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The “trim loss problem” (TLP) is one of the most challenging problems in context of optimization research. It aims at determining
the optimal cutting pattern of a number of items of various lengths from a stock of standard size material to meet the customers’
demands that the wastage due to trim loss is minimized. The resulting mathematical model is highly nonconvex in nature
accompanied with several constraints with added restrictions of binary variables. This prevents the application of conventional
optimization methods. In this paper we use synergetic differential evolution (SDE) for the solution of this type of problems. Four
hypothetical but relevant cases of trim loss problem arising in paper industry are taken for the experiment.The experimental results
compared with those of the other techniques show the competence of the SDE to solve the problem.

1. Introduction

Paper industry forms an important part of the world econ-
omy. It is a “round the clock” process industry consisting of
different processes like inventory management, logistics, and
so forth. The final aim, however, of a paper industry like any
other industry is the satisfaction of customers.The paper rolls
produced in an industry are to be cut as per the customers’
demands which vary from one customer to another. This
leads to an inevitable loss of paper known as trim loss
problem (TLP). It is the goal of every paper industry to
efficiently satisfy the customerswhileminimizing thewastage
due to trim loss. The industries have to maintain an efficient
production plan which is economical as well as satisfactory
to the customers. A systematic representation of the supply
chain is shown in Figure 1 (adapted from [1]).

Considering the practicality and importance of the TLP,
it has been given considerable attention by the researchers for
developing itsmodel and for recommending variousmethods
to solve it efficiently. The trim loss problem comes under
the group of cutting and packing problems. Hence it is also
known as cutting stock problem (CSP). In the present study,
we shall use TLP and CSP alternatively.

The first general classification for cutting and packing
problems is introduced in Dyckhoff [2]. Dyckhoff developed
a special classification for cutting and packing problems in

which he called it a typology. An improved typology was
developed by Wäscher et al. [3], which is partially based on
Dyckhoff ’s original one, but it adopts new categorization cri-
teria. A typology, as defined byWäscher et al. [3], is “a system-
atic organization of objects into homogeneous categories on
the basis of a given set of characterizing criteria.” According
to the typology defined byWäscher et al. [3], the problem we
are going to solve in this study can be categorized as a two-
dimensional “single stock size cutting stock problem.”

From the mathematical formulation point of view, many
articles are available in which the TLP has been studied
with different goals such as minimizing trim loss [4–6],
minimizing the production costs [5, 7], minimizing the
number of patterns [8], and minimizing the total length and
overproduction [9].

It was observed that TLP can be modelled as a global
optimization problem having a complex formulation (math-
ematical formulation of TLP is discussed in the next section),
and therefore efficient techniques are required for finding its
solution. Fundamentally, solution techniques for CSP exit can
be categorized into three groups.

(i) Algorithmicmethods: thesemethods though guaran-
tee the optimal solution are usually avoided because of
their high computational complexity.
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Figure 1: The pulp and paper supply chain.

(ii) Heuristic methods: these methods usually generate a
faster and an acceptable solution but may not find the
exact optimal solution. A drawback of these methods
is their domain dependency that causes the limited
application of apparently similar problems [10].

(iii) Metaheuristic methods: in metaheuristic methods,
the solution process is often guided by some lower
level heuristic. These methods usually have an ability
of not being stuck in local optima that might happen
with traditional heuristic techniques.

A series of articles are available in the literature using
heuristic andmetaheuristicmethods. Some of these are linear
programming approximations for the reel cutting stock [11].
However, it was observed that linear approximation was not a
very pragmatic approach for solving such a complex problem.
Therefore, efforts were made to solve the non linear models
heuristically [8, 12, 13].

Considering the fact that the decision variables of a TLP
are of integer type, therefore mixed integer linear program-
ming (MILP) has also been applied for solving cutting stock
problems. A review work on different formulations of CSP
and the different techniques to solve these is given in [10].
Instances of application of heuristic techniques for solving
TLP can be found in [4, 7, 14–16].

Taking into account the complexity of TLP, metaheuristic
techniques are probably a more pragmatic approach for
solving such problems. Different metaheuristics that have
been used include tabu search [17], simulated annealing [18],
PSO [19–21], genetic algorithm [22], hybrid genetic algorithm
[23].

Going into the details ofmodelling of the TLP is out of the
scope of the paper. Here, we are mainly focusing on showing
the suitability of the newly proposed SDE [24] algorithm for
dealing with such problems. Synergetic differential evolution
(SDE), an improved version of differential evolution (DE)
[25, 26] was applied to solve numerical benchmark test

functions, where the results clearly indicated the competence
of the algorithm. For the present study, SDE has been suitably
modified, to deal with the integer/binary restrictions of TLP.
The motivation behind the application of SDE for solving a
TLP is that a very small improvement in a given arrangement
in a cutting could save a considerably large amount of money.

The remainder of the paper is structured as follows:
Section 2 gives the brief introduction of SDE.
Section 3 presents the formulation of the trim loss problem.
Section 4 states the implementation of SDE for solving trim
loss problem. Finally, Section 5 provides the summary of the
paper.

2. Synergetic Differential Evolution (SDE)

This section briefly describes SDE, an improved version of
classical DE. SDE uses the concepts of opposition-based
learning and random localization and has a one population
set structure.Theworking of SDE can be understood with the
help of the following steps.

Population Initialization. Construct two populations 𝑃
1
and

𝑃
2
of size NP each. Here, 𝑃

1
consists of random solutions

between the lower and upper bounds 𝑋min and 𝑋max,
respectively, and 𝑃

2
consists of opposite solutions obtained

by using the opposition-based learning [27]. Now the initial
population 𝑆 is constructed by taking the NP best solutions
taken from {𝑃

1
U𝑃
2
}.

Mutation. For each individual, the mutation operation is per-
formed by randomly selecting three solutions {𝑋

𝑟1
, 𝑋
𝑟2

, 𝑋
𝑟3

}

from the population corresponding to target solution 𝑋
𝑖
.

However, unlike DE, SDE holds a tournament between the
selected three individuals, and the region around the best
individual of the tournament is explored:

𝑉
𝑖

= 𝑋
𝑡𝑏

+ 𝐹 × (𝑋
𝑟2

− 𝑋
𝑟3

) , (1)
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where 𝑟
1
, 𝑟
2
, 𝑟
3

∈ {1, . . . ,NP} are randomly selected such that
𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑖, 𝑋

𝑡𝑏
is the tournament best individual, and 𝐹

is the control parameter such that 𝐹 ∈ [0, 1].

Crossover. Crossover operator of synergetic differential evo-
lution is the same as that of classical DE. This operation is
performed depending on the crossover probability Cr ∈ [0, 1]

between the perturbed individual 𝑉
𝑖

= (V
1,𝑖

, . . . , V
𝑛,𝑖

) gener-
ated in mutation step and the target individual 𝑋

𝑖
= (𝑥
1,𝑖

,

. . . , 𝑥
𝑛,𝑖

) to obtain the trial individual, 𝑈
𝑖

= (𝑢
1,𝑖

, . . . , 𝑢
𝑛,𝑖

), as
follows:

𝑢
𝑗,𝑖

= {
V
𝑗,𝑖

if rand
𝑗

≤ Cr ∨ 𝑗 = 𝑘,

𝑥
𝑗,𝑖

otherwise,
(2)

where 𝑗 = 1, . . . , 𝑛 and 𝑘 ∈ {1, . . . , 𝑛} is a random parameter’s
index, chosen once for each 𝑖.

Selection. The selection scheme of SDE is the same as that of
classical DE, but the method of updating the population is
different from DE. After generation of the new individual,
evaluate the objective function and compare it to its corre-
sponding target individual by the following equation:

𝑋
󸀠

𝑖
= {

𝑈
𝑖

if 𝑓 (𝑈
𝑖
) ≤ 𝑓 (𝑋

𝑖
) ,

𝑋
𝑖

otherwise.
(3)

If new individual is better than target individual, then it
replaces target individual in the current generation.This is in
contrast to classical DE, where the better one of the two is
added to an auxiliary population to take part in reproduction
in the next generation. Therefore, SDE maintains only one
population and the individuals are dynamically updated.The
newly found individual entered in the population may take
part in the reproduction process.

3. Mathematical Formulation

The TLP, in the context of paper, appears when a set of
ordering paper products is to be cut from the large paper
roll, having specified widths. The cutting method is simply a
winding process, where the large paper roll is wound through
the slitter and is cut by a set of knives positioned on the
line (Figure 2). The objective is to minimize the trim loss
while satisfying the demand specifications. In this paper, the
mathematical formulation of TLP suggested by Adjiman et
al. [28] and Yen et al. [29] is taken into consideration. The
problem is defined as follows.

It is assumed that a paper roll of width 𝐵max is to be cut in
different sizes to satisfy the customer’s demands.

The order specifications are taken as follows.

(i) 𝑛
𝑖
rolls of order 𝑖 with a width 𝑏

𝑖
are to be produced,

where 𝑖 = 1, . . . , 𝑁 indicates different products. All
products rolls are assumed to be of equal length.

(ii) In order to design the best overall scheme, a maxi-
mum of 𝑗 = 1, . . . , 𝑃; different cutting patterns are

Trim loss

Raw paper reels

Product paper reels

Figure 2: A schematic illustration of trim loss problem.
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Figure 3: The cutting pattern.

assumed, where a pattern is identified by the position
of the knives.

(iii) Integer and binary restrictions: All the variables are
either integer or binary in nature.

(iv) 𝑚
𝑗
is integer variable indicating the number of times

pattern 𝑗 is repeated.
(v) 𝑟
𝑖𝑗
is integer variable indicating the existence of a

product in a given pattern.
(vi) 𝑦

𝑗
is binary variable to introduce a change in pattern.

If a new pattern is introduced (𝑚
𝑗

> 0), then 𝑦
𝑗
is

equal to one.

A sample of cutting pattern is shown in Figure 3.
Objective function: the actual cost of the trim loss is

the total amount of raw materials used, that is, the sum all
repeated patterns multiplied by a cost factor 𝐶

𝑗
, in addition

to the cost of changing knife positions between patterns. Let
the pattern change be weighted by a coefficient 𝑐

𝑗
. The trim

loss problem may now be defined as:

Minimize
𝑚𝑗 ,𝑦𝑗,𝑟𝑖𝑗

𝑃

∑

𝑗=1

(𝐶
𝑗

⋅ 𝑚
𝑗

+ 𝑐
𝑗

⋅ 𝑗 ⋅ 𝑦
𝑗
) , (4)

subject to the following constraints.
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The number of rolls of each product must be greater than
the customer’s order.

∑

𝑗

𝑚
𝑗
𝑟
𝑖𝑗

≥ 𝑛
𝑖
, 𝑖 = 1, . . . , 𝑁. (5)

The width of each pattern must be less than the width of
raw paper roll, and width of cut product in each pattern must
exceed a certain minimum Δ:

(𝐵max − Δ) 𝑦
𝑗

≤ ∑

𝑖

𝑏
𝑖
𝑟
𝑖𝑗

≤ 𝐵max𝑦
𝑗
, 𝑗 = 1, . . . , 𝑃. (6)

This constraint imposes a lower bound on the total number
of patterns made:

𝑃

∑

𝑗=1

𝑚
𝑗

≥ max{⌈

𝑁

∑

𝑖=1

𝑛
𝑖

𝑁𝑘max
⌉ , ⌈

𝑁

∑

𝑖=1

𝑛
𝑖
𝑏
𝑖

𝐵max
⌉} . (7)

There must be at least one product in a pattern, and the total
number of knives is limited to 𝑁𝑘max:

𝑦
𝑗

≤

𝑁

∑

𝑖=1

𝑟
𝑖𝑗

≤ 𝑁𝑘max 𝑦
𝑗
, 𝑗 = 1, . . . , 𝑃. (8)

There must be at least one pattern after a knife change, and
the maximum number of pattern repetitions is limited to 𝑀

𝑗
:

𝑦
𝑗

≤ 𝑚
𝑗

≤ 𝑀
𝑗
𝑦
𝑗
, 𝑗 = 1, . . . , 𝑃. (9)

Constraints (10) introduce an order on 𝑦 and 𝑚 variables to
reduce degeneracy:

𝑦
𝑘+1

≤ 𝑦
𝑘
, 𝑘 = 1, . . . , 𝑃 − 1,

𝑚
𝑘+1

≤ 𝑚
𝑘
, 𝑘 = 1, . . . , 𝑃 − 1,

(10)

𝑦
𝑗

∈ {0, 1} , 𝑗 = 1, . . . , 𝑃,

𝑚
𝑗

∈ [0, 𝑀
𝑗
] ∩ 𝑍, 𝑗 = 1, . . . , 𝑃,

𝑟
𝑖𝑗

∈ [0, 𝑁𝑘max] ∩ 𝑍, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑃,

𝑐
𝑗

= 1, 𝑗 = 1, . . . , 𝑃,

𝐶
𝑗

= 0.1, 𝑗 = 1, . . . , 𝑃,

(11)

where 𝑍 is a set of integers.
The presence of bilinear inequality (9)makes the problem

nonlinear and nonconvex.

4. Implementation of SDE for
Trim Loss Problem

In [24] SDE has been applied for solving problems having
continuous variables. The TLP, however, turns out to be a
MINLP problem (having binary variables as well), therefore
suitable changes are made in SDE to adapt it for dealing with
integer as well as binary variables. This is described in the
following section.

4.1. Handling of Integers and Binary Variables in SDE. In its
standard form SDE can only handle the continuous variables.
To make it handle the integer variables is, however, an easy
task and needs only a couple of simple modifications. Integer
values can be used in the evaluation of the objective function
and constraints, while it works internally with continuous
floating points.

According to the literature, getting the integer values for
evaluating the objective function and constraints can be done
in two ways (1) by rounding the continuous variables [30]
to the nearest integers and (2) by truncating the values to
integers [31].

In the present study, rounding off method is used because
it has an equal probability to choose between the nearest
lower and the nearest upper integer values. For example, if the
continuous variable has a value of 5.7 in one case and 5.4 in
the second case, then rounding off the digits takes the nearest
higher integer of 6 in the first case and the nearest lower
integer of 5 in the second case. Truncation, on the other hand,
takes the value of 5 in both of the cases since it always takes
the nearest lower integer value. Thus, it can be seen that the
former method is unbiased and is therefore more reasonable.

Binary variables are also handled in the same fashion
as that for integers except that in this case the bounds are
restricted between 0 and 1.

4.2. Handling of Constraints. For constraint handling, the
following methodology is used [32].

(i) Between two feasible solutions, the one with the best
objective function value is preferred.

(ii) If one solution is infeasible and the other solution
is feasible, the feasible solution is preferred without
considering the cost of the objective function.

(iii) Between two infeasible solutions, the solution corre-
sponding to the lowest sum of constraint violation is
preferred regardless of the objective function value.

Besides, following the previous three rules, equality con-
straints were transformed into inequations as explained. Sup-
pose that ℎ

𝑘
(𝑋) = 0, 𝑘 = 1, 2, . . . , 𝑚, are equality constraints

then these are transformed to inequalities using a tolerance
value 𝜀 = 10

−04 as |ℎ
𝑘
(𝑋)| − 𝜀 ≤ 0 for all 𝑘 = 1, . . . , 𝑚.

4.3. Control Parameter Settings. Fine tuning of SDE param-
eters was done to obtain the appropriate value of control
parameters for solving the TLP. A series of experiments were
conducted, and it was observed that a smaller crossover rate
(<0.5) gave good results for TLP. In this study, the value of Cr
is therefore taken as 0.3. Scaling factor𝐹 = 0.5 andpopulation
size NP = 100. Considering the complexity of the problem,
the number of function evaluations (NFE) was kept quite
high as 15 × 105. Finally, a reasonable accuracy of 10−04 was
taken to analyze the performance of SDE. The algorithm is
executed 50 times. In order to demonstrate the efficiency of
SDE, the results are also compared with GMIN-𝛼BB [28],
ILXPSO [20].
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Table 1: Problems taken in this study.

Problem 1 Problem 2 Problem 3 Problem 4
Product Wid. Qty. Product Wid. Qty. Product Wid. Qty. Product Wid. Qty.
1 290 15 1 330 9 1 330 12 1 330 8
2 315 28 2 360 7 2 360 6 2 360 16
3 350 21 3 385 12 3 370 15 3 380 12
4 455 30 4 415 11 4 415 6 4 430 7

5 435 9 5 490 14
6 530 16

Table 2: Parameters of the problems.

Problem 𝐵max Δ 𝑐
𝑗

𝐶
𝑗

𝑁𝑘max 𝑀
𝑗

𝑗 = 1, . . . , 𝑃

1 1850 100 0.1 1 5 ∈ [0, 30]
4

∩ 𝑧
4

2 1900 200 0.1 1 5 ∈ [0, 15] × [0, 12] × [0, 9] × [0, 6] ∩ 𝑧
4

3 2000 200 0.1 1 5 ∈ [0, 15] × [0, 12] × [0, 9] × [0, 6] × [0, 6] ∩ 𝑧
5

4 2200 100 0.1 1 5 ∈ [0, 15] × [0, 12] × [0, 8] × [0, 7] × [0, 4] × [0, 2] ∩ 𝑧
6

Table 3: Results for the trim loss problem 1.

Algorithm Fitness 𝑦 𝑀 𝑟

GMIN-𝛼BB 19.6

1

1

1

0

1

3

2

0

1 0 1 0

2 0 0 0

0 5 3 0

2 0 1 0

ILXPSO 19.6

1

1

1

0

14

3

2

0

1 0 1 0

2 0 0 0

0 5 3 0

2 0 1 0

SDE 19.6

1

1

1

0

9

7

3

0

1 0 2 0

2 1 1 0

0 3 0 0

2 1 2 0

4.4. Numerical Results. To evaluate the performance of SDE,
four hypothetical cases of the problem described in Section 3
have been taken. The problems specification and problem
parameters are given in Tables 1 and 2. In order to minimize
the effect of the stochastic nature of the algorithm, each
problem is executed 50 times taking different random seeds,
and the average of fitness values at the best solutions through-
out the optimization run is recorded. An Intel Dual Core
personal computer with 1 GB RAM is used for experiment.
The experimental results in terms of best fitness value as
well as best solution are given in Tables 3–6,and the cutting
patterns are given in Tables 7, 8, 9 and 10. From Tables 3
and 4, we observed that all the algorithms provided the same
objective value but different solutions. However, from Tables
5 and 6 it is clear that our algorithm gives the same objective
value as GMIN-𝛼BB algorithm which is also the optimal
value, but the ILXPSO, a PSO variant used for solving this
problem, does not achieve the global optimum. In order to

Table 4: Results for the trim loss problem 2.

Algorithm Fitness 𝑦 𝑀 𝑟

GMIN-𝛼BB 8.6

1

0

0

0

11

0

0

0

1 0 0 0

1 0 0 0

2 0 0 0

1 0 0 0

ILXPSO 8.6

1

1

1

0

5

2

1

0

1 2 1 0

1 0 2 0

2 1 0 0

1 2 2 0

SDE 8.6

1

1

1

0

4

3

1

0

1 1 3 0

0 2 1 0

3 0 0 0

1 2 1 0

Table 5: Results for the trim loss problem 3.

Algorithm Fitness 𝑦 𝑀 𝑟

GMIN-𝛼BB 10.3

1

0

0

0

0

15

0

0

0

0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

ILXPSO 11.5

1

1

1

1

1

3

2

2

2

1

2 3 0 0 0

1 0 1 0 1

0 0 2 3 4

0 0 1 2 0

2 2 0 0 0

SDE 10.3

1

1

0

0

0

6

4

0

0

0

2 0 0 0 0

1 0 0 0 0

0 4 0 0 0

1 0 0 0 0

1 1 0 0 0
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Table 6: Results for the trim loss problem 4.

Algorithm Fitness 𝑦 𝑀 𝑟

GMIN-𝛼BB 15.3

1

0

0

0

0

0

8

7

0

0

0

0

1 0 0 0 0 0

2 0 0 0 0 0

0 2 0 0 0 0

0 1 0 0 0 0

0 2 0 0 0 0

1 0 0 0 0 0

ILXPSO 16.3

1

1

0

0

0

0

9

7

0

0

0

0

1 0 0 0 0 0

1 1 0 0 0 0

0 2 0 0 0 0

1 0 0 0 0 0

0 2 0 0 0 0

2 0 0 0 0 0

SDE 15.3

1

1

0

0

0

0

8

7

0

0

0

0

1 0 0 0 0 0

2 0 0 0 0 0

0 2 0 0 0 0

0 1 0 0 0 0

0 2 0 0 0 0

2 0 0 0 0 0

Table 7: Solution results for problem 1.

Cutting
pattern no. Cutting pattern generated Trim loss

1 (290 × 1) + (315 × 2) + (455 × 2) 20
2 (315 × 1) + (350 × 3) + (455 × 1) 30
3 (290 × 2) + (315 × 1) + (455 × 2) 45
Total trim loss 95

Table 8: Solution results for problem 2.

Cutting
pattern no. Cutting pattern generated Trim loss

1 (330 × 1) + (385 × 3) + (415 × 1) 0
2 (330 × 1) + (360 × 2) + (415 × 2) 20
3 (330 × 3) + (360 × 1) + (415 × 1) 135
Total trim loss 155

Table 9: Solution results for problem 3.

Cutting
pattern no. Cutting pattern generated Trim

loss
1 (330 × 2) + (360 × 1) + (415 × 1) + (435 × 1) 130
2 (370 × 4) + (435 × 1) 85
Total trim loss 215

satisfy the order number 3, the total trim loss in terms of
width computed by ILXPSO is 1860, while by SDE, it is 1120.

So our algorithm obtained the optimal solution for all the
four cases while ILXPSO obtained it for only two problems.
Tables 7, 8, 9, and 10 give the optimal cutting pattern

Table 10: Solution results for problem 4.

Cutting pattern
no. Cutting pattern generated Trim loss

1 (330 × 1) + (360 × 2) + (530 × 2) 90
2 (380 × 2) + (430 × 1) + (490 × 2) 30
Total trim loss 120

corresponding to the optimal solution obtained by SDE, and
the last column of these tables gives the trim loss in terms of
width. From a close observation of these tables it can be said
that the trim loss is much less.Theremay exist more than one
optimal solution of an optimization problemwhich are called
alternate optimal solutions.

Alternate solutions obtained by the SDE are listed in
Tables 11 and 12 for the problems 1 and 2, respectively. For the
alternate solutions, objective value is the same while cutting
pattern is different which is obvious from Tables 11 and 12.
Other results which consist of the best and the worst results,
standard deviation (Std.), and average values of the obtained
results for all problems are recorded in Table 13. Additionally,
the computational times, the number of function evaluation
(NFE), and success rate (SR) are also included in Table 13.The
success rate in the last column of Table 13 shows the reliability
of the algorithm for that particular problem. Also variance is
much less which shows the robustness of the scheme.

The convergence graphs of SDE, illustrating the best
fitness versus number of function evaluations are given in
Figures 4 and 5. Furthermore, the convergence graphs of
constraint violation are also illustrated in the same figures on
the secondary axis.

Comparison of SDE with another algorithm ILXPSO on
the basis of NFE and SR is given in Table 14. The success rate
of SDE for problems 1–4 is 92, 100, 89, and 93, respectively
while in case of ILXPSO it is 85, 80, 65, 40 respectively. It
means that SDE ismore reliable than ILXPSO. FromTable 14,
it is clear that the performance of SDE is better than that of
other algorithms in both criteria. CPU absorbance time of
the algorithms is not compared here, since they were imple-
mented in completely different computational environments,
while it is recorded for SDE in Table 13.

5. Conclusions

In this paper, the performance of SDE is analyzed on a real-
life problem of trim loss or TLP, arising frequently in paper
industries. TLP is especially suited to investigate the efficiency
of an optimization algorithm like that of SDE because of
its complex mathematical model which is nonlinear and
nonconvex and contains integer as well as binary variables.
Also, it has several constraints associated with it. Conclusions
that can be drawn at the end of this study can be summarized
as follows.

(i) SDE can be easily modified for solving the problems
having integer or/and binary restrictions imposed on
it.



Mathematical Problems in Engineering 7

Table 11: Alternate optimal solutions of problem 1.

S. no. 𝑚
1

𝑚
2

𝑚
3

𝑟
11

𝑟
12

𝑟
13

𝑟
21

𝑟
22

𝑟
23

𝑟
31

𝑟
32

𝑟
33

𝑟
41

𝑟
42

𝑟
43

1 9 7 3 1 — 2 2 1 1 — 3 — 2 1 2
2 11 5 3 1 1 — 2 — 2 — 3 2 2 1 1
3 12 4 3 1 — 1 2 1 — — 3 3 2 1 1
4 8 6 5 — 1 2 2 2 — 2 — 1 1 2 2
5 14 3 2 1 — 1 2 — — — 5 3 2 — 1

Table 12: Alternate optimal solutions of problem 2.

S. no. 𝑚
1

𝑚
2

𝑚
3

𝑟
11

𝑟
12

𝑟
13

𝑟
21

𝑟
22

𝑟
23

𝑟
31

𝑟
32

𝑟
33

𝑟
41

𝑟
42

𝑟
43

1 5 2 1 1 2 1 1 — 2 2 1 — 1 1 2
2 4 3 1 1 1 2 — 2 2 3 — — 1 2 1

Table 13: Best, worst, mean fitness, standard deviation, average NFE, time, and success rate for all problems.

Pro. Best Worst Mean Std. Average NFE Time % SR
1 19.60 20.60 19.75 3.57071𝑒 − 01 205500 2.01 92
2 8.60 8.60 8.60 1.77636𝑒 − 15 188000 0.90 100
3 10.30 11.30 11.05 4.33013𝑒 − 01 1091500 8.35 89
4 15.30 16.30 15.85 4.97494𝑒 − 01 1335000 11.80 93

0
10
20
30
40
50
60
70
80
90
100

0
500

1000
1500
2000
2500
3000
3500
4000

0 5000 10000 15000 20000 25000
NFE

Fi
tn

es
s

C
on

st.
 v

io
la

tio
n

Const. violation
Fitness

Figure 4: Plot of fitness and constraint violation versus NFE for
problem 1.
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Figure 5: Plot of fitness and constraint violation versus NFE for
problem 2.

Table 14: Comparison of SDE and ILXPSOon averageNFE and suc-
cess rate for all problems.

Pro. NFE % SR
SDE ILXPSO SDE ILXPSO

1 205500 375100 92 85
2 188000 375100 100 80
3 1091500 900200 89 65
4 1335000 1200200 93 40

(ii) SDE can deal efficiently with nonlinear/nonconvex
optimization problems subject to several constraints.
This is important in real-life scenarios, where usually
the problems are complex in nature.

(iii) SDE outperformed some of the contemporary opti-
mization algorithms in terms of solution quality as
well as convergence rate.
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