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Because the ICs’ application frequency and speed become higher and trends of system packaging and device under test request
higher reliability, a novel technology combining noncontacting measurement method and reconstructing radiation model was
proposed to solve signal deliveries in system packages or PCBs. In this study, a novel noncontacting method for the ICs’
measurements was investigated by the design of loop-type near-field probe and reconstructed the radiation model to substitute the
traditional measurement methods, such as using probes and SMA connectors. A near-field probe was used to receive the coupling
signal.The assessing circuitmodeling could be completed by some synthesized theorems. According to the study’s results, frequency
responses of reconstruction model developed by theorems, radiation measurements, and simulated by EM methods were highly
curve fitting.

1. Introduction

Recently, the markets and applications for advanced semi-
conductor devices’ packaging andmeasurement technologies
increase expeditiously.The traditional contacting probes have
numerous disadvantages, including low mobility, high cost,
and high damaged rate. Table 1 displays several types of
probes and probe pins in different ways, which show the
specific advantages that they have [1–9]. For example, a device
under test (DUT) is a device that is tested to determine the
performance and proficiency and is used to check the defects
for making sure that the devices can work.The spring contact
probes can reduce the pressure to avoid damaging a DUT
when the probes touch. Today, measuring the high-density
interconnection signals in ICs using large amount contacting
probes is a significant issue needed being improved.Themost
widespread devices for contacting measurements are the
vector network analyzer (VNA), automatic test equipment
(ATE), and probe station.

Even these contacting probes are usually used for ICs’
measurement; they have many unavoidable disadvantages.
First, as mentioned above, the ICs become smaller; the
contacting probes or SMA connectors are not easily used
for measurements, because the reduction in sizes of the
probes and SMA connectors is very difficult. The second
issue is that, as the measurements are done without sufficient
carefulness, contacting processes will usually damage the
expensive probes duringDUT’s process, leading to significant
expense at all time.Third, because the contacting probes have
low mobility and uniform calibration, the measurement will
take a long time. Every time the contacting probes are moved
to a newmeasurement position, they will leave the damage or
defects after a DUT on the surface of the measured devices.
That will increase the ratio of devices’ damage, which will
increase the measurements’ cost. For those reasons, many
researches have focused on the noncontacting measurement
methods to find a low-cost and easily fabricatedmeasurement
process.
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Table 1: Six package designs for investigating electrical effects.

Probe type Performance
Cost Mobility Probability of damaging the DUT Probability of damaging the probe

Air coplanar probe

High Medium Medium Medium

Cantilevered probe

High Medium High High

Spring contact probe
High High Low Low

SMA connector

Low Low High High

Noncontacting loop-type probe

Low High Extremely low Extremely low

For that, the non-contacting-probe technologies are
designed efficiently with broadband, well reproducibility, well
directivity, and low loss coupling, respectively.Thus, the non-
contacting-probe technologies can transmit or receive signals
between different chips or integrated circuits (ICs) in 3D
ICs’ applications, and it is established physical model up to
10GHz with coupling effect and loop effect to restore the
signal radiation. Because the high frequency of 10GHz is
required, the devices’ measurements need to be narrower to
keep the measurement data remaining precisely. The area of
the noncontacting loop is only about 1.8mm × 1.8mm and
the size can be reduced by a precise process, making the loop
small enough to measure tiny DUTs. When a DUT or the
measurement position is changed, the noncontacting probes
can be horizontally moved in rapid speed. Because E-field
probe is suitably used in far-field’s measurements and H-
probe is suitably used in near-field’s measurement, the H-
probe is used in this study to investigate the noncontacting
measurement technique. Because of having highmobility, the
noncontacting probes can measure ICs efficiently, and then
the needed cost can be reduced. In this study, the near-field
probeswere used to receive the coupling signal and the circuit
modeling could be completely assessed by some synthesized
theorems. The differences compared from the measurement
results and numerical analysis could be used to validate the
feasibility of signal reconstruction.

2. Design and Structure of
Noncontacting Probe

2.1. Design the Loop-Type Probe. Recently, many kinds of
non-contacting-probe measurement technologies had been

investigated [3–9], such as coplanar waveguide (CPW) loop-
type [10], double loop-type [11], and symmetrical square
loop-type [12], respectively. For the noncontacting measure-
ments, the most important thing is to design the loop, which
has broadband impedance matching and high resolution.
Those characteristics can make the loop receive the cou-
pling signals efficiently. Because of the requirement of high
reliability, the design structure of signal coupler with the
characteristics of broadband, well directivity, and low loss is
needed.As indicated above, CPWstructure has the features of
impedancematching and high bandwidth, and it can enhance
the efficiency of the probes. For that, the CPW loop-probe
circuits were used to investigate the novel noncontacting
structure in this study.

When the noncontacting probes are above DUT equip-
ment, as Figure 1 shows, its input impedance can be calculated
by the transmission line method. First, the return loss (𝑆

11
)

is obtained by the actual measurement data. If we assume
𝑆
11
= 𝑎 + 𝑗𝑏, where 𝑎 and 𝑏 are the real and imaginary parts

of 𝑆
11
value, respectively [13]. Consider

𝑆
11
=

𝑍in1 − 𝑍0
𝑍in1 + 𝑍0

= 𝑎 + 𝑗𝑏, (1)

where 𝑍in1, 𝑍in2, and 𝑍in3 have their own real and imaginary
parts, and 𝑍in1 = 𝑅in1 + 𝑗𝑋in1, 𝑍in2 = 𝑅in2 + 𝑗𝑋in2, and
𝑍in3 = 𝑅in3+𝑗𝑋in3, respectively. After calculation, the probes’
impedance can easily be obtained from formula (2). 𝐴 in
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Figure 1: Schematic diagram of calculated impedance formula [3].
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The design of noncontacting measurement probes with
this impedance in formulas (2)–(4) was made of CPW
structure, which consisted of feed-line and square loop.There
are some advantages for us using CPW structure to design
the noncontacting circuits. First, as in Figure 2, because the
loop (𝑆) and the reference ground (𝐺) are on the same plane,
the probe can reduce the size of the contact area. Second,
although the medium between the feed-line and the ground
is changed, the characteristic impedance has no apparent
variation. Third, the feed-line and the reference ground are
close to each other; the radiation loss can be easily decreased.
As the specific structure of noncontacting probe is shown in
Figure 3, the transmission line of square loop was 1.8mm in
length and 0.2mm in width; the feed-line was 1mm in length
and 0.3mm in width. The detailed data are shown in Table 2.

Table 2: Information of the noncontacting loop-type probe.

Object Length Width Spacing
Feed-line 1mm 0.3mm 0.15mm
Loop 1.8mm 0.2mm

Feed-line

G S G

L

W

Figure 2: Structure of the CPW loop-type probe.
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Figure 3: Structure of the four-layer stacked substrate in this paper.

2.2. The Process Specification of Loop-Type Probe. The mea-
surements for the board samples were formed by stacking
the different materials in a four-layer structure. As Figure 3
shows, the materials for four layers were copper, solder mask,
PP glue, and plated copper, respectively. The information of
the four-layer materials is shown in Table 3. As from top
layer to lowest one, the first layer was a pad with thickness
of 0.043mm; the second and third layers were the loop-
type probe and the DUT, and both of their thicknesses
were 0.035mm; the fourth layer was GND with thickness of
0.043mm; thicknesses of the copper plated on layer 1 and
layer 4 were 0.025mm; the thickness of solder mask was
0.053mm, that of PP glue was 0.15mm, and that of FR4 was
0.7mm, respectively.

3. Reconstruction Theory

3.1. Derivation. As the transmission line is revealed in
Figure 4 and 5.3GHz band pass filter is revealed in Figure 5,
a radiation model can be obtained from two DUTs; one is
transmission line and the other is 5.3 GHz filter. The loop
is measured and extracted by equivalent lump elements,
such as resistance, capacitance, and inductance, respectively.
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Table 3: Material thickness information.

Copper Material
Layer 1 Pad 0.043mm Solder mask 0.053mm
Layer 2 Loop 0.035mm PP glue 0.15mm
Layer 3 DUT 0.035mm Substrate (FR4) 0.7mm
Layer 4 GND 0.043mm Plated copper 0.025mm

Table 4: Parameters of the noncontacting measurement model
(DUT: transmission line).

Resistance Ra 18mΩ
Rm 6.8 kΩ

Capacitance Ca 0.42 pF
Cm 0.07 pF

Inductance La 5.8137 nH
Lm 2.5 nH

Table 5: Parameters of the noncontacting measurement model
(DUT: three-dimensional stacked for 5.3 G filter).

Resistance Ra 18mΩ
Rm 4.9 kΩ

Capacitance Ca 0.42 pF
Cm 0.06094 pF

Inductance La 5.8137 nH
Lm 2.5 nH

Figure 4: Transmission line measurement.

From the measured 𝑆-parameters, we will show that the
simulation, measurement, andmodeling results are matched.
Then, the coupling characteristics between the loop-type
probe and DUT can be found [14]. The equivalent model
and the parameters of the model in different DUTs are
shown in Figure 6. The test fixture’s effect will exist in the
DUTs. However, we have measured and eliminated the test
fixture’s by calibrationwith short, open, load, through (SOLT)
method.

In order to obtain the parameters of the modeling struc-
ture, formulas (5)–(10) are used to calculate the relation from
DUT to loop and the obtained results are shown in Tables 4
and 5 [15, 16]. Formula (5) is used to calculate the resistance
𝑅 and Figure 7(a) shows the structure for calculation. The
resistance can be obtained by resistivity of using material to
multiply the total length 𝐿 of the probe and to divide by
the cross-section area 𝐴

1
. Formulas (6) and (7) represent

the capacitance formed between the ground- (𝐺-) signal (𝑆)
gap of the CPW loop and Figure 7(b) shows the structure
of capacitance. A capacitance can be obtained by dielectric
constant of using material to multiply the parallel area 𝐴

2
of

Figure 5: Three-dimensional stacked structure for 5.3 G filter’s
measurement.
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Figure 6: Noncontacting measurement model.

used electrode area and to divide by the medium’s thickness
𝑑. Consider

𝑅 = 𝜌

𝐿

𝐴
1

(Ω) (5)

𝐶
𝑎
= 𝜀
𝑟
𝜀
0

𝐴
2

𝑑

(Farad) (6)

𝐶
𝑚
=

𝐴𝜀

𝑑

+ ∫

𝑥2

𝑥1

𝑊𝜀

√𝑑
2
+ 𝑥
2
𝑑𝑥. (7)

However, the self-inductance 𝐿
𝑎
and mutual inductance

𝐿
𝑚
of the CPW loop can be calculated from formulas (8)–

(10). The constant 𝑁 and 𝐼 are the loop number of coil and
the current on the path of coil. From formula (10) and the
structure in Figure 8(b), the coupling area𝐴 is obtained from
the parallel edge areas, and the distance 𝑑 is the distance
between loop and DUT. Consider the following:

𝐿
𝑎
= 2ℓ (ln 2ℓ

𝑤 + 𝑡

+ 0.50049 +

𝑤 + 𝑡

3ℓ

) (8)

𝐵 =

2√2𝜇
0
𝐼

𝜋ℓ

(9)

𝐿
𝑚
=

𝑁𝐵𝑆

𝐼

(Henry) . (10)

Therefore, the signals in noncontacting probe are
obtained by the coupling method, which is different from
traditional measurementmethod by using probes’ contacting
process. For that, a complete reduction theory to compensate
the being coupled signals measured by the noncontacting
probes is needed. The reduction theory for the noncontact
probe not only restores the characteristics of the DUT but
also creates the similar data with those of the traditional
contacting probes. As shown in Figure 9, each alphabet
represents a part of the physical model, while each number
represents that the position it is in of the circuit.
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Figure 7: Probe parameters calculation. (a) Resistance and (b) capacitance.

LS

x

(a)

d

A

(b)

Figure 8: Parameters between loop and DUT calculation. (a) Mutual inductance and (b) dielectric capacitance.

If we set point 2 in Figure 9 as the reference point, then
we can calculate the input impedance (𝑍in) from point 𝐴 to
point 2 shown in Figure 9. When point 𝑎 is connected to
point 𝑏 in shunt, then formula (12) is obtained. Under the
same process, point 𝑐 and point 𝑑 are connected in shunt,
and they can connect in series with ℎ to obtain formula (13).
As the same theorem is used, as point 𝑒 and point 𝑓 are
connected in shunt, they can connect with 𝑖 to obtain formula
(14). Since the model shown in Figure 9 is symmetrical, 𝑍in
can be calculated by multiplying 𝑗 by twice, minus 𝑎 by once,
and then being added to 𝑔. When the formula for 𝑍in is
substituted into formula (15) for calculation, the reflection
coefficient (𝑆

11
) for the designed noncontacting probe circuit

can be obtained. If we set formula (15) to be equal to formula
(14), the DUT impedance is obtained and set as alphabet
𝑔. When 𝑔 is put into the two-port traditional contacting
measurement model, as shown in Figure 10, the return loss
of DUT is obtained, as formula (15) shows. One has the
following:

𝑆
11
=

𝑍in − 𝑎

𝑍in + 𝑎
(11)

ℎ = 𝑎 ‖ 𝑏 (12)
𝑖 = [(𝑎 ‖ 𝑏) + 𝑐] ‖ 𝑑 (13)

𝑗 = {[[(𝑎 ‖ 𝑏) + 𝑐] ‖ 𝑑] + 𝑒} ‖ 𝑓 (14)

𝑄 =

(𝑔 + 50) − 50

(𝑔 + 50) + 50

. (15)

As we substitute 𝑆
11
revealed in formula (18) into formula

(16), we can obtain the transmission coefficient (𝑆
21
). Since

themodel has a symmetrical circuit, with the voltage division
rule as shown in formula (19), it suggests that the 𝑆

21
value can

be calculated in the same process from either connector 𝐴 to
point 2 or connector 𝐵 to point 1; also, the DUT impedance,
𝑔, can be obtained. As shown in Figure 8, when 𝑔 is put into
the two-port traditional contacting measurement model, we
can obtain the insertion loss of DUT and that will result in
formula (17) as follows:

𝑆
21
= 1 + 𝑆

11 (16)

𝑄1 = 1 +

(𝑔 + 50) − 50

(𝑔 + 50) + 50

. (17)

From the return loss and the insertion loss of the restoring
theory, the comparisons of model simulation by agilent
advanced design system (ADS) and the 3D EM simulation
by the analyzing results of high frequency structure simulator
(HFSS), the actual measurement values of DUT can com-
pletely be obtained. The two ports of noncontacting probe
were used to measure the DUT and transmission line and
the results are shown in Figure 9 that the simulation results
were close to the measurement ones. In order to confirm that
the restoring theory is workable, we changed the DUT from
transmission line to the filter (in Figure 10).

3.2. Results. Figures 11 and 12 show the comparisons of the
results obtained by the restoring theory, simulation, and
measurement. The results of the model simulation are in
accordance with those of 3D EM simulation. Nevertheless,
the return loss and the insertion loss are mismatched over
7GHz, in which it has larger radiation loss in high frequency.
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Figure 11: Results of transmission line reconstruction. (a) Return loss. (b) Insertion loss.
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Figure 12: Results of filter reconstruction. (a) Return loss. (b) Insertion loss.

Therefore, the feature of a DUT shown in Figures 9 and 10
cannot be completely matched by the results obtained by the
lumped elements. Consider

𝑆
11
= ({[𝑗 (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐) + 𝑓𝑒𝑑 + 𝑓𝑒𝑐 + 𝑓𝑑𝑐]

+𝑔 (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐)} (𝑏 − 𝑎)

− {[𝑗 (𝑓 + 𝑒 + 𝑑) + 𝑓𝑒 + 𝑓𝑑] 𝑏𝑎

+𝑔 (𝑓 + 𝑒 + 𝑑) 𝑏𝑐})

× ({[𝑗 (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐) + 𝑓𝑒𝑑 + 𝑓𝑒𝑐 + 𝑓𝑑𝑐]

+𝑔 (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐)} (𝑏 + 𝑎)

− {[𝑗 (𝑓 + 𝑒 + 𝑑) + 𝑓𝑒 + 𝑓𝑑] 𝑏𝑎

+𝑔(𝑓 + 𝑒 + 𝑑)𝑏𝑐})
−1

(18)

((𝑔
3
2𝑏𝑓𝑖𝑗 (𝑓𝑑 + 𝑒𝑑) (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐)

+ 𝑔
2
2𝑏𝑖𝑗 [𝑓𝑗 (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐) (𝑓𝑑 + 𝑒𝑑)

+ 𝑓 [(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) (𝑑 + 𝑐)

+ (𝑗 + 𝑓) 𝑑𝑐] (𝑓𝑑 + 𝑒𝑑)

+ 𝑑 (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐)

× (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒)]

+ 𝑔2𝑏𝑓 [𝑗 [(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) (𝑑 + 𝑐) + (𝑗 + 𝑓) 𝑑𝑐]

× (𝑓𝑑 + 𝑒𝑑) + 𝑑𝑗 (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐)

× (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) + 𝑑 [(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒)

× (𝑑 + 𝑐)

+ (𝑗 + 𝑓) 𝑑𝑐]

× (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒)]

+ 2𝑏𝑑𝑓𝑗
2
𝑖 [(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) (𝑑 + 𝑐) + (𝑗 + 𝑓) 𝑑𝑐]

× (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒))

× (𝑔
4
(𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐)

× [(𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐) (𝑎 + 𝑏)

+ 𝑎𝑏 (𝑓 + 𝑒 + 𝑑)] (𝑒 + 𝑓) (𝑖 + 𝑒)

+ 𝑔
3
{[(𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐) (𝑎 + 𝑏)

+ (𝑓 + 𝑒 + 𝑑) 𝑎𝑏]

× [(𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐) (2𝑗𝑓 + 2𝑗𝑒 + 𝑓𝑒)

+ [(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) (𝑑 + 𝑐) + 𝑗𝑑𝑐 + 𝑓𝑑𝑐]

× (𝑓 + 𝑒)]

+ (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐) (𝑓 + 𝑒)

× [[(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) (𝑑 + 𝑐) + 𝑗𝑑𝑐 + 𝑓𝑑𝑐] (𝑎 + 𝑏)

+ (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒 + 𝑗𝑑 + 𝑓𝑑) 𝑎𝑏]} (𝑖 + 𝑒)

+ 𝑔
2
{[[(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) (𝑑 + 𝑐) + 𝑗𝑑𝑐 + 𝑓𝑑𝑐] (𝑎 + 𝑏)

+ (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒 + 𝑗𝑑 + 𝑓𝑑) 𝑎𝑏]

× [(𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐) (2𝑗𝑓 + 2𝑗𝑒 + 𝑓𝑒)

+ [(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) (𝑑 + 𝑐) + 𝑗𝑑𝑐 + 𝑓𝑑𝑐]

× (𝑓 + 𝑒)]

+ [(𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐) (𝑎 + 𝑏)

+ (𝑓 + 𝑒 + 𝑑) 𝑎𝑏]
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× [[(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) (𝑑 + 𝑐) + 𝑗𝑑𝑐 + 𝑓𝑑𝑐]

× (2𝑗𝑓 + 2𝑗𝑒 + 𝑓𝑒)

+ (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐)

× (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) 𝑗]} (𝑖 + 𝑒)

+ 𝑔 {[[(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒 + 𝑗𝑑 + 𝑓𝑑) (𝑑 + 𝑐) + 𝑗𝑑𝑐 + 𝑓𝑑𝑐]

× (𝑎 + 𝑏) + (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒 + 𝑗𝑑 + 𝑓𝑑) 𝑎𝑏]

× (𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐) (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) 𝑗

+ [(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒 + 𝑗𝑑 + 𝑓𝑑) (𝑑 + 𝑐) + 𝑗𝑑𝑐 + 𝑓𝑑𝑐]

× (2𝑗𝑓 + 2𝑗𝑒 + 𝑓𝑒) + [(𝑓𝑑 + 𝑒𝑑 + 𝑓𝑐 + 𝑒𝑐 + 𝑑𝑐)

× (𝑎 + 𝑏)

+ (𝑓 + 𝑒 + 𝑑) 𝑎𝑏]

× [(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒 + 𝑗𝑑 + 𝑓𝑑) (𝑑 + 𝑐) + 𝑗𝑑𝑐 + 𝑓𝑑𝑐]

× (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) 𝑗} (𝑖 + 𝑒)

+ [(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) (𝑐 + 𝑑) + (𝑗 + 𝑓) 𝑑𝑐]

× {[(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) (𝑐 + 𝑑) + (𝑗 + 𝑓) 𝑑𝑐]

× (𝑎 + 𝑏) + [(𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒) + 𝑗𝑑 + 𝑓𝑑] 𝑎𝑏}

× (𝑗𝑓 + 𝑗𝑒 + 𝑓𝑒)𝑗)

−1

)

×

ℎ

ℎ + 𝑐

= 𝑆
21
.

(19)

4. Conclusions

In this study, a novel noncontact measurement method
with the development of using loop-type near-filed probe
had been investigated; the transmission lines’ frequency
responses were measured by this loop-type probe. Another, a
radiationmodel to reconstruct transmission signals had been
delivered by equivalent capacitances, inductances, and resis-
tances extracting, too. All parameter formulas in radiation
model had been provided and presented. The comparisons
of the performance responses amongmeasurement, radiation
model, and electromagnetic simulation tool were fitting. We
had shown that the measurement method and radiation
model presented in this study were useful to evaluate circuit
signal performance and EMI/EMS design, like POP, SiP, and
subsystem PCB.
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