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Mitochondrial dysfunction is a hallmark of multiple cardiovascular disorders, including ischemic heart disease. Although
mitochondria are well recognized for their role in energy production and cell death, mechanisms by which they control excitation-
contraction coupling, excitability, and arrhythmias are less clear. The translocator protein (TSPO) is an outer mitochondrial
membrane protein that is expressed in multiple organ systems. The abundant expression of TSPO in macrophages has been
leveraged to image the immune response of the heart to inflammatory processes. More recently, the recognition of TSPO as a
regulator of energy-dissipating mitochondrial pathways has extended its utility from a diagnostic marker of inflammation to a
therapeutic target influencing diverse pathophysiological processes. Here, we provide an overview of the emerging role of TSPO
in ischemic heart disease. We highlight the importance of TSPO in the regenerative process of reactive oxygen species (ROS)
induced ROS release through its effects on the inner membrane anion channel (IMAC) and the permeability transition pore (PTP).
We discuss evidence implicating TSPO in arrhythmogenesis in the settings of acute ischemia-reperfusion injury and myocardial
infarction.

1. Introduction altered TSPO expression and activity in the heart may have
important implications for a wide spectrum of cardiovascular
disorders. In this review, we highlight the link between TSPO
and the pathological process of reactive oxygen species (ROS)
induced ROS release (RIRR) which we propose to be a master
regulator of electrical dysfunction on one hand and cell
death on the other hand. We implicate TSPO in the adverse
remodeling associated with ischemia-reperfusion injury and
myocardial infarction, both of which are major risk factors
for arrhythmias (Figure 1).

The translocator protein (TSPO), formerly known as the
peripheral benzodiazepine receptor (PBR), is an 18kDa
mitochondrial protein consisting of 169 amino acids [1].
Arranged in five transmembrane domains, TSPO is a nuclear-
encoded protein localized on chromosome 22q13.31 [2-4].
TSPO, which exhibits a highly conserved structure, has been
cloned from multiple species including man, dog, cow, pig,
rat, and mouse [2, 5]. Enriched in the outer mitochondrial
membrane (OMM), TSPO is an integral component of
a macromolecular complex of proteins that regulates cell

survival and death pathways [1, 2]. Found in most organs
within the body, TSPO exhibits robust expression in secretory
and glandular tissue, kidney, liver, brain, and heart [1, 2,
6]. The widespread distribution of TSPO is consistent with
its diverse physiological functions. These include, but are
not limited to, membrane biogenesis, heme biosynthesis,
immunomodulation, bioenergetics, redox balance, apoptosis,
and cholesterol binding and transport [1, 7-11]. As such,

2. TSPO as a Mediator of ROS Induced
ROS Release

Mitochondria synthesize adenine triphosphate (ATP)
through oxidative phosphorylation. This highly regulated
process is fueled by the mitochondrial membrane potential
(AVY,,), which forms the proton-motive force used to shuttle
electrons across the electron transport chain [12-14]. In
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FIGURE I: Schematic illustration of the central role of TSPO in the pathogenesis of arrhythmias in response to oxidative stress. APD: action
potential duration; IMM: inner mitochondrial membrane; OMM: outer mitochondrial membrane; RIRR: ROS induced ROS release.

addition to ATP, ROS are also generated when electrons
that leak from the ETC combine with oxygen to form
superoxide anions (O,”) [15]. In healthy myocardium, ROS
production is countered by efficient antioxidant defense
systems which maintain physiological redox balance. In
diseased myocardium, overproduction and/or defective
scavenging of ROS often leads to oxidative stress (OS).
Understanding mechanisms by which myocardial ROS levels
are amplified to cause OS is critical for our ability to combat
prevalent diseases, in which OS is a hallmark feature.

The concept of RIRR was born from studies by Zorov et
al. [16,17] and Aon et al. [18-20]. These investigators demon-
strated that local ROS injury within a discrete region of a
cardiomyocyte can rapidly accumulate across a critical mass
of the mitochondrial network to cause cellular OS. As such,
RIRR describes a fundamental mechanism by which cardiac
mitochondria react to elevated ROS levels by stimulating
endogenous ROS production. Indeed, this regenerative, auto-
catalytic process ultimately results in cellular dysfunction and
death [17]. Distinct modes of RIRR have been postulated
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based on their dependence on either the mitochondrial
permeability transition pore (PTP) or the inner membrane
anion channel (IMAC) [21, 22], both of which are modulated
by TSPO. As will be highlighted below, TSPO-mediated
regulation of RIRR can influence postischemic arrhythmias
directly via IMAC and indirectly via PTP.

3. TSPO Regulates RIRR via IMAC

Multiple ROS-sensitive ion channels exist in the mitochon-
drial membrane. Of key importance is the IMAC which
was discovered in liver and heart mitochondria [23]. In a
series of seminal studies, Garlid and colleagues demonstrated
the anion selectivity of IMAC and its dependence on pH
and temperature [23-27]. As with other anion channels,
IMAC was readily inhibited by stilbene-22’-disulfonates [28].
IMAC activity was also reduced by Ca®**, Mg** [23, 25-
27,29], and a variety of cationic amphiphilic agents [23, 24].
Studies of drug-channel interactions were consistent with
the notion that IMAC mediated the efflux of O,  [30, 31].
This, in turn, implicated the channel in the regulation of
cellular bioenergetics and redox properties [32]. Although
the molecular structure of IMAC remained elusive, its tight
regulation by TSPO-acting ligands (4' CIDzpm, PK11195, and
IX protoporphyrin) suggested a close interaction between its
pore-forming subunit in the inner mitochondrial membrane
(IMM) and the regulatory protein TSPO in the OMM (12,
24, 33]. Despite these studies, the nonspecific effects of many
TSPO ligands on calcium handling and other cellular pro-
cesses such as contractility and excitability have confounded
our ability to pinpoint the direct role of TSPO per se in
cardiac pathophysiology [34-38]. Nonetheless, studies by
O’Rourke and colleagues have elegantly documented the role
of IMAC in RIRR-mediated metabolic and electrophysio-
logical instabilities. Indeed, these investigators demonstrated
that photo-induced oxidation of a discrete region within
the cardiac myocyte can unleash a regenerative process of
ETC-derived ROS that was dependent on IMAC. Once ROS
levels across a critical portion (60-70%) of the mitochondrial
network exceeded a given threshold, sustained AY,, oscil-
lations were initiated. This highly nonlinear property was
coined as “mitochondrial criticality” [20, 39]. Using computa-
tional modelling, Cortassa and colleagues demonstrated that
the frequency of the synchronized cell-wide mitochondrial
oscillations was strongly modulated by ROS scavengers and
the rate of oxidative phosphorylation [40]. Importantly,
RIRR-evoked mitochondrial oscillations gave rise to cel-
lular electrophysiological oscillations that were dependent
on the cyclical activation of sarcolemmal K,pp channels.
Activation of these normally dormant channels is thought
to be protective as they act to preserve energy at a time of
increased metabolic demand. However, increasing K efflux
through these channels can induce rapid and heterogeneous
action potential duration (APD) shortening and suppress
myocyte excitability in a manner that predisposes to reentrant
arrhythmias [12, 13, 39, 41]. Importantly, both metabolic and
electrophysiological oscillations could be readily abolished by
TSPO ligands, which functionally reduce cardiomyocyte ROS
levels [18-20, 39, 42].

More recently, we extended the concept of RIRR from
a subcellular phenomenon to one occurring at the organ
level. Using optical mapping approaches, we demonstrated
the functional significance of RIRR in terms of arrhythmia
propensity [42-45]. In a model of moderate OS produced
by relatively brief challenge with H,O, perfusion, TSPO
inhibition abolished the large amplitude secondary O,
peak which arose following, not during, the exogenous
oxidative challenge [43]. Prevention of this secondary O,
peak abrogated ventricular fibrillation and suppressed the
frequency of arrhythmogenic triggers [43]. Indeed, these
findings highlighted the importance of IMAC-mediated O,
release as a driving force for RIRR associated arrhythmias in
intact myocardium.

4. TSPO May Regulate RIRR via PTP

In addition to IMAC, the PTP is also activated in response
to rising ROS levels [21, 46]. However, a hierarchal pattern
seems to govern the activation sequence of the two channels
[18]: IMAC is activated firstly in response to moderate
levels of OS followed by the activation of the nonspecific,
high-conductance PTP. Despite considerable debate over its
molecular composition, the PTP is strongly regulated by
the voltage-dependent anion channel (VDAC) in the OMM,
the adenine nucleotide translocase (ANT) in the IMM, and
Cyclophilin D in the mitochondrial matrix [46]. Importantly,
the Bernardi group has recently demonstrated the role of
dimers of the ATP synthase in the formation of the PTP [47].
A causative relationship between OS-induced mitochondrial
permeability transition and AY,, depolarization has also been
demonstrated in numerous studies. Zorov et al. [16, 17] found
a direct correlation between PTP activation and myocyte
death. These findings, combined with evidence that AY,,
depolarization was abolished by the Cyclophilin D inhibitor
Cyclosporin A (CsA), suggested an important role for PTP-
mediated AY,, depolarization in RIRR-mediated apoptosis
[16].

We recently investigated the efficacy of the PTP desen-
sitizer CsA in protecting against OS-induced mitochondrial
and electrical dysfunction at the intact heart level [48].
Unlike our previous study [43], we chose a severe model of
continuous H,O, challenge which reliably and predictably
caused irreversible AY,, depolarization within a 30 min time-
frame, likely through PTP activation [48]. Our experiments
uncovered a dual role for CsA in either protecting or impair-
ing cardiac function depending on the cellular milieu [48].
Specifically, we found that CsA-mediated cardioprotection in
this severe model of oxidative challenge required mitochon-
drial Kypp (mK,rp) channel activation through a protein
kinase C dependent pathway [48]. Increasing mK,p activity
during CsA administration was required for limiting OS-
induced electromechanical dysfunction. On the other hand,
CsA administration during conditions that prevented mK p
channel activation exerted unintended proarrhythmic conse-
quences possibly through accelerated APD shortening [48].
Our findings addressed existing controversy in the basic
and clinical literature surrounding the utility of CsA as a
cardioprotective agent [48-53].



In addition to Cyclophilin D, there is some evidence
that the PTP may also be regulated by TSPO through
interaction with the VDAC and ANT [54-56]. This area,
however, requires further clarification considering the elegant
findings of Sileikyte et al. who recently discounted a major
role of TSPO in the regulation of the PTP by the outer
membrane [57]. As such, more studies aimed at defining
the macromolecular complex of proteins that forms the PTP
are critical to our ability to identify new therapeutic targets.
This is especially important considering the apparent short-
comings of CsA, which fails to abrogate laser flash-induced
AVY,, oscillations [19] and promotes rather than prevents
arrhythmias during conditions that prohibit mK,p channel
activation [48]. Indeed, novel approaches aimed at limiting
ROS-mediated PTP opening are likely to have major clinical
implications. As such, targeting regulatory PTP components
via TSPO may have a dual beneficial impact by improving
electrical function while simultaneously promoting cell sur-
vival in response to OS [54, 55]. Using the TSPO ligands
SSR180575 and 4'ClDzp, Leducq et al. successfully inhibited
AY,, depolarization in isolated cardiac mitochondria after
excessive ROS exposure. In addition, both agents reduced
apoptosis linked events, including cytochrome ¢ release,
caspase-3 activation, and DNA fragmentation [58].

5. Role of TSPO in Postischemic Arrhythmias

Ischemic heart disease is a major public health epidemic
and a leading cause of morbidity and mortality world-
wide [59, 60]. Ischemic injury predisposes to myocardial
infarction, heart failure, arrhythmias, and sudden cardiac
death. Prompt restoration of oxygenated blood flow to the
ischemic myocardium is required for limiting the extent
of irreversible cell damage and death [61]. Unfortunately,
restoration of blood flow, in itself, results in additional
cardiac damage known as reperfusion injury [62]. Such
ROS-mediated damage is more severe when reperfusion
therapy is delayed. Reperfusion-mediated redox imbalance
and cytosolic calcium overload promote mechanoelectrical
dysfunction and the genesis of lethal arrhythmias shortly
upon reperfusion.

Although earlier studies showed that TSPO-acting lig-
ands which reduced ROS levels were effective in abolish-
ing metabolic and electrophysiological oscillations, their
impact on arrhythmias in clinically relevant scenarios was
not established until more recently [42]. We investigated
whether protection against mitochondrial depolarization
could translate into an antiarrhythmic benefit in response
to ischemia-reperfusion injury. IMAC blockade blunted
ischemia-induced APD shortening and the onset of inex-
citability in a dose-dependent manner [42]. In contrast,
IMAC activation using FGIN-1-27 accelerated APD shorten-
ing and resulted in an early form of conduction failure during
ischemia [42]. Specifically, hearts that underwent IMAC acti-
vation prior to ischemia exhibited heightened sensitivity to
ischemia. Using high-resolution optical mapping, we identi-
fied discrete areas of conduction block in these hearts during
early ischemia that persisted upon reperfusion and likely
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promoted the formation of reentrant activity underlying
postischemic ventricular fibrillation [42]. Remarkably, IMAC
blockade, which stabilizes AY,, in vitro, suppressed these
arrhythmias and promoted the rapid recovery of the action
potential upon reperfusion [42]. The protective effect of
IMAC blockade on postischemic electrical function was also
evident in a rabbit model of ischemia-reperfusion injury [35].
Of note, the antiarrhythmic effect afforded by TSPO ligands
was not evident in hearts treated with the PTP desensitizer,
CsA. This reinforces IMAC as a primary mitochondrial
mediator of acute postischemic arrhythmias.

6. Role of TSPO in Myocardial Infarction

Myocardial infarction (MI) is a global health epidemic that
predisposes to heart failure and arrhythmias [60]. Indeed,
the majority of cardiac-related deaths occur in patients who
develop MI as a consequence of coronary artery disease [63].
In those patients the risk of cardiac arrest is approximately
4-6 times that of the general population [64]. PTP opening
in response to severe ischemia-reperfusion injury results in
MI as a consequence of myocyte loss to necrosis/apoptosis
[46]. Since MI is a major risk factor for heart failure
and arrhythmias, PTP inhibition may exert an indirect
antiarrhythmic effect by reducing infarct size and improving
overall cardiac function [65]. In a small placebo-controlled
trial involving 58 STEMI (ST segment elevation myocardial
infarction) patients, CsA administration was associated with
smaller infarcts at the time of reperfusion [66]. Despite
these encouraging clinical findings, the efficacy of CsA in
preventing arrhythmias remained unclear [49, 51, 53]. In fact,
several experimental, preclinical [52], and clinical findings
[50] have cast serious doubts regarding the overall utility and
safety profile of CsA. Hence, new approaches for combatting
MI are urgently needed.

TSPO ligands inhibit PTP function through a distinct
mechanism of action that is not dependent on Cyclophilin
D [54, 56, 67]. As such, these agents may be an exciting
alternative to CsA. Indeed, SSR180575 improved left ven-
tricular function and reduced infarct size in rat and rabbit
models of ischemia-reperfusion injury [58]. Moreover, TSPO
inhibition with 4'ClDzp improved the rate of oxidative
phosphorylation, inhibited PTP opening, and limited the
rate of apoptosis in isolated mitochondria [67]. Interestingly,
the cardioprotective efficacies of 4'ClDzp and PK11195 were
similar to those elicited by ischemic preconditioning or
diazoxide treatment [67]. Similar results were obtained by
Xiao et al. [68] who observed increased ETC activity and
reduced ROS levels. These favorable bioenergetic properties
were associated with improved recovery of left ventricular
mechanical function and a diminished rate of arrhythmias
upon reperfusion [68]. Initial results in large animals were
also encouraging. Specifically, treatment of pigs with 4'CIDzp
at the time of reperfusion following 60 minutes of left anterior
descending coronary artery occlusion was associated with
rapid ST segment resolution and a trend towards reduced
infarct size in the absence of major hemodynamic complica-
tions [69].
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Recently, the effects of a new TSPO ligand TRO40303
which binds at the cholesterol site of the mitochondrial
protein were examined. As with 4'CIDZP, TRO40303 inhib-
ited PTP opening and apoptosis in response to simulated
ischemia-reperfusion or hydrogen peroxide challenge in
adult or neonatal cardiomyocytes, respectively [70]. These
cellular effects correlated with reduced ROS levels and infarct
size in anesthetized rats [70]. The efficacy of TRO40303 even
when delivered as a single bolus injection before reperfusion
provided the impetus needed for testing in humans. In a
Phase I double-blind placebo-controlled clinical trial involv-
ing 72 volunteers [71], TRO40303 met the safety criteria.
This naturally paved the way for a Phase II trial [71, 72].
MITOCARE is an ongoing multicenter, randomized, double-
blind, placebo-controlled survey evaluating the safety and
efficacy of TRO40303 for the reduction of reperfusion injury
in patients undergoing percutaneous coronary intervention
for acute MI [72].

Although TSPO-mediated PTP inhibition may be of
major therapeutic value in the future, this strategy is com-
plicated by several issues. Of note, the use of higher concen-
trations of TSPO ligands (i.e., >100 uM 4’ CIDZP and >40 uM
PK11195) can elicit cardiotoxic effects such as mitochondrial
swelling [67, 73, 74]. This highly undesirable property, which
is consistent with PTP activation rather than inhibition, raises
important questions regarding the nature of the regulation
of the PTP by TSPO. On one hand, TSPO-mediated IMAC
activation induces O,  outflow from the mitochondrial
matrix. If this outflow is large enough, it stimulates the regen-
erative process of RIRR that culminates in mitochondrial
depolarization and PTP opening. On the other hand, low
levels of IMAC activity may mediate a protective mechanism
that limits the build-up of mitochondrial ROS levels required
for PTP opening. As such, complete IMAC inhibition using
high doses of TSPO ligands may paradoxically accelerate
rather than prevent PTP formation. Determining whether
the cytotoxic effects observed using high concentrations
of these ligands are a consequence of natural cross talk
between the PTP and IMAC or due to nonspecific effects
of these agents will be of major importance going forward.
Finally, TSPO can regulate PTP opening independently of
RIRR. By modulating mitochondrial cholesterol uptake and
the subsequent generation of oxyterols [75], TSPO ligands
can exert additional cardioprotective effects. Taken together,
these studies implicate PTP inhibition in the beneficial
(namely, infarct sparing) effects of TSPO-acting ligands that
reduce ROS levels. This important property is expected
to significantly reduce the propensity for arrhythmias by
reducing the size of the infarct and slowing the progression
towards heart failure.

7. Summary and Future Directions

Mounting evidence implicates TSPO in OS-related dys-
function, including arrhythmogenesis. Of key importance
is the putative ability of TSPO to modulate two prominent
energy dissipating channels, namely, IMAC and the PTP. In
doing so, TSPO ligands have shown considerable promise in

combatting postischemic ventricular fibrillation (via IMAC
inhibition) and MI (via PTP inhibition).

Despite the apparent success of TSPO antagonists in
multiple experimental settings, major concerns exist. Of
note, high concentrations of TSPO ligands can paradoxically
activate the PTP in isolated mitochondria [67, 73, 74], either
by disrupting the cross talk between the PTP and IMAC or
by eliciting nonspecific effects. Indeed, there is substantial
evidence that these agents affect sarcolemmal ion channels,
such as the L-type calcium current, even at baseline [35, 38,
76-78]. This, in turn, alters excitation-contraction coupling
and contractility. Moreover, findings that 4'CIDzp results in
decreased APD in rabbit [35], unchanged APD in guinea
pig [42], and prolonged APD in rat (our own unpublished
observations) are consistent with an effect on the transient
outward K current. Indeed, species-dependent changes in
cardiac inotropy and chronotropy by available TSPO ligands
further confound the widespread translation of these agents
to the clinic [34-38]. Finally, the wide distribution of TSPO
receptors in the body presents an added challenge for phar-
macological approaches that would likely exert numerous
extracardiac effects.

Considering the limitations of currently available TSPO
ligands, new biological approaches for modulating TSPO
expression and activity in the heart are needed. One such
approach is the use of cardiac-specific adeno-associated viral
vector serotypes carrying silencing RNAs against TSPO.
Indeed, the future design and implantation of such gene
therapy approaches may revolutionize the treatment of a host
of common cardiovascular disorders in which mitochondrial
dysfunction is a hallmark mechanism. In the meantime,
a more systematic understanding of the role of TSPO in
cardiovascular health and disease is needed.
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