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Pricing-based Active Queue Management (AQM), such as Random Exponential Marking (REM), outperforms other probabilistic
counterpart techniques, like Random Early Detection (RED), in terms of both high utilization and negligible loss and delay.
However, the pricing-based protocols do not take account of unresponsive flows that can significantly alter the subsequent rate
allocation. This letter presents Purge (Pricing and Un-Responsive flows purging for Global rate Enhancement) that extends the
REM framework to regulate unresponsive flows. We show that Purge is effective at providing fairness and requires small memory

and low-complexity operations.

1. Introduction

Recent theoretical advances in Network Utility Maximization
(NUM) [1, 2] have facilitated development of AQM proto-
cols, such as REM [3], wherein congestion signals, or so-
called prices, are computed and communicated by network
to sources for a closed-loop dynamic rate allocation. The
fundamental design philosophy of NUM provides advantage
over traditional window-based heuristic flow control, in
that maximal bandwidth utility is achieved as sources
adaptively adjust their transmission rates [1, 3, 4]. Even so,
the pricing-based NUM approaches, due to their convex
optimization framework, are typically limited to applications
with elastic bandwidth utilities, as exemplified by TCP-
friendly web (HTTP) and file-transfer (FTP) services. Thus,
QoS tradeoffs are inevitable where inelastic applications
with versatile bandwidth utilities are coexistent [5], such as
in the Internet. More recently, a few attempts have been
made to extend the NUM framework to applications with
inelastic utilities [5], such as voice (VoIP) and video (IPTV)
services. Nevertheless, an important argument is that all
NUM approaches essentially operate on the premise that
each source does respond to the price signals by accordingly
adjusting its rate. In actuality, this is far from being valid.
Lately, the intense proliferation of multimedia and real-
time audio/video streaming applications has practically pa-

ralleled the growth of Internet. These applications are typi-
cally bandwidth-hungry, generate large streams, prefer a
steady data rate, or transmit at a fixed rate, called Constant-
Bit-Rate (CBR)—as in on-demand interactive applications,
such as video conferencing and gaming. Although loss-
tolerant to some extent, multimedia applications are usually
sensitive to delay and jitter. These characteristics make UDP
the favorite transport-protocol when designing such appli-
cations, so a negligible degradation in quality occurs rather
than substantial delays if lost packets are retransmitted.
However, UDP does not implement closed-loop flow control
and, as such, the traffic transported by it is not TCP-friendly
or, even worse, is unresponsive to the price signals.

The coexistence of multiclass traffic in the highly
heterogeneous Internet leads to a fundamental tension
between responsive and unresponsive flows and can cause
three maladies, namely unfairness, congestion-collapse, and
security. Unfairness originates during periods of congestion
when the well-behaved TCP-friendly responsive flows back-
off, unlike unresponsive flows which are unable to do
so. Consequently, unresponsive flows benefit from their
greedy nature by aggressively consuming increasingly larger
portions of bandwidth unfairly [6]. In an extreme case this
phenomenon leads to the malady of congestion-collapse
[7], wherein a network remains in a persistent congestion
as bandwidth is continually consumed by packets that are



repeatedly dropped by routers, leaving the system with no
worthwhile communication.

In addition to the unresponsive UDP flows, there is
another class of misbehaving traffic, namely, unresponsive
TCP sessions that cause the third malady of security. Greedy
users can exploit the vulnerabilities in TCP to receive
superior service, such as by modifying the source code, in
an open-source Linux context, to deactivate flow control
mechanisms in the TCP/IP stack [8]. This also allows
malicious users to initiate Distributed Denial of Service
(DDoS) (brute-force flood based) attacks that can have a
serious impact on network security.

Although the control of unresponsive flows is generally
ignored in the designs of queue management, it is envisaged
that this will become an inevitable and integral part of all
AQM schemes due to the recent growing traffic trends. For
instance, a report [9] by Arbor Networks reveals that DDoS
attacks consistently account for 1%-3% of all interdomain
traffic. Yet, as evident from more recent attacks on Twitter
and Facebook [10], these activities are likely to spread further
posing a serious security concern. Conversely, UDP flows
constitute 12%-20% of overall Internet traffic [11, 12].
This ratio is also likely to increase as the unresponsive
transmission phenomena of UDP may encourage application
designers to employ it in an effort to receive superior
performance unfairly. For instance, BitTorrent, a common
P2P application, has announced switching to UDP [13]. The
criticality then is that P2P constitutes more than 50% of
internet traffic and BitTorrent is the most widely used P2P
protocol worldwide [14].

This article presents Purge that complements REM to
incorporate therein the control of high_bandwidth unre-
sponsive flows, in an effort to encourage application design-
ers to use TCP-friendly protocols, so as to minimize the
impact of the maladies due to misbehaving flows.

The rest of this letter is organized as follows. Section 2
presents existing work. Section 3 presents the Purge algo-
rithm. Section 4 presents experimental results, followed by
the conclusion in Section 5.

2. Related Work

Internet flow control comprises two components: an end-to-
end algorithm, such as TCP, for sources and a link algorithm
(AQM scheme), for routers. The former defines precisely
how the source rates are adjusted, while the latter defines how
the congestion measure is updated. In traditional TCP/AQM
models, TCP follows some Additive Increase, Multiplicative
Decrease (AIMD) mechanism to adjust its transmission
window size, based on the congestion notification from
AQM. An alternative to this approach is NUM that relates
the economic concept of utility to the TCP/AQM operation.
In NUM frameworks, AQM determines link price, based on
which the source algorithm buys bandwidth by maximizing
a TCP utility function to adaptively adjust its transmission
rate. We restrict ourselves to AQM here, as routers are
the central place to effectively regulate unresponsive flows
(for overview of TCP/AQM models, see [1, 15, 16]). The
most well-known AQM schemes are RED [17], employed in
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the traditional AIMD/AQM models, and REM [3], which
is more suitable in NUM frameworks. Unlike RED, that
measures congestion with average queue length, REM decou-
ples its congestion measure (price) from the performance
measure (loss and delay), to stabilize the latter irrespective
of the number of flows and, as such, can significantly
outperform RED.

Several important and recent improvements to the basic
RED and REM are worth mentioning here. For instance,
time-delay control theory has been applied to TCP/RED
dynamic models in [16, 18], in order to establish explicit
stability conditions for RED to stabilize the average queue
length and thereby the entire TCP/RED system. The authors
have rigorously demonstrated that, by carefully choosing key
RED parameters, superior performance can be achieved in
terms of arbitrary delay, capacity, and load. Another recent
work [15] establishes a theoretical price-based flow control
scheme, where the link algorithm extends REM to generate a
virtual price. These techniques [15, 16, 18] have been shown
to outperform numerous other well-known AQM schemes
including REM.

However, neither the basic RED and REM nor their
improved variants take account of unresponsive flows, thus
the desired performance is subject to the responsiveness of
all flows. In the following, we discuss improvements made to
the basic AQM schemes to particularly regulate unresponsive
flows.

The existing solutions for controlling unresponsive flows
can be classified into two major categories. The first category
algorithms, such as Fair-RED and Balanced-RED, essentially
operate on full per-flow state information by identifying
flows and thereupon treating them independently, typically
by means of separate queues. Thus, unfairness is effectively
alleviated, but their complexities are proportional to the
number of flows and as such, these algorithms are contrary
to the Internet scalability argument. The other category, not
requiring full per-flow information, can be further divided
into two subcategories. Algorithms in the first subcategory
estimate the number of active flows to bring about fairness,
unlike the other subcategory that does not need such
information. The accuracy of the latter can be uncertain [19],
thence we focus on the former, which can offer a balance
between complexity and accuracy, and review prominent
existing solutions from this subcategory.

To that end, a notable technique is Stabilized-RED
(SRED) [20] that aims at stabilizing an FCFS buffer by
preemptively discarding packets with a probability that
depends on both buffer occupancy and the estimates of the
number of active flows (Nact). It detects misbehaving flows
by maintaining a so-called Zombie-list that serves as a proxy
for information about recently seen flows. The drawback,
however, is the inaccuracy in Nact estimation which is
based on the assumption that all flows have the same traffic
intensity. We will elaborate more on this problem in later
sections.

CARE [21] is another established technique based on a
Capture-Recapture estimation model to estimate Nact and
the arrival rate of flows. On the other hand, in order to
increase its accuracy, CARE has to make large amounts
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of captures, which is the major limiting factor from the
perspective of scalability.

Recently, HaDQ (Hashing & caching-based Dynamic
Quarantine) [8] has been proposed as an extension to
SRED. This work distinguishes misbehaving TCP from UDP,
whereas we do not make any such distinctions and work on
the basis of high-bandwidth flows.

A more recent approach is BREATH [6] that outperforms
several predecessors. Yet again, the underlying mechanism is
based on a heavy-hitter set technique of [22] that requires
two passes over the dataset. This approach is also relatively
inefficient for high-speed networks. We will come back to
this point in Section 3.2.

Another eminent technique is BLACK [7] that uses a
sampling technique to approximate the buffer occupancy
fraction of only high-bandwidth flows to reduce the number
of per-flow state information. It has been proven numerically
[7, 19] that BLACK outperforms most of the above and
numerous techniques of other categories. However, the
problem associated with BLACK is its simplified technique
for estimating Nact, which leads to inaccuracies, as with
SRED.

An important remark is that these and all of the
router-based unresponsive flow control approaches of other
categories are based upon variants of RED and work in
the traditional window-based AIMD/RED frameworks (see
for overview [6, 8, 19]). As such, these solutions are not
amenable to the pricing-based NUM frameworks, where a
link algorithm also needs to imbed price marks in packet
headers, which are then used by source algorithms to opti-
mize their rates. To the best of the authors’ knowledge, there
is no such AQM scheme that currently deals with unrespon-
sive flows in NUM frameworks. Purge complements REM to
effectively regulate high-bandwidth unresponsive flows. The
purpose to build upon a pricing scheme is that the NUM
frameworks have enhanced QoS provisioning compared to
the window based AIMD/RED [1, 3, 4], and by means of
Purge, we intend to retain the superior performance of REM
even in the presence of unresponsive flows.

3. Purge

The fundamental idea of Purge is that, in a price-based
rate control, if packets have to be dropped due to a buffer
overflow then packets from high-bandwidth misbehaving
flows must be considered the primary candidates of dropping
and thus be constrained. To that end, Purge utilizes the
proficient idea of BLACK, addresses its shortcomings, and
incorporates it to work in conjugation with REM.

3.1. Queue Management. The basic AQM scheme in Purge
is REM that periodically updates its link price to determine
the marking probability and thereby match source rates to
network capacity, while stabilizing queue around a small
target. Precisely, the price p¢(¢) for link ¢ in period ¢ is
updated according to

pe(t) = [pe(t — 1) + y(ae(be(t) — b}) + Xe(t) — ce(1))],
(1)

where ap > 0 and y > 0 are small constants, be(t) and X,(t)
are the aggregate buffer occupancy and the aggregate input
rate, respectively, at link € in period ¢, ¢,(t) is the available
bandwidth to link € in period ¢, b; > 0 is a predefined target
queue-length and [z2]" = max{z,0}. The constant ay is the
weight of buffer that trades off utilization and queuing delay
during transient. The constant y is the step-size that controls
responsiveness of REM to changes in network conditions.
To convey the price to source, REM marks packets with the
probability 1 — ¢~P¢(®), where ¢ > 1 is a constant.

The price is increased if the weighted sum of queue-
mismatch be(t) — b} and rate-mismatch X,(t) — c,(¢) is
positive, and is decreased otherwise. The weighted sum is
positive when either the source rates exceed the link capacity
or there is excessive backlog to be cleared, and is negative
otherwise. When the source rates are too small, the negative
weighted sum pushes down price and thus marking proba-
bility, thereby allowing sources to increase their transmission
rates, until eventually the mismatches are driven to zero. In
equilibrium, when source rates equal capacity X, = ¢, and
backlog equals target by = by, the price stabilizes as the
weighted sum is zero, yielding high utilization and negligible
loss and delay. In overloaded situations, the mismatches
in rate and queue enlarge, pushing up price and marking
probability, thereby causing the sources to reduce their rates,
in order to bring the system back to equilibrium.

However, we argue that the equilibrium is not achievable
in the presence of unresponsive flows, which do not cut
down their transmission rates and, therefore, lead to the
aforementioned maladies. Purge allows REM to retain its
inherent capabilities even in the presence of unresponsive
flows.

The unresponsive flow control mechanism in Purge is
based on the BLACK’s [7] concepts of Buffer Occupancy
Fraction (BOF), used as an indicator of a flow’s share of
the bandwidth, and a High-Bandwidth Flows (HBF) cache-
memory that keeps track of misbehaving flows. The idea is
that bandwidth given to active flows is roughly proportional
to their share of buffer space, thus fair bandwidth allocation
can be achieved at a high degree if the buffer is allocated
evenly among all active flows under an FCFS queue.

Precisely, for each packet arrival at link ¢, Purge randomly
samples a packet from the buffer whenever the buffer
occupancy by exceeds its target b;. With this event, the
FlowlD; of the sampled packet from flow i is recorded in
the HBF cache-memory, and a Hit is declared for flow i at
link £. Next time, if a sampled packet is from flow i again, its
Hit,; is incremented by one. Using the memory management
approach of [7], only high-bandwidth flows are more likely
to stay in the cache-memory. When the weighted sum of
queue mismatch and rate mismatch is positive, each FlowID;
is checked against its number of hits. A Hit-Fraction Qp; is
approximated to be a flow 7’s average buffer occupancy fraction
at link £ in period ¢ as

Hitg,i(t) + Qe,i(t — l)q/g(t — 1)
We(t —1)¥,(t) ’

where W,(t) is the number of samplings at link € in period
t. A flow with larger Hit-Fraction Qg;(¢) than a fair-BOF is

Qpi(t) =

(2)



potentially a candidate of being a high-bandwidth flow. The
fair-BOF is determined by 1/Nact(t), where Nact(t) is the
number of active flows in period t. An estimation procedure
for Nact(t) will be discussed in the next subsection. The
detected high-bandwidth flow is subject to be dropped with
a probability that depends on how many times extra buffer
space it consumes than the fair share 1/Nact(¢t). This can
be measured using the flow’s Hit-Fraction and the fair
BOF as Qg ;(t)Nacte(t) — 1 [7]. While this measure could
effectively yield a flow-specific dropping probability for
high-bandwidth flows, nevertheless, keeping this as a fixed
dropping function will enforce packet-drops even in mild
queue and rate mismatch conditions. Thus, the dropping
function to be used must also be adjusted according to the
network saturation levels to allow large flows to take some
portion of the bandwidth during less overloaded situations.
Accordingly, as the buffer occupancy increases, the per-flow
dropping probability should also increase gradually in a
linear proportion. For this purpose, we utilize the REM’s
price update procedure to derive the dropping function as
(Qei(t)Nacte(t) — 1) - plae(be(t) — bf) + Xe(t) — ce()).
A unified formulation of the Purge’s per-flow dropping
function d,;(t) for flow i at link € in period ¢ can precisely
be given as

[ Hite;()Qe;(t — 1)We(t — 1)
dei(t) = [( Yot — 1)¥,(1) Nact,(t) — 1) 5

+

oy (e - b7) + et - ) |
where [z]¥ = max{z,0}. Under mild queue mismatch
situations in Purge, REM operates as normal by updating
prices and marking packets in order to match source rates
to available capacity, while clearing buffers and stabilizing
queues around b;’. At the same time, Purge manages HBF
cache memory to keep track of potentially high-bandwidth
flows, as shown in Figure 1. Note that Purge requires by to
be nonzero, whereas the actual REM proposal [3] allows it to
be zero as well. Typically, a b, value between 15%-20% of
the total buffer-size yields a better performance for Purge,
as shall be seen in the next section. As the weighted sum
of queue mismatch and rate mismatch becomes increasingly
positive, d;(t) is also increased proportionally. During more
overload conditions, indicated by increasing queue mismatch
and rate mismatch, in order to keep the queue size low and
thus the queuing delay and to send a stronger price signal
to HBF sources, the HBF packets are marked (rather than
dropping) as a last resort, with their per-flow probability
1 — =% instead of the REM’s generic probability 1 —
¢~?¢®, Dropping does not occur under only queue mismatch
conditions—that is, if the buffer is persistently occupied
due to excessive backlog. However, despite the stronger
price signal, if rate mismatch persists, this strongly indicates
existence of misbehaving unresponsive flows, in which case
the HBF packets are dropped.

3.2. Nact Estimation. On one hand, the advantage of BLACK
consists in the use of Hit Fraction Q,; that approximates
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the buffer occupancy fraction of only high-bandwidth flows,
instead of maintaining per-flow states for every active flow.
This makes BLACK highly scalable. On the other hand, since
no per-flow state is maintained, the number of active flows
(Nact) needs to be estimated to determine the fair-BOF.
Hence, the effective detection and throttling of misbehaving
flows become largely dependent on the accuracy of the Nact
estimates. The limitation of BLACK, however, is its simplified
estimation of Nact. For each packet arrival at link ¢, BLACK
compares a sampled packet with the arriving packet. If both
packets belong to the same flow, a match event is declared. Let
7 flows, numbered, 1,2,..., T, arrive at the router, BLACK
assumes the probability that an arriving packet belongs to
flow i is 1/7, for all 1 < i < 7. Thereupon, Nact, is
simply determined based on the total match events over
the total packet arrivals during a sampling period—that
is We(t)/(number of match events). Hence, a very strong
assumption imposed is that all 7 arrived flows have the same
traffic intensity (ratio of the arrival rate to the service rate
during a specific time period) 1/7 . This leads to inaccuracies
in more realistic scenarios; for instance, in case of Internet,
traffic intensities are vastly different [19].

To address this shortcoming, we pose the Nact estimation
problem in terms of finding the cardinality estimates of a
multiset. A multiset is defined as a set where each element
can appear several times. The size N of the multiset is
the total number of elements, including repetitions, while
its cardinality » is the number of distinct elements in the
multiset. This approach constitutes a framework of a multiset
of N packets from n connections or flows. Such a multiset is
naturally constructed in a router’s queue that serves realistic
Internet traffic as large amounts of packets arrive in different
patterns with varying intensities. The problem then is to
determine the cardinality of the multiset of N packets at a
given period t, in order to obtain the number #n that would
indicate the distinct flows, which will be Nact(t) or total
active flows in period .

Though the idea of multiset here is very straightforward,
nonetheless, to determine its cardinality, we need a very
robust technique. In the following, we discuss the signifi-
cance of the desired robustness and present a solution.

The problem of cardinality estimation arises frequently
in databases due to natural operations on large datasets [23].
However, the considered problem is different in a sense that
the multiset of packets changes extremely dynamically. The
easiest and most accurate way to determine the cardinality
could be to equip the router with an algorithm to count, for
instance, by sequential selection and comparison operations,
the distinct packets n out of the multiset of N packets at a
given period t. However, this could require up to N passes
over the multiset and a memory of up to n words, which is
highly unsalable solution as the complexity would increase
with the number of flows and there are generally hundreds
of thousands of flows in a router. Thus, the execution time
and low memory are essentially the most crucial criteria for
choosing the cardinality estimation technique to operate on
a router.

Hashing, on the other hand, is an effective technique with
a potential to simplify the considered estimation problem.
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FIGURE 1: Block diagram of Purge.

A Hash function is mostly used to index large unordered
data into small datum to make the record lookups efficient
for data comparisons, for instance, in detecting duplicated
items or finding identical stretches of DNA sequences. The
values returned by a hash function are called hash values (see
[23] for an overview). There are various types of hashing
techniques, such as the heavy-hitter data structure [22]
that requires two passes over the multiset to determine the
cardinality n. Nevertheless, it is expected that any algorithm
involving more than one passes over the huge multiset of N
packets to obtain n distinct flows will lead to an outdated
result, since packets pass through the router with enormous
speeds. Thus, the desired solution is to treat the multiset
in one pass using a simple loop and with a small auxiliary
memory. We adopt a recently proposed order-statistics-based
MINCOUNT technique [24] that is placed in the class of
best known algorithms so far due to its excellent trade-
off between memory, execution time, and accuracy, which
makes it the most suitable Nact estimation approach for
Purge. The technique works here as follows.

Let B¢(t) = {p1,p2>...,pn} be a multiset of N packets
from n, n < N, distinct flows in E at link ¢ in period
t. A modular arithmetic-based hash function 7% maps the
FlowID (This could simply be the flow ID field of an IPv6
packet or a combination of pairs “source IP, destination IP”,
“source port, destination port”) of each packet to a real
value that is uniformly distributed in the unit interval [0, 1].
Irrespective of the nature of traffic, {f(p1), h(p2),...,h(pNn)}
yields a set of hashed packets built from n real values
taken independently uniformly at random in [0, 1], and
then replicated and permuted in an arbitrary way. Such a
set is called an ideal-multiset [24], the key idea wherein
consists in that kth minimum of the values of the ideal-
multiset neither depends on the replication structure of the
data nor on their order of appearance. Thus estimating
the cardinality of the ideal-multiset yields the number #n of
distinct values as the required Nact estimate in Purge. Note
that minimum of a sequence of numbers is found with a
single pass over the elements. The algorithm averages over
several similar experiments to improve its precision, based
on the fact that the arithmetic mean of m ii.d. random
variables with expectation y and standard deviation o has the

same y but a o scaled down by 1/./m. However, performing
m experiments involves using m different hashing functions
which is unreasonable due to complexity.

To that end, the principle is to construct an observable,
based on the kth minimum, and to combine it with a
stochastic averaging process that simulates the effect of m
experiments. This is done by distributing hashed values in
m different buckets by dividing [0, 1] into m intervals of size
1/m, while using a single hash function, and then averaging
an observable over m from the kth minimum of each bucket.
A hashed value falls in the ith bucket if (i — 1)/m < ; < i/m.
A precise estimate is then built as

Nacte(t) = m(%)i : exp(; Zln(Méf,i(t))),
i=1
(4)

where T is the Euler’s Gamma function and Méf),-(t) is the kth
minimum of the ith bucket of the ideal-multiset built from
Be(1).

4. Simulation Results

The results of our analysis are derived from OPNET (Mod-
eler ver. 14.5) simulations and are based on topology shown
in Figure 2 and parameters listed in Table 1, unless specified
otherwise. The efficiency of Purge in regulating unrespon-
sive flows is evaluated by means of several performance
metrics including accuracy of Nact estimates, execution
time, throughput, fairness, goodput, and scalability. All
results presented are based on 25 replicated simulation runs
for each scenario, by maintaining fixed values of input
parameters and only varying the random-seed values in
each run, in order to compute average results using 95%
confidence interval. The graphs only plot mean values for
better readability; confidence intervals are omitted as they are
very tight. In all scenarios, TCP flows cover large proportion
of traffic, while the percentage of UDP flows is kept 12%
of the overall traffic to reflect the practical ratio currently
prevalent on the Internet.

The MINCOUNT parameters m and k have been chosen
so as to yield the best practical estimates with minimal
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TaBLE 1: Simulation parameters.
Buffer size 1250 KB
Maximum segment size 8KB
b} 250 KB
a 0.1
y 0.001
) 1.001
HBEF cache size 50
m 1024
k 3
TCP implementation Vegas ([1, Equation (15)])
Operation mode Simultaneous

Source Sink
TCP.. .

: /100 Mbps
f. lms

FIGURE 2: Simulation topology.

memory requirement, as shall be discussed in Section 4.2.
The REM parameters «, y, and ¢ have been set according
to the author’s recommendations and the chosen values
are more suitable in the considered scenarios of variant
intensities. The HFB cache size is recommended to be neither
too small nor too large [7]. BLACK generally works well
when size is around 40-50, as in [7, 19]. Purge is configured
with a cache size of 50. The target queue-length b; has been
set to 20% of the buffer-size as discussed in Section 3.1.

4.1. Nact Estimation Accuracy. We first compare the Nact
estimation techniques of BLACK and Purge, which is crucial
in determining the fair-BoF and thus in the overall regulation
of misbehaving unresponsive flows. To test the accuracy,
traffic is generated by TCP-based FTP and UDP-based VoIP
flows and simulations run for 60 seconds, where Nact is
estimated every 1 second such that b, > b; for all ¢.

For a 600-flow scenario presented in Figure 3, during the
first 20 seconds, the arrival rate of all flows is uniformly
distributed, transmission rates are all identical with 25 Kbps
and all flows transmit simultaneously from 1 to 20 seconds.
Under these settings all flows have similar intensity (Ratio
of arrival rate to the service rate during a specified time
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period. For IP flows of unicast traffic between two specific IP
addresses, OPNET configures traffic intensity in packets/sec
and bits/sec (packet size is computed as a ratio of these
two values), type of service used and how long the traffic
lasts.). From a multiset perspective, the buffer has n ~ N
flows at any period t, in which case both techniques produce
estimates reasonably close to the actual number of 600 active
flows.
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During 21 and 60 seconds, traffic is generated by
flows drawn from exponential distribution so their arrival
times are dissimilar, such that flows have different ON-
OFF periods. Half of the TCP flows are now HTTP and
are configured by TCP-Reno ([1, Equation (8)]); whereas
for UDP flows the call volumes are assigned randomly in
100-1000 Erlangs. Under these settings, the overall traffic
intensity varies significantly with frequent bursty intervals.
Note that this is the closest representation of the real Internet
traffic patterns [11]. Consequently, the number of active
flows n in the buffer at any period ¢ fluctuates between
1 and 600 such that n < N, in which case, as opposed
to Purge, BLACK’s estimates deviate substantially from the
actual numbers of active flows. The Root Mean Squared
Error (RMSE) of accuracy for both techniques is shown in
Figure 4, which is negligible in case of Purge and remains
almost unaffected by increasing flow scale.

4.2. Execution Time. In high-speed networks, such as OC-
192 based Internet backbone connections with 10 Gbps link
speed, there are up to 1.25 million packets per second (This
traffic load is for illustration purpose. Network links are
seldom utilized at 100%.) to be processed [25], considering
the realistic packet size distribution of 1 KB [26]. This does
not allow much time for a backbone router to perform
complex operations on each packet. The execution time of
an algorithm operating on a router is crucial in this context.

Purge’s Nact estimation benefits from the very simple
internal loop of MINCOUNT [24] that gives it an advantage
in terms of execution time, memory, and accuracy. For
instance, it has been demonstrated in [24] that, when k = 3
and m = 1024, a memory of only 12KB is enough for
MINCOUNT to process 3 million elements per second, on
a 2.5 GHz processor, and to build a cardinality estimate with
an accuracy of order 2 percent. This processing speed exceeds
the link speed of OC-192. However, the results in [24] are
based on estimating the cardinality of a large static file,
whereas, in the case of Purge, the multiset (Z,(¢) of packets
in the router at link € in period t) to be estimated depends on
traffic load and changes dynamically as packets pass through
the router at enormous speeds.

To evaluate the computation time of MINCOUNT-based
Nact estimator of Purge and compare it with that of BLACK,
we make the following modifications to the topology of
Figure 2. The access link capacities are varied in the range
[10 Mbps, 200 Mbps] and the bottleneck link capacities are
equalized with those of the access links in each scenario.
The number of flows is also varied in the range [100,2000]
and the traffic intensities are kept identical (as discussed in
Section 4.1). The constantly persistent intensity of the traffic
along with the absence of the bottleneck link results in the
increased traffic load and large multisets to be processed
(Identical traffic intensities result in identical packet sizes,
composing identical multiset sizes to be processed by both
estimators. This makes comparison of computation time
more like for like.). The simulation is run for 30 seconds, for
each scenario, the time to process a multiset E,(#) is recorded
at t = 30, and results are then averaged over 25 runs. The
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N Purge's estimator

F1GURE 5: Execution time of the Nact estimators.

results are presented in Figure 5, showing typical execution
times to build a single estimate of the number of active flows,
on a 2.9 GHz processor. The execution times of both the
estimators remain almost similar for small-sized problems,
but scale nonlinearly under BLACK. Thus, BLACK may be
suitable for low-speed links (ignoring any inaccuracies of the
estimates) but would take too long for high-speed links. The
consequence can be outcomes representing outdated number
of active flows. On the other hand, Purge’s execution time
scales linearly and can effectively keep up with the link speed
of OC-192 (approximately 0.6 seconds to process the full
load of traffic on a 10 Gbps link). Moreover, the memory
requirements of Purge’s estimator remain constant at 12 KB
(with k = 3 and m = 1024), whereas that of the BLACK’s
estimator increase linearly with the number of match events
for i identical flows, as >.[_; 1/7. Thus, BLACK may not be
suitable for routers with either small memory or large-scale
flows.

4.3. Throughput and Fairness. The inaccuracies of BLACK’s
Nact estimates diminish its ability to efficiently throttle
unresponsive flows in presence of variant traffic intensities.
The performance of REM, BLACK, and Purge can be seen in
Figure 6, representing a scenario where only one UDP-based
VoIP flow with 9 Mbps rate competes with 10 TCP-based
FTP flows and simulations run for 100 seconds. The average
throughput for this scenario is presented in Figure 7. Clearly,
under REM the TCP traffic is almost shutout; it is therefore
excluded from further comparisons. Under BLACK, UDP is
still privileged as compared to the Purge case.

Fairness is of a significant importance, lack of which leads
to the maladies described in Section 1. We evaluate fairness
using the Jain’s index [27], given as

(Z?:lxi)z

”27:13‘1'2 '

where a value of f,0 < f < 1, closer to 1 represents fairer
rate allocation, and x; is the throughput achieved by flow i. To
compare the impact of scalability and fairness of the allocated
throughput, we introduce UDP-based CBR video flows with
3 Mbps rate and TCP-based FTP flows transmitting large
files and lasting till the end of simulations. Additionally,

f= (5)
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TaBLE 2: Average throughput in multiple unresponsive flows scenario.
No-of flaws (hroughput (Kbps) _ throughput (Kbps) _ TCb thmoughpur (Kbps) 147 fimess index
BLACK 100 82.944 105.472 112.64 0.9902
Purge 94.208 103.424 104.448 0.9988
BLACK 500 17.408 22.528 25.6 0.9869
Purge 19.456 21.504 22.528 0.9983
BLACK 1000 8.4992 11.6736 12.8 0.9818
Purge 9.3184 10.6496 11.1616 0.9971
BLACK 2000 3.7888 5.4272 6.5536 0.9722
Purge 4.608 5.5296 5.4272 0.9937
BLACK 4000 1.1264 2.048 3.2768 0.8897
Purge 2.1504 2.6624 2.8672 0.992
TaBLE 3: Goodput in multiple unresponsive flows scenario.
No. of flows gé\(:,;}r;gte(ilc):;s) gc/)\c\),fli;gte(ll?b)}i) {\[\,Celr’aggsoljilgsilz(é%i:; System goodput (Mbps) ]ain’isnf;tei;ness

BLACK 100 81.291 105.472 104.606 8.2903 0.9899
Purge 92.884 103.424 96.145 9.2038 0.9987
BLACK 500 14.89 22.528 17.447 7.7555 0.9761
Purge 17.967 21.504 18.891 8.9937 0.9961
BLACK 1000 6.5066 11.6736 9.899 7.059 0.9452
Purge 8.5407 10.6496 8.773 8.5945 0.994
BLACK 2000 2.7201 5.4272 5.975 6.1379 0.9065
Purge 4.189 5.5296 4.592 8.5195 0.9901
BLACK 4000 0.8641 2.048 2.1915 4.0859 0.8534
Purge 1.9967 2.6624 2.148 8.1294 0.9893

there are 3% short-lived unresponsive malicious TCP flows
with 5 Mbps rate. The results are presented in Table 2, which
show that the performance of Purge is reasonably scalable
to large number of flows. The Nact estimation inaccuracy
accumulates and affects throughput allocation and hence the
fairness, under BLACK.

4.4. Goodput. Throughput, in Table 2, represents the average
number of bits successfully received by the receiver, per
second. However, it is also important to evaluate the overall
system efficiency in terms of useful bandwidth utilization.
Goodput measures the total amount of effective data deliv-
ered through the network [1]. The effective data is the
useful (nonduplicate) received bits per second. For each flow,
goodput can be measured as

Goodput(TCP) := w,
T
rec ©)
Goodput(UDP) := T

where rec is the number of bits received, retx is the number
of bits retransmitted, and T is the duration of the flow.

Using the scenario presented in Section 4.3, the average per
flow goodput is the average per flow throughput excluding
retransmissions, across the set of flows. For a set of similar
flows, the average goodput is the number of useful bits
received by all receivers, per second, divided by the number
of flows. Consequently, the system goodput is the sum
of the goodput of all flows and represents the overall
system efficiency in useful bandwidth utilization. Table 3
presents the average goodput results for TCP, UDP, and
unresponsive TCP flows. The system goodput along with
JFI among the flows, based on their received goodput, is
also listed in Table 3. The average goodput for TCP flows is
obviously lower than their average throughput (Table 2), due
to retransmissions, under both BLACK and Purge. The JFI
is also affected slightly for smaller number of flows under
both techniques, but deteriorates further under BLACK as
the number of flows increases. The system goodput, under
BLACK, also deteriorates with the increasing number of
flows and reduces to half of that of Purge at 4000 flows.

A common weakness of both BLACK and Purge consists
in the use of 1/Nact as the standard criteria to determine the
fair Buffer Occupancy Fraction. This can lead to occasional
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unfair dropping for high-bandwidth TCP-friendly respon-
sive sources that are willing to pay a higher price. Our future
work will mainly concern this issue.

5. Concluding Remarks

This article presents Purge that employs the Buffer Occu-
pancy Fraction concept of BLACK to provide unrespon-
sive flow control and makes two contributions. Firstly, it
addresses the limitation of inaccurate number of active
flows estimation in BLACK. We have demonstrated that
in realistic Internet scenarios, where traffic intensities vary
significantly, the inaccuracies result in suboptimal rate
control and unfairness. To that end, we incorporate the
MINCOUNT algorithm, the low complexity and memory
requirements of which enable Purge-based routers to effec-
tively regulate traffic with variant intensities. Simulation
results demonstrate sufficient estimation accuracy of Purge,
which scales well to large number of flows. Secondly and
more importantly, Purge complements REM to enable it to
retain its inherent capabilities in the presence of misbehaving
flows. This is marked by the overall performance of Purge
that outperforms BLACK in providing fairness and global
rate enhancement.

2.5 o

Average throughput (Mbps)
&
|

0.5

REM BLACK

Purge

B UDP
W TCP

FIGURE 7: Average throughput in a single unresponsive flow
scenario.
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