp. 847–851, 2004.

[38] J.-H. He, “Variational approach to(2 + 1)-dimensional disper-
sive long water equations,” Physics Letters A, vol. 335, no. 2-3,
pp. 182–184, 2005.

[39] H.-M. Liu, “Generalized variational principles for ion acoustic
plasma waves by He’s semi-inverse method,” Chaos, Solitons
and Fractals, vol. 23, no. 2, pp. 573–576, 2005.

[40] J.-H. He, “Variational theory for one-dimensional longitudi-
nal beam dynamics,” Physics Letters A, vol. 352, no. 4-5, pp.
276–277, 2006.

[41] X.-W. Zhou, “Variational approach to the Broer-Kaup-
Kupershmidt equation,” Physics Letters A, vol. 363, no. 1-2, pp.
108–109, 2007.

[42] J.-H. He, “Variational principle for two-dimensional incom-
pressible inviscid flow,” Physics Letters A, vol. 371, no. 1-2, pp.
39–40, 2007.



Submit your manuscripts at
http://www.hindawi.com

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Corrosion
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Polymer Science
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Ceramics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Composites
Journal of

Nanoparticles
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Nanoscience
Journal of

Textiles
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Journal of

Nanotechnology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Crystallography
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Coatings
Journal of

Advances in 

Materials Science and Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Smart Materials 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Metallurgy
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Materials
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

N
a
no

m
a
te
ri
a
ls

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal ofNanomaterials


