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J. Baštinec,1 J. Diblı́k,1, 2 and Z. Šmarda1
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The paper investigates an equation with single delay ẋ(t) = −c(t)x(t−τ(t)), where τ : [t0 − r,∞) →
(0, r], r > 0, t0 ∈ R, and c : [t0 − r,∞) → (0,∞) are continuous functions, and the difference t− τ(t)
is an increasing function. Its purpose is to derive a new explicit integral criterion for the existence
of a positive solution in terms of c and τ . An overview of known relevant criteria is provided, and
relevant comparisons are also given.

1. Introduction

Let us consider an equation

ẋ(t) = −c(t)x(t − τ(t)), (1.1)

where τ : [t0 − r,∞) → R
+ is a continuous function, t0 ∈ R, 0 < r = const R

+ = (0,∞), τ(t) ≤ r
if t ∈ [t0 − r,∞), and c : [t0 − r,∞) → R

+ is a continuous function. The symbol “·” denotes the
right-hand derivative.

A function x is called a solution of (1.1) corresponding to an initial point t∗ ∈ [t0,∞) if
x is defined and is continuous on [t∗ − r,∞) and differentiable on [t∗,∞) and satisfies (1.1) for
t ≥ t∗. We denote by x(t∗, ϕ)(t) a solution of (1.1) corresponding to an initial point t∗ ∈ [t0,∞)
generated by a continuous initial function ϕ : [t∗ − r, t∗] → R. In the case of a linear equation
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(1.1), the solution x(t∗, ϕ)(t) is unique on its maximal existence interval [t∗,∞) (see, e.g., [1]).
If in the paper an initial point is not indicated, t0 is assumed.

As is customary, a solution of (1.1) corresponding to an initial point t∗ ∈ [t0,∞)
is called oscillatory if it has arbitrarily large zeros. Otherwise it is called nonoscillatory. A
nonoscillatory solution x of (1.1) corresponding to an initial point t∗ is called positive (negative)
if x(t) > 0 (x(t) < 0) on [t∗ − r,∞). A nonoscillatory solution x of (1.1) corresponding to
an initial point t∗ is called eventually positive (eventually negative) if there exists t∗∗ > t∗ such
that x(t) > 0 (x(t) < 0) on [t∗∗,∞). Instead of the terms “eventually positive” (“eventually
negative”), the phrase “positive for t → ∞” (“negative for t → ∞”) is very often used.

In order to simplify the formulation of results in the paper, we do not mention all the
technical conditions. Typically, we do not mention that inequalities are valid on an interval
[t0,∞), tacitly assuming that t0 is so large that the necessary assumptions hold on the interval
in question, nor do we mention an initial point t∗ when we characterize a property of a
solution.

In the paper, we derive a new explicit criterion for the existence of a positive solution
of the scalar differential equation with delay (1.1). Although, by its form, (1.1) is a simple
equation, it plays an important role in the theory of differential equations with delay. One
of the reasons is that, because of its simplicity, it is often used for testing new results and
comparing them with previous ones.

In the literature there are numerous criteria for positivity even for equations more
general than (1.1).

Below, we give an overview of previous results (we assume that above assumptions
are true in spite of the fact that some of criteria are valid even under weaker assumptions).

In [2] the following criterion for the existence of a nonoscillatory solution is given.

Theorem 1.1. If

lim sup
t→∞

∫ t

t−τ(t)
c(s)ds <

1
e
, (1.2)

then (1.1) has a nonoscillatory solution.

In addition to this, according to a result in [2], we have the following.

Theorem 1.2. If

∫ t

t−τ(t)
c(s)ds ≤ 1

e
, (1.3)

for all sufficiently large t, then (1.1) has a nonoscillatory solution.

In [3], the authors consider (1.1) in the form

ẋ(t) = −
(
1
e
+ a(t)

)
x(t − 1), t ≥ 1, (1.4)

and prove the following.
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Theorem 1.3. Assume that

a(t) ≤ 1
8et2

, (1.5)

for all sufficiently large t. Then (1.4) has a solution

x(t) ≥
√
t e−t. (1.6)

In [4], Theorem 1.3 is improved to the following theorem.

Theorem 1.4. Assume that

a(t) ≤ 1
8et2

(
1 +

1

ln2t

)
, (1.7)

for all sufficiently large t. Then (1.4) has a solution

x(t) ≥
√
t ln te−t. (1.8)

The authors then demonstrate that, in terms of the values of the coefficient of the
equation itself, inequalities (1.5), (1.7) are sharp in a sense because the following result holds.

Theorem 1.5 (see [4]). Let τ(t) = τ = const in (1.1). Assume that

lim inf
t→∞

c(t) =
1
τe

,

lim inf
t→∞

[(
c(t) − 1

τe

)
t2
]
=

τ

8e
,

lim inf
t→∞

{[(
c(t) − 1

τe

)
t2 − τ

8e

]
ln2t

}
= C >

τ

8e
.

(1.9)

Then all solutions of (1.1) oscillate.

Motivated by Theorems 1.3–1.5, the second author gave in [5] a generalization of these
results. To formulate them we need to introduce the concept of an iterated logarithm.

Definition 1.6. Let one calls the expression lnkt, k ≥ 1, defined by the formula

lnkt = ln ln · · · ln t︸ ︷︷ ︸
k

, k ≥ 1, (1.10)

a kth iterated logarithm if t > expk−21, where

expkt ≡
(
exp

(
exp

(· · · exp t
)))

︸ ︷︷ ︸
k

, k ≥ 1,
(1.11)
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exp0t ≡ t, and exp−1t ≡ 0. Moreover, let us define ln0t ≡ t. Instead of expressions ln0t, ln1t, we
will write only t and ln t in the sequel.

Theorem 1.7. Let τ(t) = τ = const in (1.1).

(A) Let one assumes that

c(t) ≤ 1
eτ

+
τ

8et2
+

τ

8e(t ln t)2
+

τ

8e(t ln t ln2t)
2
+ · · · + τ

8e(t ln t ln2t · · · lnkt)
2 (1.12)

for t → ∞ and an integer k ≥ 0. Then there is a positive solution x = x(t) of (1.1).
Moreover,

x(t) < e−t/τ
√
t ln t ln2t · · · lnkt (1.13)

as t → ∞.

(B) Let one assumes that

c(t) ≥ 1
eτ

+
τ

8et2
+

τ

8e(t ln t)2
+ · · · + τ

8e(t ln t ln2t · · · lnk−1t)
2
+

θτ

8e(t ln t ln2t · · · lnkt)
2 (1.14)

for t → ∞, an integer k ≥ 0, and a constant θ > 1. Then all solutions of (1.1) oscillate.

Recently, Theorem 1.7 has been generalized for variable delay in [6].

Theorem 1.8. (A) Let 0 ≤ τ(t) ≤ r for t → ∞, and let condition (A) of Theorem 1.7 hold. Then
(1.1) has a nonoscillatory solution.

(B) Let τ(t) ≥ r > 0 for t → ∞, and let condition (B) of Theorem 1.7 hold. Then all solutions
of (1.1) oscillate.

For further criteria on the existence of positive solutions, we refer, for example, to
papers [6–14], books [15–18], and relevant references therein.

2. An Integral Positivity Criterion, Comparisons, and Open Problems

Theorems 1.3–1.8 in part 1 are formulated in terms of the values of the coefficients c or a
itself whereas Theorems 1.1 and 1.2 are formulated in terms of the average of the coefficient
c. In accordance with the opinion presented, for example, in [4], we observe that, sometimes,
conditions of the first of the types mentioned yield stronger results. However, conditions of
the second type are, in general, preferable.

The following criterion is of an integral type (i.e., of the second type) and uses the term
“average” of coefficient c of the form

∫ t

t−τ(t)
c(s)ω(s)ds (2.1)

with an appropriate weight function ω.
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Theorem 2.1. Let one assumes that

∫ t

t−τ(t)
c(s)e−τ(s)/(2s)ds ≤ 1

e
− τ(t)

2et
, (2.2)

for t ∈ [t0,∞). Then there exists a positive solution x = x(t) of (1.1) on [t0,∞). Moreover,

x(t) < exp

(
−e

∫ t

t0

c(s)e−τ(s)/(2s)ds

)
(2.3)

for t ∈ [t0,∞).

The proof of this criterion, given in part 3, is not difficult and uses the retract technique.
Now we consider a simple example of (1.1) to show that known criteria cannot be applied.
For simplicity, a constant delay τ(t) = τ = const is assumed. The symbol O (big “O”) below
stands for the Landau order symbol.

Example 2.2. Let

c(t) =
1
τe

+
1

2τe
eτ/(2t) sin

2πt
τ

(2.4)

be chosen in (1.1); that is, we consider an equation

ẋ(t) = −
(

1
τe

+
1

2τe
eτ/(2t) sin

2πt
τ

)
x(t − τ). (2.5)

Let us apply Theorem 2.1. Then the integral on the left-hand side of inequality (2.2) equals

∫ t

t−τ
c(s)e−τ/(2s)ds =

∫ t

t−τ

(
1
τe

+
1

2τe
eτ/(2s) sin

2πs
τ

)
e−τ/(2s)ds = I1(t) + I2(t), (2.6)

where

I1(t) =
1
τe

∫ t

t−τ
e−τ/(2s)ds,

I2(t) =
1

2τe

∫ t

t−τ
sin

2πs
τ

ds.

(2.7)
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Obviously I2(t) = 0. It remains to estimate I1(t) in order to show that inequality (2.2) holds.
We develop an asymptotic decomposition for I1(t) for t → ∞ with the necessary degree of
accuracy. We obtain

I1(t) =
1
τe

∫ t

t−τ
e−τ/(2s)ds =

1
τe

∫ t

t−τ

(
1 − τ

2s
+

τ2

8s2
+O

(
1
s3

))
ds

=
1
e
− 1
2e

ln
1

1 − (τ/t)
− τ

8e

(
1
t
− 1
t − τ

)
+O

(
1
t3

)

=
1
e
− 1
2e

ln
(
1 +

1
τ
+

1
τ2

+O
(
1
t3

))
− τ

8et

(
1 − 1

1 − (τ/t)

)
+O

(
1
t3

)

=
1
e
− 1
2e

(
τ

t
+

τ2

2t2

)
+

τ2

8et2
+O

(
1
t3

)

=
1
e
− τ

2et
− τ2

8et2
+O

(
1
t3

)
.

(2.8)

This means that

∫ t

t−τ
c(s)e−τ/(2s)ds =

1
e
− τ

2et
− τ2

8et2
+O

(
1
t3

)
<

1
e
− τ

2et
(2.9)

and inequality (2.2) holds. By Theorem 2.1, (2.5) has a positive solution.

We use this example to compare Theorem 2.1 with known criteria mentioned in
Section 1.

Comparison with Theorems 1.1 and 1.2

We show that the results mentioned cannot be applied to Example 2.2. For this, we will
analyse the integral

∫ t

t−τ
c(s)ds =

∫ t

t−τ

(
1
τe

+
1

2τe
eτ/(2s) sin

2πs
τ

)
ds. (2.10)

For an arbitrarily large integer k, we set tk = 10kτ . Then tk − τ = (10k − 1)τ and

∫ tk

tk−τ
c(s)ds =

∫10kτ

(10k−1)τ

(
1
τe

+
1

2τe
eτ/(2s) sin

2πs
τ

)
ds = J1(k) + J2(k), (2.11)
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where

J1(k) =
∫10kτ

(10k−1)τ

1
τe

ds =
1
e
,

J2(k) =
1

2τe

∫10kτ

(10k−1)τ
eτ/(2s) sin

2πs
τ

ds.

(2.12)

Then

J2(k) =
1

2τe

∫ (10k−(1/2))τ

(10k−1)τ
eτ/(2s) sin

2πs
τ

ds +
1

2τe

∫10kτ

(10k−(1/2))τ
eτ/(2s) sin

2πs
τ

ds

>
1

2τe
e1/(20k−1)

∫ (10k−(1/2))τ

(10k−1)τ
sin

2πs
τ

ds +
1

2τe
e1/(20k−1)

∫10kτ

(10k−(1/2))τ
sin

2πs
τ

ds

=
1

2τe
e1/(20k−1)

∫10kτ

(10k−1)τ
sin

2πs
τ

ds = 0.

(2.13)

We conclude that, for every k, the inequality

∫ tk

tk−τ
c(s)ds = J1(k) + J2(k) >

1
e

(2.14)

holds. Since k can be sufficiently large with limk→∞tk = ∞, inequalities (1.2) and (1.3) in
Theorems 1.1 and 1.2 are not valid for all sufficiently large t because at least the values t = tk
must be excluded. We conclude that Theorems 1.1 and 1.2 are not applicable to (2.5).

Comparison with Theorems 1.3–1.8

Using Example 2.2, we show again that the results mentioned cannot be applied. We will
demonstrate the nonapplicability of Theorem 1.7. The same arguments can be used for the
remaining theorems.

For an arbitrarily large integer p, we set tp = (10p − (3/4))τ . Then,

c
(
tp
)
=

1
τe

+
1

2τe
eτ/(2tp) sin

2πtp
τ

=
1
τe

+
1

2τe
e1/(20p−(3/4)) sin

(
20p −

(
3
2

))
π

=
1
τe

+
1

2τe
e1/(20p−(3/4)).

(2.15)

Let t = tp. Then inequality (1.14) becomes

c
(
tp
)
=

1
τe

+
1

2τe
e1/(20p−(3/4))

≤ 1
eτ

+
τ

8et2p
+

τ

8e
(
tp ln tp

)2 +
τ

8e
(
tp ln tp ln2tp

)2 + · · · + τ

8e
(
tp ln tp ln2tp · · · lnktp

)2 .
(2.16)
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As p → ∞, we have tp → ∞. Inequality (2.16) does not hold because, for p → ∞, the left-
hand side and the right-hand side tend to 3/(2eτ) and 1/(eτ), respectively, but the inequality

3
2eτ

≤ 1
eτ

(2.17)

does not hold.
The sharpness of Theorem 2.1 will be illustrated by the following example.

Example 2.3. Let τ(t) = τ = const and

c(t) =
1
τe

+
τε

8et2
, (2.18)

where a parameter ε < 1 is chosen in (1.1); that is, we consider an equation

ẋ(t) = −
(

1
τe

+
τε

8et2

)
x(t − τ). (2.19)

Let us apply Theorem 2.1. Then the integral on the left-hand side of inequality (2.2) equals

I(t) =
∫ t

t−τ
c(s)e−τ/(2s)ds =

∫ t

t−τ

(
1
τe

+
τε

8et2

)
e−τ/(2s)ds. (2.20)

We develop an asymptotic decomposition for I(t) for t → ∞ with the necessary degree
of accuracy. Applying some similar asymptotic decompositions obtained by calculating the
integral I1(t) in Example 2.2, we get

I(t) =
∫ t

t−τ

(
1
τe

+
τε

8es2

)
e−τ/(2s)ds

=
∫ t

t−τ

(
1
τe

+
τε

8es2

)(
1 − τ

2s
+

τ2

8s2
+O

(
1
s3

))
ds

=
∫ t

t−τ

(
1
τe

+
τε

8es2

)(
1 − τ

2s
+

τ2

8s2
+O

(
1
s3

))
ds

=
∫ t

t−τ

(
1
τe

− 1
2es

+
τ2(1 + ε)
8es2

)
ds

=
1
e
− 1
2e

(
τ

t
+

τ2

2t2

)
+
τ2(1 + ε)

8et2
+O

(
1
t3

)

=
1
e
− τ

2et
+
τ2(ε − 1)

8et2
+O

(
1
t3

)
.

(2.21)
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This means that Theorem 2.1 will be applicable to (2.19) if inequality (2.2), that is, the
inequality

∫ t

t−τ
c(s)e−τ/(2s) ds =

1
e
− τ

2et
+
τ2(ε − 1)

8et2
+O

(
1
t3

)
<

1
e
− τ

2et
, (2.22)

holds. This is true since ε < 1. We finish this example by concluding that, in the case of
a constant delay, Theorem 2.1 gives a result not equivalent to that given by Theorems 1.3–
1.8. Nevertheless, as can be seen from the form of the function c in (2.18), which almost
coincides with the first two terms of the auxiliary comparison function on the right-hand side
of inequality (1.12) in Theorem 1.7, the result of Theorem 2.1 is not so far from a “sharp”
criterion.

At the end of this part, we will formulate open problem not answered in this paper as
a mathematical challenge for further research in this field.

Open Problem 1. Is it possible to improve the result of Theorem 2.1 in such a way that the new
result completely covers the parts (A) of Theorems 1.7 and 1.8?

3. Proof of Theorem 2.1

Let Cr([−r, 0],R), be the Banach space of continuous functions from the interval [−r, 0] into R

equippedwith the supremum norm. If σ ∈ R,A ≥ 0, and x : [σ−r, σ+A] → R is a continuous
function, then, for each t ∈ [σ, σ + A], we define the function xt ∈ Cr by xt(θ) := x(t + θ),
θ ∈ [−r, 0]. Let us consider a retarded functional differential equation

ẋ(t) = f(t, xt), (3.1)

where f : Ω 
→ R, Ω ⊆ R×Cr is a continuous quasi-bounded mapwhich satisfies a local Lipschitz
condition with respect to the second argument. We assume that the derivatives in the system
(3.1) are at least right-sided.

In accordance with [1], a function x is said to be a solution of (3.1) on [σ − r, σ + A)
with A > 0 if x : [σ − r, σ + A) → R is a continuous function, (t, xt) ∈ Ω for t ∈ [σ, σ + A),
and x satisfies (3.1) on [σ, σ + A). In view of the above conditions, each element (σ, ϕ) ∈ Ω
determines a unique noncontinuable solution x(σ, ϕ) of system (3.1) through (σ, ϕ) ∈ Ω on
its maximal existence interval. This solution depends continuously on the initial data [19].

For continuously differentiable functions ρ, δ : [t0 − r,∞) → R with ρ(t) < δ(t) for
t ∈ [t0 − r,∞), we introduce the sets

Ω := [t0 − r,∞) × Cr,

ω :=
{
(t, x) : t ≥ t0 − r, ρ(t) < x < δ(t)

}
.

(3.2)

In the sequel, we employ the following particular case of Theorem 1.1 from [10]. Its
proof uses the topological (Ważewski’s) retract principle known in the theory of ordinary
differential equations. The relevant references can be found, for example, in [10].
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Theorem 3.1. Let for t ≥ t0, φ ∈ Cr , and (t + θ, φ(θ)) ∈ ω, θ ∈ [−r, 0), the inequalities

δ′(t) < f
(
t, φ

)
when φ(0) = δ(t), (3.3)

ρ′(t) > f
(
t, φ

)
when φ(0) = ρ(t) (3.4)

hold. Then there exists a solution of (3.1) on [t0 − r,∞) such that

ρ(t) < x(t) < δ(t), t ∈ [t0 − r,∞). (3.5)

Proof of Theorem 2.1. In our case f(t, xt) := −c(t)x(t − τ(t)) and f(t, φ) := −c(t)φ(−τ(t)). We
will apply Theorem 3.1 with

f
(
t, φ

)
= −c(t)φ(−τ(t)),
ρ(t) = 0,

δ(t) = exp

(
−e

∫ t

t0

c(s)e−τ(s)/(2s)ds

)
,

ω =

{
(t, x) : t ≥ t0 − r, 0 < x < exp

(
−e

∫ t

t0

c(s)e−τ(s)/(2s)ds

)}
.

(3.6)

First we verify inequality (3.3). We get

δ′(t) − f
(
t, φ

)
=

[
exp

(
−e

∫ t

t0

c(s)e−τ(s)/(2s)ds

)]′
+ c(t)φ(−τ(t))

= −e · c(t)e−τ(t)/(2t) exp
(
−e

∫ t

t0

c(s)e−τ(s)/(2s)ds

)
+ c(t)φ(−τ(t)) = (∗).

(3.7)

Since, in accordance with the assumptions of the theorem, (t + θ, φ(θ)) ∈ ω if θ ∈ [−r, 0), we
can estimate the last term φ(−τ(t)):

φ(−τ(t)) < δ(t − τ(t)) = exp

(
−e

∫ t−τ(t)

t0

c(s)e−τ(s)/(2s)ds

)
. (3.8)
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Continuing, we have

(∗) < −e · c(t)e−τ(t)/(2t) exp
(
−e

∫ t

t0

c(s)e−τ(s)/(2s)ds

)

+ c(t) exp

(
−e

∫ t−τ(t)

t0

c(s)e−τ(s)/(2s)ds

)

= c(t) exp

(
−e

∫ t−τ(t)

t0

c(s)e−τ(s)/(2s)ds

)

×
[
−e · e−τ(t)/(2t) exp

(
−e

∫ t

t−τ(t)
c(s)e−τ(s)/(2s)ds

)
+ 1

]
= (∗∗).

(3.9)

Using inequality (2.2), we can obtain the estimate

exp

(
−e

∫ t

t−τ(t)
c(s)e−τ(s)/(2s)ds

)
≥ e−1 · eτ(t)/(2t). (3.10)

Therefore,

(∗∗) ≤ c(t) exp

(
−e

∫ t−τ(t)

t0

c(s)e−τ(s)/(2s)ds

)[
−e · e−τ(t)/(2t) · e−1 · eτ(t)/(2t) + 1

]
= 0, (3.11)

and inequality (3.3) holds because δ′(t) − f(t, φ) < 0. It is much easier is to verify inequality
(3.4) since

ρ′(t) − f
(
t, φ

)
= 0 − (−c(t)φ(−τ(t))) = c(t)φ(−τ(t)) > 0. (3.12)

All assumptions of Theorem 3.1 are fulfilled, and, therefore, by (3.5), there exists a solution
x : [t0 − r,∞) → R

∗ such that

0 < x(t) < exp

(
−e

∫ t

t0

c(s)e−τ(s)/(2s)ds

)
. (3.13)
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