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ABSTRACT: 

Global image orientation techniques aim at estimating camera rotations and positions for a whole set of images simultaneously. One 

of the main arguments for these procedures is an improved robustness against drifting of camera stations in comparison to more 

classical sequential approaches. Usually, the process consists of computation of absolute rotations and, in a second step, absolute 

positions for the cameras. Either the first or both steps rely on the network of transformations arising from relative orientations 

between cameras. Therefore, the quality of the obtained absolute results is influenced by tensions in the network. These may e.g. be 

induced by insufficient knowledge of the intrinsic camera parameters. Another reason can be found in local weaknesses of image 

connectivity. We apply a hierarchical approach with intermediate bundle adjustment to reduce these effects. We adopt efficient 

global techniques which register image triplets based on fixed absolute camera rotations and scaled relative camera translations but 

do not involve scene structure elements in the fusion step. Our variant employs submodels of arbitrary size, orientation and scale, by 

computing relative rotations and scales between - and subsequently absolute rotations and scales for - submodels and is applied 

hierarchically. Furthermore we substitute classical bundle adjustment by a structureless approach based on epipolar geometry and 

augmented with a scale consistency constraint. 

1. INTRODUCTION

Research on Structure from Motion (SfM), i.e. automatically 

solving the task of image orientation and scene structure 

computation for sets of visually connected images, has made 

large progress over the past decades. Generally speaking, the 

process consists of three steps: (1) visual connections are found, 

usually using distinct image features which are matched 

between images based on local texture descriptors and 

subsequently validated geometrically, (2) provide approximate 

solutions for scene structure and/or camera orientation and (3) 

optimize the approximate solution. The first step is crucial for 

success and is one the main1 bottlenecks in terms of time 

consumption. However, in this paper we will focus on the latter 

two steps, which are of no less importance for the overall 

efficiency.  

The majority of approaches are of incremental nature, i.e. 

starting from a pair or triplet of images, a number of images is 

added to the current model (2) and the result is optimized (3). 

The process repeats until the full model is solved. This approach 

benefits from careful progression and can be successful in 

complicated and large scenarios (Agarwal et al. 2011; Snavely 

et al. 2006; Snavely et al., 2008; Jeong et al. 2012). However, 

the optimization is carried out by bundle adjustment. The 

resulting system is highly nonlinear and solving it is 

computationally intensive. Its’ repetitive use on a growing 

number of images is one of the drawbacks of incremental 

approaches. The problem of loop closure poses another 

challenge especially for larger image sequences. The orientation 

error built up during reconstruction may become large enough 

to prevent the geometric establishment of a connection between 

images. This also directly induces a dependency on the order in 
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which images are added to the model. Hierarchical approaches 

separate the data into smaller subsets, which are solved 

separately and fused in subsequent steps following the tree like 

structure of connected images clusters. These approaches work 

on problems of moderate size during intermediate 

reconstructions and thereby reduce the overall workload. 

Furthermore, the orientation error build-up is reduced, leading 

to better loop closing behaviour.  

Global approaches to SfM on the other hand solve step (2) for 

all cameras simultaneously by exploiting relative transformation 

information from step (1), aiming at a single and final execution 

of the optimization (3). The majority of approaches solves 

absolute rotations in a first step and separately estimates scene 

structure and / or camera positions in a subsequent step. Apart 

from efficiency, an advantage is the even distribution of 

orientation errors over the whole data, which effectively 

eliminates the loop closing problem. On the other hand, the 

main difficulty lies in finding robust solutions, as the underlying 

set of relative relations may be corrupted by inaccuracies and 

erroneously established connections.  

We present our SfM-approach which bases on the use of 

structureless bundle adjustment in combination with global 

image orientation techniques which are applied hierarchically to 

submodels instead of cameras.  

2. RELATED WORK

An overview on classical bundle adjustment can be found in 

(Triggs et al., 2000) which covers many efficiency related 

topics. A very efficient structureless approach has been 

presented by (Rodriguez et al., 2011a, 2011b). Only two-view 

epipolar constraints, encapsulated in a measurement matrix 

(Hartley, 1998) are used. Factorization reduces the system to 
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9x9 per image pair, resulting in remarkable speed up. In 

(Steffen et al., 2010) epipolar constraints are combined with 

trifocal constraints to overcome the problem of distance 

ambiguity for collinear camera stations which is induced by the 

exclusive use of epipolar constraints. (Indelman, 2012a, 

Indelman et al., 2012b) derives a scale consistency constraint 

from addition of scaled observation vectors and camera 

baselines in a three-view scenario by reformulating rank 

conditions of the equation system. (Rodriguez et al., 2011a, 

2011b) and (Indelman et al., 2012b) demonstrate that accurate 

solutions can be achieved without introduction of additional 

unknowns, which is also the case for our implementations 

(Cefalu et al., 2016). Apart from a reduced number of 

unknowns, a further advantage is found in the absence of 

numerical problems due to points at far distance.    

 

Early work on global image orientation has been conducted by 

(Govindu, 2001). In the majority of existing approaches 

absolute camera rotations are estimated and held fix for a 

subsequent separate estimation of camera poses. Thorough 

discussion on rotation averaging and distance measures in 

SO(3) is given in (Hartley et al., 2013). Based on quaternions 

(Govindu, 2001) suggests a linear least squares solution which 

in practice suffers from missing orthonormality constraints. In 

(Martinec & Pajdla, 2007) the constraints are enforced in a 

subsequent step. (Arie-Nachimson et al., 2012) include these 

constraints while using semi-definite programing. The approach 

is adopted and enhanced in (Reich & Heipke, 2016). The 

Weiszfeld algorithm under 𝐿1 norm is applied in (Hartley et al., 

2011) to increase robustness. (Chatterjee & Govindu., 2013) 

refine their 𝐿1 solution in an iteratively reweighted least squares 

process in which they incorporate the Huber estimator (Huber, 

1964), i.e. an M-estimator. Other approaches aim at detecting 

and eliminating incorrect relative rotations based on the concept 

of cycle consistency. The Bayesian inference approach of (Zach 

et al., 2010) is picked up in (Moulon et al., 2013) and combined 

with the cycle length weighting of (Enqvist et al., 2011). The 

latter can be categorized as a spanning tree approach in which 

paths are drawn from the camera graph following some 

heuristic and used to identify inconsistent graph edges 

(Govindu, 2006; Olsson & Enqvist, 2011, Cefalu & Fritsch, 

2014b). A survey on various methods is presented in (Tron et 

al., 2016). (Wilson et al., 2016) investigates problem sources in 

rotation averaging and suggests reducing to smaller sub-

problems, very much in the sense of our solution to model 

fusion using absolute rotations for models.  

 

Given known absolute rotations for cameras, various 

approaches exist to estimate absolute positions. Some 

approaches simultaneously estimate scene structure. A 

reformulation of the collinearity constraint is used in (Kahl, 

2005) to simultaneously estimate camera poses and scene 

structure under the 𝐿∞ norm. The concept is picked up by e.g. 

(Olsson & Enqvist, 2011) and (Martinec & Pajdla, 2007). The 

latter suggest a reduction of the number of reconstructed points 

by selecting four representative points per image pair to reduce 

the computational workload. (Arie-Nachimson et al., 2012) 

makes use of point observations, but reformulates the epipolar 

constraint by replacing relative orientations with absolute ones. 

With fixed rotations, the resulting system is linear and can be 

solved efficiently. Essentially, this approach equals structureless 

bundle adjustment without additional constraints. The number 

of unknowns is drastically reduced, but collinear camera 

distributions cannot be handled satisfyingly. The same holds for 

early methods using only baseline estimates (Govindu, 2001; 

Govindu, 2006). Implicit use of point triangulation is made in 

(Cui et al., 2015) which overcomes this problem. (Reich & 

Heipke, 2016) further robustify the approach. The problem can 

also be avoided by the use of trifocal tensors (oriented image 

triplets) as relative scales are encapsulated (Moulon et al., 2013; 

Jiang et al., 2013; Özyesil & Singer, 2015). In (Jiang et al., 

2013) a linear model is used which is closely related to the scale 

consistency constraint used in our structureless bundle 

adjustment. 

 

Work on hierarchical reconstruction is given in (Nister, 2000; 

Farenzena et al., 2009; Gherardi et al., 2010; Ni & Dellaert, 

2012; Havlena et al. 2009, Chen et al., 2016), to name a few. 

Approaches differ in how the tree structure is defined and in 

strategies for balancing the tree, i.e. maintaining a homogenous 

size of partial reconstructions and avoidance of unnecessary 

workload. However, usually 3D points are used for registration 

of models. We are not aware of approaches within this category 

which rely on exterior camera orientation.  

 

Our approach builds up on trifocal tensor based methods and 

makes a step towards combining some of the previously 

mentioned strategies. Scene structure is only taken into account 

when solving single image triplets. Our variant fuses models of 

arbitrary image number, scale and orientation and is applied 

repeatedly to locally neighbouring models. The resulting 

process creates a hierarchy of overlapping models and allows 

intermediate optimization including camera calibration. Global 

rotation computation is applied to models instead of cameras 

and camera rotation computation is broken down to a single 

rotation averaging problem. To refine fused models we apply 

structureless bundle adjustment. Section 3.5 explains the scale 

consistency constraint used in our current implementations, 

which to our knowledge has not been used in this context. The 

development of this strategy was mainly driven by the desire for 

intermediate adjustment. Insufficient knowledge on calibration 

parameters may result in drifts which in some cases are hard to 

compensate with a single final adjustment after a fully global 

orientation of images. Examples demonstrating such cases are 

given in section 4, which also contains a numerical evaluation 

on public benchmark data sets.   

 

3. APPROACH  

3.1 Process Chain 

We start by detecting image features using SIFT (Lowe, 2004) 

and match over image pairs based on the descriptors. Geometric 

validation is carried out using parallax based pre-filtering (a 

histogram based variant of Cefalu et al., 2014a), followed by a 

standard RANSAC (Fischler & Bolles., 1981) process. Here, 

the 5-Point-algorithm (Nister, 2004) is applied, using 

approximate information on the camera, e.g. from EXIF 

headers. In order to stabilize relative orientation estimates for 

pairs with strong perspectives, we establish point tracks 

throughout the complete data, thereby creating additional point 

matches which have not been revealed during descriptor 

matching. The tracks are furthermore used to select well 

distributed stable points in every image to reduce the total 

amount of points. The results are revalidated in a second run of 

the 2-view RANSAC to make use of new established matches. 

Weak pairs are refused based on minimal point count (20) and 

overlap of the convex hull of matching features (5%). The 

connectivity graph is thinned out further by reducing to the 10 

strongest connections per image in terms of point support. A 

test on rotational consistency follows. In contrast to (Zach et al., 

2010), we consider only rotational errors of image triplets, 

which makes the process fast since no longer loops have to be 

found. Every triplet is evaluated by a simple 3σ outlier test 
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against the error budget of its’ local triplet neighbourhood. The 

edges of remaining triplets define the new image connectivity 

graph. The test is repeated until no further edges are filtered out.  

The remainder of image triplets is ranked based on the number 

of threefold point observations and, in contrast to (Moulon et 

al., 2013), intersection angles between observed points. The 

latter measure influences the ranking towards a preference of 

triplets with longer base lines. Following the rank order (best 

first), we reconstruct triplet models (see section 3.2) only if they 

consist of at least one edge which has not been part of an 

already successfully solved triplet. Suspicious triplets are 

rejected. If rejections occurred, the process is repeated on the 

remainder of untested triplets. Edges of the connectivity graph 

which are not part of a successfully reconstructed triplet are 

removed. Depending on the overall connectivity, this sub-

selection reduces the number triplets to roughly 30% - 60%.  

 

This set of triplets represents the lowest level of our submodel 

hierarchy. The following hierarchical fusion process consists of 

three repeatedly applied steps. First, target models are defined 

by local growth of all source models (models of the current 

highest level, section 3.3). Second, the target models are fused 

using the corresponding source models as described in section 

3.4 and eventually refined using our structureless bundle 

adjustment implementation (section 3.5).  

 

3.2 Triplet Reconstruction 

Every Triplet selected for reconstruction is solved by first 

computing absolute rotations for the three cameras and their 

local neighbourhood (similarly to our approach for absolute 

model rotations in section 3.4.2). The inclusion of the 

neighbourhood is actually not necessary but can smooth 

possible inaccuracies inherent in a single triplet. Similar to 

(Moulon et al., 2013) we solve the position of the cameras 

within a RANSAC framework, while keeping the rotations (of 

the triplet) fixed and forcing correct chirality, i.e. points must 

triangulate to the viewing direction of the cameras. However, 

we use a different model. Let 𝑞 = 𝑅𝐾−1𝑝 denote the ray cast in 

viewing direction from a projection centre 𝑇 to an observed 

point, where 𝑝 is the point’s projection on the image plane in 

homogeneous coordinates, 𝑅 is the camera rotation and 𝐾 the 

camera matrix (see also section 3.5). Further, let 𝜆 be a scale 

factor which scales the ray 𝑞 to end in the observed point in 

object space (Figure 1). For three cameras 𝑖, 𝑗, and 𝑘, vector 

addition yields:  

 

 

𝑇𝑘 − 𝑇𝑖 = 𝜆𝑖𝑞𝑖 − 𝜆𝑘𝑞𝑘 

𝑇𝑗 − 𝑇𝑖 = 𝜆𝑖𝑞𝑖 − 𝜆𝑗𝑞𝑗 

𝑇𝑘 − 𝑇𝑗 = 𝜆𝑗𝑞𝑗 − 𝜆𝑘𝑞𝑘 

(1) 

 

In every RANSAC iteration a solution is generated from two 

sampled threefold observations, solving the above system using 

an interior point method, forcing positivity of 𝜆. The position 

estimates are used to triangulate all points of the triplet and 

carry out the consensus test on chirality and reprojection errors. 

The final RANSAC result is further refined using structureless 

bundle adjustment. Triplets resulting in low inlier rates or high 

error budget are rejected. Taking scene structure into account in 

this step significantly improves robustness of the reconstruction 

process, as it eases identification and removal of outlier 

correspondences and therefore significantly improves the 

quality of orientation estimates. 

 

 
Figure 1. Three cameras 𝑖, 𝑗 and 𝑘 casting rays 𝑞 towards an 

observed object point (red). When scaled by factors 𝜆, the rays 

should intersect in this point. 

 

3.3 Model Growth 

The set of triplets which have been solved in the previous step 

are the starting level of our iterative fusion of models. We refer 

to models of the current level as source models and to the 

models of the next level as target models. For every source 

model we perform a growth step, which defines a corresponding 

target model. All source models having at least one edge in 

common with the currently growing source model define the set 

of images of the resulting target model and will be used for 

fusion. Further source models are added if they consist solely of 

this set of images. The latter step ensures that all possible 

triplets are used in the following fusion step, but is of minor 

importance on higher hierarchy levels. We remove duplicate 

target models and those fully being part of others (e. g. at 

borders of the reconstruction). The resulting set of target models 

is a set locally grown models, overlapping in the sense of 

sharing identical cameras. As every edge of the camera graph 

remains represented, loop closings are preserved. 

 

The defined target models are created by fusion of the 

corresponding source models and eventually optimized via 

bundle adjustment in a subsequent step. The results serve as 

source models for the next stage of local growth, while models 

of a size of 15 or more images are not grown further. Instead 

they are passed through to the next level, unchanged. If a single 

model is created, a final adjustment terminates the process. 

Otherwise, when all source models have reached maximum 

size, the local growth and fusion is replaced by a global fusion 

of all source models and a final adjustment is carried out.  

 

3.4 Model Fusion 

Given a set of source models which are to be fused to a target 

model, we apply a three step procedure to fuse the models. First, 

relative rotations and scales between the models are computed 

from groups of camera rotations and base length estimates 

respectively. In a second step, the relative estimates are used to 

derive absolute rotations and scales for the models. Finally, the 

third step separately solves absolute camera rotations and 

positions. 

𝑗

𝑖

𝑘

𝑞𝑗

𝑞𝑖

𝑞𝑘

𝜆𝑗𝑞𝑗

𝜆𝑖𝑞𝑖

𝜆𝑘𝑞𝑘
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3.4.1 Relative Model Rotations and Scales: In the same 

way as images may be represented by a graph of relative 

orientations, we can build a graph of relative orientations 

between source models being fused (Figure 2). We first 

compute relative rotations between source models using the 

rotations of all cameras shared between models. Let 𝑅𝑛
𝑖  denote 

the rotation of a camera 𝑛 in a model 𝑖. With 𝑄 being the set of 

𝑁 cameras shared by the models 𝑖 and 𝑗, the corresponding 

rotations are stacked to 𝑅̅𝑖 = 𝑠𝑡𝑎𝑐𝑘({𝑅𝑛
𝑖′}), 𝑛 ∈ 𝑄 and 𝑅̅𝑗 

accordingly. The two resulting matrices are of size 3𝑁 × 3. We 

apply Kabsch’s algorithm (Kabsch, 1976), which is also used in 

Procrustes analysis. With 

 

 𝐶 = 𝑅̅𝑗′
𝑅̅𝑖 (2) 

 

and 𝐶 = 𝑈𝐷𝑉′ (singular value decomposition), we compute the 

relative rotation as: 

 

 𝑅𝑗,𝑖 = 𝑈𝑑𝑖𝑎𝑔(1,1, 𝑠𝑖𝑔𝑛(det(𝑈𝑉′)))𝑉′ (3) 

 

Further, we compute a relative scale between source models. 

For every possible image pair in Q, an estimate can be derived 

from the ratio of the corresponding base lengths in the two 

models. We use the mode of a kernel density estimation (KDE) 

as the final relative scale 𝑠𝑗,𝑖. 

 

 
Figure 2. Sketch of a group of three models 𝑖, 𝑗 and 𝑘. Dots 

indicate cameras. Bases shared by different models are marked 

by colour. Relative rotations and scales between the models are 

indicated by arrows. 

 

3.4.2 Absolute Model Rotations and Scales: The desired 

absolute rotations and scales of the source models are derived 

from multiple paths (kinematic chains) drawn at random from 

the source model graph. We start at random nodes (models) and 

guide the selection of edges (relative relations between models) 

to be roughly evenly distributed. We establish a common 

rotational frame for the paths, by setting the mean rotation (see 

section 3.4.3) of every path to identity, i.e. applying the inverse 

mean rotation. In a similar way the mean scale of a path is set to 

1. As a result we obtain multiple estimates for the absolute 

rotation 𝑅𝑖 and scale 𝑠𝑖 of every source model 𝑖. Single 

solutions can be computed independently. We use KDE again 

for the scales and search for the mode. For the rotation 𝑅𝑖, we 

use 𝐿2 chordal mean rotation computation with iterative 

reweighing.  

 

3.4.3 Mean Shift Single Rotation Averaging: A 𝐿2  mean 

rotation 𝑅 under chordal metric (Hartley et al., 2013) for a set of 

𝑛 rotations can be computed as in (3), except: 

 

 𝐶 = ∑ 𝑅𝑛

𝑛

 (4) 

 

In order to robustify the resulting estimate against outliers, we 

compute an initial guess of 𝑅 and use the chordal distance 𝑑𝑛 

between 𝑅 and 𝑅𝑛 to derive weights for subsequent iterations. 

As weighting function we use a Gaussian kernel with a 

bandwidth of the current weighted rms σ.  

 

 𝑤𝑛 =
1

𝜎√2𝜋
𝑒

−
1
2

(
𝑑𝑛
𝜎

)
2

 (5) 

 

Accordingly, we rewrite 𝐶 = ∑ 𝑤𝑛𝑅𝑛𝑛  and apply (3). We 

iterate the process until convergence or at most ten times. The 

process essentially resembles a mean shift algorithm. A three 

sigma cut-off is added to fully suppress strong outliers. 

 

3.4.4 Absolute Camera Positions: Given an absolute 

rotation 𝑅𝑖 and an absolute scale 𝑠𝑖 are known for every source 

model 𝑖, the absolute poses 𝑇𝑛 and 𝑇𝑚 of two cameras 𝑛 and 𝑚 

can be expressed as (6). The full equation system is formed by 

considering all visually connected image pairs in all source 

models participating in the fusion of the target model.  

 

 𝑠𝑖𝑅𝑖(𝑇𝑛
𝑖 − 𝑇𝑚

𝑖 ) = 𝑇𝑛 − 𝑇𝑚    (6) 

 

 
Figure 3. Camera positions in a target model are derived from 

corresponding base lines in rotated and scaled source models 𝑖, 
𝑗 and 𝑘. For simplification only one camera pair is included in 

the sketch.   

 

In order to robustify against incorrect bases we apply iterative 

reweighting using three weighting functions. A first weight 𝑤𝑚 

is derived from the number of matches between the images and 

stays fix during iterations. A second weight evaluates the a 

posteriori Euclidian position residual using the Hampel 

estimator (Hampel et al., 1986) with thresholds at 1𝜎, 2.5𝜎 and 

4𝜎. A third weight for directional discrepancy is computed as 

the scalar product between the (normalized) left- and right-hand 

sides of (6), with negative values set to zero. Multiplication 

yields the final weights. Standard weighted least squares is used 

to solve the system.  

 

3.4.5 Absolute Camera Rotations and Intrinsic Camera 

Parameters: By applying the absolute source model rotations 

to the single cameras, we can obtain one or more solutions for 

every camera rotation. In the latter case, we again apply the 

single rotation averaging described in section 3.4.3. As initial 

values for the subsequent bundle adjustment, intrinsic camera 

parameters are ‘fused’ by taking the median of every parameter 

over the set of source models which have been used for fusion. 

 

3.5 Structureless Bundle Adjustment 

The results of the source model fusion step are utilized to 

initialize a structureless bundle adjustment. Here, the 

adjustment takes place without use of 3D structure elements by 

founding the system of equations on epipolar constraints instead 

of collinearity equations. We have improved our approach 

presented in (Cefalu et al., 2016), the major difference being the 

𝑠𝑘,𝑖𝑅𝑘,𝑖

𝑠𝑘,𝑗𝑅𝑘,𝑗

𝑠𝑗,𝑖𝑅𝑗,𝑖

𝑘

𝑗

𝑖

𝑖 𝑗

𝑘

𝑇𝑛
𝑖

𝑇𝑚
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𝑗
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additional use of a scale consistency constraint. Though 

satisfying results could be achieved with our previous 

implementation for many datasets, this augmentation 

significantly improved the robustness of our approach for two 

reasons. First, collinear camera positions form a degenerate case 

for epipolar geometry, as distances between cameras become 

ambiguous. As our approach to image orientation relies on the 

quality of base line estimation, the exclusive use of epipolar 

geometry may induce disadvantageous instabilities, though this 

is rarely the case. Second, and to our experience of much 

greater importance, human made objects often exhibit regularly 

distributed repetitive structures. As a result, mismatches of 

feature descriptors occur more frequently and may often not be 

identified by epipolar distance. The scale consistency constraint 

is violated if rays do not intersect in a single point and thereby 

helps, not only in disambiguating distances between cameras, 

but also in identifying outliers.  

 

As in section 3.2, let 𝑝 be the projection of a point onto an 

image plane in homogenous coordinates. We define its’ pendant 

corrected for lens distortions using the Brown model (Brown, 

1966) as 𝑝̅ = 𝑝 +Δ𝑝𝑟𝑎𝑑 +Δ𝑝𝑡𝑎𝑛. We compute the epipolar 

distance in image 𝑖 for the same point observed in the images 𝑖 
and 𝑗 as: 

 

 
𝑑𝑗,𝑖 =

𝑝̅𝑖
′𝑙𝑗,𝑖

√𝑙𝑗,𝑖(1)

2 + 𝑙𝑗,𝑖(2)

2
 

(7) 

 

Where 𝑙𝑗,𝑖 = 𝐾𝑖
−′𝑅𝑖

′[𝑇𝑗 − 𝑇𝑖]×𝑅𝑗𝐾𝑗
−1𝑝̅𝑗  is the formulation for the 

epipolar line in image 𝑖 using absolute camera rotations 𝑅 and 

positions 𝑇. The camera matrix 𝐾 encapsulates the camera 

constant and the principal point. Normalization is necessary to 

avoid scale dependency, which would cause the camera stations 

to collapse to a single point. Moreover, the variant used above 

expresses the residual in pixel metric. However, it results in 

𝑑𝑗,𝑖 ≠ 𝑑𝑖,𝑗  and we observe increased quality of the results when 

both projection directions are used.   

 

 
Figure 4. Three cameras 𝑖, 𝑗 and 𝑘 casting rays 𝑞 towards an 

observed object point as in Figure 1. Here, angles 𝛼 between 

base lines and image rays and angles 𝛽 for intersection angles 

between observations are added. 

   

We further redefine 𝑞 = 𝑅𝐾−1𝑝̅ to include distortion 

corrections. For readability we write 𝐵 for the base between two 

cameras in the further context. Moreover, we introduce angles 𝛼 

between base lines and image rays and 𝛽 for intersection angles 

between rays (Figure 4). For a triangle formed by two images 𝑖 
and 𝑗 and a point observed in both images, we may express the 

distance from projection centre of image 𝑖 to the point using the 

law of sines: 

 

 ‖𝜆𝑖𝑞𝑖‖ = ‖𝐵𝑗,𝑖‖
sin (𝛼𝑗,𝑖)

sin (𝛽𝑗,𝑖)
 (8) 

 

The relation between the sine and the cross product allows the 

substitutions: 

 

 sin(𝛼𝑗,𝑖) =
‖𝐵𝑗,𝑖 × 𝑞𝑗‖

‖𝐵𝑗,𝑖‖‖𝑞𝑗‖
, sin(𝛽𝑗,𝑖) =

‖𝑞𝑖 × 𝑞𝑗‖

‖𝑞𝑖‖‖𝑞𝑗‖
 (9) 

 

The distance must be equal when computed using an 

observation of a third image 𝑘, which leads to the constraint: 

 

 ‖𝜆𝑖𝑞𝑖‖ =
‖𝐵𝑗,𝑖 × 𝑞𝑗‖

‖𝑞𝑖 × 𝑞𝑗‖
‖𝑞𝑖‖ =

‖𝐵𝑘,𝑖 × 𝑞𝑘‖

‖𝑞𝑖 × 𝑞𝑘‖
‖𝑞𝑖‖ (10) 

 

Setting the ratio of the two right hand side expressions to one, 

formulates our functional model, which is free of the unknown 

𝜆. Subtraction is also possible, but suffers from dependency of 

the overall scale. In any case, the errors are not in pixel metric 

and are therefore handled in the sense of a variance component 

analysis. Moreover, the number of equations which could be 

used may be very high for long point tracks. Therefore we use 

only one equation for every ray 𝑞, derived from two other 

cameras in the order of appearance. As (Rodriguez et al., 2011a, 

2011b) and (Indelman, 2012b) we solve the system without 

additional unknowns. Our implementation uses weighted 

(Hampel estimator) nonlinear least squares in a Levenberg-

Marquardt framework. 

 

4. EXPERIMENTAL RESULTS 

We numerically evaluate the accuracy of our overall approach 

on the six benchmark datasets published in (Strecha et al., 2008) 

and compare our results to those reported by other authors. For 

these datasets ground truth is available for image orientation as 

well as two camera constants and principal point. The images 

have been corrected for radial distortion. However, we do not 

use the given intrinsic parameters but initialize our parameters 

from the EXIF headers of the dataset FountainR25 (for which 

unfortunately no ground truth orientation is available) and solve 

for all parameters implemented in our camera model. 

Furthermore, we have deactivated the hierarchical procedure for 

this test to assess the quality of our fusion approach. I.e. image 

triplets are fused directly to a final model and refined by a 

single final adjustment.  

 

For evaluation we transform our resulting camera stations onto 

the ground truth camera stations using a seven parameter 

transformation. Table 1 and Table 2 summarize the results 

before adjustment, while Table 3 and Table 4 present the final  

 
Mean position error [mm] before final adjustment 

 Ours 

EXIF 

[1] 

EXIF 

[2] 

EXIF 

HJ P8 48.0   

E P10 141.3   

F P11 38.0 35.0 53.0 

C P19 602.3 428.0  

HJ P25 94.7 83.0 106.0 

C P30 617.8 1312.0 1158.0 

Table 1. Comparison of mean position errors before final bundle 

adjustment: [1] Reich & Heipke, 2016, TE-SI, [2] Jiang et al., 

2013. 

𝑗

𝑖

𝑘

𝑞𝑗

𝑞𝑖

𝑞𝑘

𝜆𝑗𝑞𝑗

𝜆𝑖𝑞𝑖

𝜆𝑘𝑞𝑘

𝛼𝑖𝑗
𝛼𝑖𝑘

𝛽𝑖𝑗 𝛽𝑖𝑘
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Mean rotation error  [°] before final adjustment 

 Ours 
EXIF 

[1] 
EXIF 

[2] 
EXIF 

HJ P8 0.310   

E P10 0.671   

F P11 0.730 0.249 0.517 

C P19 1.554 0.647  

HJ P25 0.491 0.206 0.573 

C P30 1.390 0.583 1.651 

Table 2. Comparison of mean rotation errors before final bundle 

adjustment: [1] Reich & Heipke, 2016, GO-SDP-ls, [2] Jiang et 

al., 2013. 

 
Mean rotation error [°] after final adjustment 

 Ours 

EXIF 

[1] 

GT 

[1] 

EXIF 

[2] 

EXIF 

[3] 

EXIF 

[4] 

EXIF 

[5] 

EXIF 

HJ P8 0.344       

E P10 0.118       

F P11 0.065 0.024 0.420 0.027 0.195 0.035 0.035 

C P19 0.207   0.076    

HJ P25 0.203 0.045 0.348 0.021 0.188 0.127 0.128 

C P30 0.227   0.039 0.480 0.139 0.158 

Table 3. Comparison of mean rotation errors after final bundle 

adjustment: [1] Arie-Nachimson et al., 2012; [2] Reich & 

Heipke, 2016, GO-SDP-ls; [3] Jiang et al., 2013; [4] Chen et al., 

2016; [5] Gherardi et al., 2010 as reported by [4]. 

 

results. Entries are left empty when no result is reported on a 

dataset. For authors reporting different variants of their 

approaches, a representative one is selected and indicated in the 

table. The tables also state whether EXIF information or ground 

truth (GT) was used for camera initialization. The number of 

images is given in the names of the datasets (full names are 

given in Table 4). 

 

 
Figure 5. Partial reconstruction of an image based mobile 

mapping dataset (first 156 images, Cavegn et al., 2016). The 

approach is able to handle collinear and forward looking 

camera constellations. 

 

 
Figure 6. Top: Result for a UAV flight over a farm (185 

images) computed with intermediate camera calibration. 

Bottom: Result with camera calibration activated only during 

the final adjustment. An area with weak point connectivity 

causes a part of the reconstruction to drift off. 

 

 
Figure 7. Partial reconstruction results for 20 images of a 

granite relief captured with an industrial camera. The used lens 

causes radial distortion of ~250 pixels in the image corners at a 

sensor size of 1600x1200 pixels. Top: Result with intermediate 

camera calibration. Bottom: Result with camera calibration 

activated only during the final adjustment. The adjustment 

converged before lens distortion effects could be fully 

compensated.  

 

The examples in Figures 5 to Figure 8 have been computed with 

the hierarchical approach as described in the paper. The sparse 

point clouds have been triangulated after final adjustment for 

visualization purpose. Camera stations are depicted as 

coordinate frames (red, green and blue as X, Y and Z, the latter 

points in viewing direction). An example for a relatively large 

dataset with many narrow camera stations is given in Figure 8 

(Farenzena et al., 2009). Figure 5 exemplarily demonstrates the 

ability of our approach to handle collinear and forward looking 

cameras at the example of an image based mobile mapping 

sequence (Cavegn et al., 2016). Figures 6 and Figure 7 show 

two cases in which the effect of intermediate camera calibration 

is evident. 

 

 

 
Figure 8. Result for the Piazza Bra dataset (Farenzena et al., 

2009). The largest of five resulting models is displayed (287 of 

329 images). Image connectivity cut offs and drop off in 

reconstruction quality occur in areas with weak observation 

redundancy, as indicated by the colors in the lower image 

(blue, green, yellow and red for 2, 3, 4 and ≥5 observations). 

However, narrow baselines are handled succesfully. 
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Mean position error [mm] after final adjustment 

 Ours 

EXIF 

[1] 

GT 

[2] 

GT 

[3] 

GT 

[4] 

GT 

[3] 

EXIF 

[4] 

EXIF 

[5] 

EXIF 

[6] 

EXIF 

[7] 

EXIF 

[8] 

EXIF 

HerzJesu P8 4.3 3.5 3.9         

Entry P10 10.1 5.9 6.9         

Fountain P11 2.6 2.5 2.2 4.8 2.5 27.0 7.0 14.0 7.0 5.4 5.4 

Castle P19 28.5 25.6 76.2      81.0   

HerzJesu P25 5.4 5.3 5.7 7.8 5.0 52.0 26.2 64.0 13.0 15.6 15.6 

Castle P30 36.2 21.9 66.8  21.2  166.7 235.0 44.0 143.8 126.7 

Table 4. Comparison of mean position errors after final bundle adjustment: [1] Moulon et al., 2013; [2] Olsson & Enqvist, 2011 as 

reported by [1]; [3] Arie-Nachimson et al., 2012; [4] Cui et al., 2015, L1; [5] Jiang et al., 2013; [6] Reich & Heipke, 2016, TE-SI; [7] 

Chen et al., 2016; [8] Gherardi et al., 2010 as reported by [7]. 

 

 

5. CONCLUSION 

We have presented our approach to Structure from Motion 

which combines hierarchical reconstruction, global image 

orientation techniques and structureless bundle adjustment. 

Though initialized with EXIF information only (and 

hierarchical processing turned off), the final position results 

achieved on the benchmark datasets are comparable to results of 

other authors who initialized with given camera parameters. Our 

rotation results are reasonably close to the ground truth, 

considering the different underlying camera models. The 

process successfully handles narrow baselines as well as 

collinear and forward looking scenarios. Since scene structure is 

not utilized in the majority of our approach, it is insensitive to 

noisy surface reconstructions or numerical problems induced by 

far distant points. The hierarchical progression and intermediate 

camera calibration help bridging areas of weaker connectivity. 

However, the overall robustness will remain subject to future 

work. Currently, our work focuses on reducing the 

computational effort by a model selection strategy, as a 

balancing of the hierarchy is not tackled at present. An inclusion 

of the absolute source model orientations in the adjustment, as 

well as local optimization techniques, could be beneficial to the 

convergence behaviour and may become topics of near future 

work.       
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