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How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation
of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different
neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a
quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of
a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual
stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods.
The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of
stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization,
at source space level, thus providing a more global and complete view of the stages of processing associated with the regional
changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive
means and hence available for personalized monitoring and clinical applications.

1. Introduction

Even the simplest of tasks, be it purely cognitive, purely mus-
cular, or a combination of the two involves coordinated
activity in distinct brain areas distributed across the cortical
mantle and deep brain nuclei. The coordination however is
full of redundancy so that an identical goal, for example, a
movement of a finger or an eye, the perception of a simple
figure or a letter, can be accomplished in any of number
of possible ways [1]; only in pathology the repetition of an
identical task involves a rigid repetition of a fixed sequence
of brain activations. The apparent orderly progression of
activity that the averaged (over many trials and subjects)
electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) data reveal is a mirage of a sandwich of histories
[2]. There is however much useful information in this
mirage, primarily the identification of key brain areas and

points in time. In terms of cortical networks the analysis
of gross measures like the average signal elicited by a large
number of identical stimuli can reveal key nodes in the
network that play critical role in the task and points in time
when stages of processing reach a climax or are completed.
Careful experimental design can then help identify the stages
of processing supporting the perception of a specific type of
stimuli or how they are underpinning a specific task.

Here, we adapt a dynamic graph theoretical formalism [3,
4] to the study of real-time regional brain activations derived
from tomographic source analysis of MEG signals [5]. In line
with many recent studies we use phase coupling to describe
quantitatively the stimulus- and task-related synchronization
(as a putative mechanism for long-range integration) of
brain responses. We use single trial tomographic estimates
of brain activity to statistically identify the key individual
brain regions and derive dynamic brain networks and their
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graph theoretical properties. The methodology allows us
to generalize the viewpoint of isolated regional changes in
brain activity to the wider framework of quantifiable changes
in network properties and organization. We are specifically
interested in personalized monitoring of brain function and
therefore apply the methodology to the single trial MEG data
from individual subjects in two different sets of experiments.
The first set of experiments was designed to examine the
effect of attention on the earliest sensory processing stages
in the brain. In our earlier study of regional time courses we
found that spatial attention modulates the initial feedforward
response in the primary visual cortex beginning at ∼55 ms
[6]. The second set of experiments focuses on the use of letter
and pseudoletters as elements for category selection. The
earlier analysis of neural activity in individual brain regions
revealed key roles of cuneus and fusiform gyrus (FG) in this
task [7].

Using methodologies and algorithms from the well-
established branch of graph theory, the multidisciplinary
approach of complex-network analysis characterizes a wide
range of naturally occurring systems by quantifying the
topologies of their network representations [8–10]. A wide
range of methods have been proposed to characterize the rich
anatomical and functional connectivity patterns of the brain
using signals from modern brain-imaging techniques, such
as diffusion MRI, functional MRI (fMRI), and EEG/MEG
[11–14]. In retrospect, the description of the anatomical and
functional organization of the brain as complex networks
seems almost unavoidable and the question is which of the
many different ways is more appropriate. The vast majority
of previous studies have relied on analyzing the topological
properties of static graphs, where nodes correspond to
distinct brain regions and link to pairwise associations
among them. The links in these graphs remain unaltered over
time. Whereas this approach is reasonable for anatomical
connectivity, it fails to account for the labile and highly
dynamic nature of brain activity, particularly when signals
from fast-recording modalities of EEG/MEG are used [15]. It
is widely accepted that perceptually and behaviorally relevant
events are reflected in the changes of neural activity in
large-scale distributed neuronal networks [16]. However, it
is much less clear how these networks are organized dynam-
ically. This is due to the inherent difficulty in extracting
information, from multiple recording sites, about the various
processes participating in a particular cognitive task. The
situation is further complicated by the fact that not only the
state of any particular cortical area, but also the relations
between cortical areas can shift rapidly on a time scale of tens
of milliseconds [17, 18].

Recently a few studies have appeared focusing on the
evolution of connectivity pattern as this is estimated from
multichannel recordings. These studies use a moving time-
window to estimate distinct connectivity graphs from the
enclosed signal-segments, and by employing a topologi-
cal descriptor (i.e., network metric), they derive as out-
put a timeseries reflecting the event-related network self-
organization. In most network evolution studies the con-
nectivity is computed from the analysis of the raw signals
of individual EEG/MEG sensors [19, 20]. However, a sensor

based description of connectivity does not necessarily relate
in an obvious way to the actual functional connectivity in
the brain. For EEG, volume conduction effects and the high
resistivity of the skull make the signal of each EEG electrode
sensitive to a large number of brain areas. In the case of
MEG, the signal of magnetometers and axial gradiometers
are also influenced by a number of generators and in
addition the same generator in the brain gives rise to strong
contributions in different MEG sensors. The connectivity
pattern computed directly over EEG/MEG sensors must
therefore be interpreted with caution.

As a remedy, neuronal interactions can be studied based
on signals resulting from source reconstruction [15, 21–
23]. It is possible to compute the connectivity pattern from
actual source activity estimates derived from the average
signal of multichannel recordings of either EEG [24] or MEG
[25]. To fully capture the dynamic changes in event-related
connectivity, it is necessary to use single trial tomographic
solutions, but this has so far been attempted for only a small
number of areas [26, 27]. The results from studies using only
a small fraction of the network nodes do not necessarily
reflect large scale changes in network organization. Here,
we combine the potential of time-varying network-analysis
[3, 4] with the power of tomographic source reconstruction
derived either from single trial MEG signals or many averages
of few trials. The analysis allows us to examine visual
response mechanisms under the innovative perspective of
network reconfiguration dynamics.

2. Methods

2.1. Quantifying Functional Brain Connectivity

2.1.1. Time-Varying Functional Connectivity. Complex net-
works are characterized by recurring patterns, motifs, and
abrupt changes in network organization that demand the
refinement of existing methods and the development of
new ones [10]. In an effort to accommodate the need for
a dynamic description of functional brain connectivity, we
have developed a network analysis framework for quasi-
instantaneous estimates of connectivity patterns. In each
step of the analysis, functional coupling measures capture a
snapshot of connectivity within a window that encompasses
only a small segment of the signals. The window is then
moved forward by a fixed step to track the time evolution
of the computed quantities. The method can be applied to
broadband signals or to signals filtered within a predefined
frequency band. The selection of window width must pre-
serve the features in the signal, that is, it must correspond
to the frequency band used. For narrow band signals the
window is determined by the lower frequency limit since this
defines what brain rhythm (synchronized oscillations) sur-
vive the filtering process. In the narrow band computations
we will describe next the “cycle-criterion” (CC), as defined
by Cohen [28]. According to this criterion the time-window
width is CC = 2 cycles of the lower frequency. For the time
step we used 5 samples, moving forward by that amount the
centre of the window and recomputing the various quantities
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for the whole network connectivity based on the new signal
segments.

2.1.2. Functional Connectivity Graphs (FCG). To detect and
precisely characterize neural synchrony between distinct
recording sites, one can employ various synchrony measures
like the phase locking value (PLV) [29], phase lag index
(PLI) [30], coherence, and mutual information over the
corresponding signals. These measures are applied, using
N signals filtered within a particular frequency band, to
every possible pair of electrodes or regions of interests
(ROIs). The derived quantities are tabulated in an [N ×
N] matrix in which an entry conveys the strength of the
functional connection between a particular pair. This matrix
has a natural graph representation, called hereafter the
“functional connectivity graph” (FCG), with the nodes being
the recording sites and edges representing the in-between
links weighted by the tabulated value. In this study we put
emphasis on phase synchrony and decided to experiment
with two different measures of phase coupling, namely, PLV
and PLI. In our multitrial setting, both measures have been
adapted so as to describe response related synchronization
(as a putative mechanism for long-range integration) during
information flow in visual cortex.

Phase synchrony measures have recently gained great
popularity as tools for the study of brain network orga-
nization. Based on the theoretical argument that weak
coupling first affects the phases of oscillators, the detection
of phase synchronization is considered sufficient to reveal
interactions between two weakly coupled (sub)systems [31].
In addition, brain signals and phase synchronization in
specific frequency bands are thought to play a critical role in
neuronal information processing [32]. Recent studies have
demonstrated the pivotal role of phase synchronization in
memory processes [33] and mental calculations [34].

PLV is the basic measure for frequency-specific syn-
chronization between two signals. For every trial k (k =
1, . . . ,Ntrials), and for every latency n, the instantaneous
phase ϕ(n, k) is extracted using the signal segment enclosed
within a window of WL samples long. The window length
is defined, independently for each frequency band under
study, as WL = (CC/ flow) ∗ fs + 1, where CC denotes the
number of samples, which in our case corresponds to 2 cycles
of a cosine with the lowest frequency flow in the particular
frequency band, and fs is the sampling frequency. For a
given pair (u, v) of ROIs, the following formula estimates the
latency dependent phase synchronization according to PLV
estimator:
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= 1
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where Δϕ(n, k) is the phase difference ϕu(n, k) − ϕv(n, k)
between the corresponding signals (filtered within a particu-
lar frequency range). PLV quantifies the intertrial variability
of this phase difference at latency n. If the phase difference
varies little across the trials, PLV is close to 1; otherwise it

is close to 0 [29]. Usually, the above quantity is integrated
over successive latencies (that correspond to the moving
window) so as to achieve a more robust measurement. In
our implementation, the reconstructed regional activations
are filtered within known frequency bands (e.g., α-waves, γ-
oscillations) and the estimated latency-dependent PLV values
are used to derive the final weights for the FCGs with the
statistical procedure described at the end of this section.

PLI has been introduced as an alternative phase synchro-
nization measure, with the additional advantage of providing
coupling measurements that are insensitive to the presence of
common sources or volume conduction (and/or active refer-
ence electrodes in the case of EEG). The principal idea behind
PLI is to quantify, only, the (relative) phase distribution’s
asymmetry. In our latency-dependent implementation, this
phase synchronization estimator takes the following form:
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The PLI is bounded 0 ≤ PLI ≤ 1 and a PLI of zero indicates
either no coupling or coupling with a phase difference centr-
ed on 0 mod π. Since the neuroelectric recordings take place
at the quasistatic range of frequencies, volume conduction
introduces a zero lag phase, which is eliminated by PLI.
Depending on what frequency is used, PLI will also eliminate
contributions from synchronies with short delays.

It is a common practice to trim the initial estimates
of functional connectivity so as to null out insignificant
couplings that always appear due to random fluctuations in
any time series. Based on a Rayleigh test for the uniformity
of a synchronization measure (SM), we calculated the
significance of each value (significance is calculated as p =
exp(−Ntrials ∗ SM2) [35]; with SM denoting either PLV or
PLI). To correct for multiple testing, the false discovery rate
(FDR) method was adopted [36]. A threshold of significance
was set such that the expected fraction of false positives was
restricted to q ≤ 0.001. The PLV(u,v) (or PLI(u,v)) values
surviving this threshold were used to fill the weighted adja-
cency matrix W (the tabular counterpart of a given FCG).

2.1.3. Characterizing FCGs via Network Metrics. FCGs can
be described [37], classified, and selected as representatives
of a group [38] according to various network metrics. Here,
we characterize FCGs using a popular topological metric
established for weighted connectivity graphs known as local
efficiency (LE) [39]. It is defined as

LE = 1
N

∑

i∈N

∑

j,h∈Gi, j,h /= i

(

djh

)−1

ki(ki − 1)
(3)

with N representing the total number of nodes in the
network (i.e., the number of selected ROIs), ki corresponding
to the total number of neighbors of the current node, while
d denotes the shortest absolute path length between every
possible pair in the neighborhood of the current node.
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LE is understood as a measure of the fault tolerance of
the network, indicative of how well subgraphs exchange
information when the indexed node is eliminated [40].
Specifically, each node was assigned the shortest path length
within the subgraph, Gi.

2.1.4. Detecting Modules in the FCG. A recently introduced
graph-theoretic algorithm [38] is employed for identifying
the most-cohesive group of vertices given the undirected
weighted matrix W of a graph. The algorithm is based
on the identification of the dominant set of nodes and
when repeatedly applied yields the effective clustering, in
a sequential mode, of pairwise relational data. One of its
main characteristics is the compact, elegant formulation.
In our case takes the form of deriving the N-dimensional
vector y that maximizes the following objective function
(i.e., the set-compactness):

maxF
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y
) = yTWy,

y ∈ Δ, Δn =
⎧
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⎩
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Following a random initialization (with N = (no. of sources)
small positive numbers as the components of y), a simple
recursive formula leads to the desired solution:

y[k+1]
i = y[k]

i

(

Wy[k]
)

i
(

y[k]
)TWy[k]

, i = 1, 2, . . . ,N. (5)

After a fixed number of iterations, the support of y (i.e., the
set of indices corresponding to its nonzero components) is
computed providing the set of nodes participating in the
dominant graph-component. The full partition of a graph
into disjoint sets of nodes is accomplished by repeating the
following three steps: (i) finding the current dominant set,
(ii) removing the vertices in that cluster, and (iii) iterating
again on the rest of nodes.

With the above procedure, each single FCG is segmented
into distinct graph-components. Provided that internode
similarity is expressing functional coupling, the clustering
result can be considered as detection of independent func-
tional modules within the network of visual areas. The
end output is a N-tuple c = [c1, . . . , cN ], ci ∈ Z (e.g.,
c = [1 3 2 3 · · · 2 1 1 1 2]) summarizing the graph-
partition. Each integer is associated with an ROI and coin-
cides with the membership label in one of the sequentially
formed groups: 1 for the most prominent functional group,
2 for the second, and so forth. We adopted as cohesive
index (CI) of each cluster the objective function that is
maximized by the graph clustering algorithm (4). CI is
defined alternative to (4) as

CIi = 1
Nc

Nc∑

s=1

ICS(s), (6)

where CIi is the CI for each cluster i, Nc is the number
of nodes participated in the cluster, and ICS is the total
weight of within cluster connections of each node (called
intracluster strength).

2.2. Experiments Used. We applied the connectivity analysis
methodology described above to two sets of data, both using
visual stimuli presented to the lower left and right part of the
visual field. The first experiment was designed to study the
role of spatial attention and the main comparison of interest
to us here was between responses elicited by identical stimuli
in attended versus ignored conditions. The second experi-
ment was designed to study how the nature of stimuli (letter
versus pseudoletter) affected the categorization process in the
brain. The categories were defined based on either shape or
identity.

2.2.1. Spatial Attention Experiment. The full details of the
experimental protocol, data preprocessing and source anal-
ysis are described elsewhere [6, 41]. Here we used the subset
of the data where checkerboard stimuli were used to test
the effect of spatial attention on visually evoked responses.
Specifically, two sets of single trial data from two different
experimental runs are presented here. In both sets of trials
the same ellipse-shaped high-contrast checkerboard stimuli
were presented in a random order, at 10◦ eccentricity along
the 45◦ diagonals in lower left or right visual hemifield.
Checkerboards had dimensions of 8.5◦ × 6.5◦, a check size
of 0.85◦ × 0.85◦, and were oriented vertically, tilted at 18◦

or −18◦ angles. All stimuli were 350 ms in duration with
interstimulus interval varied randomly between 600 and
1200 ms. During a run, each stimulus exemplar (different
orientations) in each hemifield was presented for six times,
thus total of 36 trials are used here (3 orientations (exem-
plars) × 6 repetitions of each exemplar × 2 presentation
sides, left and right).

Subjects were instructed to avoid any kind of eye or body
movement, maintain fixation on a central cross, and respond
to stimuli appearing in the target hemifield, as accurately
and quickly as possible. In one run (18 trials) the target
was the left hemifield, in another run the right hemifield.
The effect of spatial attention is identified by comparing the
brain activity elicited by same stimuli when the attention is
directed to the stimulated versus opposite visual hemifield.

Two sets of ROIs are used in the current study for the
connectivity analysis. The first set includes twelve visual cor-
tical ROIs, bilaterally in: V1, V2, V4, V5, lateral occipital (LO)
cortex and fusiform gyrus (FG). These ROIs were defined by
statistically comparing visually evoked neural responses in
the post- versus prestimulus periods, as described in [41].
The second set includes eight ROIs in: medial precuneus,
paracentral lobule, middle frontal gyrus (MFG), right MFG,
and bilateral inferior parietal lobule (IPL) and precentral
gyrus (preCG). These are putative ROIs involved in the
control of visual attention. They were identified by com-
paring the prestimulus periods of tomographic estimates
from all the trials where attention was directed to visual
versus auditory modality (for the details on all visual and
auditory attention conditions see the full description of the
experiment in [41]).

2.2.2. Letters and Shapes Experiment. In this, the letters
and shapes experiment, subjects performed a two-alternative
forced-choice categorization task. The task was a shape
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(i.e., the two stimuli within a category had similar shape),
an identity (i.e., the two stimuli differed in shape), or an
arbitrary task. The stimuli were letters and pseudoletters
presented with either a congruent or incongruent surround,
and were presented to the center, lower left or lower right of
the visual field. The experiment is a continuation of an earlier
experiment where stimuli were presented in the left and right
part of the visual field only [7]. We will report here results
from the second experiment.

Before each run subjects memorized a pair of categories,
consisting of four target items each. They were labeled 1
and 2 and were presented simultaneously on the left and
right side of the screen. Next, subjects practiced the task in a
training session. A trial started with a cue (fixation cross, “<”
or “>”) at the center of the screen signaling to the subjects
in which part of the visual field the stimuli will be presented
(bottom left, centre or bottom right). We instructed subjects
to fixate on this cue during the entire trial. The stimulus
appeared in the cued part of the visual field after a random
interval (600–1200 ms), at 8 degrees eccentricity from the
center of the screen for the peripheral presentations. Cue
and stimulus remained on screen until the subject responded
“Category 1” (by lifting the left index finger), or “Category
2” (right index finger). During training visual performance
feedback was provided, but during recording runs (n = 16)
no feedback was given. A recording run had 144 trials, that
is, 6 repetitions of each of the 24 unique trials (2 letters and 2
pseudoletters, each occurring in 2 surround conditions and
3 visual field locations).

MEG signals were recorded while subjects performed the
task. We first used standard preprocessing of the MEG signal
to remove environmental noise and subject artifacts (heart
beats and eye blinks). We then averaged the signals for the
6 repetitions of each unique trial condition in each run and
each visual field location. Finally, we applied magnetic field
tomography to the averaged signal to obtain independent
tomographic reconstruction of activity throughout the brain
for each timeslice of the signal (every 0.8 ms), from 200 ms
before to 500 ms after stimulus onset. The analysis produces
for each visual field location and for each latency (step
0.8 ms) a total of 48 tomographic estimates of activity for
each stimulus type (letter or pseudoletter), and a total of
32 tomographic estimates of activity for each task condition
(Arbitrary “A”, Identity “I” and Shape “S”). To define ROIs,
we applied statistical parametric mapping. Factorial analysis
(ANOVA) quantified how the activity in each identified ROI
changed over factors of task, stimulus type, surround and
visual field location.

We again use ROIs defined functionally for the connec-
tivity analysis. For this case we include for V1 not only the
ROIs defined for the stimuli we used, but also the ones
defined for placements in the top part of the visual field. The
key areas for the experiment are the LO and mid-FG areas
and the Cuneus (Cu). In this and the previous study [7] the
separate regional analysis identified the LO and FG areas to
be most relevant for the processing of letters and sensitive
to task demands and the Cu to play a role in anticipation
of stimuli and coordinating the resource allocation for each
task.

Our analysis of the letter and shape experiments explores
how the network properties evolve in the left and right
hemispheres for two distinct cases. In the first case we
compare the network evolution for stimuli that are either
over-learnt symbols (letters) or similar in shape, that is, a
pseudoletter, that has not yet acquired the letter identity;
pseudoletters must be processed each time according to their
shape. In the second case we compare the network evolution
for three different tasks. In the first task the subject simply
responds to any stimulus without the need to make any
category distinction while in the other two a selection based
on category membership must be made. In the second task
(identity) the categories can be differentiated by identity of
the members since the shapes are mixed in each category.
In the last task (shape) the elements of each category can
be distinguished by a prominent shape difference (e.g.,
members of one category have curved surface while that of
the other are rectangular).

3. Results

3.1. Spatial Attention. PLV- and PLI-based FCGs were con-
structed for five frequency bands: δ (1–4 Hz), θ (4–8 Hz),
α (8–13 Hz), β (13–30 Hz), and γ (30–45 Hz). We used LE
of FCGs in each of these bands to identify the effect of
spatial attention on event-related connectivity. The clearest
attention-related changes were found in α and β bands for
both PLV- and PLI-based FCGs (Figure 1). In α-band there
was a marked attention-related decrease of LE, while oppo-
site effect was found in β-band. Interestingly, these effects
are identified at the same early latencies as the key regional
activity modulations found in our earlier studies [6, 41]. To
determine the sources of attention-related changes in LE we
examined the dynamics of α and β band FCGs in attended
and ignored conditions. Figure 2 shows the PLI-based α
(c, d)) and β ((a, b)) band FCGs at ∼70 ms, for stimuli
presented in the lower left visual quadrant, when attention
was directed to the left (attended condition, (a, c)) and right
(ignored condition, (b, d)) visual hemifields. In β band there
is a strong phase coupling (increased connectivity) between
early contralateral (right) visual cortical areas (V1, V2, V4,
and LO) in the attended condition, which likely enables an
efficient processing of attended stimuli. In the α band, strong
phase coupling is found in the ignored condition, between
the contralateral (right) visual cortical areas and the right
IPL. Such coupling between the IPL, which is involved in
attentional control processes [42–44], and lower level visual
areas likely reflects the top-down suppression of ignored
stimuli.

3.2. Letters and Shapes

3.2.1. Comparison between Letters and Pseudoletters. We first
used the cluster analysis described in Section 2.1.4 to study
the connectivity patterns elicited by each stimulus category
(letters and pseudoletters) presented in different parts of the
visual field (center, lower left, and right quadrants). The
adopted clustering algorithm was applied to PLV-based FCG
computed from wide band data. Figure 3 shows the dynamics



6 Computational and Mathematical Methods in Medicine

PLI

Time (ms)

0 100 200 300−100

0.01

0

−0.01

Lo
ca

l e
ffi

ci
en

cy
at

te
n

d-
ig

n
or

e

(a)

Time (ms)

0.01

0 100 200 300

0

−100

PLV

−0.01Lo
ca

l e
ffi

ci
en

cy
at

te
n

d-
ig

n
or

e

α-band
β-band

(b)

Figure 1: Local efficiency (LE) difference between the attended and ignored conditions as a function of latency in the α (blue) and β (red)
frequency bands. These results were computed after averaging the corresponding values for the occipital sensors and for stimuli presented
to the left and right bottom parts of the visual field. The results are similar for the phase lag index (PLI; (a)) and for the phase locking value
(PLV; (b)). In both cases the minimum reduction in α band coincides with the peak of the early attentional effects in V1 (∼70 ms).
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Membership to the dominant cluster is represented by white and membership to any other cluster by black color. The computation for
cluster membership was done from the wide band data pooling all three conditions (arbirtrary, identity, and shape tasks).
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Figure 4: Global clustering patterns for each condition, Arbitrary (a), Identity (b) and Shape (c) for subject 1 and presentation the lower left
visual field. Membership to the dominant cluster is represented by white and membership to any other cluster by black; the computation for
cluster membership was done from the wide band data pooling together letter and pseudoletter stimuli presented in the lower left quadrant
of the visual field.

of the dominant clusters (cluster with the highest cohesive
index) for two subjects.

Within each subject, the clustering patterns were differ-
ent in response to stimuli presented in different parts of
the visual field (compare different columns in Figure 3), as
expected [25], but were very similar across different stimulus
categories (compare the rows in Figures 3(a) and 3(b)). The
patterns were also very different across subjects (compare
Figures 3(a) and 3(b)). These results suggest existence of
multiple alternative task-specific mechanisms for large-scale
communication in the brain, whereas the employment of
the particular mechanism is subject-specific. These results
show the suitability of the method for within subject analysis
while highlighting the need for care when group analysis is
attempted.

We describe in a little more detail the connectivity
pattern for subject 1, who was significantly more experienced
in the task. For this subject the connectivity pattern in the
prestimulus period resolved into 3 to 5 clusters, but only one
cluster had a high compactness and it was composed entirely
of early visual areas and the cuneus, all in the left hemisphere.
Within 100 ms of the stimulus arrival reorganization of
connectivity has taken place with distinct patterns of connec-
tivity emerging from the common prestimulus base for each
visual field location. Within 30 milliseconds of a stimulus
appearing in the left visual field the dominant cluster changes
drastically with right hemisphere areas (contralateral to
the stimulus) populating the dominant cluster and the left
hemisphere ones relegated to the second cluster. For stimuli
presented in the right visual field the transition is smoother
as more extrastriate areas of the right hemisphere gain
membership in the dominant cluster. Within 50 ms some
visual areas in the ipsilateral hemisphere become members
of the dominant cluster. The stationarity of the main cluster
extends from 30 to nearly 200 ms for stimuli presented in
the right visual field. For stimuli presented in the left visual
field the pattern is stationary for shorter period suggesting
that at least two stages of processing are involved. For stimuli
presented at the center of the visual field, visual areas from

both the left and the right hemispheres become members of
the dominant cluster, which is more cohesive and has more
members than in the other two cases.

For the second, less experienced, subject the organization
and evolution of the dominant cluster was less organized.
However few common features could be noted. In the first
100 ms of the poststimulus period, the dominant cluster was
composed mainly of contralateral visual areas, while at
later latencies (∼200 ms) many areas from the ipsilateral
hemispheres also became part of the dominant cluster.
Importantly, similar to subject 1, the clustering patterns were
similar for the two stimulus categories (letters and pseudo-
letters).

Figure 4 shows the changes in membership of the
dominant cluster (cluster with the highest cohesive index)
for stimuli presented in the lower left quadrant of the
visual field in the three different tasks for the first subject.
Since the responses to letters and pseudoletters were very
similar, we combined them within each task. There is a clear
difference between the random responses (arbitrary, random
response to any stimulus that appears) and the tasks where
categorization must take place, either in terms of identity or
the shape of the stimuli. In the ipsilateral hemisphere (left)
there is only a brief change in membership within the first
100 ms, or very soon after all areas return to the dominant
cluster. In the contralateral hemisphere the first response
is similar in all tasks. The most noticeable difference is
that for the arbitrary task, V2 and V4 are either absent
from the dominant cluster, or they participate for shorter
periods compared to the other two tasks. This probably
reflects the reduced demand for detailed visual stimulus
processing in the arbrirtrary task. Overall, in the second
phase of processing the participation of most visual areas in
the dominant cluster is weaker for the arbitrary task.

The presentations in terms of the dominant clusters
provide a global view of the topological organization of FCG.
While for each subject such presentations revealed clear
differences related to the stimulated part of the visual field,
they revealed only minute differences related to the stimulus
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Figure 5: The strongest links between ROIs elicited by letters, computed from the wide band data with window center at 71 ms (top part of
(a) and (b)) and 175 ms (bottom part of (c) and (d)). The results are shown separately for stimuli presented in the lower left (left part of (a)
and (c)) and lower right (right part of (b) and (d)) quadrants of the visual field. Only the top 5% links are displayed that have also passed
the threshold of FDR < 0.001. The results obtained from one subject are shown.

category (letters and pseudoletters) and active tasks (identity
and shape discrimination). Clearly much detail remains
hidden from the analysis presented in Figures 3 and 4. To
study the subtle differences that distinguish the processing
of different stimuli we use graph displays at key latencies
extracted from wide band (Figures 5 and 6) and the γ-band
(Figures 7 and 8). In these figures, we preserve the k = 5% of
the strongest connections that also satisfy a significance test
with FDR < 0.001; membership in the dominant cluster is
indicated by a filled square symbol and membership to the
second, third and fourth most cohesive clusters by an “×” a
“+” and filled circle.

Figures 5 and 6 show for two subjects, respectively, the
connectivity patterns elicited by each stimulus category (let-
ters and pseudoletters) at around 70 and 170 ms using the
results from the tomographic analysis of the wideband MEG

signals. At ∼70 ms the dominant cluster (filled squares) is
composed mainly of visual areas in the hemisphere con-
tralateral to the stimulus presentation. For the first subject
the separation is complete, that is, only areas of the con-
tralateral hemisphere belong to the dominant cluster. For the
second subject a small number of areas from the ipsilateral
hemisphere are clustered together with the contralateral
hemisphere areas.

At ∼170 ms we see a different pattern for each subject.
For the first subject, the dominant cluster is mainly in the left
hemisphere independent of where the stimulus is presented;
for stimuli in the right visual field the dominant cluster
includes all left hemisphere areas related to visual processing
and the cuneus. For stimuli presented on the left hemisphere
the dominant cluster involves early visual areas and the left
cuneus, while the second dominant cluster (“×”) involves
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Figure 6: The same as in Figure 5, but the results obtained from the second subject are shown.

all visual areas and the cuneus on the contralateral (right)
hemisphere and the extrastriate visual areas V4, V5, and FG
of the ipsilateral (left) hemisphere. For the second subject,
at the second phase of processing (∼170 ms), the dominant
cluster is made up of visual areas from both hemispheres.
The difference in the clustering pattern is reflected in the
connections between areas. For the first subject the con-
nections are primarily within each hemisphere, while for the
second subject there are more links between areas of the left
and right hemispheres.

Across both the early (∼70 ms) and late (∼170 ms)
phases of processing the regional activity and connections of
the cuneus seem to reflect the overall connectivity pattern.
A strong separation of clustering and connections in one
hemisphere is associated with strong connections between
the cuneus of the same hemisphere and the areas of the dom-
inant cluster. In cases where the connections and dominant
cluster involve areas from both hemisphere, the cuneus of
one hemisphere (mainly in the hemisphere contralateral to

the stimulated visual field) has connections with areas in
both hemispheres.

Figures 7 and 8 show for the two subjects the connectivity
patterns at 71 ms elicited by letters and pseudoletters in
the γ-band (30 to 45 Hz). Since the window extends for
30 ms on either side of the centre latency, the results display
the γ-band connectivity pattern at the earliest stages of
processing; nevertheless it is clear that the processing does
not fractionate into clusters, but that almost in all cases all
areas belong to one cluster. For both subjects stimulation of
the lower left part of the visual field produces strong links
(that survive the threshold criteria) in both hemispheres with
links extending across the two hemispheres. Furthermore for
left visual field stimuli links in the γ-band involve not only
the contralateral, right cuneus, but also the left hemisphere
cuneus and the extrastriate areas specialized for character
processing (LO and FG); these links often connect these
extrastriate areas with early visual areas (V1 and V2) of the
opposite hemisphere.
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Figure 7: The strongest links between ROIs computed from the γ-band data with window center at 71 ms. The results for letters are shown
in the top part of (a) and (b), and the results for pseudoletters on the bottom part of (c) and (d). The results are shown separately for stimuli
presented in the lower left (left part of (a) and (c)) and lower right (right part of (b) and (d)) quadrants of the visual field. Only the top 10%
links are displayed that have also passed the threshold of FDR < 0.001.

Stimuli presented in the right visual field produce strong
early links in the γ-band almost exclusively between areas of
the left (contralateral) hemisphere for subject 1. For the sec-
ond subject there is a preponderance of left hemisphere areas
involved in the links in the γ-band but with involvement of
some areas from the right hemisphere, especially V1.

In contrast to wide band, in the γ-band the differences
are apparent in the connectivity patterns between letters and
peudoletters, even at the early latencies depicted in Figures
7 and 8. These differences become prominent after 100 ms
poststimulus (data not shown). In both subjects and for all
stimuli the LO and FG in the left hemisphere, that is, the two
areas best known for letter processing, show prominent links
in response to both letters and pseudoletters. These two left
hemisphere areas are also linked to each other for all letter
stimulus cases, irrespective of which hemisphere these are

presented, but they are not linked for pseudoletters presented
in the contralateral (right) visual field.

4. Discussion

In the present study, we investigated the dynamic changes
of connectivity organization and the way transient cluster
formation is associated with the preparation and execution
of visual tasks. The adapted techniques have been previously
introduced for tracking the formation of functional clusters
in an EEG resting-state paradigm [4] and during sleep
[45]. Recently, a similar in spirit methodology for tracking
evolving modularity was applied to data from an fMRI
experiment [46] and succeeded in showing the reconfigura-
tion of brain networks with respect to a particular learning
task. Our methodology shares with few other studies the
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Figure 8: The same as in Figure 7, but the results obtained from the second subject are shown.

more generic perspective of dynamic changes in clustering
as the relevant framework for understanding brain function
and the common goal of an objective characterization of
time-varying functional connectivity. In two of the earliest
attempts adaptive multivariate processes were adopted for
modeling connectivity signals [47] and event-related net-
works were characterized based on multichannel recordings
from a visual stimulation paradigm [19]. In one of the most
recent works, fluctuations of functional connectivity among
the nodes comprising the oculomotor network were studied
in both awake humans and anesthetized macaques based on
BOLD signals [48]. The general trend of combining infor-
mation from different modalities is having some influence
in network analysis, for example for the fusion of EEG and
fMRI in network space [49].

The critical novelty in our current work is the use
of real time, millisecond by millisecond detailed tomo-
graphic estimates of brain activity, which allowed us to
describe cluster organization at the level of the key brain

areas involved in the task, and with time resolution that
is within the processing periods of these areas and the
transit time of information between them. Specifically we
demonstrated that phase couplings in α and β bands within
the visual cortical network differentiate between attended
and ignored stimuli. These results suggest at least two
different mechanisms by which spatial attention affects the
neural processing. First, because the increased β oscillations
are associated with efficient cortical processing, the visual
cortical network synchronization in this band facilitates the
neural processing of attended stimuli. On the other hand, the
α activity band can be interpreted as an indicator of cortical
inhibition and therefore the increased phase coupling in
this band, especially involving a key attentional control area
(IPL), realizes the top-down suppression of ignored stimuli.

In our previous analysis of MEG data elicited by letter
and pseudoletter stimuli we identified the cuneus and
the FG as key areas [7]. The timing and nature of the
cuneus activations suggested that this structure is related



Computational and Mathematical Methods in Medicine 13

to visual field and task demands, in a role that combined
active anticipation and specialized routing of activity in
visual processing. Our connectivity analysis revealed that the
contralateral cuneus was one of the best connected areas
at the earliest latencies after the stimulus onset (e.g., as
seen in Figure 5), fully justifying the earlier interpretation
of it having an important role in specialized routing of
activity during visual processing. In our previous study,
the specialized involvement of the FG emerged rather late,
between 150 and 350 ms after stimulus onset in the right
FG, reflecting task demands, while those in the left FG
between 300 and 400 ms showing selectivity for graphemes.
The connectivity analysis showed that the involvement of
these two areas on the left hemisphere starts much earlier,
within 100 ms in the γ-band with stronger participation of
the left FG, irrespective of the stimulated location in the
visual field.

We have presented evidence for fast reorganization of
human brain networks associated with well-defined visual
tasks. We have used data from two sets of experiments where
the more established methodology based on the analysis
of individual regional activations showed significant results
across the sets of subjects studied [6, 7]. Our results show
that the view obtained from the separate study of regional
activations emerges from a network activity that is very rich
and with subtle dependence on task and stimulus categories,
the network changes become evident well before the changes
in regional activities become apparent. While the common
regional activations across subjects are preserved in our con-
nectivity analysis the details in the connectivity patterns vary
a lot from subject to subject, probably reflecting different
mechanisms that each subject can recruit to tackle a problem.
We presented results for two subjects to demonstrate the
nature of both key common features and differences across
subjects as these emerge from the analysis.

There are of course a number of ways to adapt the
proposed methodology for group analysis. An obvious way
is to first do it independently for each subject referring to
the same set of ROIs for each subject (after appropriate
transformation to a common source-space). The time series
of clusterings will then be forced to refer to a common time-
line and can therefore be easily combined using the principles
of consensus clustering [50]. After alignment the clusterings
(from all subjects) can be fed to a “vector-median” com-
putation [45] and in this way the most reliable among the
individual-clusterings is selected as the representative for the
whole group. The alignment can be done either by using the
same latency for all subjects or allowing a different latency for
each subject after time dilation and stretching to fit a given
scenario (defined in advance or extracted from the data).
There are however serious questions to be addressed when
attempting to pool the data across subjects. First the actual
anatomy differs both in terms of regional location and gray
matter content of individual areas and probably even more
so the effectiveness of anatomical connections. In addition
the influence of activity from different brain areas on the
EEG and/or MEG signal varies and in the worst case scenario
the activity from some areas may produce very little EEG
and MEG signal. All these problems are eliminated when the

comparisons are restricted within a subject, for example, by
comparing different conditions for the same subject as we
have done for most of the work we presented in this paper.

Our view is that this is an area where much work
is needed before reliable across subject summaries can be
obtained. The methodology is therefore ideal for within
subject studies and to emphasize the point we emphasized
in the presentation of our results the results from the
individual subject connectivity analysis. In our opinion, the
main impact of the work we have outlined will be in allowing
noninvasive access to the fine details of the exquisite neural
codes of individual subjects. We believe that comparing
conditions within a subject could well lead to novel ways
of personalized monitoring of healthy brain function and
the online evaluation of remediation and rehabilitation
programs, for example in developmental dyslexia training
and rehabilitation after stroke.
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