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Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented,
which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and themost reliable
path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the
maximum independent set problem is studied.

1. Introduction

In graph theory, the famous shortest path problem (SPP, for
short) is the problem of finding a path between two vertices
in a weighted graph such that the sum of the weights of its
constituent edges is minimized [1]. An example is finding
the quickest way to get from one location to another on a
road map. In this case, the vertices represent locations and
the edges represent segments of road and are weighted by the
time needed to travel that segment.

If we assume the weighted function to be nonnegative,
then the related algebraic foundation of SPP is the semiring
([0, +∞],min, +). Therein, we use the operation “+” to
compute the length of paths and use the operation “min”
to find the least one. For the widest path problem (WPP,
for short) or called the greatest capacity problem (GCP,
for short), the related algebraic foundation is the semiring
([0, +∞],max,min). Accordingly, we use the operation “min”
to compute the capacities and use the operation “max” to
find the greatest one. For the most reliable path problem
(MRPP, for short), the related algebraic foundation is the
semiring ([0, 1],max, ×). Accordingly, we use the operation
“×” to compute the reliability of paths and use the operation
“max” to find the greatest one.There are many other classical
problems using various semirings in graph theory [2].

For both ([0, +∞],min, +) for SPP and ([0, +∞],
max,min) for WPP as well as the corresponding algorithms,

the value “+∞” is used to act as the weight of artificial edges
between vertex pairs with no edge. For these reasons, SPP,
WPP, and MRPP (and other potential problems) can be put
into a more generalized setting: the algebraic path problem
[2].The first aim of this paper is to unify SPP,WPP,WPP, and
other path problems into graphs weighted in an idempotent
semiring (also known as a dioid) [3]. We shall give a unified
approach to find the shortest path, the widest path, and the
most reliable path as well as their length.

In 1935, Whitney introduced matroids as a generalization
of both graphs and linear independence in vector spaces [4].
It is well known that matroids play an important role in
applied mathematics, especially in optimal theory, which are
precisely the structures for the maximum independent set
problem (MISP, for short) which the very simple and efficient
greedy algorithm works [5]. The second aim of this paper is
to study matroids weighted in a linear dioid and the related
MISP.

2. Semirings, Incline Algebras, Dioids, and
Their Properties

Semirings and matrices over semirings are useful tools in
diverse areas such as automata theory, design of switching
circuits, graph theory, medical diagnosis, Markov chains,
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informational systems, complex systems modeling, decision-
making theory, dynamical programming, control theory,
nervous system, probable reasoning, psychological measure-
ment, and clustering [3, 6].

Definition 1 (see [3]). A (2,2)-type algebra (𝐾, ⊕, ⊗) is called
a semiring if

(K1) both (𝐾, ⊕) and (𝐾, ⊗) are semigroups;

(K2) ⊕ is commutative; that is, 𝑎⊕𝑏 = 𝑏⊕𝑎 for all 𝑎, 𝑏 ∈ 𝐾;

(K3) ⊗ is distributive over ⊕; that is 𝑎 ⊗ (𝑏 ⊕ 𝑐) = (𝑎 ⊗ 𝑏) ⊕
(𝑎 ⊗ 𝑐); (𝑏 ⊕ 𝑐) ⊗ 𝑎 = (𝑏 ⊗ 𝑎) ⊕ (𝑐 ⊗ 𝑎) for all 𝑎, 𝑏, 𝑐 ∈ 𝐾.

We call a semiring (𝐾, ⊕, ⊗) preunital if there is a special
element 1 ∈ 𝐾 such that (𝐾, ⊗, 1) is a monoid; that is, 1⊗𝑥 =
𝑥 = 𝑥 ⊗ 1 for every 𝑥 ∈ 𝐾.

Proposition 2. For every preunital semiring (𝐾, ⊕, ⊗, 1), the
following conditions are equivalent:

(K4) 1 is absorbing with respect to the operation ⊕; that is,
1 ⊕ 𝑥 = 1 for every 𝑥 ∈ 𝐾;

(K4) 𝑥 ⊕ (𝑥 ⊗ 𝑦) = 𝑥 and (𝑥 ⊗ 𝑦) ⊕ 𝑦 = 𝑦 for all 𝑥, 𝑦 ∈ 𝐾.

Proof. (K4)⇒(K4):𝑥⊕(𝑥⊗𝑦) = (𝑥⊗1)⊕(𝑥⊗𝑦) = 𝑥⊗(1⊕𝑦) =
𝑥 ⊗ 1 = 𝑥. Similarly, (𝑥 ⊗ 𝑦) ⊕ 𝑦 = 𝑦.

(K4)⇒(K4): 1 ⊕ 𝑥 = 1 ⊕ (1 ⊗ 𝑥) = 1.

A preunital semiringwith condition (K4) is called a unital
semiring. A semiring (𝐾, ⊕, ⊗) is called idempotent if ⊕ is
idempotent; that is, 𝑎 ⊕ 𝑎 = 𝑎 for all 𝑎 ∈ 𝐾. An idempotent
semiring with the condition (K4) is called an incline algebra
[6].

Proposition 3. Suppose that (𝐾, ⊕, ⊗) is a unital semiring
and 0 is an element in 𝐾. Then the following conditions are
equivalent:

(K5) 0 is absorbing with respect to the operation ⊗; that is,
0 ⊗ 𝑥 = 0 = 𝑥 ⊗ 0 for every 𝑥 ∈ 𝐾;

(K5) (𝐾, ⊕, 0) is a monoid; that is, 0⊕𝑥 = 𝑥 for every 𝑥 ∈ 𝐾.

Proof. (K5)⇒(K5): by (K4), 0 ⊕ 𝑥 = (0 ⊗ 𝑥) ⊕ 𝑥 = 𝑥.
(K5)⇒(K5): by (K4), 0 ⊗ 𝑥 = 0 ⊕ (0 ⊗ 𝑥) = 0.

An idempotent and unital semiring (𝐾, ⊕, ⊗) with condi-
tion (K5) is called a dioid; that is, a dioid is an incline with
(K4) and (K5), which is called a bounded incline algebra
[6].

In every dioid (𝐾, ⊕, ⊗, 0, 1), we define 𝑥 ⪯ 𝑦 iff 𝑥⊕𝑦 = 𝑦.
Then ⪯ is a partial order on 𝐾 and (𝐾, ⊕) is a bounded join
semilattice. Clearly, 0 is the bottom element and 1 is the top
element, so is the name bounded incline.

Proposition 4 (see [7]). If 𝑎 ⪯ 𝑏, 𝑐 ⪯ 𝑑, then 𝑎 ⊕ 𝑐 ⪯ 𝑏 ⊕ 𝑑
and 𝑎 ⊗ 𝑐 ⪯ 𝑏 ⊗ 𝑑.

Proof. Since 𝑎 ⪯ 𝑏, 𝑐 ⪯ 𝑑, we have 𝑎 ⊕ 𝑏 = 𝑏, 𝑐 ⊕ 𝑑 = 𝑑:

(1) (𝑎⊕𝑐)⊕(𝑏⊕𝑐) = (𝑎⊕𝑏)⊕(𝑐⊕𝑑) = 𝑏⊕𝑑 and 𝑎⊕𝑐 ⪯ 𝑏⊕𝑑;
(2) (𝑎⊗𝑐)⊕(𝑏⊗𝑐) = (𝑎⊕𝑏)⊗𝑐 = 𝑏⊗𝑐 and then 𝑎⊗𝑐 ⪯ 𝑏⊗𝑐.

Similarly, 𝑏 ⊗ 𝑐 ⪯ 𝑏 ⊗ 𝑑. Hence 𝑎 ⊗ 𝑐 ⪯ 𝑏 ⊗ 𝑑.

Example 5 (classical examples). (1) ([0, +∞],min, +, +∞, 0)
is a dioid, which is an algebraic model for SPP. The partial
order ⪯ defined above is dual to the usual one ≤. For explicit,
𝑎 ⪯ 𝑏 iff 𝑏 ≤ 𝑎 in usual meaning.

(2) ([0, +∞],max,min, 0, +∞) is a dioid, which is an
algebraic model for WPP. The partial order ⪯ defined above
is the same as the usual one ≤.

(3) ([0, 1],max, ×, 0, 1) is a dioid, which is an algebraic
model for MRPP. The partial order ⪯ defined above is the
same as the usual one ≤.

Example 6 (other examples). Consider

(1) ([0, +∞],min,max, +∞, 0);
(2) ([0, 1],min,max, 1, 0);
(3) ([0, 1],max,min, 0, 1);
(4) ([1, +∞],min, ×, +∞, 1).

Let 𝐴 be an (𝑚 × 𝑛)-matrix and let 𝐵 be an (𝑛 × 𝑙)-matrix
over a semiring (𝐾, ⊕, ⊗). Define 𝐴 ∘ 𝐵 = (𝑝

𝑖𝑗
)
𝑚×𝑙

by 𝑝
𝑖𝑗
=

⊕𝑛
𝑘=1
(𝑎
𝑖𝑘
⊗ 𝑎
𝑘𝑗
).

Proposition 7. Let 𝐴
𝑘𝑙
, 𝐵
𝑙𝑚
, 𝐶
𝑚𝑛

be three matrices. Then
(𝐴
𝑘𝑙
∘ 𝐵
𝑙𝑚
) ∘ 𝐶
𝑚𝑛
= 𝐴
𝑘𝑙
∘ (𝐵
𝑙𝑚
∘ 𝐶
𝑚𝑛
).

Proof. Let 𝐴
𝑘𝑙
∘ 𝐵
𝑙𝑚
= (𝑝
𝑖𝑗
)
𝑘𝑚
, 𝐵
𝑙𝑚
∘ 𝐶
𝑚𝑛
= (𝑞
𝑖𝑗
)
𝑙𝑚

and (𝐴
𝑘𝑙
∘

𝐵
𝑙𝑚
) ∘ 𝐶
𝑚𝑛
= (𝑢
𝑖𝑗
)
𝑙𝑛
, 𝐴
𝑘𝑙
∘ (𝐵
𝑙𝑚
∘ 𝐶
𝑚𝑛
) = (V

𝑖𝑗
)
𝑙𝑛
. Then

𝑢
𝑖𝑗
= ⊕
𝑚

𝑠=1
(𝑝
𝑖𝑠
⊗ 𝑐
𝑠𝑗
)

= ⊕
𝑚

𝑠=1
((⊕
𝑙

𝑡=1
(𝑎
𝑖𝑡
⊗ 𝑏
𝑡𝑠
)) ⊗ 𝑐
𝑠𝑗
)

= ⊕
𝑚

𝑠=1
⊕
𝑙

𝑡=1
[(𝑎
𝑖𝑡
⊗ 𝑏
𝑡𝑠
) ⊗ 𝑐
𝑠𝑗
]

= ⊕
𝑙

𝑡=1
⊕
𝑚

𝑠=1
[𝑎
𝑖𝑡
⊗ (𝑏
𝑡𝑠
⊗ 𝑐
𝑠𝑗
)]

= ⊕
𝑙

𝑡=1
[𝑎
𝑖𝑡
⊗ (⊕
𝑚

𝑠=1
(𝑏
𝑡𝑠
⊗ 𝑐
𝑠𝑗
))]

= ⊕
𝑙

𝑡=1
(𝑎
𝑖𝑡
⊗ 𝑞
𝑡𝑗
)

= V
𝑖𝑗
.

(1)

3. Graphs Weighted in a Dioid and
the Longest Path Problem

For the dioid ([0, +∞],min, +, +∞, 0) in SPP, since the partial
order ⪯ is dual to the usual one ≤, the SPP in the dioid
situation comes to be a longest path problem (LPP for short).
In this section, we will study the LPP for graphs weighted in
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a dioid, which can be considered a unified approach for SPP,
WPP, and MRPP (and so on).

Let 𝐺 be a graph weighted in a dioid (𝐾, ⊕, ⊗, 0, 1). For
two vertices 𝑖, 𝑗, let 𝑃

𝑖𝑗
denote the set of paths from 𝑖 to 𝑗. For

𝑝 ∈ 𝑃
𝑖𝑗
,𝑤
𝑝
= ⊗
𝑒∈𝑝
𝑤(𝑒) is called the length of the path𝑝. Since

⊕ is idempotent,𝑝
𝑖𝑗
= ⊕
𝑝∈𝑃𝑖𝑗

𝑤
𝑝
is the longest path length from

V
𝑖
to V
𝑗
. For theweighted graph𝐺, define amatrix𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

by the following:

(1) for 𝑖 ̸= 𝑗, if there are some paths from V
𝑖
to V
𝑗
, then put

𝑎
𝑖𝑗
as the maximal weight of all parallel edges from V

𝑖

to V
𝑗
; if there is no path from V

𝑖
to V
𝑗
, then put 𝑎

𝑖𝑗
= 0;

(2) for every 𝑖, put 𝑎
𝑖𝑖
= 1.

For any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, define 𝑎(1)
𝑖𝑗

= 𝑎
𝑖𝑗
and 𝑎(𝑚+1)

𝑖𝑗
=

⊕𝑛
𝑙=1
(𝑎
(𝑚)

𝑖𝑙
⊗ 𝑎
(1)

𝑙𝑗
) (𝑚 = 1, 2, 3, . . .).

Proposition 8. (1) 𝑎(𝑚)
𝑖𝑗

is the longest𝑚-step path from V
𝑖
to V
𝑗
.

(2) For any𝑚 = 0, 1, 2, , . . ., then 𝑎(𝑚)
𝑖𝑗

⪯ 𝑎
(𝑚+1)

𝑖𝑗
.

(3) 𝑎(𝑚)
𝑖𝑗

= 𝑎
(𝑛)

𝑖𝑗
for all𝑚 ≥ 𝑛.

Proof. (1)We use the induction to prove this result. For 𝑘 = 1,
the result holds. Suppose that the result holds for 𝑘 = 𝑚. For
𝑘 = 𝑚 + 1, 𝑎(𝑚+1)

𝑖𝑗
= ⊕𝑛
𝑘=1
(𝑎
(𝑚)

𝑖𝑘
⊗ 𝑎
(1)

𝑘𝑗
). Let 𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑚
, 𝑒
𝑚+1

be an (𝑚 + 1)-step path from V
𝑖
to V
𝑗
. Then 𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑚
is an

𝑚-step path from V
𝑖
to V
𝑘
, where V

𝑘
is the end vertex of 𝑒

𝑚
;

and 𝑒
𝑚+1

is an edge from V
𝑘
to V
𝑗
and 𝑎(1)

𝑘𝑗
⪰ 𝑤(𝑒

𝑚+1
). Then

𝑎𝑚
𝑖𝑘
⪰ 𝑤(𝑒

1
) ⊗ 𝑤(𝑒

2
) ⊗ ⋅ ⋅ ⋅ ⊗ 𝑤(𝑒

𝑚
) and 𝑎(𝑚+1)

𝑖𝑗
⪰ 𝑎
(𝑚)

𝑖𝑘
⊗ 𝑎
(1)

𝑘𝑗
⪰

𝑤(𝑒
1
)⊗𝑤(𝑒

2
)⊗⋅ ⋅ ⋅⊗𝑤(𝑒

𝑚
)⊗𝑤(𝑒

𝑚+1
).This completes the proof.

(2) 𝑎(𝑚+1)
𝑖𝑗

= ⊕𝑛
𝑙=1
(𝑎
(𝑚)

𝑖𝑙
⊗𝑎
(1)

𝑙𝑗
) ⪰ 𝑎
(𝑚)

𝑖𝑗
⊗𝑎
(1)

𝑗𝑗
= 𝑎
(𝑚)

𝑖𝑗
⊗1 = 𝑎

(𝑚)

𝑖𝑗
.

(3) Suppose that𝑚 ≥ 𝑛. By (2), we have 𝑎(𝑚)
𝑖𝑗

⪰ 𝑎
(𝑛)

𝑖𝑗
. By (1),

𝑎
(𝑚)

𝑖𝑗
is the longest𝑚-step path from V

𝑖
to V
𝑗
. Suppose that the

related path of 𝑎(𝑚)
𝑖𝑗

is 𝑝 = {V
𝑙1
, V
𝑙2
, . . . , V

𝑙𝑚
}, since there is at

most 𝑛 vertices in𝐺 and there are some common points in 𝑝.
Suppose that V

𝑙𝑖
and V
𝑙𝑗
(let 𝑙
𝑖
≤ 𝑙
𝑗
) are the same point. In order

to make 𝑎(𝑚)
𝑖𝑗

the longest path, it must hold that V
𝑙
= V
𝑙𝑖
= V
𝑙𝑗

for all 𝑙
𝑖
≤ 𝑙 ≤ 𝑙

𝑗
. Then the length 𝑎(𝑚)

𝑖𝑗
is equal to the length

of a path from V
𝑖
to V
𝑗
with no common point (with at most

𝑛 vertices). Hence 𝑎(𝑚)
𝑖𝑗

⪯ 𝑎
(𝑛)

𝑖𝑗
since 𝑎(𝑛)

𝑖𝑗
is the longest 𝑛-step

path from V
𝑖
to V
𝑗
.

We now present two algorithms to compute the longest
path length and the corresponding longest path.

Algorithm 9. To find the longest path length from a vertex V
𝑖

to another one V
𝑗
,

input: 𝐴
𝑖𝑗
and 𝑖, 𝑗;

output: the longest path length from V
𝑖
to V
𝑗
;

(1) 𝑎(1)
𝑖𝑙

= 𝑎
𝑖𝑙
(𝑙 = 1, 2, . . . , 𝑛); 𝑎(1)

ℎ𝑗
= 𝑎
ℎ𝑗
, (ℎ =

1, 2, . . . , 𝑛);

(2) for 𝑚 = 1 to 𝑛 do. Put 𝑎(𝑚+1)
𝑖𝑗

= ⊕𝑛
𝑙=1
(𝑎
(𝑚)

𝑖𝑙
⊗ 𝑎
(1)

𝑙𝑗
).

If 𝑎(𝑚+1)
𝑖𝑗

= 𝑎
(𝑚)

𝑖𝑗
, then print “the longest path length is

𝑎
(𝑚)

𝑖𝑗
.”

Algorithm 10. Suppose that the longest path length from V
𝑖
to

V
𝑗
is 𝑎(𝑚)
𝑖𝑗

. To find the related longest path,

input: 𝑎(1)
𝑖𝑙
, 𝑎
(2)

𝑖𝑙
, . . . , 𝑎

(𝑚)

𝑖𝑙
for 𝑙 ∈ {1, 2 . . . , 𝑛};

output: the longest path from V
𝑖
to V
𝑗
;

(1) 𝑝 = {V
𝑗
};

(2) for ℎ = 𝑚 to 1 do. Find 𝑙 ∈ {1, 2, . . . , 𝑛} such that
𝑎
(ℎ)

𝑖𝑗
= 𝑎
(ℎ−1)

𝑖𝑙
⊗ 𝑎
(1)

𝑙𝑗
;

(3) 𝑝 ← {V
𝑙
} ∪ 𝑝;

(4) print “𝑝”.

4. Matroids Weighted in a Linear Dioid and
the Maximum Independent Set Problem

For a classical graph 𝐺 = (𝐸, 𝑉), letI(𝐺) = {𝐼 ⊆ 𝐸 | 𝐼 has no
circuit}. Then (𝐸,I(𝐺)) is a matroid; that is,

(I1) 0 ∈ I;
(I2) 𝐴 ⊆ 𝐵 ∈ I implies 𝐴 ∈ I;
(I3) for 𝐴, 𝐵 ∈ I, if |𝐴| < |𝐵|, then there exists 𝑒 ∈ 𝐵 − 𝐴

such that 𝐴 ∪ 𝑒 ∈ I.

Similar to weighted graph, matroids also play an impor-
tant role in mathematics, especially in applied mathematics,
which are precisely the structures for which the very simple
and efficient greedy algorithm works [5].

In this section, wewill studymatroids weighted in a linear
dioid (notice that all the examples in Examples 5 and 6 are
linear) and the maximum independent set problem.

We suppose that (𝐾, ⊕, ⊗, 1, 0) is a linear dioid. Let 𝐸 be
a finite set and 𝑀 = (𝐸,I) a matroid weighted in 𝐾 with
𝑤 : 𝐸 → 𝐾 being the weighted function.

In the optimization theory, the maximum independent
set problem (MISP, for short) is to find an independent subset
𝐽 ∈ I(𝑀) such that 𝑤(𝐽) = max{𝑤(𝐼) | 𝐼 ∈ I(𝑀)}. We will
use the famous greedy algorithm to deal with this problem.

The greedy algorithm:

(1) labeling𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
} such that𝑤(𝑒

1
) ⪰ 𝑤(𝑒

2
) ⪰

⋅ ⋅ ⋅ ⪰ (𝑒
𝑚
);

(2) 𝐽 =: 0;
(3) for 𝑖 = 1 to 𝑛 do, if 𝐽 ∪ 𝑒

𝑖
∈ I(𝑀), then 𝐽 ← 𝐽 ∪ 𝑒

𝑖
.

Proposition 11. The greedy algorithm has an optimal solution.

Proof. Suppose that 𝐽 is a solution of GA. Then 𝐽 ∈ I(𝑀).
For any 𝐽 ∈ I(𝑀), we need to show that 𝑤(𝐽) ⪰ 𝑤(𝐽).
Suppose that 𝐽 = {𝑒

𝑖1
, 𝑒
𝑖2
, . . . , 𝑒

𝑖𝑘
} and 𝐽 = {𝑒

𝑗1
, 𝑒
𝑗2
, . . . , 𝑒

𝑗𝑙
}

with 𝑤(𝑒
𝑖1
) ⪰ 𝑤(𝑒

𝑖2
) ⪰ ⋅ ⋅ ⋅ ⪰ 𝑤(𝑒

𝑖𝑘
) and 𝑤(𝑒

𝑗1
) ⪰ 𝑤(𝑒

𝑗2
) ⪰

⋅ ⋅ ⋅ ⪰ 𝑤(𝑒
𝑗𝑙
). On one hand, by the algorithm, we have 𝑖

𝑘
≥ 𝑗
𝑙
;

that is, |𝐽| ≥ |𝐽|. On the other hand, if 𝑤(𝐽) ⪰ 𝑤(𝐽), then
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there exits a least integral number 𝑠 > 0 such that 𝑤(𝑒
𝑗𝑠
) ⪰

𝑤(𝑤
𝑖𝑠
). Put 𝐼 = {𝑒

𝑖1
, 𝑒
𝑖2
, . . . , 𝑒

𝑖𝑠
} and 𝑋 = 𝐼 ∪ {𝑒

𝑗1
, 𝑒
𝑗2
, . . . , 𝑒

𝑗𝑠
}.

We have 𝐼 ∈ I(𝑀 | 𝑋). By the minimality of 𝑠, for any
𝑡 ∈ {1, 2, . . . , 𝑠}, if 𝑒

𝑗𝑡
∉ 𝐼, then 𝐼 ∪ 𝑒

𝑗𝑡
∉ I(𝑀 | 𝑋).

Hence 𝑟(𝑀 | 𝑋) = 𝑠 − 1, which is contradicting with
{𝑒
𝑗1
, 𝑒
𝑗2
, . . . , 𝑒

𝑗𝑠
} ∈ I(𝑀 | 𝑋). For a summary, we have

𝑤(𝐽) ⪯ 𝑤(𝐽). This completes the proof.

Proposition 12. Suppose that 𝑀 = (𝐸,I) is a matroid
and 𝐾 is a linear dioid. Let 𝑃(𝑀) = {𝑥 ∈ 𝐾𝐸 | ∀𝐴 ⊆

𝐸, 𝑥(𝐴) ⪯ 𝑟(𝐴)}. Then the set of maximal points is precisely
the characteristic vectors of all independent sets in𝑀.

Proof. Suppose that 𝑥 is a maximal point of 𝑃(𝑀). Then
there exists a vector 𝑐 ∈ 𝐾𝐸 such that the following optimal
problem has a unique solution.
Problem. max{𝑤 ⋅ 𝑥 | 𝑥 ∈ 𝑃(𝑀)}, where 𝑤 : 𝐸 → 𝐾 is a
weighted function.

By greedy algorithm, the solution of this problem has the
form 𝑥

𝐽
for some independent set 𝐽. Then 𝑥 = 𝑥

𝐽
. On the

other hand, if 𝐽 ∈ I(𝑀), then it is easily seen that 𝑥
𝐽
is a

maximal point of 𝑃(𝑀).

In [8, 9], for a complete lattice 𝐿, Shi introduced an
approach to fuzzification ofmatroids, namely, an𝐿-fuzzifying
matroid, which are successfully characterized by a kind
of fuzzy rank functions. Consequently, the corresponding
axioms of bases and circuits, dependent sets, and closure
operators are established, by which 𝐿-fuzzifying matroids are
also equivalently characterized [10–12].

Of course, for a complete lattice 𝐿, we know that
(𝐿, ∨, ∧, 0, 1) is a special dioid. So, a natural question arises:
Can we generalize the truth value table 𝐿 of Shi’s 𝐿-fuzzifying
matroid to a dioid? We here try a first attempt to give a
positive answer.

Definition 13. Suppose that (𝐾, ⊕, ⊗, 0, 1) is a dioid and let 𝐸
be a finite set. A map I : 2

𝐸 → 𝐾 is a map satisfying the
followin:

(FI1) I(0) = 1;

(FI2) if 𝐴 ⊆ 𝐵, thenI(𝐵) ⪯ I(𝐴);

(FI3) if |𝐴| < |𝐵|, thenI(𝐴)⊗I(𝐵) ⪯ ⊕
𝑒∈𝐵−𝐴

I(𝐴∪𝑒).

The pair (𝐸,I) is called a 𝐾-fuzzifying matroid.

By [12], we know that a graphweighted in the unit interval
[0, 1] induces a [0, 1]-fuzzifying matroid in a natural way. For
a dioid𝐾, we have the similar results.

Proposition 14. Suppose that𝐺 = (𝐸, 𝑉, 𝑤) is aweighed graph
in a dioid (𝐾, ⊕, ⊗). Define J

𝐺
: 2𝐸 → 𝐾 by I

𝐺
(𝐴) =

⊗
𝑥∈𝐴
𝑥 if 𝐴 is independent and 0 otherwise. Then (𝐸,I) is a

𝐾-fuzzifying matroid.

Proof. The proof is a routine.
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