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Abstract
Distributed Systems as an area of research has seen a gradual evolution over the last

few decades fuelled by the application of new use cases to technological developments.
Cloud Computing is one such paradigm that has evolved from the adoption of Utility
Computing, Virtualization and Service Oriented Architectures. Cloud Computing can
be distinguished from other distributed paradigms though the provisioning of resources,
data and software to users on demand in a similar fashion to the services provided by the
electric power industry. Commercial Cloud offerings are expected to meet the Quality of
Service (QoS) requirements of a consumer via Service Level Agreements (SLA). In real-
ity, Cloud providers rarely provide QoS beyond best effort as the intrinsic fault tolerant
nature of currently deployed applications require little more. Nevertheless, with enhance-
ments to QoS in Cloud Computing the range of deployable applications can be improved
and thus advance the overall adoption of the paradigm.

This thesis tackles the shortcoming of QoS in Cloud Computing though novel en-
hancements to Cloud resource management. Since QoS is a broad subject area, the scope
of research within has been narrowed down to two specific areas of interest: performance
and scalability. In this thesis, the performance and scalability of Cloud technology are as-
certained through performance evaluations on Hypervisor (such as XEN and KVM) and
Cloud Infrastructure Managers (such as OpenNebula and Nimbus). Recommendations
are made on how to resolve performance bottlenecks and on the suitability of certain
technology for specific Cloud applications. Contextualisation and Re-contextualization
mechanisms are introduced for self-configuring virtual Cloud resources at operation time
while managing resources and software dependencies at the infrastructure and platform
layer of the Cloud software stack. In addition, the thesis aims to improve the adoption of
the Cloud by exploring novel techniques for composing, configuring and deploying Grid
Middleware onto Cloud resources.

The core contributions of this thesis are as follows: i) A prototype software tool for
the (re-)contextualization of Cloud applications, platforms, infrastructures and resource
dependencies that enables improvements to performance, scalability and fault tolerance.
ii) Performance results and recommendations on the topic of Virtual Machine (VM) im-
age propagation delay in Cloud infrastructure technology, Paravirtualized block device
drivers and VM image standards in Hypervisor technology, for the purpose of ascertain-
ing current limitations in Cloud QoS. iii) A software prototype system of an interoperable
self-configuring Virtual Grid infrastructure, deployable on to a range of Cloud providers,
to enhance the QoS achievable by Grid applications.
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Chapter 1

Introduction

1.1 Research Motivation

Quality of Service (QoS) plays a critical role in the effective provisioning and reservation
of resources within service oriented distributed systems and has been widely investigated
in the now well established paradigm of Grid Computing [165]. The emergence of a
new paradigm, Cloud Computing, continues the natural evolution of Distributed Systems
(Figure 1.1) to cater for changes in application domains and system requirements.

Figure 1.1. The Evolution of Distributed Systems

Virtualization of resources, a key technology underlying Cloud Computing, sets forth
new challenges to be investigated within QoS and presents opportunities to apply the
knowledge and lessons learnt from Grid Computing. QoS has been a topic of great inter-
est in Distributed Computing paradigms, such as Grid Computing and High Performance
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Computing [1, 45, 143]. The primary goal of this thesis is to address QoS specifically
in the context of the nascent paradigm of Cloud Computing and its current best effort
approaches to provisioning resources that are limiting its adoption. In reality, Cloud
providers rarely provide QoS beyond best-effort, “you get what you are given”, as the
intrinsic fault tolerant nature of currently deployed Cloud applications require little more.
Nevertheless, with enhancements to QoS in Cloud Computing the range of deployable
application can be improved and thus advance the overall adoption of the paradigm.

QoS is a broad topic in Distributed Systems and is most often referred to as the
resource reservation control mechanisms in place to guarantee a certain level of per-
formance and availability of a service. The scope of the thesis is primarily concerned
with the management and performance of resources such as processors, memory, storage
and networks, in Cloud Computing. A defined QoS is not just limited to guarantees of
performance and availability and can cover other aspects of service quality, which are
outside the scope of the thesis, such as security and dependability. The problems sur-
rounding resource provisioning and reservation are non-trivial for all but the most basic
best effort guarantees and the problems behind resource capacity planning are often non-
deterministic polynomial-time hard to solve [117, 234, 237].

The configuration of virtual Cloud resources and applications plays a role in the maxi-
mum obtainable QoS that can be achieved. Specifically, issues of performance, scalability
and fault tolerance are effected if these elements of a Cloud are not configured correctly,
this is discussed in detail as part of Chapter 6. An example of this could the misconfigura-
tion of an application’s software stack, preventing it from scaling across multiple virtual
cloud resources.

Figure 1.2. Quality of Service Actors

QoS provides a level of assurance that the resource requirements of an application
are strictly supported. QoS models are associated with End-Users, Providers and often
Brokers (Figure 1.2), involve resource capacity planning via the use of schedulers, load
balancers and the utilisation of Service Level Agreements (SLA). SLAs provide a facility
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to agree upon QoS between an End-User and Provider, defining the End-User’s resource
requirements and Provider’s guarantees, thus assuring an End-User that they will receive
the services they have paid for.

The work presented in this thesis is evaluated on a relatively small Cloud testbed.
This places limitations on the usefulness of research results due to the inherent size of
real Cloud infrastructures that can be in the order of hundreds of thousands of physical
machines. No Cloud testbed will thus be a true representation of a real Cloud but the
limitations can be overcome if the effects of small resource numbers are omitted from
experimental variables within any evaluation. This issue is discussed in further detail
within Section 5.4.1.

There are a number of tools available that facility the QoS of Cloud applications and
more specifically scalability or scale out in Cloud specific terminology. An example of
which is FlexiScale [76] that provide self-service provisioning of Cloud resources via a
web-based control panel for end-users or a proprietary API for programmatic unattended
scale out. Further details of the FlexiScale tool and others that enable scalability can
be found in Chapter 2. Additionally, generic approaches to scalability in Clouds can be
taken such as load balancing and redundancy but are not limited to Cloud based distributed
systems.

1.2 Aim and Objectives

The aim of the thesis is to answer the following research question:

• How can QoS provisioning within Cloud Computing be improved through research
into novel Resource Management?

This aim was achieved by investigating Resource Management and Quality of Ser-
vice in Cloud Computing as part of four research activities that were identified as having
the potential for creating novel solutions to problems directly related to Cloud Resource
Management. The activities were as follows:

1. Scalability in Clouds: This research activity involved the investigation of scala-
bility related issues in Cloud Computing and consisted of evaluating current tech-
nology and tools for performance bottlenecks, which could potentially limit the
number of concurrent users able to access Cloud based services.

2. Fault Tolerant in Clouds: In this activity concepts such as availability and current
architectures and tools were reviewed that hold relevance to the fault tolerant nature
of Cloud resources.
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3. Interoperability in Clouds: As part of this activity, the interoperability of different
Cloud technologies designed to perform the same functionality in the software stack
was analysed. Areas of improvement were distinguished that currently held back
the adoption of Cloud Computing.

4. Cloud Resources for the Grid: This activity involved drawing parallels with ex-
isting Grid systems to find areas of common ground, where Clouds could leverage
existing research results from the relatively mature paradigm of Grids Computing.

These activities proved to be highly relevant in investigating the research aim. Ex-
ploring these four activities in turn, provided the three research objectives of this thesis
and were envisioned by identifying limitations in current research through the critical ap-
praisal of the literature. Four activities were chosen to mitigate the possible risk of failure
to deliver research results. Thus the Objectives of this research are as follows:

• Objective 1 (O.1) Ascertain and present recommendation on the performance, scal-
ability and availability of Cloud technology, thus identifying areas where QoS can
be improved. The recommendations hold pertinence to all actors of the Cloud
ecosystem but are of most relevance to Cloud infrastructure providers and appli-
cation developers wishing to minimise the economical impact that poor QoS provi-
sioning can bring.

• Objective 2 (O.2) Enable enhancements to performance, scalability and fault tol-
erance in Cloud Computing improving QoS provisioning above current best-effort
approaches.

• Objective 3 (O.3) Enable the use of interoperable Cloud Resources by the Grid
community, improving the QoS obtainable by an application.

1.3 Methodology

In order to achieve the thesis objectives, a research methodology must be followed that
exhibits scientific method and merit. There are two major research paradigms: quanti-
tative and qualitative research [53]. The research performed in this thesis is based on
the quantitative analysis of repeatable empirical experiments. From the literature there is
evidence of the application of three research methodologies in Distributed Systems, they
are:
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• Prototyping [30]: Create a software prototype and validating its functionality against
a set of requirements or existing solutions.

• Simulation [38]: Simulating a systems using a range of simulation methods and
tools that can be validated against mathematical models or prototype implementa-
tions.

• Mathematical Modelling [22]: The formulation of mathematical models of systems,
validated against prototypes or simulations.

In this thesis all three research methodologies are deployed but an emphasis is made on
the use of prototyping and the evaluation of prototypes to fulfil and validate the objectives
respectively. Mathematical modelling is employed only to facilitate the understanding
of the reader. Prototyping is present in Chapter 6, simulation in Chapters 5, 6 & 7 and
mathematical modelling in Section 7.3.3. Experiments on existing software and proto-
types are developed to ascertaining the performance, scalability and availability of Cloud
Computing environments and technology, using a wide variety of quantitative metrics and
are gathered over multiple experimental iterations to reduce the effects of variance.

1.4 Main Contributions

The main contributions of this thesis were achieved by identifying and addressing the
current limitations in Cloud Computing through cutting edge, contemporary research.
These contributions that directly relate to the previously stated objectives are:

1. Experimental results on the performance and scalability of Cloud resource man-
agement software and Virtualization technology. This realises objective O.1 and
the results of this research can be found in Chapter 5.

2. A software prototype of a Contextualization tool and Recontextualization architec-
ture for the purpose of configuring Cloud application’s and their software stack, at
deployment and operation time, for the purpose of enhancing performance, scala-
bility and fault tolerance. For clarity, Contextualization at a high level is defined as
the process of configuration for the purpose of providing unique identities to Cloud
software components. Recontextualization is an extension of this concept where
by Cloud software components are reconfigured and provided with a new identity.
This realises objective O.2, the details of which can be found in Chapter 6.
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3. A software prototype of a Virtual Grid architecture enabling the deployment of Grid
applications onto public and private Cloud providers, while maintaining interoper-
ability from the provider’s resource management stack. This realises objective O.3
and is discussed in Chapter 7.

A full list of all contributions of this thesis are presented in Chapter 8 in Section 8.2.

1.5 Thesis Overview

The remaining chapters of this thesis are as follows:

• Chapter 2: Introduces the concept of Cloud Computing, its classifications, deploy-
ment models and types. The landscape of Cloud architectures, both open source
and commercial, are presented. Finally, the topic of Resource Management within
Cloud Computing, including elasticity, scheduling and resource monitoring, are dis-
cussed. Additionally, the chapter presents the concept of Virtualization and virtual
resource management in the context of Cloud Computing. The technology behind
Virtualization, the Hypervisor, is discussed and classified with the techniques it uses
to virtualise resources. Finally, a survey of contemporary Hypervisors, both open
source and commercial, is presented including a discussion on their applicability to
Cloud Computing.

• Chapter 3: Introduces Cloud application composition and the heritage it draws
on from within the topic of Service Oriented Architectures. Cloud Engineering
is discussed as a systematic approach to the creation and composition of Cloud
applications and a number of issues to consider, when contemplating the use of
Cloud Computing, are discussed.

• Chapter 4: Discusses the paradigm of Grid Computing, including architectural
philosophies and applications that make use of it. In addition, Resource Manage-
ment in Grids is discussed, including the relevance of Service Level Agreements
and related to Cloud Computing. More so, a survey of Grid Middleware and the
role that it plays within Grid Computing is presented. Finally, a comparison of
Grids and Clouds is discussed.

• Chapter 5: Discusses the performance of Cloud infrastructure, identifying a num-
ber of issues. The concept of the Virtual Machine image is introduced, alongside
the storage systems used to store them. The propagation of images within two
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Cloud infrastructure management systems is discussed and compared. The topic of
high performance Virtualization within Cloud infrastructure is discussed and two
contemporary Hypervisors are compared. In addition the topic of Block I/O Par-
avirtualization is discussed, as a performance limiting factor of Cloud Computing.
Finally, performance evaluations of Virtual Machine image formats, the resource
provisioning & propagation delays in two Cloud management technologies and the
overheads of virtual block I/O devices are presented, highlighting a number of areas
for performance and scalability improvement in Cloud Computing.

• Chapter 6: Introduces the concept of contextualization as a mechanisms to en-
able the autonomous configuration of Cloud Computing software and discusses the
landscape of tools available to help manage the complexity and scale of Cloud
Computing systems. A generalised architecture for the contextualization of a range
of Cloud software is presented. An implementation based on this architecture: the
Contextualization Tools and the non-functional requirements it enables the fulfil-
ment of are discussed. Additionally, the concept of Recontextualization, a mech-
anism and an architecture is presented as a way to enable the reconfiguration of
a system after deployment. Finally, the performance of the Contextualization and
Recontextualization implementations are evaluated and compared to related Cloud
technologies.

• Chapter 7: Discuses the application of Cloud Computing resources in research
through the execution of Grid Middleware on the Cloud. The concept of a Virtual
Grid is discussed and an implementation, the Globus Virtual Cluster, presented.
Additionally, the implications of running legacy applications on Clouds are dis-
cussed in light of a model for generating Cloud usage patterns. A legacy application
used by Pathologist that can leverage the benefits of Cloud Computing is discussed,
alongside a Cloud architecture for enhancing its scalability and performance. Fi-
nally, an evaluation of the Globus Virtual Cluster and the performance of the legacy
Pathology application are presented.

• Chapter 8: Provides a summary of the work performed on a chapter by chapter
basis, includes all the contributions of the thesis and presents an outline of some
future work.



Chapter 2

Quality of Service in Cloud Computing

2.1 Introduction

In the most generalised context, Cloud Computing refers to the delivery of computing
resources, such as compute and data resources, over a network to a remote user. As with
any service, such as household utilities, QoS plays a critical role in ensuring that an end-
user receives the service for which they have paid. QoS, for the purpose of this research
is defined as a resource control mechanism that guarantees a certain level of performance
and availability. There are a number of challenges facing QoS in Clouds. The two core
challenges involve firstly, the guarantee of resource reservation by a binding agreement
and secondly, the continued provisioning of a resource to specified requirements. In the
context of Clouds, this translates to challenges in service provider interoperability where
unification of resource control mechanisms and the resource types provisioned require
standardisation and additionally in challenges a service provider must face with regards to
managing their resources efficiently and in selecting an appropriate software stack to meet
QoS requirements pertaining to the performance and availability of provided resources.

In this chapter the topic of Cloud Computing is introduced and a formal definition pro-
vided in light of the paradigm’s heritage in Grid Computing. The relevance and scope of
QoS applicable to the research performed in this thesis is discussed and three deployment
models for the previsioning of Cloud resources are compared. A number of Cloud classi-
fications are presented to clarify confusion around the types of Cloud available in the cur-
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rent ecosystem. Taking these classifications into consideration, a number of open source
Cloud architectures are presented and compared in a taxonomy in addition to several of
the most prominent commercial Cloud offerings. Finally, the topic of resource manage-
ment in Cloud Computing is introduced including scheduling algorithms and monitoring
tools used to optimise the use of Cloud resources.

The remaining sections of this chapter are as follows: Section 2.2 discusses the para-
digm shift to Cloud Computing and clarifies its ambiguity. Section 2.3 classifies Clouds
into a number of genera given shared characteristics. Section 2.4 presents a number of
open source Cloud architectures and Section 2.5 presents commercial Cloud offerings.
Section 2.6 discusses the topic of resource management in Cloud Computing. Following
this, Section 2.7 discusses the concept of Resource Virtualization its history and some
areas of research. Section 2.8 presents the two classifications of Hypervisor technology.
Furthermore, Section 2.9 discusses the five techniques that enable virtualization of com-
puting resources, Section 2.10 introduces the concept of virtual machines images, the
backend storage devices used to store them and the formats with which images can be
stored in and finally, Section 2.11 presents a panorama of contemporary Hypervisors in
active use within the IT industry.

2.2 Cloud Computing

Cloud Computing has been described as:

“the next natural step in the evolution of on demand information technol-
ogy services and products” [266]

within the field of Distributed Systems and draws heavily on the principles and para-
digm of Grid Computing. As with any service, such as public utilities, guarantees need to
be in place that pledge a certain level of performance and involves resources reservation
control and monitoring mechanisms for service fulfilment. There has been much confu-
sion over the term Cloud Computing due to its relative infancy within Computer Science,
its extensive generalised use by industry and the lack of consensus on what a Cloud really
is. Many definitions have been proposed and are often confused with the Grid paradigm.

Before the relevance of QoS within Cloud Computing can be considered, a concrete
definition is essential in characterising current Cloud systems. This will facilitate in re-
ducing the scope of research by excluding more generalised definitions of Clouds made
by self professed computing experts such as:
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“using the Internet to allow people to access technology-enabled ser-
vices.” [86]

Being able to categorise a Cloud by its capabilities is key to formulating a concise
definition and a simple taxonomy of Cloud Computing. A general consensus is held
that Clouds fall into at least one of three fundamental models, dependent on the actors
involved and the services provided [80, 104, 254]. High level definitions of these three
types of model are:

• Software as a Service (SaaS), defined as a provider that supplies remotely run
software packages, via the Internet to consumers, on a utility based pricing model.
A typical example application could be an on-line alternative to a word processor
or spread sheet.

• Platform as a Service (PaaS), defined as a provider that offers an additional layer
of abstraction above a virtualised infrastructure. This provides a software platform
that trades off restrictions in the type of software than can be deployed in exchange
for built-in scalability.

• Infrastructure as a Service (IaaS), defined as a provider that provisions compute
and storage resource capacity via Virtualization allowing physical resources to be
assigned and split dynamically.

These three models can be tiered on top of each other. For example a PaaS provider
could make use of a third party IaaS provider or alternatively a PaaS provider could deploy
and utilise their own IaaS or non-Cloud based infrastructure.

Figure 2.1. Cloud Service Stack
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Previous tiers are obscured from the End-User and services are provided transparently,
as illustrated in Figure 2.1. This allows for increased flexibility, the possibly of an open
market and reductions in cost. Further detail on each model is provided in Section 2.3.
Later in Section 2.4, example implementations of each type of system are discussed.

The evolution of Cloud Computing has its roots in multiple Internet related distributed
system technologies and computing paradigms such as Cluster Computing, P2P, Service
Computing, Utility Computing and most importantly Grid Computing.

QoS within Grids has been a major topic of interest and continues to be actively re-
searched [45, 51, 143]. Research in Cloud Computing is reminiscent to the position that
resource management and performance research was at in the early days of Grid Re-
search [133, 172, 222], when issues were just becoming understood. Grid Computing has
been defined as:

“a system that: coordinates resources that are not subject to centralised
control using standard, open, general-purpose protocols and interfaces to de-
liver nontrivial qualities of service” [81]

and was hailed as the next revolution in Computing Science after the creation of the
Internet. Grids share many of the same goals as Cloud Computing. Thus the majority of
the lessons already learnt within the research topic are highly relevant to Cloud Comput-
ing and can be utilised to increase the pace of development and the rate at which research
into QoS in Cloud Computing can push the evolution of the paradigm.

The motivation behind research into Grid Computing materialised from the need to
manage large scale resource intensive scientific applications across multiple administra-
tive domains that required many more resources than which could be provided by a single
institution. Cloud Computing shares this motivation but within a new context oriented to-
wards business needs rather than those of academics, for the stipulation of reliable service
chains rather than the previsioning of resources for batch oriented scientific applications.
This difference in application domain pushed by industry, does not mean that the scien-
tific community cannot leverage Cloud Computing, far from it, as illustrated by Grid-
Batch [158] a programming model for using Clouds in large scale data intensive batch
applications. There is much crossover between the two paradigms and many goals are
shared.

Cloud Computing will be enabled even more so through the next generation of data
centre technology. The current generation of data centres are already leaning heavily
towards the Virtualization of compute and storage resources, the technological foundation
of a Cloud, enabling the consolidation of proprietary servers running legacy software
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and provides considerable reductions in the time and effort associated with administering
hardware resources. This is achieved by the creation of Virtual Machines (VM) which run
on large physical servers utilising the latest hardware technology, providing the benefits
of both reduced hardware maintenance costs and the minimisation of lost revenue due
to downtime. These benefits and the aforementioned differences in application domain
requirements between Grids and Clouds have pushed Virtualization into the lime light as
a new technological requirement of the Cloud paradigm.

This has only recently become feasible because of the performance enhancements
that have been made to Virtualization hardware and software technology, which have im-
proved the performance frontier of VMs to nearly that of the underlying hardware they run
on. Near native performance of the virtualised resources exposed within a VM has been
achieved through a reduction in the overheads associated with context switching physical
resources between VMs and by taking advantage of the improvements in Virtualization
enhancing hardware, touted by hardware vendors such as Intel and AMD.

Using the previously defined scope, the definition of a Cloud most relevant and ap-
propriate to the research topic of QoS is:

“Clouds are a large pool of easily usable and accessible virtualised re-
sources (such as hardware, development platforms and/or services). These
resources can be dynamically reconfigured to an optimum resource utilisa-
tion. This pool of resources is typically exploited by a pay-per-user model
in which guarantees are offered by the Infrastructure Provider by means of
customised SLA’s.” [254]

As it will become apparent later in this thesis, this definition of Cloud Computing
is yet to be fully realised. The definition refers to a pay-per-user economic model that
borrows heavily from the paradigm of Utility Computing. Utility computing is a:

“service provisioning model, which provides adaptive, flexible and sim-
ple access to computing resources, enabling a pay-per-use model for comput-
ing similar to traditional utilities such as water or electricity.” [160]

Research has already been carried out on the commercial benefits of Utility Com-
puting within the Grid Economy [32, 65] and thus it is easy to envisage why such an
economic model is important to Cloud providers and exploited within Cloud Computing
heavily oriented towards business applications where maximising revenue is of primary
concern.
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2.2.1 Deployment Models

Cloud services can be used in a number of deployment configurations that have varying
complexity, security implications and associated costs [104]:

• Private: Private Clouds are services or virtual infrastructure that is run and oper-
ated by a single institution. It can be managed by a third party and have associated
physical infrastructure that is either on or off premise. It is comparable to building
and managing traditional IT infrastructure and brings the benefits of enhanced secu-
rity as no multitenancy is involved. A drawback of this approach is that the benefits
of multitenancy, the economy of scale and the associated cost savings, are not re-
alised. Many institutions choose to adopt Cloud Computing via this deployment
model when data privacy and security are of the up most importance. Healthcare is
a prime example where regulatory standards govern data privacy. Similarly, juris-
dictional issues can provide motivation for this deployment model where different
laws for managing data across countries can impeded the use of external Cloud
providers.

• Public: In Public Clouds, services and infrastructure are provided to the general
public and utilises a pay-per-use leasing policy. Many institutions choose this de-
ployment model to accommodate spikes in service load where large numbers of
users are concerned. Provisioning resources to service these spikes in load via
traditional procurement methods would incur large investments and capital expen-
diture. In addition, these hardware resources would remain heavily underutilised at
off peak times pertaining to inefficiencies. Thus institutions can use Public Clouds
to reduce capital expenditure and operational IT costs.

• Hybrid: A Hybrid Cloud refers to the use of both Private and Public Clouds by an
institution. This deployment model is opted for to provide fault tolerance and high
availability. In addition, the model combines the benefits of enhanced scalability
and reduced cost that public Clouds provide, with the security of private Clouds by
enabling the deployment of certain sensitive applications internally.

• Community: In community Clouds several institutions share their infrastructure
that implement the same terms of service and access policies. A good example is
the sharing of IT resources by governments departments using Cloud technology.
This deployment model can be likened to federated resources in Grids and with the
formation of Virtual Organisation (VO). Federated Clouds are yet to be realised and
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Community Clouds rely heavily on the use of homogeneous Cloud technologies due
to a lack of standardisation.

In additional to federation, more advanced deployment models yet to be realised such
as Brokering and Multi-Cloud scenarios are discussed later in Chapter 6.

2.3 Classifications

The following section provides a detailed landscape of all available Cloud service models
at the time of writing. By classifying Cloud implementations and providing a taxonomy,
distinguishing features sets can be compared and applicable uses cases identified, giving
a baseline for further discussion.

2.3.1 Cloud Service Model

The term “Cloud” and its use as an umbrella term to market and explain the technical
complexity of internet enabled services to technically adversed or illiterate end-users has
complicated the standardisation of a definition. A consensus has slowly formed that the
three layer model of SaaS, PaaS and IaaS can be used to classify most Cloud technol-
ogy with the formalisation of a Cloud Computing definition by the National Institute of
Standards and Technology (NIST) [104].

2.3.1.1 Infrastructure As A Service

IaaS provides the most basic services within the Cloud Service Model. Typically hard-
ware resources such as computing power and data storage are compartmentalised and
rented to end-users, in addition to other resources such as hardware firewalls and load
balancers. In the context of commodity computer hardware, this is usually achieved via
the use of Virtualization (explained in detail later in this chapter from Section 2.7) but is
not a requirements (bare metal physical resources can be provisioned as a service). VMs,
refereed to as Guests, run on top of Virtual Machine Managers (VMM) that are in-turn
often refereed to as a Hypervisor. IaaS providers manage these pools of resources across
entire datacenters, consolidating VM loads via resource schedulers that monitor resource
usage patterns using a variety of monitoring tools. IaaS providers bill end-users on static
resource allocations as well as on resources consumed on demand.

Typically, IaaS providers present the monitoring and management of there resources
through a web based control panel for the manual provisioning of virtual resources by
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end-users and via an API for automated provisioning. Automated provisioning of virtual
resources using Key Performance Indicators (KPI) enable the unattended scaling of an
application when KPIs thresholds are reached and acted upon to either provision more or
less VMs.

In addition to providing virtual resources, many IaaS providers include VM image
repositories containing ready made base images for the installation of software. An in-
creasing number of IaaS providers are adding value to their existing services via the leas-
ing of dedicated distributed storage systems, beyond basic block device storage, which is
increasingly blurring the lines between infrastructure and platform middleware that one
could argue are not traditional infrastructure services.

2.3.1.2 Platform As A Service

PaaS refers to the provisioning of software tools and APIs for consumption by end-users
to create or run applications, in essence services that either integrate to make or host soft-
ware applications. Services can be presented using SOAP and REST based interfaces, en-
abling service mashups, the composition of multiple Web Services to create a web based
application. Potential downside to using PaaS offerings are vendor lock-in, if proprietary
interfaces and development languages are used and a certain degree of infleaxibility, if a
developer requires unavailable features or functionality. On the other hand, many PaaS
offerings reduce the burden of implementing a number of non-functional requirements
such as security, scalability and availability from the developer.

PaaS, when used in combination with IaaS and SaaS, provides middleware that acts
as “glue” between the two layers of the software stack, similar to middleware in tradi-
tional Grid environments. This allows the application developed using PaaS to maintain
a certain degree of separation from the underlying virtual infrastructure through a layer
of abstraction. PaaS users normally pay on a per operation basis when integrating APIs
with an application or on a per application basis when deploying an application into PaaS
containers but billing methods can vary depending on the level of abstraction at which the
PaaS is presented.

2.3.1.3 Software As A Service

SaaS is used to deliver a multitude of different services. In the context of enterprises, with
which it is most often used, this can include but is not limited to the following business
applications:

• Customer Relationship Management (CRM)
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• Enterprise Resource Planning (ERP)

• Human Resource Management (HRM)

A potential critism of this term is that there is no concrete specification that a SaaS
provider must utilise Cloud platform, virtualised infrastructure services or have multi-
tenant users. Thus this classification of Cloud can be applied broadly to encompass any
remotely hosted software package accessed by an end-user.

SaaS architectures often conform to using a single version and configuration of an ap-
plication from a single point of presence. This can be contrasted with traditional software
distribution, where multiple copies of potentially different software versions on dissim-
ilar configurations of hardware and operating system can be found. The client side of a
SaaS solution is often lightweight and presented using thin clients and web browsers. In
addition, billing is usually based on the number of users accessing the service.

2.3.2 Other Cloud Types

Other terms using the “As A Service” moniker have since appeared to sub-categorise
Cloud technology and define systems that blur the boundary between the three layer
model.

2.3.2.1 Storage As A Service

Storage As a Service (STaaS) is a model for storing data remotely, off-site and has gained
in popularity as data storage requirements in computing have exploded. Recent data stor-
age growth rate studies have shown that an exponential rate of increase is expected [72,85]
with the world crossing the zettabyte (1021) storage barrier in 2010.

StaaS providers provision Hard Disk Drive (HDD) resources to end-uses using PaaS
or SaaS solutions. The individual data resources are amalgamated and presented as an
infinite resource using distributed file systems. Users of such services are billed on the
amount of data stored. The economy of scale that a provider enables, makes off-site data
storage for backup purposes an attractive alternative for individuals and enterprises a like.
A potential downside to using StaaS is that there is often a cost associated with uploading
the data to the provider. In addition, the asymmetry of many internet connections, where
upload bandwidth is often an order of magnitude smaller than download, reduces the
feasibility of the services for some users. QoS and privacy has also limited adoption,
with the majority of providers making no promise that the data will be stored reliably or
securely.
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2.3.2.2 Hardware As A Service

Hardware As A Service (HaaS) is the resale of dedicated physical computing resources
and functions similarly to IaaS. This can range from individual servers to colocation ser-
vices that provide server rack space, network connectivity and power. The HaaS model
is a new umbrella term for publicly available IT services that were available before the
concept of Cloud Computing was popularised. HaaS can provide a cost saving alternative
to traditional visualised Cloud services if rapid scaling is not required or if the perfor-
mance overheads of Virtualization technology and the contention caused by multitenacy
are likely to have an adverse effect on QoS.

2.3.2.3 Desktop As A Service

Desktop As A Service (DaaS) is a model for providing desktop environments to a large
number of users from a remote location. It uses virtualization to provision many encapsu-
lated desktops on a single physical machine to many thin clients. Typically, DaaS is sold
on a per user license that includes the licensing costs of the operating system and installed
software applications.

2.3.2.4 Security As A Service

Security As A Service (SECaaS) is a model for previsioning large scale security services
such as Virtual Private Networks (VPN), anti-virus and intrusion detection systems on a
subscription basis. Privacy concerns have seen a recent rise in the popularity of secure
anonymity based services with Internet Service Providers (ISP) forced to block illegal file
sharing websites, seen as the first steps to wider monitoring, tracking and censorship of
the internet.1.

2.4 Open Source Architectures

Advanced knowledge of Cloud Computing technology provides insight into QoS limita-
tions. This subsection discusses the architectures of popular open source Cloud software
and the use-cases they are best suited towards. These technologies fall into the previously
discussed IaaS and PaaS models.

1BBC: The Pirate Bay must be blocked by UK ISPs, court rules http://www.bbc.co.uk/news/
technology-17894176

http://www.bbc.co.uk/news/technology-17894176
http://www.bbc.co.uk/news/technology-17894176
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2.4.1 Infrastructure as a Service

In this section four software projects that were originally design to meet the needs of an
IaaS providers are discussed.

2.4.1.1 OpenNebula

The first Cloud architecture evaluated, OpenNebula [188], is based on the research efforts
of the Reservoir Project [207]. Reservoir was a European lead research initiative into
virtualised infrastructure and Cloud Computing.

(a) (b)

Figure 2.2. OpenNebula a) IaaS Architecture [188]. b) Software Stack.

The Reservoir Project primary deliverable was a complete definition of a reference
IaaS architecture, depicted in Figure 2.2(a), built on open standards to provide a frame-
work for the delivery of scalable, flexible and dependable services. The project aimed
to develop key technologies enabling the migration of VMs across network and storage
boundaries (illustrated by Figure 2.2(b)), algorithms for the effective allocation of re-
sources in conformance to SLA requirements and a testbed to benchmark the performance
of the architecture in industrial and commercial uses cases.

OpenNebula has become a prominent implementation of an open sources IaaS, due
in part to its support from academic research groups actively publishing research on its
applications. It is a feature rich system with a concrete direction for future development.
The OpenNebula architecture has been designed with modularity in mind, making exten-
sions easier to create by external developers and has been tested on large scales with many
thousands of nodes.
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The core of the architecture is comprised of a number of components that control and
monitor resources the like of VMs, virtual networks, storage and physical host machines.
These components are:

• Request Manager: This component is responsible for handling client requests.
The component exposes an XML-RPC interfaces with a number of methods for
managing resources.

• Virtual Machine Manager: This component manages and monitors VM resources
and the operations it provides are abstracted from the underlying Hypervisor tech-
nology used.

• Transfer Manager: This component hands the transfer of images between host
machines and includes the transfer of images to and from an image repository.

• Virtual Host Manager: This component handles assignment of Internet Protocol
(IP) and Media Access Control (MAC) addresses, enabling the creation of virtual
networks by tracking IP leases.

• Host Manager: The monitoring of physical machines is managed by this compo-
nent via suitable drivers that can be extended to monitor any host attribute.

• Database: Persistence if enabled via an SQLite database for storing OpenNebula
internal data structures that represent the state of a resource pool. This component
enables reliability in the case of a failure or system restart.

Resources scheduling is performed by a scheduler component that is independent of
the rest of the architecture and communicates with the core components using XML based
remote procedure calls. This enables decoupling so that the scheduling algorithms and
mechanisms used can be tailored or changed to a specific provider’s needs. An example
of a scheduler that can be plugged in is discussed later in Section 2.6.2.2. The default
scheduler distrusted with OpenNebula enables the definition of resources and load aware
policies.

2.4.1.2 Eucalyptus

The next IaaS Cloud architecture to be critically appraised is Eucalyptus [71], an IaaS
system with the aim of creating:

“an open-source infrastructure architected specifically to support Cloud
Computing research and infrastructure development.” [181]
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The system architecture comprises of a Cloud Controller component responsible for
processing incoming user requests, manipulating the Cloud fabric and processing SLAs
in company with a Client Interface that utilises Internet standard protocols such as HTTP,
XML and SOAP. In addition a Storage Controller component enables the management
of block storage devices that can be dynamically attached to a VM. One of the primary
benefits of using Eucalyptus over other IaaS implementations is that it maintains user
facing compatibility with Amazon EC2 (compute) and S3 (storage) [5] service APIs but
has also limited novelty within the project.

2.4.1.3 CloudStack

CloudStack [49] is a mature (available since 2009) open source IaaS solution that is gov-
erned by the Apache Software Foundation [10] and currently supported by Citrix. It has
been designed with scalability and centralised management in mind. All major Hypervi-
sors are supported including support for non-visualised bare-metal servers, differentiating
this solution from others.

The architecture of a CloudStack Cloud is strictly hierarchical in structure enabling
the solution to scale to many thousands of physical servers from a single management
interface. The architecture of CloudStack is based on three tiers:

• Zone: The largest organisational unit within CloudStack, typically a datacenter will
contain a single Zone. This enables geographical zoning of resources and data to
be placed at a specific location to for compliance with an institution’s policies. A
Zone consist of at least one “Pod” and Secondary Storage component.

– Secondary Storage: Is used to store VM templates and enable data replication
between Zones, providing a common storage platform throughout a Cloud.
The components makes use of the Network File System (NFS) protocol to
ensure network access by any host within a Zone.

• Pod: Is hardware configured to form a “Cluster” of resources. A Pod is typically
comprised of a rack of servers and shared networking hardware. Pods are not visible
to end users.

• Cluster: Is a group of host machines running identical Hypervisors. Each Clus-
ter has a dedicated Primary Storage device in which VM instances are hosted. A
Cluster provides high availability and load balancing features.
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– Primary Storage: Is built using high performance dedicated hardware to ac-
commodate concurrent access by multiple VM instances. The component is
designed to provision an instance with storage using standard compliant iSCSI
and NFS protocols.

CloudStack is written in Java and provides a Management Server component backed
with a database to store Cloud state. This enables the management of resources via a web
interface, command line interface or REST based API.

2.4.1.4 Nimbus

The final IaaS open source architecture discussed is Nimbus [177]. This project provides
a toolkit for the creation of IaaS services that are tailored to the needs of science but with
many non-science use cases still supported.

The architecture of Nimbus is comprised of a Workspace Service component that pro-
vides standalone VM management with support for two remote protocol frontends. The
first is the Web Service Resource Framework (WSRF) [276] frontend and an incomplete
implementation of the Amazon EC2 interface that supports a number of EC2 management
operations. A Workspace Control component acts as an agent for the management of in-
dividual host nodes and implements support for a number of Hypervisors and network
configurations. In addition, a Metadata Server component enables the querying of VM
state information.

Architectural components are loosely coupled together, self-contained and can be
composed in a number of ways to enable different resources clustering strategies. In
addition to providing IaaS functionality, Nimbus is tailored to support the academic com-
munity with support for many Grid standards. This is discussed in further detail as part
of Chapter 7.

2.4.2 Platform as a Service

In the following section three open source PaaS toolkits and their associated architectures
are discussed.

2.4.2.1 OPTIMIS Toolkit

The OPTIMIS Toolkit [74, 191] is a deliverable of the Optimized Infrastructure Services
project, aka ‘OPTIMIS’, a three-year, 10.5m Euro research and development project, se-
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lected under the ‘Software and Service Architectures & Infrastructures’ track of the EU’s
FP7 framework program.

Management actions in the toolkit are harmonized by ubiquitous policies that take
into account TREC: ‘T’rust and ‘R’isk assessment to comply with ‘E’cological and ‘C’ost
objectives without compromising on operational efficiency. The tools enable developers
to enhance services with non-functional requirements regarding the allocation of data
and virtual resources, as well as aspects related to performance such as elasticity, energy
consumption, risk, cost, and trust. The toolkit incorporates risk assessment in all phases
of the service life cycle and uses trust assessment tools to improve decision making.

The architecture of the OPTIMIS toolkit is comprised of a number of components
that can be combined together to form a PaaS provider. In addition, a subset of the tools
can be used to enable IaaS functionality. The OPTIMIS Toolkit is discussed further in
Chapter 6. The high level core components that form the architecture of the toolkit and
accommodate non-functional requirements are:

• Monitoring Infrastructure: This component is comprised of a number of tools
that collect and monitor service performance indicators including physical resource
energy efficiency. This monitored data is used as part of the TREC assessments.

• Security Framework: This component secures aspects of the toolkit including
communication channels and data.

• TREC Components:

– Trust: This component is responsible for accessing the reputation of a provider
given its past history.

– Risk: This component provides a number of risk assessments related to the
failure of a service given a SLA and agreed level of QoS.

– Eco-efficiency: This component assess energy consumption and carbon emis-
sion of a given Cloud infrastructure.

– Cost: This component is responsible for assessing and predicting the costs
associated with deploying and operating a service given a defined QoS

In addition, core functional requirements are provided for by the following compo-
nents:

• Fault Tolerance Engine: The fault tolerance component enables self-healing in-
frastructure for the purpose of maintaining QoS. The component make use of mon-
itoring data to detect failed virtual resources and reactively restarts them elsewhere.
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In addition, proactive fault tolerance can be used to migrate virtual machines if the
risk of hardware failure is high on a given physical machine.

• Data Manager: This components provides a distributed data repository for the
storage of VM images and application data via a Java API.

• VM Manager: This component provides basic VM management operations such
as stop, start, restart and provides a layer of abstraction above the underlying IaaS
and Virtualization layer enabling a certain degree of interoperability.

• Integrated Development Environment: This component provides a programming
model and graphical interface for the development and composition of a Cloud
application and makes use of a number of PaaS services provide by the toolkit.

• Service Manager: The Service Manager component aims to optimise the manage-
ment of an application during operation given a number of business level objectives.

• Virtual Machine Contextualizer: Is used to configure OPTIMIS platform level
tools and application dependencies. Its architecture is described in detail as part of
Section 6.3.

2.4.2.2 OpenStack

OpenStack [189] is a collaboration effort between a number of global developers and
Cloud Computing technologists that aims to produce an open source Cloud platform for
public and private deployment models. The project was founded by Rackspace (See Sec-
tion 2.5.1.5 for more details) in collaboration with NASA and has grown to encompass
a global software community working together on a standard and highly scalable open
source Cloud software stack.

The OpenStack architecture is comprised of three core projects that provide function-
ality for the creation of private Clouds. These projects are Compute, Object Storage and
Image Service that manage VMs, data storage and VM images respectively.

The Compute project provides access to virtual resources via an API that provides:

• Basic VM management (Start, Stop, Reboot, Resize).

• Resource quota management.

• VM image caching on compute nodes for faster provisioning times.

• Role based access control and identity management.
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• Distributed and asynchronous access to virtual resources.

The Storage project provides reliable and scalable object (key:value) based storage
and is not a traditional file system but rather presented as a distributed storage system
through an API similar to Amazon’s S3 PaaS. The API is REST based or consumed by
a binding language that consumes the REST API and is thus not a POSIX (a set of stan-
dards for defining compatible interfaces to storage across operating systems) compliant
file system and cannot be mounted at the operating system level. This limits the software’s
applicable uses cases to storing and retrieving files such as the archiving of media files
and loading of VM images.

The Image Service provides the discovery, registration and delivery of VM images
with the ability to create snapshots. The backend of the Image Service can be used with
a variety of storage APIs including the object storage provided by the OpenStack Object
Storage project. Image Service enables the use of template images to spawn multiple VM
instances from a base image. Most VM image formats are supported.

2.4.2.3 Hadoop

Hadoop [113, 272] is a PaaS framework written in Java that supports data intensive ap-
plications. It enables the use of thousands of machines to operate on petabyte datasets.
Hadoop makes use of the MapReduce [56] paradigm popularised by Google. MapReduce
is the application of an old idea in a new context, the use of algorithmic skeletons [50]
in Cloud Computing. Algorithmic skeletons are high level parallelism patterns that hide
the complexity of developing parallel and distributed applications from the developer.
MapReduce is very similar in concept to the algorithmic skeleton of fork and join

where jobs are forked from a parent process and join back after completion, after which
the main body of execution continues.

The core architectural components of Hadoop are the MapReduce Engine and Hadoop
Distributed File System (HDFS) [226]. MapReduce is a programming model for the
processing of data that was inspired by functional programming and the commonly used
map and reduce functions. The map step takes data as input, divides the data into
smaller subsets and distributes the subsets amongst a cluster of worker nodes which return
the processed subset of data to the master node on completion. The reduce step involves
combining the processed subsets of data returned from the slave nodes into a usable format
or solution to a specific problem. MapReduce can make use of the locality of data where
by the processing of data is performed near storage resources to decrease the overheads
associated with transmitting data over a network. The Hadoop Distributed File System
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(HDFS) is a locality aware file system written in Java that handle access to large files
for worker nodes in the Hadoop platform. The file system makes use of TCP/IP and
Remote Procedure Calls (RPC) for communication, replicating data across multiple hosts
for redundancy. HDFS is not fully POSIX compliant and thus cannot be mounted at the
operating system level but does provide increased throughput and performance for its
target goal of supporting Hadoop applications.

The MapReduce Engine is comprised of two sub-components the JobTracker and Tas-
kNode. The Jobtracker schedules and stores the location of running MapReduce jobs. The
TaskNode runs jobs allocated to it from the JobTracker. HDFS is composed of another
two sub-components, the NameNode and DataNode. The NameNode is responsible for
storing file metadata including locality information and file attributes. The DataNode
stores file data and can communicate with other DataNodes to rebalance the distribution
of data within a cluster to improve performance so that the data is as close as possible
to the computational resources with which it is to be processed. A basic Hadoop cluster
consists of a master node and multiple worker nodes with the following structure:

• Master Node

– JobTracker

– TaskTracker

– NameNode

– DataNode

• Slave Node

– TaskTracker

– DataNode

The role of the Master node is to schedule tasks on to slave resources using the map
reduce paradigm. In addition, the Master tracks the progress of Slave nodes.

2.4.3 Other Architectures

The previously discussed open source Cloud architectures are by no means an exhaustive
list and there are other less infamous IaaS and PaaS solutions available. These are covered
in numerous survey papers [170, 173, 194, 208].
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2.5 Commercial Clouds

Understanding the specific problems surrounding QoS in commercial Clouds is a diffi-
cult task as the services provided are not transparent, the End-User has no idea of the
underlying implementation. This is similar to the approach taken in Service Oriented Ar-
chitectures (SOA), such as with Web Service Mash-Ups, where only the functionality of
service is exposed by a defined interface.

2.5.1 Commercial Providers

An overview of commercial Cloud vendors, the technology they have in place and the
state of their QoS provisioning is essential for the priorities of academic research to be in
sink with the needs of businesses and for research in to QoS to be of real world intrinsic
value.

The majority of major commercial Cloud vendors provide best effort QoS provision-
ing only and the most basic of guarantees on the availability and performance of resources.
This provides primary motivation to research QoS in the context of Cloud Computing,
furthering the adoption of the paradigm. Research has already made some strides into
evaluating the variance in allocated resources provided by the Amazon Cloud in [132]
and continues to be a research topic of interest.

In addition, due to the closed source proprietary nature of these commercial Clouds,
limitations are present concerning interoperability. Unlike Grids the nature of Clouds are
very much orientated towards providing services “behind closed doors”. This is result-
ing in an emergent area of research investigating the development of Cloud standards to
enable the sharing of Cloud resources outside administrative and organisational bound-
aries, standards that could also encompass QoS and provide the basis for Cloud brokering
systems which are not possible without standard interfaces to communicate with and de-
scriptive languages to define Cloud services.

In this subsection several commercial adopters of Cloud technology are discussed
including the services and software products they provide that are guiding the direction
research is taking within the paradigm of Cloud Computing.

2.5.1.1 Amazon

Amazon the first company to supply Cloud infrastructure services via its Amazon Web
Service [5] products in early 2006, provides a PaaS architecture on a pay per use financial
model. The architecture is marketed as two individual products: the Amazon Elastic
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Compute Cloud (Amazon EC2); and the Amazon Simple Storage Service (Amazon S3).
These products provide a set of well defined APIs, that have become widely adopted as
standards in many open source Cloud architectures, such as Enomalism [69], Eucalyptus
[71] and OpenNebula [188]. These projects provide interfaces compatible with Amazon’s
services to enable on demand scale out of service workloads to supplement local resources
and satisfy peak or fluctuating demands.

2.5.1.2 Google

Another contender positioning themselves as a provider of Cloud services is Google.
Google provides SaaS via its Google Apps [95] software and a PaaS via its Google App
Engine [96]. The Google App Engine provides the architecture that Google Apps run on
and promises transparent scalability on a pay-per-use financial model. The Google App
Engine is limited to a subset of the Python API and provides a proprietary data storage
query language limiting its applications.

2.5.1.3 IBM

IBM has released literature on its vision of Cloud Computing [29] and provides a PaaS
based around the API’s created by Amazon, known as IBM’s Research Compute Cloud
[124]. IBM also supplies enterprise Cloud Computing solutions in the form of a Cloud
Service know as IBM Computing on Demand [125].

2.5.1.4 Microsoft

Microsoft provides Cloud services using the Azure Services Platform [20], a PaaS oper-
ating system, which integrates many of Microsoft’s current proprietary software packages
into one, via a layer of middleware, which can be utilised by licensed Cloud vendors and
is marketed as an all-in-one Cloud software solution.

2.5.1.5 Rackspace

Rackspace [201] is an IT hosting company based in the USA that provides managed Cloud
IaaS around the world. Its client base covers 40% of the Fortune 100 publicly trading
corporations in America. Recently, Rackspace have announced its plans to provision its
Cloud resources via the use of OpenStack and is in the process of integrating OpenStack
Compute into its existing underlying technology [202].
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2.5.1.6 SalesForce

SalesForce [220] provides CRM software to enterprise businesses. With the advent of
Cloud Computing, SalesForce is provisioning its software via pay-per-use SaaS model
and reselling its spare resource capacity via a PaaS solution that enables external develop-
ers to create add-on applications that integrate with its existing SaaS products. In addition,
some of SalesForce’s CRM products can be run externally on Amazon Web Services.

2.5.1.7 Flexiscale

FlexiScale [76] is a European based IaaS solution that makes use of the Flexiant Cloud
Orchestrator software (see Section 2.5.2.4 for details). It provides self-service provision-
ing of resources using a web-based control panel or proprietary API and is backed by
a virtualised storage backend. QoS is maintained via fully automated hardware failure
recovery and instantaneous backup and restore capabilities via disk snapshots.

2.5.2 Commercial Software Stacks

In addition to the open source software available for use in creating a Cloud, there are
a number of commercially available alternatives. This section of the thesis provides an
overview of these software solutions.

2.5.2.1 VMware vCloud

The VMware vCloud Suit [264] is a IaaS solution that combines many of the existing
software offerings of VMware including its commercial Hypervisor technology. vCloud
has a number of components that provide features and functionality a potential provider
can use. The core components are:

• vSphere: Enables the management of virtualised infrastructure using policies for
the automated provisioning of compute resources.

• vCloud Director: Provides software to create a complete virtual datacenter includ-
ing virtualised compute, networking, storage and security resources.

• vCloud Connector: Enables hybrid Clouds via the dynamic transfer of workloads
between private and public Cloud providers.

• vCloud Networking and Security: A software defined networking and security
solution for providing virtual firewalls, VPN, load balances and virtual LANs.
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• vCenter Site Revovery Manager: A software solution for protecting Cloud ap-
plications from resources failures, providing VM migration and replication as fault
tolerance mechanisms in addition to non-disruptive testing and centralised recover
plans for defining virtual machine dependencies.

2.5.2.2 Enomaly

The second commercial Cloud software stack discussed is Enomaly [69], another IaaS
system that presents an organisation with the capability to manage virtual infrastructure,
VM images and provides fine grained security and user management. In addition, the
solution enables the creation of VM images and supports multiple Hypervisors. Automa-
tion is enabled via a REST based API and manual control over resources is provided by a
customer and administrative web based control panel.

2.5.2.3 CA AppLogic

AppLogic [13], a recent acquisition by CA Technologies, is a “turnkey” style software so-
lution for the provisioning of IaaS. Compared to other IaaS solutions, AppLogic supports
complex application deployments including software firewalls Virtual Private Networks
(VPN) and load balancers that are configured via a drag and drop web based user inter-
face.

2.5.2.4 Flexiant Cloud Orchestration

Flexiant [75] is a UK based Small and Medium Enterprise (SME) that provides IaaS
Cloud software to a European consumer base and is touted as providing the worlds sec-
ond Cloud Computing platform after Amazon and Europe’s first. Its software solution,
named Flexiant Cloud Orchestration, provides role based access control and metering
mechanisms in addition to an intelligent workload placement and virtual resource sched-
uler that can be tuned to ensure reliability, resilience and performance of an application
in a dynamic environment.

2.5.3 End-User Applications

A number of commercial entities, in addition to those provisioning Cloud services to other
businesses, provide Cloud resources to End-Users in the form of SaaS. The following
presents a non-exhaustive list of examples: Cloud based storage, office suites and Cloud
gaming services.
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2.5.3.1 Cloud Storage

A number of providers have evolved to make use of the Cloud Computing paradigm to
service users in the home and there ever expanding storage needs. This has been enabled
by the economy of scale that Cloud Computing provides, simplified scalability and by the
expanding availability of high bandwidth internet connection in the home.

Dropbox [64] was one of the first Cloud storage provider to provision storage re-
sources for remote file backup and enable the synchronization of files between computers.
It follows a business model where users can create a free account with limited storage and
pay on a per use basis for addition capacity. Dropbox make extensive use of Amazon’s S3
storage system to store user’s files. There have been recent concerns over the privacy and
security of Cloud Storage services with breaches in security receiving wide spread media
coverage2.

Recently other more established organisations in the IT industry have entered this
market as estimated revenue has increased. Direct competitors to the Dropbox service
include the likes of Google, Apple and Microsoft with the products: Google Drive [98],
Apple iCloud [12] and Microsoft SkyDrive [168] respectively.

2.5.3.2 Office Suites

With the rise of Web 2.0 and websites that enable interactive collaborative environments
in addition to user generated content, the feasibility of online office suites provided by the
SaaS model has been realised. Online office suites provide web based document creation
and editing applications with document storage and sharing facilities. Typical applications
include email, spreadsheet, shared calendars and a word processor. Google Docs [97] is
one such example where users are able to edit documents online free of charge using an
ad supported revenue model. Office 365 [167] is Microsoft’s answer to Google Docs
that maintains full compatibility with there existing desktop Office solution and uses a
monthly subscription fee on a per user basis.

2.5.3.3 Cloud Gaming

Cloud Gaming is the on-demand streaming of computer games over the internet to client
machine, where by the actual game is stored and executed on a remote server. There are
several benefits to this type of online gaming, the hardware on which the client runs needs
only minimal resources to display the streamed frame buffer and send input to a remote

2BBC News: Dropbox details security breach that caused spam attack. http://www.bbc.co.uk/
news/technology-19079353

http://www.bbc.co.uk/news/technology-19079353
http://www.bbc.co.uk/news/technology-19079353
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location. Moreover, the use of invasive Digital Rights Management (DRM) software to
protect a title from piracy is no longer required as game code is executed in a remote
protected environment. There are however technical limitations to Cloud Gaming due to
bandwidth and latency constraints that limit its use in rural areas. Examples of platforms
that support Cloud gaming are OnLive [185] and StreamMyGame [240].

2.6 Resource Management

In this section of the thesis the topic of resource management in Cloud Computing is
discussed, including a clarification of what elasticity means in the context of a Cloud.
Scheduling of virtual resource and the algorithms used in IaaS implementations, one open
source, another that accommodates advanced reservation and a commercial offering are
discussed, in addition to monitoring tools used to detect environmental changes that pro-
vides input to Cloud resource schedulers.

Resources management in distributed systems, in the most generalised of contexts,
refers to the efficient allocation of workload to a shared computing resource. This is
achieved by setting a goal, such as maximising resource utility or workload throughput,
given a set of constraints, often technological and economical. Resource management
involves the following:

• Characterisation: Knowledge acquisition and understanding of the system work-
load and its resource requirements.

• Allocation: The distribution of workload to resources across competing tasks or
services.

• Adaptation: The accommodation of system and environmental changes such as
failures and changes in workload.

These three aspects of resource management are only possible through the monitor-
ing of system resources. In Cloud Computing resource management differs to traditional
distributed systems such as Grids and clusters due to Virtualization. VMs are multiplexed
between the resources of a physical machine enabling multitenancy and resource sharing.
In addition, Virtualization provides a layer of abstraction above the physical resource,
enabling a two tier approach to resource management in a IaaS provider. An application
running on Cloud infrastructure is thus unaware of the underlying physical environment
with which it is executing. This make the characterisation of workload difficult as the
infrastructure layer in a Cloud is unaware of the attributes associated with an application
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running inside a VM and is an active area of research [19]. The goal of an IaaS provider
is to maximise revenue which involves the minimising of power consumption and maxi-
mization of resource utility via the consolidation of VMs onto physical machines.

In Cloud Computing monitoring tools are used to characterise the current workload
that a VM is placing on a physical machine. When additional VMs are brought on-
line the current state of the Cloud is evaluated and the VMs are allocated to a suitably
underutilised resource that meets the QoS requirements. In the event of hardware failure,
fault tolerance is achieved via the migration of a VM to a functional resources. The live
migration of running VMs also play a role in adapting to changes in demand. Workloads
in Clouds do not remain static and change during periods of peak user activity. Thus a VM
that is using many resources could have a potential QoS impact on other VMs running in
the same physical machine and should be migrated to a resource with appropriate spare
capacity.

2.6.1 Elasticity

An application’s virtual resources in Cloud Computing can be scaled dynamically up, to
maintain QoS and down, to reduce cost. This scalability is often refereed to as elasticity.
NIST refers to elasticity as an integral aspect of Cloud Computing:

“Capabilities can be rapidly and elastically provisioned, in some cases
automatically, to quickly scale out and rapidly released to quickly scale in.
To the consumer, the capabilities available for provisioning often appear to
be unlimited and can be purchased in any quantity at any time.” [104]

The rapid speed of resource provisioning is a key differentiating feature of the Cloud
paradigm from other distributed systems. Virtual resources can be scaled in two direc-
tions:

• Vertically (Scale Up): Refers to scaling the performance of an application by grow-
ing the internal resources of a running VM. This can include adding or removing
CPU cores, CPU speed or fractional allocated physical CPU time, memory and data
storage. Vertical elasticity must be supported by both the Hypervisor and guest op-
erating system to enable the safe removal of virtual hardware devices.

• Horizontally (Scale Out): Refers to scaling the performance of an application by
increasing or decreasing the number of VM instances that supports its workload.
Often horizontal elasticity is achieved through the use of hardware or software load
balancer.
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Vertical scalability is limited by the total number of resources available in single phys-
ical machine. On the other hand, Horizontal scalability is limited by the total number of
physical machines available and by Amdahl’s Law [7]. Amdahl’s Law states that the
maximum speed-up a program can gain by utilising multiple processors is limited by any
sequential code that cannot be parallelised. In the context of Cloud Computing, this relates
to the maximum number of requests an application can service given an infinite number of
resources. This is often limited by the backend shared data storage that the VM resources
access, rather than by the computation requirements of the application itself, which tend
to have embarrassingly parallel properties by design in Cloud Computing.

2.6.2 Scheduling

Resources scheduling in Cloud Computing is an active area of research [92,155,219,286]
with many academic institutions drawing on the research performed by the Grid Commu-
nity on Market-Oriented scheduling policies [219,286]. Cloud resources scheduling based
on a SLA is an NP-hard problem [155] with no method to provide an optimal schedule.
The primary approaches to resource scheduling in Cloud Computing utilises the princi-
ples of resource load balancing [229]. In this scheduling approach, VM resource requests
are considered to be “jobs” where the type of job specifies the VM hardware require-
ments, the size of the job specifies the amount of time the VM executes and job requests
are scheduled to physical machines on a periodic basis. The following sections of the
thesis highlight the scheduling algorithms currently in use in popular IaaS solutions.

2.6.2.1 OpenNebula

OpenNebula uses a match-making scheduling algorithm that assigns VM to known hosts
using an rank based scheduling policy. The goal of this policy is to prioritise the use of
resources that are most suitable for a given VM. The scheduler has a number of limita-
tions. It is limited to scheduling a fixed subset of running VMs and dispatching a limited
number of VMs in any given scheduling iteration. There is also a ceiling on the number
of VMs that can be dispatch to a physical machine in any scheduling action.

The match-making algorithm used in OpenNebula filters host resource that cannot
meet the CPU and memory resource requirements of a VM. A RANK expression specified
by the end user is then evaluated against the remaining available hosts and the resources
with the highest rank are used to allocate a VM. The available RANK policies are as
follows:
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• Packing: This policy minimises the number of physical machines in use, the heuris-
tic packs as many VM as possible into a physical machine to reduce fragmentation,
using those machines with the most running VMs first.

• Striping: This policy maximises the availability of resources in a host machine to a
VM. VMs are spread across physical machines and those nodes that have the least
running VMs are chosen first.

• Load-aware: This policy maximises resource availability similar to the previous
policy but utilises physical machines with the least load. Thus physical machines
with highest available free CPU time are selected first.

2.6.2.2 Haizea

Another example of a Cloud scheduler is Haizea [114], which can be used to replace the
existing resource scheduler in OpenNebula. Haizea is an open source VM lease manager
that provides a resource management model [22] for virtual Cloud infrastructures that
combines batch execution of applications, such as scientific workflows, onto leased virtual
resources [235]. Haizea supports the advanced reservation of resources, the queuing of
best effort requests and the immediate provisioning of resources using the following lease
types:

• Advance Reservation: In advances reservation a resource lease is provides be-
tween a specific start and stop date, useful when resources are needed at a specific
time of day, for example when system logs need to be aggregated.

• Best Effort: Best effort leases are used for VMs that are not needed within a given
time frame and are placed in a queue that is serviced on a first come first served
basis. This lease type can be used with applications that support pre-emption and
can be safely paused. Such applications are able to use resources quicker and this
lease policy is well suited to batch jobs.

• Immediate Lease: Refers to the previsioning of resources instantly, typical of most
Cloud scheduling systems.

In addition to scheduling functionality, Haizea can also be used to simulate resources
for the testing of customised scheduling policies that can be plugged into its architecture.
Schedule reports and graphs are also supported enabling algorithm analysis.
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2.6.2.3 vSphere Distributed Resource Scheduler

The Distributed Resource Scheduler (DRS) [112,262] is a commercial VM scheduler pro-
vided by VMware as part of its vShere [268] IaaS offering. DRS provides mechanisms to
distribute VMs over a a cluster of physical machines to maintain performance, scalability
and availability. The following resources management functionalities are provided:

• Initial Placement: The creation of an initial schedule for the placement of VMs to
physical resources.

• Load Balancing: Involves continuous workload monitoring and the live migration
of VMs away from heavily used physical resources for the purpose of maintaining
QoS.

• Power Management: Reductions in power usage through the migration of VM in-
stances away from under utilised host resources enabling these hosts to be powered
off or placed in standby mode.

• Cluster Maintenance: Non-disruptive maintenance of physical machines via live
migration.

VMware have identified a number of challenges to Cloud based resources manage-
ment [112]. These pertain to the heterogeneity of cluster hardware and the frequency of
management operations. As IaaS providers add more machines over time to their infras-
tructure there can be several generations of hardware in coexistence. This can cause issues
with the migration of VMs between hosts and the scheduling of workloads to hardware
with differing levels of performance, which requires normalisation achievable via the ex-
ecution of benchmarks that exhibit real world characteristics. In addition, as the number
of users and the frequency of managements operations performed by a scheduler increase,
so does the importances of maintaining low levels of scheduling latency.

2.6.3 Monitoring

Monitoring tools are essential in maintaining QoS and sustaining the performance of an
application. Due to the the complexity of the Cloud Service Stack and the reliance on
a range of infrastructure devices (network, storage, and computational resources) in the
creation of a Cloud, there are a number of monitoring challenges to overcome [141].
Monitoring of distributed systems is not a new topic of research [129, 163] and in Cloud
Computing many providers leverage existing monitoring technology.
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The monitoring of Cloud resources, platforms and applications require different tools
and techniques. Due to the dynamic nature of Cloud environments platform and applica-
tion performance metrics are difficult to gather and monitor in the more advanced Cloud
deployment models, such as hybrid Clouds. These difficulties are discussed in further
detail in Section 6.4.1.2.

For the monitoring of Cloud infrastructure more traditional monitoring tools can be
used. Ganglia [84] and Nagios [174] are two open source projects that provide tools
that can be used to monitor IaaS Clouds. Both are used heavily in High Performance
Computing (HPC) environments and have qualities that make them attractive to other
distributed systems. In addition, both have taken on different stances in there definition
of monitoring. Ganglia is more concerned with the gathering of metrics and tracks them
over time, while Nagios has focused on alerting mechanisms for system administrators.

2.6.3.1 Ganglia

Ganglia [84, 163] is a scalable distributed monitoring systems that is based on a hierar-
chical design suited to the federations of clusters. It has been designed to achieve low
overheads and high concurrency when gather monitoring metrics. Each machine moni-
tored by Ganglia runs a daemon process named gmond that collects and sends metrics
to a gmetad daemon that saves data to round-robin database files provided by the open
source RDDTool [213], a high performance data logging and graphing system for the stor-
ing and visualisation of time series data. Multiple gmetad daemons can be associated
with each other using point-to-point connections, enabling federated monitoring across
geographic locations.

2.6.3.2 Nagios

Nagios [129, 174] provides a number of capabilities that make it suitable for monitoring
applications, services, network protocols, operating systems, and infrastructure compo-
nents. The Nagios architecture consists of the Core components and a API that allow
the creation of plugins for the monitoring of custom applications and systems. The Core
of Nagios provides out of the box monitoring for a number of network services such as
SMTP, POP3, HTTP and NNTP in addition to host resources metrics such as processor
load and disk usage. The architecture of Nagios enables the parallel checking of multiple
services through the use of two addons:

• Nagios Remote Plugin Executor (NRPE): An addon that enables the remote exe-
cution and polling of monitoring probes on host machines.
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• Nagios Service Check Acceptor (NSCA): An addon that provides the passive
checking of remote metrics via an always on daemon process that sends data, which
cannot be effectively gathered using polling techniques, asynchronously to a central
repository. This approach is highly relevant to Cloud Computing due to its intrinsic
distributed nature and resiliency to failure.

2.7 Resource Virtualization

In the previous sections of this chapter, virtual resource management was introduced as
a critical concept used in the maintenance of QoS in Cloud Computing. In the following
sections, the concept of Resource Virtualization is presented as a key enabler of virtual
resource management in IaaS providers and is the foundation and primary building blocks
of most Cloud applications. This background on Virtualization sets the scene for the
research discussed in Chapter 5 on evaluating the performance of Cloud infrastructure.

Understanding Cloud architectures from the bottom up, starting with the technology
that supports the provisioning of resources, both physical and virtual in Cloud infrastruc-
tures, is key to understanding the importance of QoS in Cloud Computing and how its
implementation will differ, as it evolves, from that of Grid Computing. The current state
of the art technology in Cloud Computing centres on the Virtualization of resources at the
lowest level, a characteristic that distinguishes Clouds from Grids.

Virtualization refers to the creation of a virtual, as opposed to tangible, version of
an object. This definition of Virtualization is broad and can be applied to many con-
texts. To narrow the applicable scope of Virtualization to distributed systems and Cloud
Computing, Resource Virtualization refers to the isolation or combination of part or all
of a computing device’s hardware resource for different or shared purposes respectively.
Resource Virtualization can be applied to three areas in distributed systems:

• Network Virtualization: Refers to a method of multiplexing the use of network
devices while separating traffic, disguising the true complexity of the underlying
network topology.

• Storage Virtualization: Involves the pooling of physical storage devices from mul-
tiple networked devices, presenting the appearance of a unified storage device, man-
ageable from a central location.

• Server Virtualization: Provides isolated access to server resources while hiding
the underlying implementation details of the hardware away from the End-User for
the purpose of increasing utilisation and improving ease of management.
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The main technology enabling Server Virtualization in Cloud Computing is the Hyper-
visor, often referred to as a Virtual Machine Manager or Monitor (VMM). A Hypervisor
partitions a physical host server transparently via emulation or hardware-assisted Virtu-
alization techniques, through a layer of abstraction. This provides a complete simulated
hardware environment; know as a “Virtual Machine ”, in which a guest operating system
can execute in complete isolation. There are several benefits to utilising VMs. Hardware
can be consolidated when several servers are underutilised and VMs can be provisioned
as needed, endowing an organisation with reductions in the up-front cost of hardware pur-
chases. Additionally, VMs can be migrated from one physical location to another, with
ease and as the need arises, unlike traditional computing hardware that is difficult to move
once deployed.

Academics can also benefit from utilising VMs. There are often limitations imposed
on Grid users to what software they can use to develop scientific applications such as
those that support computer based simulation experiments. There are no such limitations
on the availability of software that can be installed into VM images as the End-User has
root privileges.

Like many topics in distributed systems, research on Virtualization is not new. The
first reference to the term “Hypervisor” was made in 1965 when IBM created software to
enable memory resources of an IBM 360/65 to emulate that of an IBM 7080 [210]. The
term originates from another: “supervisor”, a process control system used to allow users
to monitor and manage a number of processes. The Hypervisor process enabled the fast

and performant switching between the two modes of memory operation. The performance
of Hypervisors continue to be an active area of research [2, 118, 135, 139, 166, 175, 193,
204].

2.8 Hypervisor Classifications

To be able to classify a Hypervisor, the core properties that define one must be understood.
Thus, a system is only capable of being virtualised by a Hypervisor, if the Hypervisor
exhibits the following three properties [198]:

• Equivalence: Programs run through a Hypervisor should behave identically as
compared to direct execution on equivalent hardware.

• Resource Control: A Hypervisor must have complete control over virtual re-
sources provided to a VM.
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• Efficiency: A statistically significant proportion of machine instructions must be
executed without interference by the Hypervisor, pertaining to acceptable perfor-
mance.

In addition, the seminal work by Goldberg et al. [93] classifies Hypervisors in to two
categories, Type 1: Bare Metal (native) Figure 2.3(a) and Type 2: Hosted (embedded)
Figure 2.3(b).

(a) (b)

Figure 2.3. Hypervisor Classifications a) Type 1 b) Type 2.

2.8.1 Type 1 Hypervisor

In a Type 1, the Hypervisor runs on the host hardware with direct access and control of
the underlying hardware resources. VMs execute at a second level above the Hypervisor.
The Hypervisor must therefore perform the scheduling and resource allocation of physical
hardware on behalf of running VMs. Typically, Type 1 Hypervisors are used in datacenter
environments within servers.

2.8.2 Type 2 Hypervisor

Type 2 differs from Type 1, in that the Hypervisor runs within a host operating system.
The Hypervisor is given access to resources via the underlying host operating system’s
implementation, extending its functionality to enable Virtualization. In effect, VMs ex-
ecute in a third layer of software above the hardware resources therefore incurring an
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additional overhead. Type 2 Hypervisors are usually found in desktop based Hypervisor
varients.

2.9 Virtualization Techniques

There are five Virtualization techniques:

• Full Virtualization

• Hardware Assisted Virtualization (HVM)

• Partial Virtualization:

– Paravirtualization

– Hybrid Virtualization

– Operating System-Level Virtualization

Full Virtualization involves simulating enough hardware to allow an unmodified guest
operating system from a potentially different architecture to run in isolation, at a con-
siderable performance penalty due to the overhead associated with emulating hardware
at the transistor level. Hardware Assisted Virtualization utilises the additional hardware
capabilities, currently in the form of Virtual Machine Extensions (VMX), within the host
processor instruction set to accelerate and isolate context switching between processes
running in different virtual machines. This increases the computational performance of a
virtual machine, as instructions can be directly passed to the host processor without hav-
ing to be interpreted and isolated, at the expense of limiting guest operating systems to
using the same instruction set as the host machine. Complete Hardware Assisted Virtu-
alization of all computer subsystems such as I/O and memory management, has yet to be
implemented completely in any VMM.

Partial Virtualization involves the simulation of most but not all the underlying hard-
ware of a host and supports resource sharing but does not completely guarantee isolated
guest operating system instances. This basic approach is utilised in Paravirtualization,
Hybrid Virtualization and Operating System-Level Virtualization. Paravirtualization sim-
ulates all or most hardware by providing software interfaces or API’s which are similar to
that of the underlying hardware of the host. These can be utilised to create virtual hard-
ware device drivers for guest operating systems that achieve near native performance to
that of the host. The downside of this approach is that the operating system must be mod-
ified to run on Paravirtualised VMMs. This is portrayed in Figure 2.4 where a privileged
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Paravirtualised guest, known as Domain0 in the semantics of Xen [24], is responsible
for turning virtual machines on and off, monitoring state and provisions access to the
virtual device drivers and other resources within the Hypervisor, when a non-privileged
Paravirtualised guest, known as DomainU, is brought online.

Figure 2.4. Xen Hypervisor

Hybrid Virtualization combines the principles of both Hardware Assisted Virtualiza-
tion and Paravirtualization [175] to obtain near native performance from guest operating
systems but with the disadvantages of both. Although these disadvantages prevent the
consolidation of an organisation’s current hardware they do provide an excellent founda-
tion for the creation of new Cloud based systems, reducing the number of physical ma-
chines needed at peak demand and thus hardware running and setup costs. Most VMMs
support multiple types of Virtualization so these disadvantages can be somewhat miti-
gated. Operating System-Level Virtualization is achieved through isolating multiple user
space instances. A disadvantage of this Virtualization technique is that the guest operating
system of the virtual machine must be the same as the host, but provides the benefit of the
guest executing at native performance.

Not all Virtualization techniques are suitable for use in Cloud Computing infrastruc-
tures given the wide variety of applications that need to be supported. For example, legacy
applications maybe best suited to the Full Virtualization technique if there is a dependency
on a legacy operating system that runs on a different computer architecture. On the other
hand, applications that have high performance requirements, stipulated as part of QoS in
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a given SLA, would be better suited to Hypervisors that support the Hybrid Virtualiza-
tion technique. Additionally, applications that only support operating systems that are not
modifiable by third parties, such as Windows, would be best placed on Hypervisors that
support the Hardware Assisted Virtualization technique.

2.9.1 Live Migration

Migration refers to the movement of a VM from one host to another. The migration of
VMs between hosts is a core functionality of an IaaS provider and enables the optimiza-
tion of VM workload allocation to physical resources. Without this functionality work-
load consolidation would not be possible and Cloud resources would be underutilised.
The migration of a VM from one host to another incurs a downtime penalty when the VM
is in transition.

Live migration refers to moving a running instance of a VM from one host to another
over a network while still servicing requests and incurs minimal downtime. Live migra-
tions brings a set of challenges with regards to maintaining the QoS of the running VM in
migration and other VMs resident in the source and destination host [16]. Live migration
induces a load on CPU, network and memory bandwidth, when the host machine’s Hy-
pervisor copies the state of the running VM instance. Live migration of a VM occurs in
three phases [46]:

• Pre-Copy (Push): The VM continues to run on the source host machine while
memory pages of the VM that are least used are pushed over the network to a new
destination host. Pages modified on the source during this phase are re-transmitted.

• Stop-and-copy: At a point where either all pages are copied over to the destination
host or the rate at which pages are being dirtied by the VM on the source exceeds
QoS restraints or network bandwidth, the source VM is stopped and any remaining
pages are copied over. At this point a new VM is started on the destination machine
with the source’s state.

• Post-copy (Pull): This phase maybe necessary if time constraints are placed on
the live migration process, leaving pages to be sent on the source machine. Pages
of memory are pulled across the network when a page fault occurs on the desti-
nation VM, when a VM requires access to memory pages that have not yet been
transmitted.

Live migration is not suitable for all applications as there is a trade off point where the
speed at which pages of memory are dirtied can exceed the available bandwidth to transfer
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them over the network. In addition, live migration can adversely effect other VMs due to
resource contention between the multi-tenant VM instances and the Hypervisor’s migra-
tion process running on the same host machine. The performance of Live Migration is an
active area of research [16,18,68,116,119,121,136,156,237,242,282]. More so, the live
migration of VMs across Wide Area Networks, highly applicable to Cloud Computing,
is still to be fully realised due to issues of interoperability between Hypervisors and is an
area of on going research [31, 159, 274].

2.10 Virtual Machine Images

A VM disk image is a representation of the contents and structure of a storage medium
or device, such as a hard disk, USB flash drive or optical discs. A VMM access data
via these images to enable multiplexing of data resources. The contents of the image
contain data representing a sector-by-sector copy of a storage device at the guest level.
There are many types of disk image format, of which some provide additional features
like excluding unused sectors, reducing the physical disk space required to store the image
and encryption for enhanced security. In this section of the thesis, VM disk images are
discussed in the context of Cloud Computing.

2.10.1 Storage Backends

In Cloud Computing there are different ways to access and store VM images:

• Local storage provided by either:

– File Backed (File System Managed)

– Raw Block Device (No File System Management)

• Remote storage either via:

– NAS: Network Attached Storage (File System Managed)

– DFS: Distributed File System (File System Managed)

– SAN: Storage Area Network (No File System Management)

2.10.1.1 Local VM Storage

Local storage refers to storing and accessing the data representation a VM on the same
physical host as to which a VM is executed on. There are two ways this can be achieved:
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File Backed or virtual mode storage provides a VMM with a disk file that sits on top
of the local host file system, obscuring the real hardware characteristics of a physical
block device. In this mode, file level locking provides data protection when multiplexing
a storage resource. In addition, this mode offers portability across storage hardware via a
layer of abstraction above the host machine. A typical solution to File Backed storage in
a Cloud would require the staging in and out of a VM image to and from a physical host
machine via a centralised image repository and would make use of a file transfer protocol.

Figure 2.5. Overhead of Using Ffile Backed Storage (Left Path) Against Raw Block Storage
(Right Path)

In Raw Block Device or physical mode storage, the VMM bypasses the host file system
and the I/O Virtualization layer as shown in Figure 2.5. All I/O commands are passed
directly to a physical raw block device on the host machine. The physical characteristics
of the underlying storage hardware are exposed to the guest operating system and provides
no data protection. Common solutions use Logical Volume Management (LVM) to enable
the dynamic deallocation and allocation of space to a virtual machine after its creation.
With this, a single physical disk can be fragmented up into virtual volumes and assigned
to a specific VM.

2.10.1.2 Remote VM Storage

Remote storage refers to storing a VM image in a physical location separate from the
computational resources of the guest to which it belongs. There are three ways remote
storage can be implemented as illustrated in Figure 2.6:

Network Attached Storage refers to remote storage made available through a TCP/IP
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network using specific protocols such as the NFS and Common Internet File System
(CIFS), which provide interaction with data at the file level. NAS is similar in principle to
local file backed storage where a VM image is stored on top of a file system managed by
the NAS device. Where NAS differs is in providing access to files from a remote location
from a single physical machine.

Distributed File System can be conceptually thought of as an extension to NAS where
by discrete storage resources on multiple machines can be combined and shared amongst
many VMs for improved scalability. In addition, a DFS may provide features for provid-
ing transparent replication and fault tolerance of data for high availability purposes above
and beyond Redundant Array of Independent Disks (RAID) on a single machine.

Figure 2.6. Topology Differences Between NAS, SAN and DFS

Storage Area Networks address data at the disk block level and transfers raw disk
blocks over a network. This approach is similar to local raw block device storage in that
no underlying file system is provided, the file system is managed by the guest OS. Tra-
ditionally a SAN would use the Small Computer System Interface (SCSI) carried over a
fibre channel connect enabling shared block level storage up to distances of 10km. SCSI
is a set of standards defining commands protocols and electrical and optical interfaces for
connecting and transferring data between machines and peripheral devices, most com-
monly used for disk drives. More recently with the advent of low cost high speed Eth-
ernet adapters and as administrative domains have increased in size, the Internet Small
Computer System Interface (iSCSI) has risen in prevalence. The iSCSI protocol wraps
SCSI commands in IP packets for transportation over long distances including Wide Area
Networks (WAN) such as the internet.
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2.10.1.3 Selecting a Storage Backend for the Cloud

There are both advantages and disadvantages to using local or remote storage backed by
either a file system or not backed by a file system in a Cloud environment. No one solution
is appropriate for all Cloud applications.

Local storage is not limited by network connectivity and has a minimal computational
cost due to not having an associated network message processing and latency overhead
but does not scale with increasing space requirements and is difficult to manage adminis-
tratively across a Cloud infrastructure. In addition, network storage can have an effect on
other application level traffic if a dedicated network is not used.

Using a file backed image on top of a file system improves portability of VMs between
hosts and the management of VMs across a Cloud infrastructure but has an associated
performance overhead where by requests for data have to traverse both the structure of
the guest’s file system and the host’s file system before a block of data can be accessed at
the hardware level. There can also be Virtualization and image format overheads, which
will be discussed later in this chapter in Section 5.3.3. In contrast presenting a raw block
device to a VM enables native I/O performance within a guest but in the context of local
storage can complicate or prevent migration of VMs between physical hosts.

Although there are drawbacks to using local storage with file backed images, there are
advantages with regards to interoperability in more advanced Cloud environments, such
as with a federation of Cloud providers spanning geographically disperse data centres.
Images can be easily propagated to heterogeneous computational resources with little
effort in an ad-hock fashion using conventional file transfer protocols such as the File
Transfer Protocol (FTP) and Secure Copy (SCP). Support for this approach to image
management is available in all VIMs and is discussed in detail in Section 5.2.

2.10.2 Virtual Appliances, Packaging and Distribution

VM images can be packaged together to form a virtual appliance for ease of distribution.
A virtual appliance is comprised of many different types of VMs that contain specific
elements of an application’s software stack, referred to as “virtual systems”. An open
standard used by many Cloud infrastructure managers to package virtual appliances is the
Open Virtualization Format (OVF) [192] standard.

An OVF package, often confused as a VM image format itself, specifies the hardware
requirements and configuration of a image at creation time and can contain or reference
other files such as VM images. The description itself is a human readable XML document
that contains metadata that includes naming and hardware requirements of one or more
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VMs.

Figure 2.7. An OVF Packaged Virtual Appliance

The OVF standard has found wide spread support in industry and in the open source
community by enabling interoperability between vendors as the standard is not tied to a
specific VMM. A potential drawback to using the standard is that some specific virtual
hardware features can be lost in the semantic abstraction when catering for the lowest
common denominator of feature set to enable portability across all VMMs.

2.10.3 Image Formats

There are several VM image formats that are available for use in Clouds with varying
degrees of support at the Hypervisor level. In this subsection, the features and the Hy-
pervisor support of all disk image formats currently in use in Clouds, are explained and
presented in detail as a taxonomy.

In Table 2.1 a comprehensive list of image formats, the features supported by each
and the VMM of origination where applicable, are presented:
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Table 2.1. Comparison of Image Format Features

Image Format
Name

Features
Hypervisor of
Origin

QCow2 [257]
Dynamic Allocation, Preallocation,
Cluster Size Selection, Encryption,
Compression, Snapshots

QEMU

VMDK [259]
Dynamic Allocation, Preallocation,
Snapshots, Split Disks

VMware

VHD [256]
Dynamic Allocation, Preallocation,
Snapshots

Microsoft Virtual
PC

VDI [255]
Dynamic Allocation, Preallocation,
Snapshots

VirtualBox

Raw Dynamic Allocation, Preallocation N/A

AMI [8] Dynamic Allocation, Preallocation Amazon EC2

Preallocation refers to virtual disk storage that is allocated in its entirety upon cre-
ation. The opposite is true of Dynamic Allocation where virtual disk storage grows on-
demand as new disk space is required. Preallocation is preferable if performance is of
primary concern as there is an overhead associated with growing an image.

The Snapshots feature refers to using a copy on write mechanism. This is analogous
to differencing, enabling changes made to a disk to be undone. All changes to an image
are contained within a separate file or child image and can be merged to the parent file
if needed at a later date. Copy on write operations can also be used to share a base
image between running VMs instances, where concurrent updates are isolated and stored
in a snapshot file, reducing data storage requirements and the time to create a new VM
instance as the base image does not need to be copied to be cloned.

In addition to the previously mentioned features, QCow2 supports Cluster Size Se-
lection, which enables fine tuning of performance in contrast to the image size, where a
smaller cluster size reduces the overall image size and a larger cluster size provides en-
hanced performance. Optional full image level pass phrase AES Encryption for enhanced
security and zlib Compression for smaller image sizes, are also supported by this format.

The VMDK image format uniquely provides Split Disks that enables support for older
files systems such as the File Allocation Table (FAT) file system, where there is a file size
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limit of 2GB. Further more, split disks reduce the space needed to consolidate snapshots.

Figure 2.8. Illistration of Sparse File Support in a File System

The raw image format differs from the others discussed in that it does not contain
metadata or a format header and only supports dynamic allocation on file systems that
provide ”holes” or sparse files, where blocks of data with a zero value do not point to a
physical location but are instead recorded in the metadata of the file system. This feature
is illustrated in Figure 2.8 and is available in the Fourth Extended File System (Ext4).

In Table 2.2 a taxonomy of image support, in a number of Hypervisors, is presented.
The scope of the taxonomy is limited to Hypervisors that support x86 and x86 64 hard-
ware, all guest operating systems and have been created for use in server environments,
i.e., VMMs that operate through Virtualization, Paravirtualization or Hardware Assisted
Virtualization. Container based VMMs that use Operating System-level Virtualization
are of limited usefulness and desktop Hypervisor solutions are not applicable in Cloud
environments. A VMM is also considered to support a specific image format if the image
can be run natively without requiring conversion before use.
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Table 2.2. Comparison of Image Format Support in VMMs

Virtual Machine
Manager

Image Format Support Comments

KVM
QCow2, VMDK, VHD, VDI,
Raw

Image support via QEMU
device emulation.

Xen QCow2, VMDK, VHD, Raw,

Raw and VHD image support
via blktap2 device driver.
QCow2, VMDK, VHD
image support via integrated
QEMU device emulation and
file device driver backend.

VirtualBox VDI, VMDK, VHD
Newly created guests via
VDI format only.

VMware ESX
Server

VMDK
Version 3 limited to 2TByte
volumes

HyperV Server VHD Limited to 2TByte volumes

KVM provides the most comprehensive support for image formats with its continued
upstream integration with QEMU. Xen follows closely behind as it advances toward KVM
to provide user space HVM guest support via QEMU Paravirtualized device emulation.
Currently Xen makes use of an older version of QEMU with reduce image format support.
In addition, Xen supports its own implementations of the raw image format and VHD for
Paravirtualized DomainU based guests. The Xen implementation of the raw image format
is a based on an unpartitioned raw loop-back image that can be used in conjunction with
the kernel space blktap device driver. Unfortunately this driver is poorly maintained
and the lack of partitioning in the raw image causes difficulties when migrating to other
Hypervisors.

An evaluation on the performance of each of the image formats discussed within the
context of all the available open source Hypervisors at the time of writing, is provided in
Section 5.4.4.1.
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2.10.3.1 Image Maintenance and Management Issues

VM images need to me managed and maintained to be of use in a Cloud Computing en-
vironment. This includes such tasks as cloning, conversion, encryption and compression.
One particular issue that is yet to be resolved regarding image maintenance is the prob-
lem of reclaiming deleted space from dynamically allocated image formats. When data
is deleted from an image it is only dereferenced at the level of the guest file system. This
leave the deleted data present in the underlying host file system. One possible solution
to this problem could be to implement a similar command to TRIM [83], at the Hyper-
visor block I/O device level, to maintain compact image sizes over extended periods of
use. The TRIM command is used by operating systems backed by Solid State Disk (SSD)
drives, where by deleted blocks of data are physically zeroed upon deletion for the pur-
pose of improving performance when data is written in the future. In Virtualization the
same technique could be used to zero deleted block of data within an image. An attempt
at maintaining sparsity has been considered at the kernel and file system level by [211].

Another issue regarding management, relates to the conversion of images between
Hypervisors. Although it is easy to convert between image formats it is more difficult
to abstract away internal changes made at the guest Operating System level. To obtain
higher performance the Operating System of a VM can be installed with and configured to
use Paravirtualized device drivers, which are often Hypervisor specific and incompatible
from one Hypervisor to another. This can prevent a virtual machine from booting and is
discussed further as part of contextualization in Chapter 6.

2.11 Contemporary Hypervisors

There are several VMMs that are widely adopted by Cloud Computing architectural de-
ployments. These come from a variety of sources including the open source community
and commercial vendors.

2.11.1 Open Source

This section discusses three open source Hypervisor variants. All the open source Cloud
architectures discussed in Section 2.4 support at least the following two VMMs.
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2.11.1.1 KVM

The Kernel Based Virtual Machine (KVM) [153,205] is a Type 2 Hypervisor that supports
Hardware Assisted Virtualization and Hybrid Virtualization techniques. KVM primarily
supports x86 and x86 64 processor architectures. Recent versions have however been
ported successfully to PowerPC and IA-64 (Itanium) architectures. Additionally, the de-
velopment of KVM is supported by Red Hat.

The approach taken by KVM takes a standard Linux kernel and turns it into a Hy-
pervisor by simply loading a kernel module. The architecture of KVM is split between
a Linux kernel module and user space program. KVM itself does not perform emula-
tion of devices but instead provides access to hardware Virtualization features available
in various processors through the /dev/kvm device interface. This device is presented
to user space programs enabling isolated address spaces between VMs. A VM’s virtual
CPU is implemented using regular Linux processes and threads that are scheduled by the
Linux scheduler which enables KVM to leverage the many resource management features
within the Linux kernel.

Device emulation is performed by a user space program that makes use of the
/dev/kvm interface to feed a VM with simulated I/O and provide a virtual graphical
display on the host. QEMU [200] since version 0.10.1 has made use of this device inter-
face. KVM with QEMU supports a number of guest operating systems variants based on
Linux and Windows.

As KVM makes extensive use of the Linux kernel to manage physical resources, it has
thus inherited its performance and scalability. VMs can make use of up to 16 virtual CPUs
and 256GB of RAM on host machines with up to 256 logical CPU cores and over 1TB
of RAM. In addition, consolidation rations of more than 600 VMs running on a single
physical host have been recorded [205].

Advanced scheduling and resource control mechanisms within the Linux kernel can be
leveraged to set resource priorities of VMs including CPU, memory, network and disk I/O
to maintain QoS. Recent extensions to the Linux kernel and its Completely Fair Scheduler
(CFS), have seen the implementation of CGroups or control groups to manage resources
at a process level. CGroups enable the sharing of resources beyond the weighting of
resources typically found in other Hypervisor implantations. This enables resource mini-
mums as well as maximums to be assigned to a VM, guaranteeing resource allocations.
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2.11.1.2 XEN

XEN [24] makes use of the Hybrid Virtualization technique, is utilised in Amazon’s EC2
IaaS and was originally developed by the University of Cambridge but is currently sup-
ported by Citrix Systems. It supports x86, x86 64 and ARM based computing architec-
tures and a number of guest operating system variants based on Windows and Linux.

XEN is a Type 1 Hypervisor with an architecture that makes use of a micro-kernel,
which is booted before a Domain0 privileged host operating system illustrated in Fig-
ure 2.4. A micro-kernel is the minimum amount of software needed to implement the
functionality of an operating system. The Hypervisor executes in a higher privileged
state than the Domain0 or DomainU guests. The XEN micro-kernel manages memory
and CPU scheduling of VMs, while the Domain0 privileged guest, a modified version of
Linux, manages access to and Virtualization of devices.

XEN is highly scalable and has been tested on host machines with greater than 255
physical CPUs. VMs can be allocated up to 128 virtual CPUs and 1TB of RAM [277].
KVM and XEN are compared in detail as part of Section 5.3.2.

2.11.1.3 VirtualBox

VirtualBox [258] is a Type 2 desktop Hypervisor utilising Hybrid Virtualization that can
be run in “headless” mode on server hardware. It comes in two versions, an open source
variant and a closed source free version that makes use of an extension pack for support of
Microsoft’s Remote Desktop Protocol (RDP), USB 2.0 devices and Intel network cards,
which do not fit with the GPL license model used in the open source version. Widespread
adoption of this Hypervisor in IaaS architectures and providers is not yet a reality, due to
the performance overheads of hosted Type 2 Hypervisors and is thus currently relegated
to desktop Virtualization use cases.

2.11.2 Commercial Variants

The commercial alternatives to XEN and KVM in Cloud Computing infrastructures are
as follows:

2.11.2.1 VMware

VMware [260] provide a number of Hypervisor products with different applications and
deployment scenarios in mind:
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VMware ESX [261] is a successful commercial VMM that is used in enterprise dat-
acenter environments. It is a Type 1 Hypervisor that provides direct access to physical
resources on behalf of VM guests. It provides Full and Hybrid Virtualization techniques
through a Linux based micro-kernel. The Hypervisor provides interfaces to: hardware,
VMs and a management console. It supports most Linux and Widows variants on x86

and x86-64 architectures but does not support RISC based operating systems such as
PowerPC. Guest systems are supported with virtual resources of up to 1TB of RAM and
32 virtual CPUs. Host machines are constrained to 2TB of RAM and 160 CPUs with a
maximum number of 512 VMs per host.

VMware Workstation [265] and Server [263] are Type 2 Hypervisors that are ori-
entated towards desktop and datacenter environments respectively. VMware Server has
fewer features than ESX but can be deployed onto existing Windows host operating sys-
tems. VMware Workstation enables desktop Virtualization and has support for 3D hard-
ware accelerated applications that make use of both Direct3D and OpenGL graphics. Cur-
rently, GPU Virtualisation techniques exhibit poor performance but as virtualised GPU
devices improve, further cost savings will be released in Cloud Gaming, outlined in Sec-
tion 2.5.3, enabling a greater number of games to be supported.

VMware Tools, plays a critical role in the Paravirtualization of guests on all VMware
Hypervisors. It is a package of drivers that improve the performance of a guest oper-
ating system and adds additional functionality like clipboard sharing and system clock
time synchronisation. Paravirtualization is achieved through an open standard, the Vir-
tual Machine Interface (VMI), a communication channel to the Hypervisor from within a
guest.

2.11.2.2 Hyper-V

Microsoft’s Hyper-V [122] is a Type 1 Hypervisor that uses Hardware Assisted Virtual-
ization that is often confused as Type 2 due in part to it being bundled with Windows
Server 2008. In fact, the Hypervisor loads before the host operating system used to man-
age VMs and runs directly on the physical hardware. Hyper-V requires hardware based
on the x86 64 architecture and is limited to 384 guest VMs per system, with each guest
able to support a maximum of 4 virtual CPUs. Hyper-V has support for all versions of
Windows from the year 2000 but is limited to enterprise Linux distributions such as those
supported by Red Hat and SUSE.
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2.11.3 Operating System-Level Variants

Operating System-Level container based Hypervisors are classified as Type 1 due to the
integration of the Hypervisor resource management code into the host operating system’s
kernel. These variants are not well suited to IaaS roles as they are limited to a single
operating system type and lack support for VM image formats but are popular with Virtual
Private Server (VPS) providers that host websites for End-Users. Web site supporting
software stacks, such as those that use Apache, Mysql and PHP, are not constrained by
the single operating system limitation and tend to be highly portable. The value added by
VPS providers in provisioning VMs compared to the provisioning of shared web hosting,
is the advanced configurability and customisation it enables the End-User to make to the
supporting software stack.

2.11.3.1 OpenVZ

OpenVZ [190] is an open source container based Virtualization for Linux, is supported
by Parallels, Inc. and is the basis of their commercial Hypervisor offering: Virtuozzo
Containers. The Hypervisor can be used to create multiple isolated Linux containers that
reside on a single physical server. Each container has access to its own files, users and
groups, process tree and virtual network device. Applications running within an OpenVZ
container are limited, if configuring of kernel-level features are required, due to the use
of a shared kernel between all instances. In addition, only VPN technologies that run in
user space are supported, excluding the use of enterprise grade Internet Protocol Security
(IPsec) tunnels that run at the kernel level.

2.11.3.2 VServer

Linux VServer [267] is another open source Linux container based Virtualization solution
similiar to OpenVZ but has a number of additional disadvantages. These include a lack of
support for container migration between hosts, no support for the allocation and sharing
of disk I/O between running instances and parts of the filesystem are left unvirtualised,
reducing the effective isolation between guests that in turn has an impact of security.

2.12 Summary

In this chapter of the thesis, the topic of Cloud Computing, its heritage and deployment
models were introduced. A classification of Cloud services was presented that categorises
Clouds into three models: IaaS, PaaS, IaaS. Additionally, a number of emergent Cloud
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types were discussed. Several open source architectures, usable in the creation of a Cloud
provider, were examined in addition to a number of commercial Cloud offerings, pro-
viding an overview of the technological landscape that forms the Cloud ecosystem. The
topic of resource management in Cloud Computing and the concept of elasticity was dis-
cussed. Furthermore, resource scheduling in the context of Clouds and Virtualization
was investigated. In addition, a number of scheduling implementations were examined,
the relevance of monitoring tools discussed and applicability of two monitoring system
implementations were presented.

Additionally, this chapter of the thesis introduced the topic of Resource Virtualiza-
tion and its applicability to Cloud Computing as the basic resource building block of any
IaaS provider. The properties that define and a formal classifications of Hypervisors were
presented, in addition to a variety of Virtualization techniques used to enable the provi-
sioning of VM resources. The usefulness of these techniques in Clouds were discussed
in light of the effect each technique has on performance and whether a technique is par-
ticularly suited to a given Cloud application. Additionally, the topic of Live Migration
and its application in maintaining QoS was presented. Finally, a number of contemporary
Hypervisor variants in active use were discussed.
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Cloud Application Composition

3.1 Introduction

The previous chapter described virtual resources as the foundation on which a Cloud ap-
plication is built, relevant to the lowest level of the Cloud Service Stack, IaaS. Building
applications in Cloud Computing requires the collaboration of components across all lev-
els and thus encompasses a number of disciplines from within software engineering. This
chapter outlines the concepts and technology that enable the composition of technology
and components into Cloud born applications. The background on composing Cloud ap-
plications presented in this chapter, sets the scene for the research performed in Chapter 6
on the Contextualization of components for the purpose of orchestration.

The outline of this chapter is as follows: Section 3.2 introduces Service Oriented
Architectures, including the concept of service orientation, web service technology and
service orchestration in relation to Clouds. Section 3.3 discusses the emergence of Cloud
Engineering including the challenges it must face and the requirements needed to apply
it successfully. Additionally, the relevance of the Web Scale Computing concept and a
number of design patterns are discussed. Finally, Section 3.4 discusses the migration of
applications to the Cloud, introducing simulation as a mechanism to validate the benefits
to QoS, the possible pros and cons of using Cloud services within an application’s soft-
ware stack and best practice to apply when the decision has been made to make use of a
Cloud and application development is about to start.

57
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3.2 Service Oriented Architectures

In the paradigm of Cloud Computing, the concept of Service Oriented Architecture (SOA)
plays a critical role in the development and integration of services across the entire Cloud
stack, providing support to an application and enabling the fulfilment of its non-functional
and functional requirements.

SOA provide a number of principles and methodologies for the design and develop-
ment of interoperable software services that can be leveraged in a Cloud, specifically in
the PaaS and SaaS layers. In SOA, a service is a well defined set of functionalities that
is combined together as a software component for the purpose of reusability. In Cloud
Computing the design principles of SOA enable the consumption of SOA services within
a Cloud application using dissimilar programming languages. The interface of a service
is often defined using XML, enabling the integration of widely disparate service imple-
mentations and platform technologies.

SOA relies on the principle of loose coupling, where service functionality is indepen-
dent with minimal external dependencies and no calls to other services are embedded in
a service’s source code. Instead a service uses a well defined protocol to communicate,
which describe how messages are passed and parsed. Service functionality is thus only
made available over a network.

3.2.1 Service Orientation

In SOA, the design principles of Service Orientation govern application development.
The principles have been outlined as follows [245]

• Standardized Service Contract: Services adhere to a communications agreement
defined collectively by service description documents.

• Service Loose Coupling: Services maintain relationships that minimize dependen-
cies, requiring awareness of service functionality only.

• Service abstraction: Descriptions hide service implementation and logic from the
outside world.

• Service Reusability: Logic is divided into services with the aim of promoting
reuse.

• Service Autonomy: Services are independent of the logic encapsulated.
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• Service Statelessness: Services minimize resource usage by deferring the manage-
ment of state where possible.

• Service Discoverability: Services are accompanied with metadata used to discover
and interpret functionality.

• Service Composability: Services must be composable with one another regardless
of the size and complexity of the composition.

These principles are highly applicable to the Cloud Service Stack, which currently
supports limited interoperability and programmatic discovery of Cloud services. In addi-
tion, the application of these principles results in the creation of software units that are
partitioned by capability and designed to solve a specific problem. In the context of Cloud
Computing, Internet based protocols can be leveraged to make these functional building
blocks accessible as Web Services.

3.2.2 Web Services

A Web Service at the highest conceptual level, is a method for enabling communica-
tion between devices over the World Wide Web (WWW). W3C [251] has defined a Web
Service as a ”software system designed to support interoperable machine-to-machine in-
teractions over a network” [271]. A Web Service’s interface is described using a machine
readable format or markup language that is consumed by a client to enable the calling of
a Web Services functionality. These descriptions can be stored in a Universal Description
Discovery and Integration (UDDI) repository for the purpose of listing a web service on
the Internet.

The developers of Web Services make use of standards to enable greater interoper-
ability and avoid vendor lock-in. Two of the most popular service based protocols for
communication are SOAP [269] and REST [212].

3.2.2.1 Simple Object Access Protocol (SOAP)

SOAP provides a specification for the structured exchange of information using XML.
SOAP services are expressed as machine readable description of service operations which
can be written using the Web Service Description Language (WSDL) [275] although this
is not a requirement it is necessary for the automated generation of client and server code.

SOAP can make use of a number of different transportation methods such as TCP,
UDP, SMTP and HTTP. The HTTP web based protocol has become a de facto standard
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for transportation, as the protocol is able to traverse firewalls and leverage the security
and identification features already present in the protocol.

There are a number of criticisms of SOAP. Namely the verbose nature of the XML
messages used cause performance related issues when small messages sizes are sent. In
addition, the reliance on the client-server architecture of HTTP as a transportation proto-
col prevents the bi-directional communication of messages. Clients are only able to call
a service thus limiting a developer to the inefficient polling of a service to detect changes
in state.

3.2.2.2 Representational state transfer (REST)

Representational state transfer (REST), takes an alternative approach to Web Service com-
munication. REST does not mandate the use of XML, SOAP or WSDL but instead con-
strains the use of a protocol, for example in HTTP, by standardising on a set of well known
operations:

Table 3.1. HTTP Based Rest Methods

Resource
Type

GET PUT POST DELETE

Collection List the re-
sources of a
collection.

Replace
all re-
sources in a
collection.

Create a new re-
source in the col-
lection.

Delete the en-
tire resource
collection.

Element Retrieve a
represen-
tation of
a resource
element.

Replace a
represen-
tation of
a resource
element or
if it doesn’t
exist create
it.

Create a new re-
source represen-
tation of an ele-
ment.

Delete the
resource repre-
sentation of an
element.

The focus also differs, interactions are made with stateless resources rather than con-
centrating on the standardised transfer of messages, as in SOAP or on the calling of meth-
ods, as in the case of RPC implementations. Requests and responses in REST are thus
built around the transfer of resource state representations. A client sends a request to
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move a service’s resource into a new state and the service returns a representation of the
resource’s state to the client. The client while operating on this representation is consid-
ered to be in transition. After the client completes its transition, a new representation of
state is returned to service.

3.2.2.3 Markup Languages

Markup languages play a role in the annotation of Web Services and enable the automated
composition and implementation of service designs. Automation tools can either generate
service descriptions from existing code or consume them to create code stubs. WSDL is
an example of one such markup language specification used in SOAP. WSDL describes
a service as a collection of network endpoints which are associated with a binding. End-
points specify invokable methods and likewise a binding represents a reusable message
description.

3.2.3 Service Orchestration

Service orchestration refers to the automated deployment, management and coordina-
tion of services. The orchestration of services is based largely on Control Theory [70]
where the behaviour of a system is managed via the manipulation of control variables
that are used to apply desired effects on a system. In addition, it helps define policies
for the automated workflow management and resource provisioning of services. Service
orchestration is highly applicable to SOA, Virtulaization and Cloud Computing where it
describes the centralised management of resources pools, including billing/metering and
the composition of services to solve specific problems using reusable system components.

In the context of Cloud Computing, service orchestration is the composition of archi-
tectures, tools and processes to deliver a defined service. Software and hardware compo-
nents are combined together alongside the automation of IT workflows. This enables the
delivery of Cloud services at appropriate scales of economic feasibility while maintaining
applicability to both the domains of a business and technical processes.

3.3 Cloud Engineering

Cloud Engineering refers to the application of engineering principles in the context of
Cloud Computing for the purpose of enabling a systematic approach to the creation of
commercially viable and standardised Cloud services. Cloud Engineering draws on many
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different disciplines such as system, software, web, performance and security engineer-
ing. The commodity based capabilities of Cloud services bring a number of inherent
challenges that must be overcome to realise the full potential of the paradigm. In addi-
tion, the complexity of Cloud Systems drive the need for Cloud Engineering principles.

3.3.1 Challenges

There are a number of challenges facing Cloud Engineering. The relative youth of the
Cloud paradigm and the revenue protectionism of Cloud providers have an adverse effect
on standardisation of Cloud technologies. Cloud Engineering must accommodate for
application and data portability as well as dealing with issues of scalability in and across
Cloud providers.

Another challenge facing a Cloud engineer is the monitoring and management of ap-
plications. The holistic nature of Cloud applications across the entire service stack pose
a number of issues for traditional on premise enterprise applications. With the inclusion
of virtual resources, capacity management at the Hypervisor level must be monitored to
maintain performance. Traditional monitoring systems concerned with physical systems
that remain static are not well suited to the dynamically changing environment of the
Cloud.

The scale enabled by Cloud infrastructure bring another challenge related to the pro-
filing and testing of Cloud applications. Traditional applications are bound by predictable
and measurable usage patterns. The scale experienced by Cloud applications are not.
Traffic spikes are seemingly unpredictable and unlimited in nature.

The externalisation of resources from an organisation also create a number of chal-
lenges when engineering secure Cloud applications. Not only must the frontend of the
application be secured from potential unauthorised access but so to must the backend re-
sources, which are left potentially accessible by third parties sharing the same resources
and the Cloud provider.

Finally, multitenancy makes the profiling of individual client performance indicators
difficult as applications competing for physical resources have an adverse effect on one
another. Applications developers when testing must thus be able to distinguish between
not only the overall health of their services but the potential impact other services running
in the same infrastructure could have.
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3.3.2 Requirements

These challenges thus bring a number of interesting requirements for the systematic engi-
neering of a Cloud service including Standardisation, Scalability, Security and Manage-
ability.

Standardisation enables a Cloud engineer to create applications and services that re-
quire minimal redevelopment effort to be deployed onto a range of Cloud infrastructures
and platforms. There are a number of standards organisations and associated working
groups developing standards for Cloud Computing:

• Cloud Security Alliance [48]: Formed to promote a series of best practices for
assuring security in Cloud Computing. It has a number of objectives including the
promotion of understanding, researching best practices and launching awareness
campaigns with the goal of creating consensus on measures to ensure Cloud secu-
rity.

• Open Cloud Consortium (OCC) [182]: The goal of OCC is to develop standards
for Cloud Computing and create frameworks for interoperability between Clouds.
A number of working groups are devoted to various aspects of Cloud Computing
including virtual networks and open science data Clouds.

• Cloud Computing Interoperability Forum (CCIF) [39]: CCIF is a forum for
discussing the creation of the Cloud ecosystem promoting organization working
together through the use of Cloud Computing technologies. The primary focus
of the forum is to create a framework for enabling Clouds platforms to exchange
information in a unified way.

• Open Grid Forum (OGF) [183]: OGF is a community that focuses on the adoption
and evolution of distributed systems technology. This includes a number of topics
such as HPC and SOA as well as Cloud Computing.

• The Object Management Group (OMG) [184]: OMG is an international group
with a focus on developing enterprise standards for software intergeneration and
encompasses a wide range of industries including governments and healthcare. The
group creates modelling standards for software along side other business processes.

• Distributed Management Task Force (DMTF) [61]: The DMTF is focusing pri-
marily on IaaS and creating a number of standards to enabling flexible, scalable and
high performance infrastrucutre. This group contributed to the development of the
Open Virtualization Format (OVF) [192] discussed later in Chapter 5.
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• Storage Networking Industry Association (SNIA) [233]: SNIA focuses on the
development of storage solution specification and standards. The association has
shown an interest in the standardisation of storage platform technology used in
Cloud Computing.

• National Institute of Standards and Technology (NIST) [180]: NIST is a non-
regulatory US federal agency whose goal is the promotion of innovation and com-
petitiveness through the advancing of standards and technology. Their focus has
been on helping federal government agencies understand the benefits of Clouds and
have created a formal definition of Cloud Computing as discussed in Section 2.3.

These standards should enable portability of data and applications across Clouds. The
major focus of these organisations is on creating frameworks that enable two or more
Cloud platforms to exchange information in a unified manor. However there is a potential
issue that could arise from the number of organisations working on Cloud standards.
The risk is that each standards organisation creates there own standard in isolation. This
would leave a Cloud engineer in the same position as if there were no standards, where
each provider could implement a different standard thus not improving interoperability.

There are a number of requirements that must be met to provide scalability when
engineering on the Cloud. Increased resource utilisation should result in a proportional
increase in performance. A scalable service should be capable of handling heterogeneity
and scale across dissimilar Cloud hardware and software technologies. A service should
be operationally efficient making use of only the resources it requires to service requests.
A service should be resilient to hardware failure. Finally, as a service scales it should
become more cost effective with resource pool growth.

The secure development of Cloud applications require a broad set of policies, tech-
nologies and control mechanisms to protect data, applications and infrastructure. Engi-
neering secure Cloud platforms requires additional effort due to the use of Virtualization
with specific concerns alluding to the potential to compromise the Hypervisor and gain
access to other VMs running on the same host machine [273]. This is largely a theoretical
concern at present but as the rewards of breaching this barrier increase with the adoption
of Cloud Computing, so will the likely hood that exploits will be implemented. Engineer-
ing security requirements also cover identity management, privacy and legal issues that
must be implemented with regulatory compliance already found in traditional enterprise
IT environments.

Due to the complexity of the Cloud ecosystem and the possible reliance on multiple
organisations when provisioning a Cloud service, an engineering requirement for man-
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ageability is a must. This requirement refers to a number of workflow tasks relating to
performance tuning, security compliance, disaster recovery and contingency planning.
Manageability must be released at all levels of the Cloud Service Stack to ensure that
resources and software are working optimally and interacting with End Users and other
services correctly.

3.3.3 Web Scale Computing

The engineering of Cloud systems draws on the contribution of Web Scale Computing.
Web Scale Computing, a relatively new term to software engineering, refers to the devel-
opment of web based applications that scale with an ever increasing user base. The advent
of “web hubs” and social networks, such as Facebook, Google and eBay, have seen the
active development of new technologies to deal with the scalability limitations present
in traditional distributed system technology. An example of which is the NoSQL [239]
movement, where the issues of scalability that have plagued Database Management Sys-
tems (DMS) in web based environments have been overcome by re-thinking the technical
requirements of storing data by obtaining a new compromise with data consistency.

3.3.4 Big Data

Issues with very large data sets, on an order of magnitude of a petabyte or greater, have
recently contributed to the development of Cloud Engineering principles. These data sets
are often refereed to as Big Data [25] recently defined by Mike2.0 [169] an open approach
to Information Management. Big Data refers to large, complex data sets that cannot be
captured, managed or processed by traditional on-premise computing systems and has
driven the development of Cloud Computing technology to enable economically viable
on-demand processing using third party computing resources. Cloud technologies, such
as Hadoop discussed in Section 2.4.2.3, have reduced the complexities of engineering
applications that analyse large data sets and improved the turn-a-round time of processing,
enabling enhanced decisions that can be made sooner.

3.3.5 Design Patterns

Design patterns, as with other computer systems, play a role in enabling the reuse of
generalised solutions to commonly occurring problems in Cloud Computing. There are a
number of high level design patterns applied to Cloud Computing. These relate to fault
tolerance, caching and monitoring:
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• Design for failure: Avoid single points of failure and assume everything will fail.

• Caching: Cache data at network edges.

• Monitor Elasticity: What is not monitored cannot be controlled.

Designing for failure refers to the application of generalised fault tolerance tech-
niques for the purpose of maintaining service availability. This is an active area of re-
search [54, 67, 138,244, 252, 279] and covers both compute and data resources in Clouds.
Data replication and redundancy is discussed in detail by Zhang and Chen [279], where
a number of strategies and their potential impacts are evaluated. For compute based fault
tolerance, others [244] have discussed the use of High Availability (HA) as a system
design approach. HA makes use of resource failover whereby standby resources are
switched to in the event of a hardware component failing. In addition, system check
points that save the state of a machine has been another avenue of research [67].

Due to the expense associated with the transfer of data in and out of Cloud providers,
a design pattern has emerged to solve issues with geographically pervasive Cloud appli-
cations that leverage the use of caches [203]. This design pattern mandates the use of
data caches at the edges of availability zones or data centres used by a Cloud application.
This reduces the latency in accessing data after caching and enables the self-partitioning
of data based of the frequency of use by an application. Additionally, caching overcomes
the performance bottlenecks of a Cloud provider’s interconnects that exhibit very high
contention rations and are limited in bandwidth availability [176, 225].

Finally, the continuous monitoring of all aspects of the Cloud Service Stack has be-
come a wide spread problem that is being solved by generalised design pattern solutions.
These involve the tracking of resource usage patterns to enable elasticity and the collec-
tion of application level metrics [141] and is discussed later in Section 6.4.1.2.

3.4 Issues to Consider

Several elements need to be considered before any decision can be made on whether to
migrate an application to the Cloud or make use of a Cloud provider for the development
of a new service. This subsection highlights the advantages and disadvantages of using
Clouds. In addition, methods and techniques that surmount to the current best practice
in using Cloud technology are discussed. Finally, simulation tools for the purpose of
ascertaining whether the performance provided by Cloud Computing is acceptable for a
given application, are discussed.
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3.4.1 Pros and Cons

There are multiple advantages and disadvantages migrating to the use of the Cloud Com-
puting paradigm. This section provides an overview of the major pros and cons of using
Clouds.

3.4.1.1 Disadvantages

Infrastructure and platform security is a major disadvantage of using Cloud Computing
over in-house IT resources. The dependency on third party security measures limit the
number of applicable use cases of Cloud Computing. Vendor lock-in is another disadvan-
tage of using Clouds that can be overcome by selecting providers that make use of open
standards. Hidden costs can be associated with using Cloud Infrastructure and need to be
consider that are not present in traditional systems, such as the use of network bandwidth
and metering associated with data storage. In addition, network latency needs to be eval-
uated for applications sensitive to response times, due to compute and network resource
congestion and contention. The current track record of provider reliability can prove to
be disadvantages as the length of service outages are outside the control of the End-User
and can be detrimental to the profit of an application. The shared nature of Cloud re-
sources can have an effect on privacy and measures must be taken to guarantee data is
not exposed to the wrong people by safeguarding with the use of suitable encryption poli-
cies. Additionally, data protection laws on exporting data across jurisdictional borders,
can be disadvantageous and problematic. Provider can go bankrupt, which must be miti-
gate by implementing suitable disaster recovery policies. There are cultural disadvantages
that should be considered via the application of Change Management to mitigate the fear
of job loss that outsource of IT services generates. Finally the dependency on network
connectivity to deliver services can prove to be disadvantage if not foreseen during the
development of an application and can limit usefulness. A good example of disadvantage
over traditional applications is the Google Maps SaaS solution, which is not usable in
remote locations with poor 3G coverage.

3.4.1.2 Advantages

On the other hand, the application of Cloud Computing can enable better collaborations
between organisations as data is accessible from anywhere over the Internet. The econ-
omy of scale provided by a Cloud provider pertains to cost reductions and the inherent
scalability of Cloud PaaS offerings enables elasticity to be achieved with minimal devel-
oper effort. The illusion of almost unlimited storage and computation resources reduce the
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burden of dealing with the extremities of capacity management at the application develop-
ment level. There are advantages to using Cloud providers for the backup and recovery of
on-sight applications enabling the transfer of responsibility onto external backup experts,
rather than training staff internally that can be costly and time consuming. Finally Cloud
Computing brings a number of advantages with regards to the customisation of Cloud
Computing services, access to Cloud services is available at multiple levels and can be
exchanged with reduced development effort due to layers of abstraction applied.

3.4.2 Best Practice

Best practice refers to methods or techniques that consistently show superior results and
describe standards that can be leveraged by organisations to successfully migrate to or
adopt Clouds. As the Cloud Computing paradigm is still evolving best practice is still to
be fully realised. The following list provides a number of high level best practices that
can be applied throughout the life-cycle of Cloud software development and is inspired
by research on the challenges Cloud Computing faces in Enterprise adoption [147, 148]:

• Adopt an appropriate iterative and agile methodology to enable the rapid deploy-
ment models of Cloud Computing to be leveraged by an application.

• Evaluate Cloud infrastructure suitability given the desired technology requirements
of the application and the benefits provided by Cloud Computing.

• Create software unit tests for performance, security, reliability and availability to
combat the shortcomings of Cloud Computing infrastructure and platforms.

• Adopt an integrated application life-cycle management tool to enable the benefits of
Cloud Computing to be leveraged at all stages of the software engineering process.

• Adopt a daily build and continuous integration process to ensure software qual-
ity and provide early warnings of interface changes made by third party Cloud
providers that could effect application stability.

• Automate the Quality Assurance (QA) of Cloud infrastructure to enable on-demand
provisioning of resources to multiple providers with minimal human interaction and
management.

• Automate regression testing to reduce software release cycle time so that changes
in Cloud Computing technology have minimal impact on the overall stability of an
application.
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3.4.3 Simulators

Simulation of computing resources is a valuable tool when considering the performance
and economical ramifications of using a Cloud provider. Modelling real Cloud systems
and then running simulations can provide quantifications on the performance benefits
of using different software architectures and resource allocation policies, in addition to
insights on power consumption. Research on the simulation of distributed systems in not
a new topic of research [120] but poses a number of challenges in the context of Cloud
Computing due to the deployment of long lived services that do not fit with the job based
approaches taken by Grid and other discrete event simulation software used to model
parallel and distributed systems.

CloudSim [38], provides a framework for the modelling and simulation of Cloud
Computing infrastructures and services. Its primary objective is to provide a generalised
and extensible simulation framework that enables the seamless modelling, simulation and
experimentation of emerging Cloud Computing infrastructures. Cloud developers using
the framework are able to investigate design issues without concerning themselves with
low level details. Some of CloudSim’s limitations are discussed later in Section 7.3.3.

ICanCloud [126] is a simulation platform aimed at modelling and simulating Cloud
Computing systems. Its main objective is to enable the prediction of the trade off between
cost and performance given a set of application features. The platform provides a num-
ber of configurations out-of-the-box for modelling Cloud storage systems including local
storage, remote storage and distributed parallel storage systems that leverage Distributed
File Systems (DFS).

Other simulation tools that can be used to model Clouds are JavaSim [134] and its re-
lated native implementation C++SIM [134] and SimJava [120,228]. Although not specifi-
cally tailored to support the modelling of Cloud environments they do provide generalised
frameworks for distributed system modelling using discrete event process oriented simu-
lation.

3.5 Configurable Parameters

The content within this Chapter has highlighted a number of parameters that are config-
urable and can be dynamically updated within a Cloud. The parameters can cause prob-
lems if they are not considered by Cloud software or application developer. The more
interesting of which have been summarised as follows:

• Discoverability: The operation time discoverability of services and resources for
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use by a Cloud application can have a dramatic impact on QoS. Due to the dynamic
nature of Cloud resources, if an application moves from one Cloud environment to
another it must be able to discover services and resources that will maintain any
agreed QoS level.

• Data Locality: The physical storage location of data of which a Cloud application
makes use of can be problematic due to legal restrictions on data jurisdiction. If this
parameter is not considered or configured correctly within a cloud application as it
moves around its environment there maybe the possibility of a breach in SLA with
legal ramifications.

• API Selection: Issues of dynamic binding and API selection with regards to Service
Orchestration, if not considered by an application developer, have the potential to
limit the interoperability of a Cloud. This in turn could limit the obtainable QoS
an application can reach if it is migrated to a provider and not correctly configured
to make use of the provider’s localised high performance Cloud services, such as
distributed block storage.

These parameters are of interest as they have an impact on the adoption and ease of
use of Cloud Computing. Some of these parameters are discussed in further detail as part
of Chapter 6 and the topic of Contextualization.

3.6 Summary

To summarise, this chapter of the thesis has discussed the relevance of SOA architectures
in Cloud Computing and the roles service orientation and orchestration play in the com-
position of Cloud applications developed as services. The topic of Web Services and the
technology used to create them have been presented. The topic of Cloud Engineering,
the challenges it faces and requirements needed for a systematic approach to the devel-
opment of Cloud applications, including the standards organisation that are facilitating
in this process, were discussed. The heritage of Web Scale Computing and Big Data in
Cloud Engineering was introduced and a number of design patterns enabling the reuse
of solutions to regularly experienced problems in the development of Cloud applications
were presented. Finally, a discussion was held on the roadblocks in place that need to be
overcome before applications can be migrated to and adopted by Cloud Computing. This
included the relevance of simulation tools for evaluating application performance and a
number of simulator implementations were presented. Furthermore the pros and cons of
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using Cloud technology from the point of view of an Enterprise where discussed, includ-
ing best practice for the effective development and composition of Cloud applications.



Chapter 4

Grids on Clouds

4.1 Introduction

The previous chapter discussed the development and composition of applications in Cloud
Computing. This chapter introduces the paradigm of Grid Computing and its uses in sup-
porting the development of scientific applications. Parallels are drawn between the tech-
nologies developed in Grid Computing and their applicability to Cloud Computing. In ad-
dition, many of the applications that run on Grids have similar requirements to those exe-
cuted on Clouds. It is apparent that there are many similarities between the two paradigms
and much can be learnt from the past mistakes made in Grids. This background on Grid
Computing presented herein, sets the scene for the research of Chapter 7 on using Cloud
resources for Grid systems.

This chapter places emphasis on the non-trivial QoS enabled by the resource man-
agement of Grid Computing and how this can facilitate the development of the Cloud
paradigm. Extensive research has been performed on the use of Service Level Agree-
ments in Grids but its usefulness has not been fully appreciated as the Grid Economy was
never realised. This however could change, as the importance of providing better than
best effort QoS in Clouds creates opportunities for competitive advantage and the ability
for a provider to distinguish itself from the competition.

The remainder of this chapter is structured as follows: Section 4.2 introduces the topic
of Grid Computing providing a definition and discusses the architecture of Grids inclusive
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of the applications that make use of them. Section 4.3 discusses the concept of resource
management in Grids including the relevance QoS plays. Additionally, resource alloca-
tion and the monitoring of Grids are discussed. In Section 4.4 the importance of Service
Level Agreements and the technology enabling their application in Grid environments are
presented. Section 4.5 introduces Grid Middleware and a number of popular implemen-
tations. Finally, in Section 4.6 some of the differences between Grids and Clouds are
highlighted and the idea that theses two paradigms can be complementary is put forward.

4.2 Grid Computing

The term Grid Computing originates from the 1990s as a metaphor for making comput-
ing power as accessible as electricity from power grids. The evolution of Grid Computing
from Cluster Computing came about with a need for organisations to share their com-
puting resources and was enabled by the introduction of middleware designed to support
data intensive applications over wide-area infrastructure [77]. An early definitions of Grid
Computing defined it as:

“... a hardware and software infrastructure that provides dependable, con-
sistent, pervasive, and inexpensive access to high-end computational capabil-
ities.” [146]

Grid Computing is a paradigm in distributed systems that enables computing resources
from multiple administrative domains to be combined into a federation for the purpose of
reaching a shared common goal. A defining characteristics of a Grid over a traditional
cluster, is the trend towards loosely coupled heterogeneous and geographically dispersed
resources. A more concrete definition of Grid Computing was presented in the seminal
work of Foster et al. with a simple three point check-list [81]. Accordingly a Grid System
is:

1. A system that coordinates resources not subject to centralised control.

2. Uses standard, open and general purpose protocols and interfaces.

3. Delivers non-trivial qualities of service.

A Grid system thus integrates and coordinates resources that are within different con-
trol domains. In addition, a Grid is built from multi-purpose protocols and interfaces
that address fundamental issues of authentication, authorisation, resource discovery and
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resource access. Finally, a Grid must enable the constituent resources to be coordinated
in a away to deliver various degrees of QoS relating to response time, throughput, avail-
ability and security. Therefore the utility of the combined resources of a Grid must be
significantly higher than the sum of its parts.

4.2.1 Architectures

Early architectures of Grids organised components into layers [82]. Each layer shared a
common set of characteristics. These layers are:

• Fabric Layer: Provides access to physical or logical shared resources from compu-
tational, storage or network hardware. This layer enables the discovery of resource
structure, state and capability.

• Connectivity Layer: Provides core communication and authentication protocols
enabling the exchange of data between resources. Authentication provides secure
mechanisms for validating access to resources and include functionality to enable
single sign-on across all organisations partaking in the federation, delegation of
credentials for running applications on behalf of a user with out granting that user
direct access to the resource and integration with local security solutions.

• Resource Layer: Defines protocols for the secure initiation, control, accounting
and monitoring of shared resources that is split into two primary protocol stacks for
information sharing and resources management purposes.

• Collective Layer: Provides protocols to manage the interactions of resource col-
lections across administrative domains, enabling a wide number of sharing policies
without defining additional requirements on shared resource pools.

• Application Layer: A container layer for the user’s application that provides access
via APIs to services defined in any of the other layers.

Later standardisation by OGF defined an open standard for Grid Architectures based
on Web Service technology. The standard was named the Open Grid Services Archi-
tecture (OGSA) [123] and leveraged SOAP and WSDL. The standard defines a set of
extensions on the use of WSDL to enable stateful Web Services, defining approaches to
creating, naming and managing the lifetime of a service instance. In addition, it provides
mechanisms for asynchronous notifications and handling of service invocation faults.
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4.2.2 Applications

There are a number of application types that are run on Grids. Many of the application
types are highly related to those that are executable on current Cloud providers, as outlined
in Chapter 2. In Grids, four distinct classes have been defined and described by Foster et
al. [146] and are as follows:

• Distributed Supercomputing: Applications that solve large scale computationally
expensive problems via the use of many thousands of machines to obtain higher
processing power.

• Real Time: The processing of real time data sources that rely on distributed storage
and network caches for improved performance and reduced latency.

• Data Intensive Computing: Applications that focus on the processing and analyt-
ics of large datasets.

• Tele-immersion: Enabling users in geographically distributed sites to collaborate
in real time via a shared simulation environment.

Additionally, a taxonomy of Grid Applications is presented in [241] that classifies an
application on the concepts of control and data parallelism used. It is also worth noting
that applications often fit into multiple categories but by providing a clear taxonomy,
an estimation of potential performance gains can be found for applications that are not
already executable in a Grid environment.

4.3 Resource Management

The resources that are present in a Grid are often distributed geographically around the
globe and reside in different administrative domains. The following sections discuss the
impact QoS has on the allocation of resources in Grids and relates this to the management
of resources in Cloud Computing.

4.3.1 Quality of Service

By exploring the current state of QoS in Grid Computing, the lessons already learnt can be
exploited and potentially utilised in Clouds. In the early 21st Century the dynamics of the
Internet economy changed and the ratification of e-commerce as a new source of revenue
growth within businesses appeared. This led to the development of the Web Service, as
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businesses turned to SOAs to simplify their interactions in the digital world, through the
loose coupling of service providers and consumers.

The introduction of Web Services affected the development of Grid Computing as em-
phasis was placed on Grids providing services to reduce the complexity and cost that had
been previously associated with them. The Service-Oriented economy also provided the
mechanism to create virtual organisations where computation resources could be shared
securely. Service oriented Grids created new problems concerning the management and
availability of shared resources across organisational boundaries. Grids relied for many
years on the provisioning of resources on a best effort guiding principle of operation and
as interest in commercial utilisation of Grids surmounted, more stringent guarantees on
the management of resources via QoS were realised as a necessity for the wide spread
adoption of Grids to take place in industry [217].

The following subsections focus on the management of resources to guarantee perfor-
mance and the technology in place to facilitate the reservation of resources, both of which
are highly relevant to Cloud Computing.

4.3.2 Resource Allocation

Without the management of resources Grids would be unable to function. Resource man-
agement encompasses the dynamic allocation of tasks to computational resource and re-
quires the use of a scheduler (or broker) to guarantee performance. QoS is enabled in
Grids by the efficient scheduling of tasks, this guarantees that resource requirements of
an application are strictly supported but resources are not over provisioned and used in the
most efficient manor possible. Sequences of tasks are represented as workflows, directed
graphs comprised of precedent constrained nodes, which each represent the specific or-
dered invocation of a service on computation resources to process a given task. Several
research projects have tackled the complexities of resource reservation and allocation in
Grids such as the Phosphorus Project [197] and utilise schedulers such as DSRT [44] and
PBS [196]. Research within Grid Scheduling is still an area of activity [161].

An example of a Grid software stack enabling resource management is The Globus
Toolkit [88]. It has become the academic and industry leading open source software so-
lution for building Grids and provides the necessary middleware to manage and monitor
resources. Simulation and modelling has furthered the understanding of Grid Architec-
tures and will do so in Cloud Computing. Advancements in simulation and modelling
techniques will aid in the better understanding, usability of and streamlining of Cloud
environments, as was seen in the development of Grids. Progress is already being made
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towards the development of a simulation tool. Currently the Grid Computing and Dis-
tributed Systems Laboratory from The University of Melbourne has identified the need
for such a tool to support the performance evaluation of Cloud environments and is in the
early stages of development, named CloudSim [38]. The simulator is based around the
programming framework they previously created to model Grids, in the Grid simulator,
GridSim [106].

4.3.3 Monitoring

Monitoring tools are essential in ascertaining the availability of resources and providing
feedback to schedulers within Grids. Monitoring tools enable guarantees to be made on
the performance of any given resource by making sure that the computational resource in
question is not over utilised and is on-line. Performance is characterised by the amount of
useful work accomplished by a computer system in comparison to the time and resources
used. Monitoring tools are also essential in providing fault tolerance and the migration
of tasks in the event of a resource failure in the Grid. Fault tolerance involves the identi-
fication of a resource failure via monitoring tools, the rescheduling of the task, that was
running on the failed resource, to an alternative available resource and migration of the
state snapshot of the task to the newly allotted resource, at which point the task continues
execution [221, 227]. The state of a task in execution must be regularly saved for fault
tolerance to function, this process is known as check pointing. Many monitoring tools
have been developed for Grids [129, 163, 232, 243, 246].

4.4 Service Level Agreements

As the importance of Service Level Agreements (SLAs) as facilitators for the widening
commercial uptake of Grids has grown, substantial effort has been made in standardising
their use. The Web Services Agreement Specification (WS-Agreement) [9] is one such
standardisation effort by the Open Grid Forum [183]. WS-Agreement is a Web Services
protocol for establishing an agreement between two parties, using an XML for specifying
the content of an agreement and agreement templates used to discover appropriate parties.
The specification consists of three parts:

• A schema for specifying an agreement.

• A schema for specifying an agreement template.

• A set of operations for managing an agreement’s life-cycle.
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Although WS-Agreement can be effectively used to facilitate SLAs, the life-cycle
model does not accommodate the dynamic nature of the Grid economy, providing facil-
ities to negotiate and renegotiate an agreement. The current state of the art research in
QoS within Grids is concentrating on this problem [59, 223]. Another cutting edge area
of research surrounding QoS in Grid Computing, is solving problems related to risk as-
sessment and dependability of service providers and is being tackled by projects such
as AssessGrid [60]. The AssessGrid Consortium [17] have researched heavily into QoS
but more specifically SLA’s. Many of the objectives of the project are also relevant in
the context of Cloud Computing, such as how to evaluate the reliability of Cloud service
providers and how best to estimate the risks involved in accepting any given SLA.

As with past and present Grid Computing projects [105, 230, 231], SLAs will play
a major role in the development of the Cloud Computing paradigm. Within the research
topic of QoS in Clouds, emphasis will have to be placed on the performance and availabil-
ity of Virtualisation technology and the tools necessary to monitor virtualised hardware.
Facilitating QoS in Cloud Computing is an area of intense research and is part of the re-
search aims and objectives of the open source, research backed Cloud implementations
discussed in Section 2.4.

4.5 Grid Middleware

Grid Middleware has been defined as a software layer within a distributed system that en-
ables transparent access to heterogeneous computing environments that reply on different
platform technology and networking protocols while transcending administrative bound-
aries [162]. The following subsections introduce a number of popular Grid Middleware
in active use:

4.5.1 Globus Tookit

The Globus Toolkit [78, 88] is an open source toolkit, implemented in Java and C, for
building Grids. It is being developed by the Globus Alliance [89]. The toolkit includes
software services and libraries for resource monitoring, discovery and management in
addition to security and file management. The tools are packaged as a set of components
that can be used independently or together to develop a Grid based application. Further
details on the architecture of the Globus Toolkit are provided in Section 7.2.
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4.5.2 UNICORE

UNICORE [218, 250] or “Uniform Interface to Computing Resources” is a Grid Mid-
dleware that offers ready to run Grid systems that make distributed computing and data
resources available seamlessly and securely over the internet. It is an open source project
implemented in Java that is based on a number of open standards by OGF including
OGSA. In addition it provides workflow support that is tightly integrated into the UNI-
CORE software stack, while still being extensible in order to use different workflow lan-
guages and engines for domain-specific usage.

4.5.3 gLite

The gLite [154] middleware provides a framework for the development of applications
that make use of resources distributed over the internet and is comprised of an integrated
set of components designed to enable resource sharing. It was produced by the Enabling
Grids for E-SciencE (EGEE) [66] project and pulls together contributions from many
other projects.

4.5.4 GridWay

GridWay [107] is an open source meta-scheduling technology that enables the large scale,
secure, reliable and efficient sharing of resources managed by different distributed re-
source management systems such as PBS. It provides a user with a scheduling frame-
work similar to local distributed resource management command line interfaces they have
become familiar with while enabling job execution across heterogeneous, dynamic and
loosely coupled Grids.

4.5.5 Oracle Grid Engine

Oracle Grid Engine [87] is an open source batch queuing system developed by Sun Mi-
crosystems (recently acquired by Oracle) that is typically used on HPC clusters for the
purpose of accepting and scheduling standalone and parallel jobs.

4.5.6 Other Grid Middlewares

The above list is by no means exhaustive. There are number of other Grid Middlewares
that are discussed as part of a taxonomy on Grid resource management systems for dis-
tributed computing in [150, 162].
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4.6 Grids Vs Clouds

The advantages of using Cloud Computing in Grids have motivated interest in running
Grid Middleware on IaaS to leverage the many years of research that have already been
performed on the subject area of Grid Computing. Research on this topic first started out
by defining the similarities and differences between the two paradigms. Forster et al. were
one of the first to describe the core differences between Grids and Clouds [80]. In this
work they describe how aspects related to security, the programming model, the business
model, applications run and levels of abstraction used are different. In addition, Buyya et
al. discussed the parallels of research on the yet to be realised Grid Economy and market
oriented allocation of resources within Clouds [219]. Table 4.1 provides a high-level view
of some of the major similarities and differences between Grids and Clouds, inspired by
this research:

Table 4.1. High Level Comparison of Grids and Clouds.

Feature Grid Cloud

Resource sharing Collaberative (VOs) Assigned resources not
shared

Virtualization Data and Comptuing re-
sources

Hardware and software
platforms

Secuirty Credential delegations Isolation
Architecture SOA User chosen
Software Dependencies Application domain de-

pendent
Application domain inde-
pendent

Platform awareness Client software must be
Grid enabled

Customised environment

Scalablity Nodes and sites Nodes, sites and hardware
Management Decentralised Centralised
Usability Hard to manage User friendly
QoS guarantees Limited Support Limited Support

However this research does not consider that the two paradigms can be complementary
and that the technology can be combined to bring the benefits of both, the federation of
resources across administrative domains and the economical advantages of on-demand
provisioning. There are however a number of issues when contemplating the running of
Grid Middleware on Cloud IaaS providers and this brings a number of interesting research
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challenges that must be overcome along side a number of technical limitations. These are
discussed in detail within Chapter 7.

4.7 Configurable Parameters

The content within this Chapter has highlighted a number of parameters that are config-
urable and can be dynamically updated within a Cloud. The parameters can cause prob-
lems if they are not considered by Cloud software or application developer. The more
interesting of which have been summarised as follows:

• Collections: The dynamic configuration of Cloud resources to form collections is
a necessity born out of the need for a Cloud application to scale on-demand. If
careful consideration is not given to how an application can be made self-aware
through configurable resources related parameters, it will be unable to balance its
workload across available resources and maintain its QoS.

• Connectivity: The network connectivity between cloud resources enables the for-
mation of clustered resources. If care and attention is not placed on the configurable
parameters of an application’s network stack as its environment changes dynami-
cally, resources and service dependencies will be unavailable and have an overall
impact on the application’s availability.

• Monitoring: The monitoring of Cloud resources is critical to reacting to unforeseen
events, such as flash flood traffic, that could have an impact on an applications
QoS. As a Cloud application moves between Cloud environments, the reporting of
monitoring metrics may need to change for performance reasons. If this locational
parameter is not considered, QoS cannot be effectively monitored and controlled.

These parameters are of interest as they have an impact on the adoption and ease of
use of Cloud Computing. Some of these parameters are discussed in further detail as part
of Chapter 6 and the topic of Contextualization.

4.8 Summary

This chapter has discussed the topic of Grid Computing providing insights into the archi-
tecture of a Grid and the applications that they execute. The concepts behind resource
management in Grids was presented including its relevance to maintaining QoS when
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provisioning shared Grid resources. Additionally, resource allocation and the monitoring
of Grid infrastructure were discussed. The importance of Service Level Agreements and
the technology enabling Grid environments to provide better than best effort QoS was
presented. A definition of Grid Middleware was discussed and a number of Grid Mid-
dleware implementation in active use within the scientific community were presented.
Finally, some of the differences between Grids and Clouds were highlighted and the idea
that theses two paradigms can be complementary was put forward for later discussion.

Substantial effort has been placed on the performance of Grid Computing [4,133,243].
The same can be expected for Cloud Computing, in the expectation that users are going
to adopt this paradigm. In the next chapter the performance of Cloud infrastructure is
evaluated and a number of performance issues are presented.
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Cloud Infrastructure Performance

5.1 Introduction

The main contribution of this Chapter lies in the findings of a performance evaluation
into a specific aspect of Cloud Computing, the management and use data at the Virtual-
ization level. Results are presented that provide incite into how Cloud technology can be
improved and what technology is best for the needs of a given application.

After decades in which companies used to host their entire IT infrastructures in-house,
a major shift is occurring where these infrastructures are outsourced to external Cloud
providers. Maintaining the elastic nature of resources when provisioning computational,
storage and networking services has thus far been a major concern of the providers. For
the Cloud Computing paradigm to survive in an increasingly complex information world,
the requirement to provide increasingly efficient services is becoming more prevalent.
Underpinning a successful Cloud infrastructure is the delivering of a specified QoS to its
users.

QoS is a broad topic in Distributed Systems and is most often referred to as the re-
source reservation control mechanisms in place to guarantee a certain level of perfor-
mance and availability of a service. The research scope is usually concerned with the
management and performance of resources such as processors, memory, storage and net-
works in Cloud Computing. A SLA specification usually provides a formal method for
describing QoS requirements. Services (e.g. compute, storage, database) are generally

83
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offered as pay-as-you-go plans and hence have become attractive to many customers.
Infrastructure as a Service (IaaS) providers play a pivotal role in the QoS provisioned

in the majority of Cloud architectures comprised of an interchangeable multilayer soft-
ware stack [266]. Virtualization, as the fundamental resource building block of IaaS,
is critical to maintaining acceptable levels of performance to prevent breaches in SLAs,
thus increasing the overall profitability of a Cloud [280]. This provides primary moti-
vation for efficient Hypervisor design and remains a limiting factor in what applications
are deployable and can take full advantage of a Cloud. Although research on the topic
of Virtualization is not new, it has seen a resurgence of interest in recent years in the
problem domain of Cloud Computing [127, 138, 281]. Two such areas of interest are:
VM lifecycle management [92, 115], where guarantees that a VM will be on-line within
a certain time-frame are of importance to the rate at which IaaS can react to changes in
demand [253]; and I/O scheduling [145], which can have adverse affects on application
performance [63].

This chapter compares, via benchmarking, two Cloud infrastructure managers Nim-
bus [140] and OpenNebula [236] alongside two open source Hypervisors XEN [21] and
KVM [153] using a combination of synthetic benchmarks. The aim of this work is to
evaluate and expose the limitations of these technologies via results that provide insight
into the rapidly evolving landscape of Cloud tools. The core contribution of this chapter
lie in the findings of a quantitative evaluation into the performance overheads of:

i) VM image formats

ii) Propagating VM images to physical resources, at the IaaS layer

iii) Paravirtualized I/O devices used to access the data held within an image after propa-
gation

A taxonomy of Virtual Machine image standards, inclusive of features and Hypervi-
sor support, is presented. The chapter demonstrates that overheads have the potential to
influence the performance of a Cloud and thus the usage patterns of IaaS providers by its
users.

In addition, an argument is presented that previous work on the subject of Hypervisor
I/O performance is now outdated due to the pace of development surrounding Paravir-
tualized device drivers. A conclusion is drawn that reducing overheads could lead to an
increase in the pace at which Cloud Computing is adopted in industry. Firstly a reduc-
tion in resource acquisition waiting times would enable quicker reaction, by an IaaS, to
a changing environment. Secondly an increase in the performance of Paravirtualized I/O
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devices would reduce operating costs via a correlated reduction in the number of virtual
resources needed to be provisioned to service a given number of client requests.

5.1.1 Performance Issues in Clouds

It is difficult and most likely impossible to express QoS as a single scalar value indicating
the ”goodness” of a service, because the context is of large importance to the interpreta-
tion of any assured QoS. The literature describes various application-level contexts where
an estimation (and thus quantification) of quality is desired and required, for example:
Performance, Dependability, Reliability, Scalability, Capacity, Robustness, Manageabil-
ity, Availability, Interoperability, Security as well as many more *bilities. Some exhibit
precise quantifiable definitions, others do not (e.g. Interoperability) or are super ordinate
concepts of other attributes. Furthermore, there are dependencies between attributes (e.g.
Scalability and Performance), thus a clear separation is not always possible.

Clouds have pushed Virtualization into the lime light as a new technological require-
ment. This has only recently become feasible because of the performance enhancements
that have been made to Virtualization hardware and software technology. This has im-
proved the performance frontier of virtual machines to nearly that of the underlying hard-
ware they run on, achieving near native performance of the virtualised resources exposed
within a virtual machine, through a reduction in the overheads associated with context
switching physical resources between the virtual machine instances.

Without the management of resources Clouds would be unable to function. Resource
management encompasses the dynamic allocation of tasks to computational resources and
requires the use of a scheduler (or broker) to guarantee performance. QoS is enabled in
Clouds by the efficient scheduling of tasks, this guarantees that resource requirements of
an application are strictly supported but resources are not over provisioned and used in
the most efficient manor possible.

Distributed storage like in Grid Computing and other distrusted paradigms plays a
large role in the scalability of Cloud Computing. Some software services based around the
map/reduce functional programming principles currently provide access to large amounts
of replicated scalable storage through a simple high level interface. Further research is
still required in Cloud storage services as the efficiency and performance of data storage
and management can become a bottleneck in a distributed system and thus effect QoS.

Scalability through a federation of Clouds and multi-clouds is another issue that brings
its own performance questions. In a typical scenario, several Infrastructure Providers (IP)
establish collaboration in which any IP can rent capacity from the others and also allows
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these to use its own capacity, according to internal IP business policies. This can impose
constraints onto the IP regarding performance, e.g., with regards to the affinity of service
components.

This list of issues is by no means exhaustive. Other issues such as green assessment

is also worth considering in the big picture. The development of bottleneck analysis tools
are needed to assess potential ecological performance measures and how these measures
are affected by changes in workload, configuration, and infrastructure utilisation.

This research focuses on IaaS platforms. IaaS roots can be traced to Grid Comput-
ing. In Foster’s seminal work [82], the infrastructure was called Fabric and comprised
both computational and storage resources. Grid registries such as the Index service of
the Globus Toolkit [79] allowed the discovery of specific types of computational and
storage resources with queries based on properties representing their static and dynamic
characteristics. The evolution of Grid research brought the concept of Virtual Workspace
(VW) [140]. The Globus implementation of the VW concept, the Virtual Workspace Ser-
vice, was at the core of what is now called Nimbus [177] and is described as an open
source toolkit that enables a cluster to be turned into an IaaS Cloud. Nimbus is a Vir-
tual Infrastructure Manager (VIM) with a Web Service provisioning interface. Another
open source VIMs considered in this Chapter is OpenNebula [236], an implementation of
the research being performed and led by Reservoir [209], a European Union FP7 funded
research initiative in virtualised infrastructure and Cloud Computing.

5.1.2 Related Work

There have been numerous studies on the performance of Hypervisors within the litera-
ture [58, 135, 145, 193, 238, 278, 285], this research differentiates from these by giving a
contemporary performance evaluation within the context of Cloud Computing. In [206],
performance results of some of the image types supported by KVM are presented but
not all and not compared to another Hypervisor such as XEN, as evaluated as part of
this research. A benchmark is contributed and implemented to evaluate end to end im-
age propagation overheads of any IaaS. [283] present a performance analysis framework
for the overheads in resource acquisition and release. However the results of their work
are for resources deployed onto Amazon EC2 with the framework left untested on other
virtual resource management architectures. [92] describe a proof-of-concept framework
for facilitating resource management in service providers, in which a performance eval-
uation of the overhead of creating a VM image is considered, not the time to propagate
an already existing VM image to a physical resource. [42] explore how multicasting file
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transfers can reduce image propagation overheads.
Previous related work have concentrated on the performance and scalability of CPU

Virtualization [193], omitting a performance analysis inclusive of I/O. An additional pub-
lication [238] formulates an approach to performance evaluation, using real world work-
loads on Amazon EC2 and considers the system as a “black box” without finding the root
causes of the performance bottlenecks. Another creates a methodology for the collection
of virtual I/O metrics [285] but evaluates the performance of only a single Hypervisor.
Other publications [135,278] incorrectly setup a parameter of the IOzone benchmark, us-
ing a 64MB test file instead of twice the size of available memory, bringing into question
the validity of the results obtained, an issue rectified by this research. Figure 5.1 shows
results recorded when using a 64MB test file and how incorrect parameter selection pro-
vides meaningless results as all that is measured is the speed of machine’s RAM. [58]
present results that KVM out performs XEN in IOzone tests. The experiments of this
work have been unable to confirm these results and one can only assume, due to lim-
ited information from the paper on the experimental environment used, that again the file
size parameter for the IOzone benchmark has been set incorrectly. Benchmark parameter
selection is discussed in further detail as part of Section 5.4.2.

Figure 5.1. Effects of Incorrect Parameter Selection

This remainder of this chapter is organised as follows: Section 5.2 discusses and com-
pares the propagation of images by Virtual Infrastructure Managers. Section 5.3 discusses
the topic of virtual machine management, two open source Hypervisors Xen & KVM and
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their support for Paravirtualization. Finally, Section 5.4 presents performance evaluations
on virtual machine image formats, image propagation delay and Paravirtualized block
I/O.

5.2 Image Propagation

The following subsections discuss the life-cycle and propagation of images in the context
of two open source toolkits, which can be used to create an IaaS Cloud. The toolkits:
OpenNebula [188] and Nimbus [177], manage VM images and physical resources to cre-
ate virtual resources. An overview of each is provided with insights into the heritage and
design of the toolkits. In addition, analysis on the mechanisms used to propagate VM
images and the source of potential delays or overheads are discussed in relation to design
decisions.

5.2.1 Virtual Infrastructure Management

An electrical utility provider requires systems to be in place to provision and monitor
resources for the purpose of ensuring service reliability and performance to keep pace
with changes in demand so that consumer usage patterns and high resource contention
do not adversely affect the QoS provided. Cloud IaaS providers are similar in that they
use Virtual Infrastructure Managers (VIM). Virtual resources need to be brought on and
off-line as required and monitored to assess status so that intelligent decisions can be
made on how best to use the underlying physical resources for the business objectives
of an IaaS provider. VIMs achieve this through a scheduling component that assigns
VMs to physical resources with feedback gathered from monitoring services from both
the physical and virtual infrastructure. A scheduling component orchestrates with others
in the system to:

i) Assess the needs of a VM

ii) Provision a suitable physical resource

iii) Transfer a VM image from a central repository over the network via an available
network protocol

Once transferred a Hypervisor adapter component is used to execute the VM image
on the physical host machine and bring the virtual resource on-line.
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Figure 5.2. Simplified life cycle states of a non persistent VM

In the life cycle of a VM managed by an IaaS, overhead is associated with transitions
of state illustrated in Figure 5.2. IaaS requires time to provision resources, transfer data
and confirm termination. A trade off exists where at some point reducing these overheads
incurs a penalty associated with polling and the contention of resources. This is explored
in Section 5.4.4.2.

5.2.1.1 OpenNebula

OpenNebula [236] is an implementation of the research being performed and led by
Reservoir [209], a European Union FP7 funded research initiative in virtualised infras-
tructure and Cloud Computing. It can be used as a Virtualization tool for the manipulation
of local virtual infrastructure within datacenter clusters for the creation of private Clouds.
Public Cloud support, via a selection of management interfaces, exposes functionality of a
remote provider’s VM, storage and network resources using de facto standards through a
locally accessible portal. Hybrid Clouds, made possible through the combination of pub-
lic resources and local virtual infrastructure, enable highly scalable application hosting
environments. The design of OpenNebula efficiently manages multiple types of work-
loads with emphasis placed on addressing business requirements and use cases. A black
box approach to design facilitates the management of VM Operating Systems (OS) and
services agnostically thus allowing the system to be used in HPC environments.

The modular design and implementation of OpenNebula allows for ease of extension
and support for plug-in replacement features and functionality. Cloud plug-ins enable
access to public provider resources, such as Amazon EC2 and ElasticHosts using dissim-
ilar interfaces, enabling support for federated Clouds and simultaneous access to several
remote Clouds. Libvirt [27], a Hypervisor agnostic API, is used to provide access to
multiple Virtualization technologies via a single interface. Policy based scheduling capa-
bilities can be swapped for advanced reservation of capacity via Haizea [235], a VM lease



Chapter 5 90 Cloud Infrastructure Performance

manager that can replace and override the standard scheduling component shipped with
OpenNebula.

5.2.1.2 Nimbus

Nimbus [140] builds on past research into Grids by reusing many of the standards and
technologies invented by the Grid community, particularly those used in the Globus Toolkit.
It provides an upgrade path to the Cloud for organizations using Grids. This is enabled
via the features of Nimbus that make use of Grid resources and its integration with fa-
miliar resource schedulers, such as PBS, to schedule VMs. Development of Nimbus has
placed emphasis on use cases applicable to the needs of scientific community but many
non-scientific applications are still well suited to the virtual infrastructure environment it
provides.

The components of Nimbus are modular in design with Hypervisor agnostic support
again enabled via Libvirt and support for Amazon EC2 via a SOAP based API for in-
vocation and securing of off-site resources. Nimbus also supports WSRF frontend for
controlling virtual infrastructure and context broker and agent components enabling au-
tomated contextualization of VM images for “one-click” clusters [142]. Nimbus provides
interoperability with existing Grid Security Infrastructure (GSI) using Public Key Cryp-
tography (PKC) to access resources.

5.2.1.3 A Comparison

As the use cases of the two VIMs evaluated in this research differ so do the availability and
implementation of features. Experience with the two systems have highlighted some of
these differences and can be found in Table 5.1. IaaS neutrality describes the capacity of
a VIM to be able to connect to third party Cloud providers. OpenNebula supports a selec-
tion of plugins while Nimbus has limited support for providers other than Amazon. This
could change as additional backend APIs become available to access other providers. An
explanation for this could be that more development effort has been assigned into seam-
lessly integrating Nimbus with existing Grid infrastructures or that the more advanced
contextualization methods used complicate integration with third party Clouds.
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Table 5.1. Comparison of the VIMs

Feature OpenNebula Nimbus

IaaS Neutrality
Support for using other
providers via Cloud plugins

Limited support for using
other providers

Contextualization
Method

Boot time initialization
bootstraps context via
generated ISO CD image

Context agent contextualizes
over network using context
broker service

Security Context Support for embedding certificates at run time, eliminating
potential security risks

Image Pervasion
Minimal alterations needed
to contextualize image

Pervasive contextualization
necessary due to context
agent

Image
Propagation
Process

Limited support for image
persistence via a stage out
mechanism

Support for both staging in
and out images

Networking
Support

Scripted network
contextualization via IP
pools and IP to MAC
binding. Limited support for
multi-site migration.

Support for cross site
networking and multi-subnet
environments.

VMM Support Support for popular Hypervisors via Libvirt: XEN, KVM,
VMware

The VM contextualization facilities provided by both systems use similar ideas but
differ in their implementations. Both OpenNebula and Nimbus support contextualization
of VM images at boot time, setting the context of a VM instance such as IP address,
hostname and security access policies. The contextualization process in Nimbus is po-
tentially more powerful in the respect that a centralized broker service coordinates VM
instances and can control the context of multiple virtual clusters, even during execution.
The security context of the virtual cluster is set through the generation of security keys,
using PKC, performed at runtime, permitting access to the virtual resource without storing
private keys within a VM image.

The contextualization of virtual clusters in OpenNebula differs in that each VM image
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requires an additional ISO CD image be mounted and an embedded script be executed
at runtime. This enables nodes of a cluster to reuse the same VM image with small
alterations to a VM description file, used to generate an ISO CD image with service,
network and security context. The use of an ISO CD image could be seen as less pervasive
than in Nimbus as no installation of a context agent into a VM image is required for the
contextualization process.

The implementation of the image propagation processes used in both systems differ.
OpenNebula provides a facility to persist VM images once staged in and after execution
on a remote host but does not provide a facility to return the VM image to the image
repository or a stage out process. Nimbus on the other hand provides both staging in and
out of images from and to an image repository as well as a mechanism to integrate with
the GSI to allow the secure propagation of images from an off-site location to an on-site
repository.

The systems have varying support for different types of network topologies. Open-
Nebula does not provide automated virtual networking but instead provides networking
configuration scripts for both dynamic and static network environments. This enables an
IP to be paired with the MAC address of a VM assigned when the VM is contextualized
and from an IP pool. This prevents a VM from being assigned to another IP pool and
thus a VM cannot be migrated across network subnets, limiting the ability to have truly
federated Clouds but simplifies the contextualization process of the VM. Nimbus however
provides a mechanism to assign an IP to a VM via the context broker, as needed during
runtime, using a localized DHCP server and the filtering of network packets. This enables
a VM to be reassigned an IP on the fly across networks.

While there are differences between the two systems, there are also some similari-
ties. Both systems have adopted Libvirt as a Virtualization API so that development can
concentrate on the core of the projects managing virtual infrastructure rather than main-
taining support for volatile and rapidly evolving Hypervisors. Both systems exhibit a
module design that permits a certain degree of flexibility when creating extensions and
provide support for using external resources for the creation of Hybrid Clouds.

The VIMs make use of two transfer protocols: SCP and Grid Security Infrastructure
File Transfer Protocol (GSIFTP). SCP provides a means of securely transferring files
between two machines using a Secure Shell (SSH) tunnel. The SSH network protocol
provides several forms of encryption cipher and authentication methods. GSIFTP is a
subset of the GridFTP protocol, provided in the Globus Toolkit, which is an enhancement
to the standard FTP protocol that enables authentication through the GSI via PKC. It does
not include many features of the GridFTP protocol. For instance parallel data transfers,
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enhanced reliability or automatic TCP window and buffer sizing. Nimbus out of the box
provides facilities to use both SCP and GSIFTP while OpenNebula only provides SCP as a
file transfer protocol; an evaluating all three configurations is provided in Section 5.4.4.2.

5.3 High Performance Virtualization

A computer system can be virtualised in a number of ways that can impact on perfor-
mance. This section of the thesis discusses the different techniques used to virtualise a
guest operating system, provides a comparison of two open source Hypervisors in light
of these techniques and introduces the concept of block I/O Paravirtualization for high
performance data intensive Cloud applications.

5.3.1 Virtual Machine Management

To recap, a VMM or Hypervisor partitions a physical host machine though the use of three
generalized techniques: Full Virtualization, Paravirtualization and HVM and is responsi-
ble for controlling the life cycle and resource utilization of local VMs. These techniques
provide a layer of abstraction away from the underlying physical hardware. The tech-
niques provide a complete virtual hardware environment in which a guest OS can execute
in isolation and where resources are multiplexed transparently between concurrently exe-
cuting OSs.

Full Virtualization (FV) involves the creation of hardware devices purely in software
to provide an adequate supply of simulated hardware for a guest Operating System (OS)
to run unmodified. This comes at a considerable performance penalty due to the interpre-
tation of hardware operations in the guest [198]. Paravirtualization (PV) imitates a device
interface using a far more direct path to handle devices inside a VM and can achieve
better performance than FV. A downside of this technique is that it requires the installa-
tion of altered device drivers into a guest OS. A benefit is that this reduces the amount
of time a guest spends accessing the device by relocating execution of critical tasks to
its host where such tasks are more performant. HVM of a guest utilizes the additional
hardware capabilities of an underlying host and provides the best performance of all the
Virtualization techniques. Currently this takes the form of VMX within the instruction
set of a host processor. This accelerates and isolates context switching between processes
running in different VMs, increasing computational performance as instructions are di-
rectly passed to the host processor without having to be interpreted and isolated by the
VMM. Unfortunately this technique comes at the expense of limiting the guest to using
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the same instruction set as the host. Complete support for HVM of all computer subsys-
tems, i.e. I/O peripherals, has yet to be fully realized in commodity computer hardware.
However the performance benefits of HVM I/O have been explored using directed I/O
Virtualization extentions [62].

5.3.2 XEN and KVM

Historically XEN has concentrated on the development of PV guests. Recently both XEN
and KVM support multiple Virtualization techniques often referred to as Hybrid Virtu-
alization [175]. Hybrid Virtualization combines the principles of both HVM and PV to
obtain near native performance for guest OSs. This however comes attached with the
disadvantages of both techniques, altered OS device drivers are necessary, along with
modern VMX supporting hardware. XEN and KVM both contain built in Full Virtual-
ization support, via the integration of QEMU [200], for OSs for which Paravirtualized
device drivers do not exist or where hardware support for HVM is limited but comes at
the cost of guest performance. QEMU is an open source FV VMM providing emulation
of both IO devices, such as network interface cards and CPU architectures through binary
translation.

Before the combination of multiple Virtualization techniques in KVM, the consolida-
tion of an organization’s current hardware using KVM was not feasible if its infrastructure
did not support the instruction set extensions necessary for HVM guests. KVM conversely
provides an excellent foundation for the creation of new virtual infrastructure through a
reduction in the number of physical machines required for peak operating demand. This
had the effect of reduced hardware running and setup costs. XEN on the other hand, with
its better support for Paravirtualized guests, was more appropriate for deployment onto
older hardware, providing acceptable performance as well as the benefits of consolida-
tion.

Comparing XEN and KVM further, the lack of support for fully Paravirtualized guests
in KVM across all OSs, such as the closed source and proprietary Microsoft Windows,
has the potential to reduce performance. Alternatively the costs of porting Paravirtualized
device drivers [21], to these OSs for XEN, do not exist. XEN is a more mature Virtual-
ization solution and has been developed for longer than KVM pertaining to greater stabil-
ity. However, KVM continues to be on the forefront of implementing new Virtualization
techniques and is utilizing the latest research into HVM, providing greater performance
improvements over the same implementations in software with the downside of requiring
state-of-the-art hardware. One such technique introduced recently was hardware page-
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table walkers that reduce memory address-translation overheads and remove the need for
shadow page tables at the memory management unit level, providing memory savings and
performance benefits [130] that were not initially available in XEN.

Another non-functional comparative advantage of KVM over XEN is that KVM is less
pervasive due to its Hypervisor classification. As discussed in Chapter 2,XEN is classi-
fied as a Type 1 Hypervisor and KVM as a Type 2 Hypervisor according to [93]. Type 1
Hypervisors run directly on the host hardware with the guest OS running one level above
the Hypervisor. In the case of XEN an installed micro-kernel is booted before the admin-
istrative guest “Domain0”, which is used to configure other guests. On the other hand,
Type 2 Hypervisors run from within a conventional OS, where the Hypervisor operates
as a distinct second software layer and the guests execute above in a third layer. KVM
is comprised of a single module probed into a standard Linux kernel. The comparative
advantage of this is that a considerably smaller code-base has to be maintained, which
lowers the risks of introducing bugs and reduces the amount of code to optimize.

5.3.3 Block I/O Paravirtualization

KVM and XEN have different PV architectures for accessing virtual block devices or
virtual Hard Disk Drives (HDD) within a guest OS. One of the aims in this thesis is to
evaluate the performance of these devices to ascertain the suitability of virtual infrastruc-
ture for data intensive applications, where maximising data throughput is critical.

KVM relies heavily on its integration with QEMU for a wide variety of storage back-
ends. It has adopted Virtio [216] a Linux standard for virtual I/O device driver Application
Binary Interfaces (ABI) where in essence the guest OS is aware of the virtual environment
in which it is running, cooperating with the VMM, attaining higher performance and the
benefits of PV. Virtio uses a layer of abstraction and a memory ring buffer as a transport
for data between a VM and its host as expressed in Figure 5.3.

This provides the ability to write generic front-end virtual device drivers and arbitrary
back-ends to support different device types for different OSs and VMMs. It removes the
need to maintain multiple sets of virtual device drivers for each brand of VMM available.
The XEN approach is very similar to that of KVM, with Virtio based considerably on the
works of the XEN developers but does not rely solely on QEMU for the PV of devices.
XEN supports block devices through a “hypercall” ABI that makes use of an altered ver-
sion of the Linux blkback device, used for user land access to block devices, named
blktap or “block tap”, in combination with a frontend driver embedded in a guest. Par-
avirtualized support for non-modifiable OSs, such as Windows, has been implemented
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Figure 5.3. A simplification of virtual block I/O PV

in both KVM and XEN with emulated PCI devices replacing the ABI in traditional PV.
The performance of these devices are planned to be investigated in future work. Sec-
tion 5.4.4.3 discusses the implications of paravirtualization as part of an evaluation into
the performance Block I/O devices at the Hypervisor level.

5.4 Evaluation

This section of the thesis introduces the testbed architecture and the benchmarks used
to assess performance is, in addition to the experimental methodology followed. Finally,
experimental results on image format, propagation delay and block I/O/ Paravirtualization
performance issues are presented and analysed. The focus of the the evaluation is on
components used at the infrastructure level of a Cloud.

5.4.1 Testbed Architecture

An experimental testbed was developed and used in the following experiments. At the
time of experimentation it was comprised of four Dell commodity servers but more re-
cently has been extended eight. Each server consists of a four core X3360 Intel Xeon
CPU, running at the default clock speed of 2.83GHz and a total of 4GB of RAM (four
modules of 1GB DDR2 at 800Mhz). Additionally, each server utilized a single 3.5 inch
Western Digital RE3 250GB SATA HDD (Model: WD2502ABYS), with 16MB of cache
and a spindle speed of 7200 RPM. The machines connect via Gigabit Ethernet using a
Broadcom PCI-E NIC (Model: BCM95722). The file system in use on both the physical
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machines and the VMs is EXT3. VMs were not provisioned concurrently and each in-
stance used all available hardware with the exception of 2GB or half the available RAM
of the host. The VM images are contained in raw format and stored on top of the host file
system.

The OS present on both machines is Centos release 5.4 (Final). The following Hyper-
visor versions are used: KVM versions 83 and 2.6.32.24; XEN versions 3.4.3 and 4.0.1.
Two Centos based Linux Kernel versions were used to test the older versions of KVM
and XEN: 2.6.18-164.15.1.el5 for testing the performance of the native host and KVM
version 83 guests; and 2.6.18-164.11.1.el5xen for testing the performance of XEN Dom0
and XEN 3.4.3 guests. The same vanilla Linux Kernel version 2.6.32.24 was used to test
KVM version 2.6.32.24 and XEN version 4.0.1. Version 2.6 of Nimbus and version 2.0.1
of OpenNebula were deployed on the testbed. Globus Toolkit version 4.0.8 is installed
enabling support for GSIFTP. The following versions of the benchmarking software, with
justifications to follow in the next subsection, are used in the experiments: Bandwidth
Monitor NG version 0.6 [36], IOzone version 347 [131] and Bonnie++ version 1.03e [28].

Figure 5.4. The testbed architecture used in the experiments.

Although the testbed is not a real representation of Cloud scale infrastructure, since it
is comprised of only four machines, this resource based limitation should be considered
acceptable for the purpose of the experiments. The primary interest of this research is
to assess the overheads of the software components that comprise different elements of
a Cloud system, either on a single physical machine or between two and four physical
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machines. This is in contrast to assessing the scaling performance of a Cloud system in
its entirety where a large number of physical resources would be necessary for any testbed
to be representative of performance attainable in the real world. However if the need does
arises in the future, the testbed architecture as outlined in Figure 5.4, was developed in
such a manor as to be easily extended with additional physical machines.

5.4.2 Benchmarks

Three benchmarks partake in the performance evaluation: the first a novel and bespoke
image propagation benchmark for reviewing the overheads of transferring a VM image
between two nodes on a Cloud system; and two others that can be used to expose the
performance of VMM block I/O systems.

The image propagation benchmark integrated Bandwidth Monitor NG (BWM-NG) as
a tool to measure the input and output of the NIC from where the VM image repository and
VIM were resident, referred to in this thesis as the head node. The benchmark involved
the following steps:

i) Scripts to amalgamate the commands necessary for a user to provision a VM, inclu-
sive of transferring image data to an appropriate host machine and then starting up
the image as a VM instance

ii) Verification that a VM was on-line and executing via resource monitoring

iii) Termination of the VM in an automated fashion

For clarity, data was transferred across a homogeneous Cloud Environments that made
use of the same Virtualization infrastructure. These steps facilitated the ease at which
iterations of the experiment could be repeated. Each action was timed and compared to
the start and end of the data transfer recorded by BWM-NG. This divulged the overheads
of each stage of the image propagation, from the head node to the destination node where
a VM was deployed. The image propagation benchmark takes a single parameter, the
size of image to be transferred. The benchmark was implemented around three platforms:
OpenNebula using the SCP protocol, Nimbus using the SCP protocol and finally Nimbus
using GSIFTP.

Two synthetic benchmarks: IOzone and Bonnie++ were chosen for the performance
evaluation of image formats and virtual block I/O devices. The motivation behind using
these benchmarks over others was related to their design. These benchmarks were cre-
ated to assess the performance of I/O devices only. Other benchmarks generally assess the
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performance of CPUs devices and would generate useless metrics for any sensible com-
parison. These synthetic benchmarks try to encompass all possible parameters that could
represent different workloads, such as database software writing small files randomly, to
file servers reading large files sequentially. IOzone is a benchmark that generates and mea-
sures a selection of file operations to analyse the performance of a file system. Bonnie++
is a benchmarking suite with the ability to perform several tests to assess the performance
of a file system and underlying HDD. In addition to monitoring the above Bonnie++ also
monitors the CPU overhead of a given test to give a good indication of the efficiency of
the block I/O implementation. The benchmarks were chosen because they perform very
similar tests to record the number of I/O operations and the maximum throughput sustain-
able from a block device. This allows the results to be validated and any anomalies that
differ between the benchmarks to be ruled out as implementation specific issues.

The following relevant IOzone tests, with accompanying definitions, were selected for
the experiments:

• Write – Measures the performance of writing a new file, inclusive of writing file
metadata.

• Re-write – Measures the performance of writing to a file that already exists, omitting
much of the workload required in writing metadata.

• Read – Measures the performance of reading an existing file.

• Re-read – Measures the performance of reading a recently read file, illustrative of
caching affects that can improve performance as reads are satisfied by cache.

• Random Read – Measures performance of reading random locations within a file,
indicative of the performance of cache hierarchy and seek latency.

• Random Write – Measures performance of writing to random locations within a file,
indicative of the performance of cache hierarchy and seek latency.

The parameters for the IOzone benchmark were left default with the exception of
the test file size. From the IOzone documentation, this parameter needs to be double
the available system RAM for results to record the performance of the underlying file
system and block device as well as the caching effects of CPU and RAM. The automatic
benchmark mode, shipped with IOzone, was used to perform a parameter sweep of the
variables: file size used by the tests; and record size, the consecutive data chunk written
to the file. The outcome of the parameter sweep is shown in Figure 5.5.
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Figure 5.5. IOZone Parameter Sweep Caching Effects

The subsequent Bonnie++ tests with accompanying definitions were recorded during
the experiment:

• Sequential Throughput – The number of blocks of data that can be read or written
adjacent to one another in respect to the physical medium, in kilobytes per second.

• File Operations – The number of sequential or random, create or delete file op-
erations per second illustrative of the overheads associated with manipulating file
metadata in a file system.

• Random Seek Operations – The number of operations per second to seek to the
beginning of a random file on a file system demonstrating the speed at which a
HDD head can move from one physical track of a platter to another.

• Read File Operations – The number of sequential or random read operations of file
metadata in zero size files per second an indicator of the efficiency of a file system’s
structure.

Default parameters were used for each iteration of Bonnie++ with the exception of
the number of files to be created for the Read File Operations test which was set to “-n
512” or 524288 files. This enabled a reasonable degree of accuracy, where lower values
would not be recorded because of safeguards in Bonnie++ that prevent high variance due
to timer granularity. Bonnie++ correctly selected a test file size of twice the amount of



Chapter 5 101 Cloud Infrastructure Performance

available RAM to prevent caching from effecting results and a fallacious representation
of the underlying performance of the block I/O device.

5.4.3 Methodology

For clarity, this section of the thesis discusses the variables utilized in each of the experi-
ments and discusses the selection of independent and dependent variables for each of the
benchmarks. The image propagation experiment alters the image size, in the range 3GB
to 21GB, in increments of 3GB and records time in seconds. It is difficult to gauge what
sizes of image are representative of those used in the real world, as the image size is often
dependent on the application but the chosen range should provide enough data points for
any relation between the variables to be observed. For the IOzone and Bonnie++ exper-
iments, the software stacks on which the benchmarks run on are altered. The software
stacks are the native host, KVM Hypervisor deployed on the native host, XEN Domain0
or privileged guest that facilitates XEN VMs and XEN DomainU or XEN guest VM.
In the image format experiment all working and available formats were benchmarked in
KVM and XEN.

Depending on which benchmark test is performed, either the throughput in bytes per
second or the number of operations per second is recorded. The percentage CPU time,
where applicable in the case of Bonnie++ tests, is recorded in addition. Ten iterations of
each of the benchmark tests are performed and the average result along with the standard
deviation are presented, where possible, in illustrations.

5.4.4 Experimental Results

In this section, the results and interpretation of each of the three benchmarks are discussed,
as outlined in the Section 5.4.2. Firstly, the results of the image formats are discussed.
Second, the results of the image propagation benchmark are presented, trends are commu-
nicated and graphs are supplied that illustrate the differences between the overheads seen
in each platform as image size is increased. Finally, the results of the two benchmarks
used to ascertain the performance of the VMM Block I/O devices are analysed.
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5.4.4.1 Image Format Performance Analysis

Figure 5.6. IOZone - Performance of Image Formats

In this section of the thesis the performance of all the supported image types for both
the latest versions of Hypervisors, at the time of experimentation, are presented using the
IOZone benchmark with a 16MB record file size and 4GB file size. In the case of KVM
the cache is turned off as the results in Section 5.4.4.3 have shown that this provides the
best performance (full results for all caching mechanisms can be found in Table 5.2).
From Figure 5.6 it can be seen that performance differs depending on what image type is
used. XEN and KVM with a raw image type are the most performant. KVM with QCow2
and VDI image types accomplish 80 to 85% the performance of the raw image type. Of
all the images types tested KVM’s VHD support shows the least promise. In comparison
XEN’s implementation of the VHD image type outperforms that of KVM’s.

It is disappointing that native support for other image types in XEN is lacklustre at
best and limited to the VHD image type. With the migration from blktap to blktap2
support for QCow2 and VMDK is no longer available in XEN 4.0.1 pv-ops kernels.
This limits the interoperability of XEN in comparison to KVM as unsupported image
types would have to be converted.

5.4.4.2 Propagation Delay Performance Analysis

The results of the image propagation benchmark provide an interesting insight into how
the underlying design and implementation of the image management supervision pro-
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Table 5.2. Full Performance Results of Image Performance Analysis
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None 84.3MB/s
(-/+ 5.8)

83.8MB/s
(-/+ 3.6)

81.3MB/s
(-/+ 1.1)

82.2MB/s
(-/+ 0.6)

87.5MB/s
(-/+ 0.5)

73.2MB/s
(-/+ 0.8)

Writeback 59.4MB/s
(-/+ 6.6)

54.0MB/s
(-/+ 2.5)

64.7MB/s
(-/+ 2.3)

81.8MB/s
(-/+ 0.7)

84.2MB/s
(-/+ 0.7)

46.2MB/s
(-/+ 1.6)

Writethrough 49.3MB/s
(-/+ 1.5)

43.7MB/s
(-/+ 1.2)

79.0MB/s
(-/+ 0.8)

80.4MB/s
(-/+ 1.2)

83.2MB/s
(-/+ 1.3)

32.4MB/s
(-/+ 1.3)

R
AW

None 100.3MB/s
(-/+ 1.0)

90.8MB/s
(-/+ 7.6)

105.8MB/s
(-/+ 1.9)

106.7MB/s
(-/+ 0.8)

113.1MB/s
(-/+ 0.6)

83.1MB/s
(-/+ 0.4)

Writeback 14.5MB/s
(-/+ 1.4)

14.0MB/s
(-/+ 0.5)

76.9MB/s
(-/+ 1.2)

78.7MB/s
(-/+ 1.3)

84.3MB/s
(-/+ 0.7)

13.2MB/s
(-/+ 0.4)

Writethrough 61.3MB/s
(-/+ 4.5)

55.5MB/s
(-/+ 2.1)

65.8MB/s
(-/+ 3.9)

86.6MB/s
(-/+ 0.6)

88.5MB/s
(-/+ 0.6)

49.6MB/s
(-/+ 1.7)

V
D

I

None 81.1MB/s
(-/+ 5.0)

82.2MB/s
(-/+ 0.9)

76.9MB/s
(-/+ 1.7)

78.9MB/s
(-/+ 0.4)

83.5MB/s
(-/+ 0.5)

70.6MB/s
(-/+ 0.6)

Writeback 57.9MB/s
(-/+ 5.7)

51.6MB/s
(-/+ 3.3)

64.1MB/s
(-/+ 3.6)

78.8MB/s
(-/+ 0.5)

81.1MB/s
(-/+ 0.7)

46.0MB/s
(-/+ 2.8)

Writethrough 47.9MB/s
(-/+ 0.9)

41.5MB/s
(-/+ 2.1)

76.4MB/s
(-/+ 1.4)

77.5MB/s
(-/+ 0.8)

79.9MB/s
(-/+ 1.0)

29.6MB/s
(-/+ 9.3)

V
H

D

None 56.5MB/s
(-/+ 4.7)

56.1MB/s
(-/+ 2.3)

53.5MB/s
(-/+ 0.3)

53.5MB/s
(-/+ 0.3)

57.6MB/s
(-/+ 0.4)

54.7MB/s
(-/+ 2.6)

Writeback 32.5MB/s
(-/+ 2.4)

38.6MB/s
(-/+ 1.3)

54.6MB/s
(-/+ 0.4)

54.5MB/s
(-/+ 0.2)

59.1MB/s
(-/+ 0.5)

23.3MB/s
(-/+ 1.5)

Writethrough 19.8MB/s
(-/+ 2.2)

26.0MB/s
(-/+ 1.5)

53.4MB/s
(-/+ 0.9)

53.3MB/s
(-/+ 1.3)

56.7MB/s
(-/+ 2.2)

15.9MB/s
(-/+ 0.4)

V
M

D
K

None 60.3MB/s
(-/+ 9.0)

53.8MB/s
(-/+ 8.3)

75.7MB/s
(-/+ 4.9)

75.3MB/s
(-/+ 7.7)

78.9MB/s
(-/+ 6.5)

48.5MB/s
(-/+ 5.9)

Writeback 39.9MB/s
(-/+ 3.8)

43.3MB/s
(-/+ 3.1)

65.5MB/s
(-/+ 4.5)

77.6MB/s
(-/+ 0.6)

80.9MB/s
(-/+ 2.8)

36.6MB/s
(-/+ 1.4)

Writethrough 20.4MB/s
(-/+ 1.2)

26.9MB/s
(-/+ 1.3)

77.5MB/s
(-/+ 1.1)

77.5MB/s
(-/+ 1.3)

82.2MB/s
(-/+ 1.5)

14.6MB/s
(-/+ 0.7)

X
E

N

Raw None 79.5MB/s
(-/+ 0.4)

87.9MB/s
(-/+ 0.2)

101.1MB/s
(-/+ 0.6)

103.2MB/s
(-/+ 0.7)

108.8MB/s
(-/+ 0.5)

85.4MB/s
(-/+ 0.4)

VHD None 57.9MB/s
(-/+ 1.5)

62.9MB/s
(-/+ 0.3)

68.7MB/s
(-/+ 1.1)

69.2MB/s
(-/+ 0.6)

74.1MB/s
(-/+ 0.5)

61.7MB/s
(-/+ 0.4)
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cesses, used in each IaaS manager, have an impact on the time it takes for a single itera-
tion of a VM’s lifecycle. Figure 5.7 presents these times against an increasing VM image
size.

Figure 5.7. Image propagation: Trends

It is clear that Nimbus using GSIFTP as a transfer protocol out performs both Nimbus
and OpenNebula using SCP. Adding appropriate trend lines, interpolating to an image size
of zero and reading the appropriate value from the y-axis intercept, provides an indication
of the overhead induced by the implementation within each IaaS manager, responsible for
managing the propagation process of a VM. Figure reffig:ProtocalTransferTime illustrates
the theoretical transfer time of the NIC with neither protocol obtaining this performance,
demonstrates that on average GSIFTP transfers data nearly twice as fast or in ∼46% less
time than SCP and when using the SCP protocol the transfer time is agnostic of the IaaS
manager used.

Figures 5.9, 5.10, 5.11, 5.12, 5.13 and 5.14 show the results of the time spent waiting
to change from one state to another in each of the platforms tested. It can be seen that
the majority of the time is spent in a transferring state, waiting for the transfer protocol to
complete the movement of data from the image repository to the VM host machine. On
the other hand when transferring smaller images, the initial and terminal overheads of the
IaaS manager supervising the propagation process, became an increased proportion of the
total time spent waiting.
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Figure 5.8. Image propagation: Protocol Transfer Time

Figure 5.9. Image Propagation: OpenNebula SCP Overheads As A Percentage
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Figure 5.10. Image Propagation: OpenNebula SCP Overheads In Time

Figure 5.11. Image Propagation: Nimbus SCP Overheads As A Percentage
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Figure 5.12. Image Propagation: Nimbus SCP Overheads In Time

Figure 5.13. Image Propagation: Nimbus GSIFTP Overheads As A Percentage
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Figure 5.14. Image Propagation: Nimbus GSIFTP Overheads In Time

When comparing the SCP transfer protocol on different IaaS managers (Figures 5.9,
5.10 and 5.11, 5.12) Nimbus can be seen to outperform OpenNebula with a consider-
able reduction in the time spent in the initialization and termination states, inducing less
overhead for identical sizes of image, specifically∼3.5 times faster or in∼72% less time.

When Nimbus utilizes the GSIFTP transfer protocol (Figures 5.13 and 5.14), the ini-
tialization time remains roughly proportional to the overall propagation time. This is in
contrast to the other platforms where the percentage of time spent in the initialization and
termination states decrease proportionally with an increase in image size, the overheads
remain constant. This feature is also illustrated by the polynomial trend line in Figure 5.7.

An additional two servers were added to the testbed architecture to provide an insight
into and assess the performance of OpenNebula to provision multiple virtual resources
concurrently. The image propagation benchmark, as described in Section 5.4.2, was ex-
tended to enable the submission of multiple images. An additional step was added that
forked a separate script for the submission and termination of a single resource. A parent
script waited for all resource request cycles to end before terminating the benchmark. Six
requests were submitted to three hosts, two VMs for each host and the VIM was given
contention free access to the resources of the forth host to propagate the images using
SCP. The overhead and transfer time of the multiple image experiments are illustrated in
Figures 5.15 and 5.16.
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Figure 5.15. OpenNebula multiple image propagation: Trend

Figure 5.16. OpenNebula multiple image propagation: Protocol transfer time

It can be seen in Figure 5.15 that the overhead of provisioning multiple resources is
nearly identical, to that of Figure 5.7, when variance is accounted for in comparison to
that of a single resource. An interesting feature of Figure 5.16 shows that although six
times as much data was transferred, compared to the single image experiment in 5.8, the
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time to propagate all the images took roughly only three times as long. This demonstrates
that the VIM was able to take greater advantage of the NIC, closer to that of the theoretical
maximum limit, when executing concurrent transfers. The single image experiments only
attained ∼33% utilization of the maximum throughput compared to ∼65% of the multi-
ple image experiments. For clarity, the results presented in these figures are across ten
experimental iterations and have minimal variance, barely visible in the graphs as error
bars.

5.4.4.3 Block I/O Performance Analysis

Block I/O devices are incredibly slow in comparison to the performance of memory and
CPU caches in traditional computer systems, with many millions of CPU cycles being
wasted to service a single I/O requests when a cache miss occurs. Optimization of the
virtual equivalent block I/O, like any leading bottleneck within a system, should be of a
high priority and has repercussions for applications that utilize large datasets. The results
in this subsection on the benchmarks of IOzone and Bonnie++, divulge the performance of
the VMM block I/O devices and thus reveal the state of development, the amount of effort
and time assigned to optimization and an indication of the maturity of the Virtualization
solutions: KVM and XEN.

Figure 5.17. IOzone - record size: 16MB, file: 4GB guest; 8GB host
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Figure 5.18. IOzone on 2.6.32.24 - record size: 16MB, file: 4GB guest.

Figure 5.17 and 5.18 illustrates the maximum throughput of the virtual block I/O
devices for a given platform, where a record size of 16Mbyte is used to minimize CPU
usage. It can be seen that out of the box, KVM 83 write performance is incredibly poor in
contrast to XEN 3.4.3. KVM 83 on average across all write tests exhibited ∼17% of the
throughput of XEN 3.4.3. IOzone read tests demonstrate that KVM 83 performs similarly
to XEN 3.4.3 in the initial read test but failed to equal the throughput for the re-read and
random read tests attaining ∼77% of the throughput. The tests on the newer versions
of KVM and XEN are shown in Figure 5.18. KVM 2.6.32.24 again shows poor write
performance but is a vast improvement over the older version by roughly a factor of 3.
The performance of XEN 4.0.1 is on par with the older version of XEN 3.4.3.

After further investigation, the bottleneck was tracked to the caching system of the
QEMU back-end used by KVM. By default a write-through cache is deployed for consis-
tency to guarantee storage is committed to the underlying physical device. This has the
effect of increasing the amount of bus traffic and additional copy operations needed and
consequently reduces the performance of write operations. With this in mind, the bench-
marks for KVM were rerun avoiding the use of the cache all together and this demon-
strated far superior performance. This time KVM displayed ∼79% of the throughput of
XEN. Figure 5.18 shows the new version of KVM 2.6.32.24 performing on par with and
on occasion better than XEN 4.0.1.

Comparing XEN 3.4.3 with the native host platform and accounting for variance, write
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throughput was on par on all tests other than the initial write test which revealed that XEN
3.4.3 exhibited ∼83% of the throughput. The results of the XEN 3.4.3 initial read test
demonstrated similar results with ∼71% of the throughput of the host. The other XEN
3.4.3 read tests were indistinguishable from the host and the performance of the privileged
guest “Domain0” was equivalent to the native host performance across all tests.

Figure 5.19. Bonnie++ - Throughput MB/Sec
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Figure 5.20. Bonnie++ on 2.6.32.24 - Throughput MB/Sec.

The results of the Bonnie++ benchmark for sequential throughput (Figure 5.19 and
5.20) are confirmatory, showing near identical results to IOzone for the sequential write
and read tests but oddly show differing results for the sequential re-write test, across all
platforms. Speculating on the cause of this discrepancy, the manner in which the re-write
test is implemented may be the root cause. The results are roughly a 50% reduction in
throughput compared to IOzone; excluding the already limited performance of KVM with
cache. This could indicate that the sequential re-write test throughput is a formulation of
the time to execute two consecutive sequential write operations and that this doubling of
data written may not have been accounted for. This highlights the need for additional
confirmatory benchmarks when running performance evaluation experiments, as the un-
derlying implementation of a benchmark may not provide a fair representation of perfor-
mance. Additionally, from the figures it can be seen that Xen Dom0 performs marginally
better in some tests than the underlying host and is most likely due to the variance in the
experimental results over multiple iterations.
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Figure 5.21. Bonnie++ - File operations per second

Figure 5.22. Bonnie++ on 2.6.32.24 - File operations per second.

While throughput of the virtual block devices provides an indication of performance,
the number of operations that can be performed per second give further insight into how
efficient the implementations are. Figure 5.21 and 5.22 presents the Bonnie++ benchmark
results for sequential and random deletion and creation of files respectively. The results
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show that KVM 83 performs poorly in all cases, more so in the create tests where an order
of magnitude less operations can be executed and where turning off the storage cache in
KVM has minimal impact on performance. Interestingly XEN 3.4.3 guests outperform
the native host possibly due to some undocumented caching. Again it can be seen that the
performance of KVM 2.6.32.24 is comparable to XEN 3.4.3 and 4.0.1.

Another indicator of efficient design and implementation is that of CPU usage used
when performing I/O related tasks. Applications using CPU resources can become starved
by OS subsystems such as block I/O back-ends using excessive CPU time to service re-
quests for accessing I/O devices. Figure 5.23(a) shows KVM 83 performing poorly on
all sequential operations using a greater percentage of CPU to service less requests in
comparison to XEN. Interestingly the XEN 3.4.3 guest performs better than the underly-
ing XEN Domain0, exhibiting very little CPU usage if the CPU metric gathered within
the XEN guest is to be trusted. Disabling the storage cache of KVM 83 creates an in-
crease in the percentage of CPU time used. In the file operation tests of Figure 5.23(b)
this performance gap is even more prominent with all tests exhibiting CPU usage around
80%. At first glance KVM with storage cache seems to outperform XEN in the percent-
age of CPU time used to create files randomly but performs far less operations per second.
Figure 5.24(a) demonstrates another performance improvement for KVM 2.6.32.24 over
KVM 83 and a slight performance regression from XEN 3.4.3 to 4.0.1. Figure 5.24(b)
reveals a large reduction in CPU usage across the tests for KVM 2.6.32.24 with and with-
out cache and a modest improvement for XEN 4.0.1 over XEN 3.4.3. For clarity, the
0% CPU cost displayed in some of the figures, is due to the course granularity of CPU
measure used and is not in fact zero but a very small value that cannot be recorded.
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(a)

(b)

(c)

Figure 5.23. Bonnie++ - Top-to-Bottom: Sequential Throughput CPU Usage, File Operations
CPU Usage & Read File Operations.
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(a)

(b)

(c)

Figure 5.24. Bonnie++ on 2.6.32.24 - Top-to-Bottom: Sequential Throughput CPU Usage, File
Operations CPU Usage & Read File Operations.

Figure 5.23(c) presents evidence that KVM 83 guests outperform XEN 3.4.3 guests
and that the XEN 3.4.3 privileged guest Domain0 performs worse than the native host
when operating on file metadata. This indicates that the cause of the write bottleneck of
KVM 83 with storage cache is due to the inefficient manner in which data is transferred
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from the host physical storage to the guest and not due to the handling of file system
metadata. Finally comparing Figure 5.23(c) and Figure 5.24(c) another performance re-
gression is illustrated from XEN 3.4.3 to 4.0.1.

5.5 Summary

The aspect of performance within QoS has an important role to play in the provisioning
of resources in Cloud Computing. This chapter of the thesis presented the findings of a
performance evaluation into the management and utilization of data at IaaS level. The
implementation of technologies used in virtual infrastructure has been highlighted as in-
fluencing the outcome of resource performance and consequently the QoS provisioned to
end users, the competitiveness of a provider in the Cloud ecosystem and likely return on
investment of services made available. This subsequently makes the selection of tech-
nology a decisive decision for any Cloud provider. The outcome of this work provides
quantitative evidence that can enhance an IaaS provider’s decision making process and
aid in the prevention of SLAs breaches.

The majority of the results of our experiments illustrate that OpenNebula and KVM,
relative new comers to the paradigm of distributed systems, perform to a lower standard
than Nimbus and XEN. A general theme has reoccurred throughout our performance anal-
ysis: the maturity of a particular technology can heavily influences performance. There-
fore it can be concluded that the findings of this work advocate mature software solutions
due to direct correlation with performance. This should be put into context with the con-
temporary feature sets these new technologies provide, which one could argue, are more
appropriate or specific to the usage scenarios of a Cloud environment. As a consequence
this trade off between performance and feature set should be factored in when making any
decision on whether to use the technology evaluated here in.

Table 5.3. Cloud Infrastructure Performance Results Summary

Technology Benchmark Wins

OpenNebula 0
Nimbus 2

KVM 83 3
XEN 3.4.3 19

The implications of our results draw attention to the impact performance overheads
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have on the adoption of Cloud technology. OpenNebula for example, has a compara-
tively limited aptitude to react to changes in demand in a stochastic and highly dynamic
environment and accordingly Nimbus would be more appropriate in this scenario. Data
management services such as Amazon’s S3, when considered not economically viable or
where the cost of these Cloud services are not completely transparent and vary signif-
icantly [151], could result in data having to be stored and accessed within a local VM
image. The incapacity of KVM guests at writing and reading data could be a limiting fac-
tor for applications that access large quantities of data locally and conversely XEN would
be a superior choice here. Additionally, the next Chapter discusses the contextualization
of Cloud applications which is reliant on the performance Cloud Computing technology
to operate in a timely fashion. Thus the findings of this Chapter can be used to support
the contextualization process.
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Contextualization

6.1 Introduction

One of the key questions surrounding Cloud Computing adoption is whether there is real
benefit to migrating to the paradigm. In the previous Chapter the issues surrounding
performance were discussed in light of enabling more applications to be deployable on
Cloud infrastructures. In this chapter issues surrounding scalability are discussed with
regards to how best to configure and develop Cloud applications for this end. In addition,
the question of how easy are Clouds to set-up and use is addressed. Outages and lack of
implemented fault tolerance mechanisms across geographic locations provides motivation
that Clouds are no easier to configure than standard Distributed Systems1.

This chapter discusses the automation of Clouds and currently available tools to con-
figure them. The concept of contextualization and re-contextualization are introduced to
address the short comings of these tools for general purpose applications across the entire
Cloud service software stack. These concepts are developed into mechanisms and imple-
mented as part of collection of tools to configure and reconfigure VM base images, for
the purpose of aiding in the deployment of Cloud applications from the point of view of
the developer. The performance of these implementations are evaluated to assess usage
and applicability in real world multi-user environments.

The remainder of this chapter is organised as follows: Section 6.2 discusses issues

1Latest outage raises more questions about the Amazon Cloud: http://gigaom.com/cloud/latest-
outage-raises-more-questions-about-amazon-cloud/
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surrounding the configuration of the Cloud technology. Section 6.3 introduces the con-
cept of Contextualization presenting requirements for and an architecture of a Contextu-
alization Tool. Section 6.4 extends the work on contextualization proposing a runtime
Recontextualization mechanism. Finally, Section 6.5 evaluates the performance of the
Contextualization Tool and prototype Recontextualization mechanism.

6.2 Configuring The Cloud

This section of the chapter discuss the heritage of Autonomic computing in Clouds, some
tools used to reduce the complexities of configuring Cloud applications and configuration
issues limiting the use of Cloud platforms.

6.2.1 Autonomous Cloud Computing

As many computing paradigms share similar concepts and underlying principles, it is
easy to confuse Cloud Computing. Cloud Computing integrates the ideas from several
paradigms making its application powerful in a vast number of scenarios. Many of the
principles that underlay Cloud Computing can be linked to Autonomic computing but are
applied in different scopes.

Autonomic computing has been a topic of interest for many years with research start-
ing in 2001 by IBM’s autonomic computing initiative. The initiative aimed to create
a self-managing computing system, capable of handling increasingly complex systems.
Autonomic computing has been defined as:

Definition Autonomic Computing “Computing systems that can manage themselves given
high-level objectives from administrators.” [144]

Autonomic computing involves the creation of systems that run diagnostics checks
and compensate for any irregularities that are discovered. Multiple closed control loops
adjust the system to maintain its state within a number of specific bounded criteria. The
ever growing complexity of distributed systems provide motivation for the use of au-
tonomous systems as manual control is expensive, prone to errors and time consuming.
Autonomic computing reduces the need for system maintenance with aspects such as
security or software configuration maintained in an unattended fashion. Administrators
instead of controlling entire systems by hand, define general rule based policies that guide
“self-*” management processes in four functional areas:

• Self-Configuration: Automatic configuration of components
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• Self-Healing: Automatic discovery, and correction of faults

• Self-Optimization: Automatic monitoring and control of resources to ensure the
optimal function with respect to the defined requirements

• Self-Protection: Proactive identification and protection from arbitrary attacks

Cloud Computing incorporates many features and elements of autonomic computing.
Cloud providers use self-regulating system to reduce the complexity of configuring virtual
resources and the Cloud service stack, enable transparent fault tolerance through resource
monitoring, optimisation of resource usage through the consolidation and migration of
VMs and pro-actively defend against attacks with Intrusion Detections Systems (IDS).
Without such measures in place, providers would not be able to pass on the cost benefits
to its customers through the economy of scale they provide. A distinguishing feature
of Cloud Computing over Autonomic Computing is that it requires in most cases that
the End-User have an understanding of the infrastructure and software that supports it,
while the virtual resource interface presented in Clouds does not. Due to the size of
Cloud environments Self-Configuration plays a critical role in enabling the other self-
management processes and the deployment of anything more than the most simple of
Cloud applications. As a result, the remainder of this subsection concentrates on the
use of Configuration Management Tools and the issues surrounding the configuration of
application software stacks in Clouds.

6.2.2 Configuration Management Tools

Configuration Management (CM) is used in many disciplines from civil engineering to
military applications such as weapons system development and has many definitions. In
this thesis within the context of distributed systems, the following definition is used:

Definition Con f iguration Mangement A management process that focuses on establish-
ing and maintaining consistent system performance and functional attributes using re-
quirements, design, and operational information throughout a system’s life-cycle. [3]

Configuration Management is a large area of work. For the research presented in this
Chapter, particular attention is placed on a set of tools that provide similar automation
functionality to that presented here in on the topic of Contextualization but that has not
been designed in the context of Cloud Computing and thus tailored for use in the dynamic
environments that Cloud applications operate within. Additionally, these tools have issues
of convergence where the continuous reconfiguration of software does not lead to any
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stable or desired state. These same issues are applicable to the research discussed later in
this Chapter on the topic of Recontextualization and has an impact on the decision making
processes within a Cloud environment. For example, if a decisions is made to migrate a
Cloud resource and reconfigure it for a new environment, only for the problem for which
it was migrated not to be resolved, a perpetual state of Recontextualization could occur.

There are three generalised approaches to configuring the Cloud service software
stack:

• Manually: Configuring each software component by hand. Not feasible in large
scale Cloud deployments, is time consuming and error-prone.

• Pre-Configured Static Images: A common approach where a set of images are
set-up once and reused. A brittle approach where changes to the configuration of
the images have to be made to all instantiated VMs with no way of propagating the
changes from previous image versions currently in use.

• Configuration Management Tools: Tools or software approaches that apply CM
to automate the configuring of an image or instantiated VM. This provides enhanced
control and flexibility.

Configuration Management Tools provide a number of benefits including i) the repro-
ducibility and industrialization of software configuration, ii) the continuous vigilance over
running systems with automated repairs and alert mechanisms, iii) enhanced control over
and rationalisation of large scale deployments and iv) the ability to build up a knowledge
base to document and trace the history of a system as it evolves.

This subsection of the thesis discusses the concept of Configuration Management for
the automated deployment of Cloud applications software dependencies at the PaaS level.
The feature sets and comparison of three configuration management solutions: CFEngine
3 [40], Puppet [199] and Chef [41] are presented. Both systems can be used to automate
infrastructure deployment covering thousands of machines.

6.2.2.1 CFEngine

The CFEngine [40] project provides automated configuration management of large net-
worked systems. CFEngine can be deployed to manage many different types of computer
system such as servers, desktops and mobile/embedded devices. The project was started
in 1993 by a post-doc, Mark Burgess at Oslo University, as a way to automate the manage-
ment of dissimilar Unix workstations2 via the abstraction of platform differences using

2Details of the initial version of CFEngine can be found in an internal report at: http://www.iu.hio.
no/˜mark/papers/cfengine_history.pdf

http://www.iu.hio.no/~mark/papers/cfengine_history.pdf
http://www.iu.hio.no/~mark/papers/cfengine_history.pdf


Chapter 6 124 Contextualization

a domain specific language. In [34] the foundations of self-healing systems were devel-
oped by Mark Burgess and as a precursor, heavily influenced the ideas of Autonomic
Computing developed later by IBM.

CFEngine uses decentralised, autonomous software agents to monitor, repair and up-
date individual machines. It is comprised of a number of components with varying re-
sponsibilities:

• cf-promises: Used to pre-check a set of configuration promises before attempt-
ing to execute them.

• cf-agent: An agent that manipulates system resources to enact change.

• cf-serverd: A server able to share files and receive requests to execute existing
policy on an individual machine.

• cf-execd: A scheduling daemon, executing and collecting the output data from
cf-agents.

• cf-runagent: A helper program that communicates with cf-serverd for the
purpose of requesting the update of cf-agent(s) existing policy and is used to
push out changes to CFEngine hosts.

• cf-report: Generates summary and other reports in a variety of formats.

• cf-know: An agent used for rendering documentation as a ‘semantic web’ from
system knowledge.

The components operate over four phases of system management, which are based on
transactional changes:

• Build: A template of proposed promises is built for the machines in an organization.
If the machines keep these promises, the system function as anticipated.

• Deploy: Implement previously decided policy via pushing out changes to agents.

• Manage: Autonomous agents manage unplanned system events. Rare events that
cannot be dealt with automatically set off alarms for human intervention.

• Audit: System report generation for determining what changes were made by
agents and if they were policy compliant.
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At the core of CFEngine lies the idea of convergence [35], where the final desired state
of the system is described instead of the steps needed to get there. This enables CFEgine
to run whatever the initial state of the system is with predictable end results. The downside
to this approach is that only statistical compliance or best effort can be achieved with a
given configuration policy, where by a system can not be guaranteed to end up at a desired
state but slowly converges at a rate defined by the ratio of environmental change to the
rate at which CFEngine executes.

Puppet [199] and Chef [41] are two other configuration management systems widely
used as replacements for CFEngine and have tried to combat particular short comings in
CFEngine’s design and ideology when used in some specific use-cases.

6.2.2.2 Puppet

Puppet was forked from CFEngine and provides graph-based and model driven approaches
to configuration management, through a simplified declarative domain specific language
that was designed to be human readable. The model driven solution enables the configura-
tion of software components as a class, a collection of related resources where a resource
is a unit of configuration. Resources can be compiled into a catalogue that defines re-
source dependencies using a directed acyclic graph. A catalogue can then be applied to a
given system to configure it.

6.2.2.3 Chef

Chef, a fork of Puppet, rose out of the Ruby-on-Rails community out of dissatisfaction
with Puppet’s non-deterministic graph-based ordering of resources. This is useful for
bringing a system from its current state into compliance with a specified state and where
ongoing configuration changes are more important than the initial provisioning. In con-
trast, Chef places emphasis on starting up services from newly provisioned cleans sys-
tems, where the sequence and execution of configuration tasks is fixed and known by the
user. This makes Chef particularly well suited to the paradigm of Cloud Computing where
VM instances are short lived and new instances are spawned from a newly provisioned
base image. Chef uses the analogy of cooking and creates “recipes” that are bundles of
installation steps or scripts to be executed.

6.2.2.4 A Comparison

All the tools share a common ancestry with CFEngine 3 and have been designed specif-
ically with configuration management in mind. The tools are open source, provide text-
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based interfaces and are based around the client-server model. The tools differ in a number
of ways: support for Windows in full is only provided in CFEngine 3 which is also written
in C and follows the GPL license. Puppet and Chef have limited partial support for Win-
dows with regards to what aspects of the Operating System can be configured and both
are written in Ruby. Finally, Chef does not provide a declarative domain specific language
and instead uses extensions of the Ruby programming language to describe configuration.
This can be of benefit but there is a trade off between clarity in defining the configuration
and power to configure as needed.

Table 6.1. Comparison of Configuration Management Tools

Tool Language Platform Support Domain Specific Language

CFEngine ANSI C
Windows, Mac OS X,
BSD, Linux

Yes (Declarative)

Puppet Ruby
Windows (partial), Mac
OS X, BSD, Linux

Yes (Declarative and Imperative)

Chef Ruby
Windows (partial), Mac
OS X, BSD, Linux

No (Imperative)

The performance and scalability of Puppet and Chef are limited due to the language
they are written in and the maturity of the solutions. There are still several issues with the
scalability of Puppet out of the box3. Chef scalability still remains to be fully explored4

and several issue are not solvable without a familiarity with generalised scaling tech-
niques5. On the other hand, CFEngine is written in C and its decentralised architecture
has recorded deployments by enterprise users of over 10,000 host nodes.

Although Chef is well suited to Cloud Computing with its emphasis on configuring
systems from scratch, it does not resolve all the issues surrounding configuring an appli-
cation in a dynamic environments and has been particularly tailored to the deployment
of Ruby on Rails applications in Clouds. The next subsection provides further details
on these issues in the context of Cloud Computing and introduces the idea of contextu-
alization as a mechanism to provide VMs with identities for the purpose of configuring
clusters or resources for general purpose use.

3Puppet scalability:http://projects.puppetlabs.com/projects/1/wiki/Puppet_Scalability
4Chef scalability: http://lists.opscode.com/sympa/arc/chef/2011-08/msg00000.html
5Concurrency in Chef http://lists.opscode.com/sympa/arc/chef/2012-01/msg00422.html

http://projects.puppetlabs.com/projects/1/wiki/Puppet_Scalability
http://lists.opscode.com/sympa/arc/chef/2011-08/msg00000.html
http://lists.opscode.com/sympa/arc/chef/2012-01/msg00422.html
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6.3 Contextualization Tools

Modern Virtualization technologies enable rapid provisioning of Virtual Machines (VMs)
and thus allow Cloud services to scale up and down on-demand. This elasticity [94, 152]
comes with a new set of challenges for dynamic service configuration. Contextualization
is a set of processes and mechanisms that enable a service to scale elastically alongside
the resources and software that support it through the orchestration of these dependen-
cies toward the common goals of the service. The focus of the research is on horizontal
elasticity where scaling is achieved by adding or removing VMs to a service during its
operation. The related case of vertical elasticity, i.e. application scaling through VM
resizing, is much easier from a contextualization perspective. For horizontal elasticity
scenarios, predefined yet flexible contextualization mechanisms enable the VMs of a ser-
vice to self-discover and communicate. For clarity, the definition of contextualization is
as follows:

Definition Contextualization is the autonomous configuration of individual components
of an application and supporting software stack during deployment to a specific environ-
ment.

Traditionally contextualization involves the manipulation of VM images during the
development of a Software as a Service (SaaS) solution and requires the complex and
time consuming configuration of software within the images.

Three main challenges are identified on enabling elasticity through contextualization
where VMs are added and removed during service operation:

1. Contextualization support offered by the Platform as a Service (PaaS) layer, to re-
place the traditional approach that requires complex and time consuming manipu-
lation of VM images as part of development of each Software as a Service (SaaS)
solution.

2. Contextualization of services that are deployed across multiple Infrastructure as a
Service (IaaS) providers.

3. Contextualization with support for functional requirements such as secure network
overlays and the incorporation of licence-protected software in services.

The implementation of Contextualization Tools are highlighted as part of the OP-
TIMIS Toolkit [74], a set of software components for simplified management of Cloud
services and infrastructures but are generic enough to be used in other IaaS toolkits. The
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feasibility of the contextualization mechanisms is demonstrated in a three-tier web appli-
cation scenario, where the database and application server tiers both are replicated and
scaled elastically. The contextualization mechanisms enable elasticity for this application
such that instances of database and application server can be transparently added and re-
moved from the service during operation. Results are also provided that demonstrate the
scalability and performance of the mechanism in a multi-user Cloud environment.

6.3.1 Contextualization Challenges

It could be argued that contextualization in Cloud Computing remains a highly pervasive
key technological requirement of any Cloud service, where elastic resource management
is critical to the on-demand scalability of a service. The holistic nature of the services
deployed on Clouds makes it difficult to provide flexible generic and open PaaS tools
without limiting heterogeneity of supported services. Three inherent challenges are iden-
tified to providing elasticity through contextualization where VMs are added and removed
during service operation.

The first challenge to overcome is the complete contextualization of Cloud services
across all classifications [254] within the Cloud ecosystem: SaaS, PaaS, and IaaS. This
pertains to low-level contextualization of virtual resources, as found in IaaS providers,
where virtual devices require context to enable VMs to be bootstrapped to existing virtual
infrastructures. This approach has been partially explored by Reservoir [209]. In addition,
the contextualization of software dependencies that supports a deployed service in a PaaS
provider needs to be scalable. Finally, the service itself must be developed in such a
fashion that enables scalability.

The second challenge to overcome is contextualization across multiple IaaS domains
for reasons of interoperability. Many IaaS providers, such as Amazon Web Services [5],
offer PaaS services that are not interoperable with those of other providers. In these PaaS
services, contextualization is performed as part of service development, which makes
the process customized to a single provider only. This presents an opportunity for con-
textualization at service deployment time only, thus enabling interoperability between
IaaS providers by not having to rely on these platform services. Contextualization at de-
ployment time only, incurs additional challenges in relation to the re-contextualization of
resources during runtime for the accommodating of service elasticity and on-demand scal-
ability, whereby platform services must be self-discovering and autonomous. This adds
complexity to the contextualization mechanism that must be used to support the software
dependencies of a service at the platform level and is discussed later in this chapter.
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The third challenge pertains to a set of functional requirements for real world Clouds
and their impact on contextualization. Notable among these are end-to-end security
through contextualization mechanisms that support a Virtual Private Network (VPN) over-
lay and software license management systems. Both of these have unique contextualiza-
tion requirements: contextualization must be secure with no VPN keys stored unless in
use and contextualization that is able to accommodate license protected software with
licensing tokens.

6.3.2 Related Work

Approaches to contextualization vary considerably depending on the nature of the ap-
plication or virtual appliance. In the Grid community, research into the effective use
of Cloud Computing for academic use and the implications on contextualization have
been explored [142,171]. The approach to contextualization by the Nimbus Project [177]
in [142] is to integrate heavily with the Globus Toolkit [88], limiting the general appli-
cability of the contextualization solution to a small number of use cases. In addition, re-
contextualization of resources is considered to be a necessity unlike the approach outlined
in this research. In [171], details of a mechanism for the contextualization of scientific
virtual appliance are discussed for the purpose of replicating Grid services. An approach
is proposed that exposes users to a high level declarative language in XML for performing
typical steps in the deployment of a scientific application. The goal of this contextualiza-
tion mechanism differs from our own in that we seek to enable elasticity rather than fault
tolerance of Cloud resources and again the proposed solution is specific to a single use
case from the academic community.

Finally in [73], the challenges and techniques of contextualization are presented for a
cluster environment at the Clemson University. The paper describes low level issues of
contextualization and makes some recommendations on contextualization from practical
experience. Image-level contextualization and the problems associated with its automa-
tion and complexity are discussed in detail but no solution is provided. The research of
this thesis is differentiate from the above through the application of contextualization in
several Cloud scenarios from the OPTIMIS project by providing viable solution to these
problems.
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6.3.3 Requirements and Architecture

6.3.3.1 The OPTIMIS Toolkit

The contextualization research is performed in the context of the OPTIMIS Toolkit [74],
a set of software components aimed to simplify and optimize the construction, deploy-
ment, and operation of services (at the SaaS and PaaS level) as well as the operation
of virtualised hardware needed to deliver these services (IaaS level). Although OPTI-
MIS targets scenarios and capabilities somewhat different to the ones provided by current
PaaS and IaaS providers, the OPTIMIS contextualization requirements are general and
the solution should be applicable in a wide range of Cloud providers. The research on
contextualization is presented in light of OPTIMIS Toolkit and project to facilitate the
readers understanding but it should be clarified that it is purely the work of the thesis
author.

The two beneficiaries of the OPTIMIS Toolkit are Infrastructure Providers (IP) who
operate the infrastructure resources (IaaS level) required to provision services and Service
Providers (SP) who deliver these services to end users by combining the PaaS and SaaS
roles. An OPTIMIS service is functionally accessible by end users over a network. A
service is also virtualised such that it is provisioned by means of VMs and elastic in the
sense that the number of VMs it uses can vary over time. In overview, the service lifecycle
has three steps:

1. Construction where the SP constructs the service (by implementation, orchestration
of existing services, and/or use of licence-protected legacy software) and packages
it as a set of VM images described in a service manifest.

2. Deployment where the SP initiates the provisioning of the service in an IP.

3. Operation where the IP manages the VMs and related infrastructure resources whereas
the SP monitors and controls the application level aspects of the service.

The OPTIMIS Toolkit is a set of stand-alone components that can be adopted and con-
figured to support a range of Cloud deployment models. The targeted scenarios include:
private Clouds where SP and IP are combined, Cloud bursting, where private Clouds
utilize external IPs; Cloud federation, i.e., collaboration between IPs; Multi-Cloud de-
ployment, where an SP interact with more than one IP; and brokering, a variant of the
latter where a third-party broker mediates between SPs and IPs.

The simplest scenario is a Private Cloud, where the SP and IP are within the same or-
ganization and cooperate to provision resources for services using an internal infrastruc-
ture. In Cloud bursting scenarios, the IP of a private Cloud manages peaks in demand for
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a service by deploying additional VMs in another IP. Another possible deployment model
is a Federated Cloud, where an IP provides resources for an SP on behalf and across a col-
lective of IPs working in collaboration, while being the single point of interaction for the
SP. In contrast, in a Multi-Cloud deployment scenario, an SP directly negotiates with and
deploys part of a service across multiple IPs but no collaboration occurs between these.
An additional scenario is Cloud Brokerage, where a third-party broker acts as an interme-
diary between SPs and IPs, potentially also providing added value through its knowledge
base.

In addition to support for multiple deployment scenarios, one notable feature, com-
mon for all toolkit components, is self-management capabilities (for services, VMs, data,
SLA protection etc.). These self-management decisions are made not only with performance-
related criteria but also include non-functional aspects. All resource management actions
are taken by balancing performance against TREC, namely trust (in the IPs and SPs based
on previous experiences), risk (of resource and service failure, SLA violations, etc.), eco-
logical aspects such as energy-efficiency and compliance to green legislations, as well
as the cost of provisioning services and VMs. To manage the complexity of this multi-
objective service provisioning challenge, the OPTIMIS Toolkit has a modular and layered
architecture with a Basic Toolkit that provides monitoring and assessment engines for the
TREC factors and security capabilities. On top of that, a set of SP Tools handles e.g.,
deployment of services, data transfers, and software licenses, whereas IP Tools provides
basic functionality for infrastructure management, e.g., admission control, management
of VMs and data, fault tolerance, and autonomic elasticity control. A in-depth description
of the OPTIMIS Toolkit and the motivations for it is beyond the scope of this research
and can be found in [74]. Figure 6.1 shows the tools that make up the OPTIMIS toolkit.

Figure 6.1. Componets of the OPTIMIS Toolkit architecture.

With particular interest from a contextualization perspective are the tools the Service
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Deployment Optimizer (SDO) in the SP and the Cloud Optimizer (CO) in the IP. The
role of the SDO is to coordinate the service deployment process. Based on the service
description in a manifest, including VM images and deployment constraints, the SDO
identifies suitable IPs, assesses the Trust, Risk, Eco-efficiency and Cost (TREC) factors
related to the service, filters out unsuitable deployment targets, and negotiates terms of
use with suitable ones. After selecting the best IP(s), the SDO contextualizes the VM
images prior to deployment. Finally, the contextualized VM images are uploaded to the
selected IP and the service is started.

The CO has a similar coordination role in the IP as it handles all VM launching re-
quests. New VMs can be started upon deployment of a new service, restarted as part
of fault recovery, or booted due to elasticity, i.e., service scale up caused by increasing
workload. For each VM launch request, the CO initially decides whether the VM should
run in the local infrastructure of the IP or outsource to an external provider (bursting or
federation). In the latter case, the SDO functionality for selection of partnering IPs and
deployment negotiation is reused. Notably, as VM images boot, they can, thanks to the
preparatory steps performed by the SDO, contextualize themselves without synchronizing
with any component external to the service, in the SP or elsewhere.

The OPTIMIS service lifecycle management and support for many Cloud deployment
models, highlight the need to address the three main contextualization challenges previ-
ously discussed. The first, contextualization support as part of a PaaS tool used during
service deployment (as opposed to SaaS solutions for service development). The second,
contextualization that supports service deployment across multiple IaaS providers and
finally support in contextualization for functional aspects such as secure cross-domain
networking and use of license protected software. The following is a list of OPTIMIS
specific contextualization requirements:

• The VMs of a service need to be able to communicate with each other seamlessly.
The different Cloud deployment models supported complicate this, as VMs may be
spread across multiple IPs, i.e., several network domains.

• A service must be able to make use of license protected software packaged inside
VMs. There is hence a need for a mechanism to propagate software license creden-
tials.

• Services are elastic, it must be possible to launch multiple running VM instances
from a single VM image.

• Elasticity also adds the additional complication that not all VMs are launched at the
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same time. The exact number of VMs used by a service varies dynamically during
operation and is not know in advance.

• Similarly, due to the different Cloud deployment models supported, it is not known
a priori in which network, or even which IP, the VMs of a service are hosted.

• The incorporation of license tokens in VMs and need for cross-domain service net-
working raise several security concerns. To summarize these, contextualization
mechanisms must be designed in a manner that does not expose assets such as ser-
vices, the networks connecting them, and software licenses to exploitation.

• Security information (keys etc.) needed for the establishment of a VPN overlay
should not be stored in the VM image nor found on uninstantiated VMs.

There are several problems to solve regarding contextualization of OPTIMIS system
level components, such as those associated with license management and Cloud security.
The following subsections outline these issues in more detail:

6.3.3.2 License Management

Access to licenses for authorizing the execution of an application in a Cloud beyond the
administrative domain of the site running the license server usually leads to applications
aborting during start-up because of unreachable license servers, e.g. due to firewall issues.
In OPTIMIS a prototype for software licensing is used and was developed in the European
project SmartLM [37], which provides licensing technology for location independent ap-
plication execution. Separation of authorization for license usage and authorization for
application execution on the one hand and software tokens that carry the authorization
information on the other hand provide the necessary flexibility for licenses following ap-
plications into Clouds. It is one of the tasks of the VM Contextualizer to retrieve and
embed a license token into the VM hosting the application. In case of multiple appli-
cations in a VM, required e.g. for a workflow, the VM Contextualizer assures that all
required licenses are in place when the applications start up. No communication between
the application and the license server that issued the token is required at runtime.

Additional approaches are planned to be implemented enhancing the SmartLM so-
lution: (i) dynamic deployment of a trusted instance managing a number of tokens for
one or multiple applications and (ii) dynamic deployment of a full license service with a
subset of the licenses available at the home organisation of the user. The configuration
of the dynamically deployed license service will be managed by the VM Contextualizer.
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This approach is especially useful when the same Cloud resources are used over a longer
period of time for running license protected applications.

6.3.3.3 Cloud Security

Each instance of a VM requires specific security customisations based on the service it
provides and its threat profile. For example, the firewall rules specific to a web server VM
is different from that of a database VM and these variations are handled by the contextual-
ization tools. In addition, the OPTIMIS Data Manager provides a means of provisioning
secure encrypted storage devices for VMs, where the decryption keys are stored outside
an IP. The specifics of these secure device configurations are different across various
VMs and are set by the contextualization steps. Various Identity and Access Manage-
ment (IdAM) components that need to be installed, along with policies specified at the
VM endpoints, are also set by this component. If required by the end user or SP, other
security software like intrusion detection and prevention software and VPNs can also be
instantiated and customised by similar mechanisms. Figure 6.2 illustrates some possible
VPN scenarios for securing inter-Cloud communication.

Figure 6.2. Virtual Private Networks - Securing Inter-Cloud Communication.
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6.3.3.4 Architecture

Figure 6.3. Deployment time contextualization architecture.

The contextualization tools are comprised of a core component, the VM Contextualizer
and a repository of scripts. This component provides an interface for consuming service
context data, such as: security certificates, VPN hostnames, VPN DNS and Gateway IP
addresses, mount points for network data stores, monitoring manager hostnames, offline
software license tokens and a list of software dependencies. The VM Contextualizer pro-
vides two capabilities. The first is a bootstrap mechanism to prepare a VM image for
receipt of context agnostic of the operating system type used. The second capability pro-
vides a mechanism for creating ISO CD ROM images that contain context data and a data
processing script for the manipulation of the data into a format suitable for consumption
at runtime when the ISO image is mounted. The VM Contextualizer mounts a VM image
and modifies it to include an assortment of bespoke scripts that interact with the guest
operating system, service and service dependencies at boot time, preparing the image to
receive context in a reusable fashion. At run time these scripts access contextualization
data held within this ISO image, as per the OVF recommendation [192], giving a VM its
identity. Due to the OVF recommendation, this same storage medium is used by a number



Chapter 6 136 Contextualization

of projects such as Reservoir [207] and Contrail [52] but neither of which focus on the
platform level as is the case with the research presented in this Chapter.

The inclusion of the ISO image as a mechanism to store contextualization informa-
tion provides a facility to separate the contextualization data from the VM image. This
removes the time consuming need to create multiple unique VM images for each VM that
is required to be contextualized, while also improving the security of the contextualization
process as security certificates are not stored in the VM image itself but instead stored in
the ISO image when it is dynamically generated. The inclusion of a script to process the
contextualization data provides an approach to store the data agnostic of the operating
system, service and service dependencies used.

Figure 6.4 illustrates the instance-level contextualization process of a VM at the be-
ginning of its execution. During the boot sequence of a VM the contextualization tools
mount an ISO CD image that contains contextualization data and a script to process this
data into a usable form. This script communicates through a known interface to the OS
specific contextualisation scripts embedded in the VM image. These OS specific scripts
manipulate configuration files of associated OPTIMIS components and software depen-
dencies that support the end user’s service(s), setting their context. The scripts can remain
in a daemon-like mode for a component or software dependency that requires continuous
updates to its context, enabling limited dynamic reconfiguration and instant discovery of
elastic resources.

Figure 6.4. Interaction between VM image and ISO Image at run time.

The VM Contextualizer uses parts of QEMU [200], a generic and open source ma-
chine emulator and virtualizer to manipulate images. QEMU provides a tool named
“qemu-img” that enables the conversion of virtual machine images. In addition, Linux
system tools (such as “mount”, “iosetup” and “kpartx”) are used to mount VM
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images as loop devices for write manipulation. For the creation of ISO images, the Linux
system tool “mkisofs” is used in addition to the previously mentioned tools to create
and modify ISO images.

6.3.3.5 Detailed Design

The VM Contextualizer is written in Java and compiles into a Jar file. In the context of
OPTIMIS the SDO makes use of this file in its class path. The Jar provides an API to
the functionality of the VM Contextualizer and has been designed to be multi-threaded
and asynchronous, enabling concurrent services to be contextualized at any one time.
Table 6.2 outlines the methods available in the API.

Table 6.2. VM Contextualizer API

Operation Input Output Description

contextualize-
Service()

Service-
Manifest

Image-
Identifier

Given an XML representation of
the ServiceManifest containing the
URI(s) of VM image(s), this func-
tion prepares and/or converts an
VM image stored on the local
files system into a contextualization
ready version in addition to creat-
ing ISO CD images on a per VM
instance basis. On completion, the
function returns a ImageIdentifier
object containing a list of new im-
age URIs.

contextualize-
ServiceCallback()

ServiceId Progress

Given a ServiceId, this function re-
turns a Progress object containing
the current phase and the phases %
completion of a contextualizeSer-
vice operation.

In OPTIMIS the Service Manifest plays a critical role in contextualization of a service
and defines what contextualization processes are required to tailor a server to a specific
IP. The Service Manifest is an XML document used to describe and define a service for
deployment and is used throughout the OPTIMIS lifecycle. The VM Contextualizer takes
the Service Manifest as input when invoked, parsing it for the VM images that it is re-
quired to operate on. The Service Manifest provides both the OVF hardware definition of
the VMs and a specific SP side extension that contains the contextualization requirements.
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Figure 6.5 shows the dependencies between the sub-component packages that make up
the VM Contextualizer as illustrated in Figure 6.3. At the heart of the VM Contextualizer
is the Core package that coordinates the other subcomponents and contains the core logic
of the Contextualization Tool.

Figure 6.5. Overview of Package Dependencies in the Contextualization Tools.

The Core package coordinates with the ImageConverter, ImageFabricator,
IsoCreator and DataAggregator packages and presents its functionality via the
Api meta-package as outlined in Table 6.2. All packages depend on the DataModel
package that contains a collection of objects with inheritable attributes. These objects
form a structured abstraction of the data used during contextualization for the purpose of
enabling data exchange between sub-components. A class diagram of the VM Contex-
tualizer is presented in Appendix A (Figure A.1) that provides details on the data model
used.
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Figure 6.6. Sequence Diagram of deployment time contextualization.
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Figure 6.6 describes the interactions of the VM Contextualizer, coordinated by the
Core package, with its sub-components and other components in the OPTIMIS Toolkit
at the SP level. From the sequence diagram, it can be seen the SDO initializes the con-
textualization of a service by supplying the Service Manifest to the VMC. The VMC then
calls the Data Aggregator to parse the service manifest and call the Security Manager
to generate keys. The contextualization data is then used by the VMC to call the Image
Fabricator to prepare a VM image for receipt of this data at runtime.

When conversion of a VM image is required the Image Converter is called and if the
image has been prepared previously by the VMC, the Image Fabricator is invoked twice,
before and after conversion to un-prepare and then prepare again the image for receipt of
contextualization data. Calls to the Image Fabricator and the Image Converter access the
local file system based Image Repository. After all VM images have been prepared and/or
converted the VMC invokes the ISO Image Creator to create ISO CD image files contain-
ing contextualization data on a per instance basis. The resulting files are then stored in
the Image Repository. Finally the VMC returns a list of Image Identifiers represented as
URIs (both VM and ISO) to the SDO that correspond to the contextualised service.

Figure 6.7. Asyncrounous progress callback for deployment time contextualization.

To enable the progress of the VMC to be monitored by SDO in the case of OPTIMIS
and presented to an End-User via a GUI, the VMC provides a single callback, as illustrated
in Figure 6.7, which returns the phase of contextualization and the percentage completion
of the phase. The phases returned in order are:

• Parsing Manifest

• Gathering Contextualization Data

• Decomposing VM Image(s)*

• Converting VM Image(s)*
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• Fabricating VM Image(s)*

• Generating ISO Images

Phases marked with an ‘*’ are considered optional and can be opted into via speci-
fying the contextualization requirement in the Service Manifest. The remainder of this
subsection describes in detail the roles each sub-component plays during service contex-
tualization.

Sub-component: ISO Image Creator

The ISO Image Creator sub-component manipulates a set of template ISO images. In
addition, this sub-component is responsible for the creation of ISO images and the em-
bedding of context data from the Data Aggregator. The ISO Image Creator has access to a
single set of context data processing scripts that are agnostic of a VM’s operating system,
embedded in the ISO image and responsible for reading context data from the ISO image
at run time. An internal interface provides access to contextualization scripts embedded
in an OPTIMIS enabled VM image.

Sub-component: Image Fabricator

The Image Fabricator manipulates VM images, passed to it by the VM Contextualizer,
using Linux system tools. The sub-component installs OPTIMIS VM level components.
In addition, software dependencies of a service can be embedded into the image, if the
VM Contextualizer supports them. If this is not the case it is assumed that the Service
Developer had already setup the context of the services software dependencies within the
VM image provided to the VM Contextualizer.

A set of prefabricated operating system specific contextualization scripts, from a data
store, are embedded for each operating system with foreseen use at the IP level. The
contextualization initialization scripts provide two main functions. The first is to set the
context of OPTIMIS components that facilitate running a service in addition to the con-
figuration of the Operating System. This involves setting the context of:

• The OPTIMIS Data Management tools at the VM level and any associated software
dependencies, which assist in mounting block stores in a VM at runtime

• The OPTIMIS VPN management component, to enable the VM to communicate
with other VMs on a VPN.
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• The Monitoring Probes, enabling monitoring data of non-functional service KPIs
present in a SLA as requirements to be sent to the SP.

• The License Manager, to enable automated registration of license tokens with soft-
ware dependencies at the point of VM execution (Offline) or during run time (On-
line).

The VM’s virtual Network Interface Card (NIC) attached to the IP’s Infrastructure
when DHCP is unavailable, is configured with an appropriate Internet Protocol address
by decoding the MAC address of the NIC set by the IP. This contextualization process
requires no input from the SDO. The MAC address is encoded so that the first four hex-
adecimal bytes define the default gateway address once converted to decimal format. The
last two bytes of hexadecimal digits define the last two segments of the VM’s address
on a Class A or B network. Combining the two, the VM address can be obtained by the
contextualization scripts during boot time. The following is a worked example:

• MAC address: 0C-A8-01-01-02-0A

• Gateway address: 192.168.1.1

• VM address: 192.168.2.10

The second function of the contextualization scripts is to provide context to the soft-
ware dependencies of a service. Inclusion of these scripts is optional and is dependent on
what software OPTIMIS supports.

Sub-component: Image Converter

The Image Converter transforms images from one format to another for the purpose of
supporting interoperability between IPs using dissimilar Hypervisor technology. The Im-
age converter makes use of “qemu-img” to convert between image standards. Depend-
ing on the Hypervisor and operating system, conversion can require the changes made
by the Image Fabricator to be reverted and reapplied. The following Hypervisors are
supported:

• Xen

• KVM

• VMware
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• VirtualBox

In addition the subsequent image formats are supported:

• Raw

• QCow2

• VDI

• VHD

• VMKD

Besides support for multiple image formats the Image Converter supports copy on
write, compression and encrypted images.

Sub-component: Data Aggregator

The Data Aggregator is responsible for the gathering of configuration data from multiple
sources. The component parses the Service Manifest (SM) for the following contextual-
ization requirements:

• License Management: License server end-point on a per-service basis and/or SM
embedded license tokens on a per VM instance basis.

• Programming Model: SSH keys needed for secure communications and software
dependencies on a per VM-type basis.

• Data Management: Data Manager server end-point for mounting VM level block
storage on a per-service basis.

• Security Management: Specification of the VPN network topology associated with
VM-type.

• Monitoring: Probe end-point for reporting KPIs to that are IP specific attributes
sent to the SP during the last phase of SLA negotiation. In addition to parsing the
Service Manifest, the Data Aggregator calls the Security Manger to generate keys
and certificates on-the-fly.
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6.3.3.6 Example Scenario

As is often the case with Cloud Computing applications more than a single VM is needed
to provision the resources necessary for a given service load. Configuration management
tools can facilitate in the initial configuration phase when deploying the VM but have lim-
ited functionality with regards to creating clusters of virtual resources. In this subsection
an example web application scenario is examined in light of the OPTIMIS project and
contextualization. The scenario provides insight into the complex processes involved in
configuring an application that requires cooperative resources.

The application in the scenario is a 3-tier web application comprised of a set of virtual
machines including a MySQL database cluster. At the IP level, predefined context from a
SP is applied to a VM as it is brought online via contextualization scripts tailored to the
modification of MySQL configuration files. This does not require communication with
any IP level component and can avoid the complexities of runtime re-contextualization
explained later in this chapter. Figure 6.8 illustrates the relationship between the contex-
tualization data and a VM. Red arrows indicate requests while black lines represent the
insertion of contextualization and contextualization attributes into a VM. From the figure
it can be seen that each layer of the service forms a cluster of cooperating resources that
rely on a head node to provide information on the state of available VMs and to balance
load.
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Figure 6.8. Contextualization in a three-tier web application.

Each new VM brought online contains information about the head node to which it
is to register for active duty in addition to other VMs to which it must communicate
to perform its role. The information is stored within the contextualization data of the
VM, which includes a subset of the contextualization data from the head node and can
reference other sources of information. These other sources of information, such as an IP
registry that contains details of IP specific services such as block storage, can be used to
update contextualization data continuously during runtime to enable adaptation to minor
environmental changes. This enables VMs to be taken off-line without disturbing the
operation of an application.

Taking the Data Layer as an example, the MySQL Master is contextualized to accept
Slaves at deployment time via granting replication rights to a special user and by spec-
ifying which databases should be replicated in its configuration files. Slave nodes are
contextualized to point to the Master hostname and granted access rights via the special
user account. As new slaves are brought online the slave registers with the master as
shown in Listing 6.1.
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Listing 6.1. Slave Registration.

mysql> SHOW SLAVE STATUS\G
S l a v e I O S t a t e : C o n n e c t i n g t o m a s t e r

M a s t e r H o s t : h o s t . com
M a s t e r U s e r : s l a v e u s e r
M a s t e r P o r t : 3306

C o n n e c t R e t r y : 60
M a s t e r L o g F i l e : mysql−b i n .001804

Read Mas te r Log Pos : 83207722
R e l a y L o g F i l e : mysqld−r e l a y−b i n .001090

Re lay Log Pos : 98
R e l a y M a s t e r L o g F i l e : mysql−b i n .001804

S l a v e I O R u n n i n g : No
Slave SQL Running : No

. . . : . . .
S e c o n d s B e h i n d M a s t e r : NULL

After registration the Slave synchronises its databases with the masters and is then
available for use in the Application Layer as depicted in Listing 6.2.

Listing 6.2. Synchronization Of Slave.

mysql> SHOW SLAVE STATUS\G
S l a v e I O S t a t e : Wai t i ng f o r m a s t e r t o send e v e n t

M a s t e r H o s t : h o s t . com
M a s t e r U s e r : s l a v e u s e r
M a s t e r P o r t : 3306

C o n n e c t R e t r y : 60
M a s t e r L o g F i l e : mysql−b i n .001804

Read Mas te r Log Pos : 83207722
R e l a y L o g F i l e : mysqld−r e l a y−b i n .001090

Re lay Log Pos : 98
R e l a y M a s t e r L o g F i l e : mysql−b i n .001804

S l a v e I O R u n n i n g : Yes
Slave SQL Running : Yes

. . . : . . .
S e c o n d s B e h i n d M a s t e r : 0

The MySQL master maintains a list of available slave nodes that can be used to load
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balance requests amongst the cluster as shown in Listing 6.3

Listing 6.3. List of available Slaves on the Master Node.

mysql> SHOW SLAVE HOSTS ;
+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−+

| S e r v e r i d | Host | P o r t | M a s t e r i d |
+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−+

| 1921680101 | s l a v e 1 | 3306 | 192168011 |
| 1921680102 | s l a v e 2 | 3306 | 192168011 |
+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−+

The list is fetched by the Web Servers in the application layer during contextualization
or on the event that a MySQL Slave is unresponsive enabling a certain degree of reactive
re-configuring at the PaaS level within a single IP only. The following section of the thesis
discusses how re-configuring of the complete Cloud stack can be achieved across multiple
IPs for the purpose of adapting to a changing environment and introduces the notion of
Recontextualization.

6.4 Recontextualization

Infrastructure as a Service (IaaS) Clouds are commonly based on virtualised hardware
platforms executing and orchestrating self-contained VMs, which are comprised of mul-
tiple virtual devices. A Cloud application is typically subdivided into individual compo-
nents, each component bundled into a specific type of VM. Several VM instances can be
started using the same type of VM (using the same master disk image) and each new VM
instance is uniquely configured, contextualized, with instance specific settings at the early
stages of execution. The capacity of the Cloud application can be adjusted by changing
the amount of VM instances.

In this work the concept of recontextualization is introduced. Recontextualization can
be used to adapt to any system changes, including making newly migrated VMs operate
properly in the (potentially different) system environment of a new host. This thesis
defines Recontextualization as follows:

Definition Recontextualization is the autonomous updating of configuration for individ-
ual components of an application and supporting software stack during runtime for the
purpose of adapting to a new environment.

In this definition, a new environment is considered to be a change in the underlying
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physical or virtual hardware, for example when a VM is migrated from one host to an-
other. In addition, changes in infrastructure or platform level services that are in active
use by a Cloud application would also be considered to be a new environment. These
changes are particularly problematic for live migration of VMs as these migration pro-
cesses are not self-aware and cannot account for any changes that take place within the
a new environment. An analogy to Recontextualization can be made with printers and
printer drivers, where by a laptop user moving from one physical location to another (i.e.
a new environment) wanting to access different printers at each location, is required to first
install a driver for an associated printer if not already present then configure the driver to
their needs before the printing device is usable. This process creates a unique identity on
the user’s laptop for each configured printer and driver, providing a context or setting spe-
cific to each environment. The same process is applicable to the virtual devices of a VM
and any software dependencies used to support a Cloud application. Without the support
of Recontextualization this is a time-consuming manual process and limits the flexibility
and scalability of the Cloud. Thus the key benefits of the approach to Recontextualization
taken in this thesis are: i) minimal changes to existing Cloud infrastructure, i.e. there is no
need to make alterations to the Hypervisor and ii) the preservation of security through the
selection of a Recontextualization mechanism that gathers contextualization data from a
secured source. In addition to these benefits, there are a number of challenges that must
be cover come before Recontextualization can see widespread adoption. These are due in
part to a lack of Cloud service provider interoperability and the difficulties in creating an
approach to Recontextualization that can be applied to the wide diversity of applications
deployed into Cloud Computing environments.

The life-cycle of a Cloud application is comprised of three individual phases as shown
in Figure 6.9. The Construction phase refers to the development of a Cloud application
making use of platform services and dividing that application into a set of VM images. In
the Deployment phase a constructed application is deployed on to suitable infrastructure
and finally in the Operation phase the Cloud application is executed. The application can
be configured in the Construction phase and contextualized with specifics of a provider’s
environment in the Deployment phase. Recontextualization offers dynamic reconfigura-
tion in the Operation phase.
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Construction
Develop
Compose
Configure

Optimize / Schedule
Execute
Recontextualize

Figure 6.9. The life-cycle of a Cloud application.

Recent work on IaaS systems have a lot in common with the vision of autonomic com-
puting, as outlined by Kephart and Chess [144]. One of the major aspects of autonomic
computing that has yet to be realized is self-configuration, the automated configuration
and adjustment of systems and components. This work extends state of the art and earlier
efforts by introducing runtime recontextualization, enabling adaptation of VM behavior
in response to internal changes in the application to which the VM belongs or to external
changes affecting the execution environment of the VM. The concept can enable appli-
cations at the PaaS level to adapt to different provider application middleware services
through the dynamic binding of APIs, enabling the execution of site specific code. This,
however, is out of scope in this research. The aims of this research are to present:

1. The concept and definition of recontextualization.

2. The development of an architecture and mechanism for the purpose of recontextu-
alization.

3. A demonstration and evaluation of a recontextualization system.

6.4.1 Requirements and Architecture

6.4.1.1 Problem Statement and Requirements

A motivational factor behind the need for runtime recontextualization stems from VM mi-
gration in Clouds [31, 274]. Using migration, a VM can be transferred from one physical
host to another without explicitly shutting down and subsequently restarting the VM [46].
The entire state of the VM, including e.g., memory pages, are transferred to the new host
and the VM can resume its execution from its state prior to migration. As a consequence
of this, no contextualization is triggered again when the VM is resumed, as the level of
abstraction provided by Virtualization is insufficient for platform services. In this research
migration from and to identical Hypervisor technology is considered, interoperable mi-
gration is out of scope but is considered in [159]. As presented in [74], there are several
different Cloud scenarios:
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• Bursting - The partial or full migration of an application to a third party IaaS
provider, this may occur when local resources are near exhaustion.

• Federation - The migration of an applications workload between a group of IaaS
providers, e.g., when a single provider’s resources are insufficient for maintaining
the high availability of an application through redundancy.

• Brokering - The migration of an application’s VMs, e.g., for the purpose of main-
taining an agreed Quality of Service (QoS) in the case of an end-user utilizing a
broker to select a provider given a set of selection criteria.

In all these Cloud scenarios VM migration is a necessity, e.g., for the purpose of
consolidating resources and maintaining levels of QoS. These scenarios have been used
to guide the defining of requirements for any potential recontextualization mechanism.
The following requirements are considered as imperative:

i. A triggering mechanism for recontextualization on VM migration.

ii. A secure process to gather and recreate contextualization data after migration.

iii. A Hypervisor agnostic solution that maintains IaaS provider interoperability.

iv. An approach that is none pervasive and minimizes modifications at the IaaS level.

A case is made for each of these scenarios requiring recontextualization at runtime. In
the Bursting scenario, if an IaaS provider is not obligated to divulge third party providers
used for outsourcing of computational resources, an application may end up deployed on
to a third party’s infrastructure that requires use of their local infrastructure services. A
dynamic federation of IaaS providers created during negotiation time that alters during
the operation phase requires infrastructure services to be discovered dynamically. The
same is applicable in the case of a Broker, knowledge of a providers local infrastructure
services is not available during deployment until after the Broker has selected a provider.

The lack of knowledge on the attributes of an IaaS provider’s local infrastructure ser-
vice available during deployment time further motivates this research. An example of
such a service that exhibits configuration issues after resource migration is application-
level monitoring.

In this example the monitoring service endpoint, to which application KPIs are re-
ported, can be configured by contextualization during the deployment phase of an appli-
cation’s life cycle. However, the endpoint may change during the application’s lifetime,
either as a result of changes in the local system environment or due to migration of the
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application to a new host. This example motivates the need for a mechanism to fetch
configuration data during application operation and provide new context to application
dependencies, thus recontextualization. In the following section, recontextualization is
illustrated with service-level monitoring [141] as an example scenario.

6.4.1.2 Example Scenario

A typical Cloud application must be continually monitored during runtime, an example
of this is shown in Figure 6.10. Monitoring data can be used for several purposes, e.g., for
automatic application scaling or to assess the likelihood and prevent the breaching of a
SLA. Application level metrics, know as KPIs, are sent from inside the VM to an external
monitoring endpoint for processing.
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Figure 6.10. Monitoring applications in a IaaS provider.

Each monitoring probe that gathers KPI data must be configured with the endpoint
or location of the monitoring service. The endpoint can be associated with a IaaS spe-
cific service or a service running at a remote location and depends on what entity within
connected Clouds has control over application management. When deploying to a IaaS
provider, the endpoint for the monitoring service is configured using contextualization
in the Deployment phase, as outlined in Section 6.3. However, in a multi-site scenario
the VM maybe migrated to an unknown provider during runtime and must therefore be
dynamically recontextualized with a new endpoint in the Operation phase.

6.4.1.3 Recontextualization Approaches

No previous research has considered an approach for recontextualization. Keahey and
Freeman [142] present fundamental work on contextualization in virtual clusters and re-
contextualization is mentioned but deemed out of scope for their work. In this section
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several different approaches for contextualization are considered for use in recontextu-
alization. Any recontextualization approach has two major obstacles that must be dealt
with; how is recontextualization triggered and where can the necessary context data be
found? Below are some approaches for recontextualization, listed and discussed, from
the perspective of the above two challenges.

Contextualized direct addressing is based on a known endpoint address that is speci-
fied in the initial contextualization phase, as described in Section 6.3. A similar ap-
proach is used by Puppet [249]. During operation, this endpoint address is queried
for the updated context information. Furthermore, this approach is interoperable
and requires no host and Hypervisor modifications, but requires that the end point
address is constant when a VM is migrated to other domains. This approach offers
no procedure for triggering a new round of recontextualization, and has to rely on
periodically polling the endpoint for updates.

Hypervisor network proxying also relies on periodically querying an external endpoint
address for context information, but in this method a standard virtual network ad-
dress is used and the Hypervisor (and associated virtual network management) is
responsible for routing this call to a host specific endpoint. This approach, used
by Clayman et al. in [47], is transparent to the VM but requires modifications at
the Hypervisor level and thus has limited interoperability with commercial Cloud
providers.

Hypervisor interaction by the guest can be used to offer contextualization data straight
from the Hypervisor itself, using a customized API both to react to changes in
context information and to transfer new information. However, this solution re-
quires modifications both to Hypervisor and guest operating system software and
would require considerable standardization to be widely available, with regards to
the compatibility of virtual hardware APIs between Hypervisor technologies.

Dynamic virtual device mounting is based on dynamically mounting virtual media con-
taining newly generated content in a running VM via the reuse of existing Hypervi-
sor interfaces and procedures [15]. Interoperability is achieved by reusing existing
drivers for removable media such as USB disks or CD-ROM drives. Recontextual-
ization can be detected by the guest OS by reacting to events triggered when new
USB or CD-ROM media is available.

It is proposed that the dynamic virtual device mounting approach is the most promis-
ing solution to recontextualization due to inherent interoperability and support in all ma-
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jor operating systems. The ability to manage virtual devices is also offered by the Libvirt
API [157], inferring that there is fundamental support for these operations in most major
Hypervisors. The following section describes the recontextualization solution in more
detail.

6.4.2 A Recontextualization Solution

In this section, an implementation of a system for runtime recontextualization is de-
scribed, followed by an evaluation to validate the suggested approach in Section 6.5.2.
The previously discussed virtual device mounting technique is used in response to migra-
tion events and thus enables automatic self-configuration of newly migrated VMs. The
following subsections discuss the mechanism and architecture in more detail.

6.4.2.1 Mechanism

Figure 6.11 illustrates the recontextualization approach used in the implementation. Each
VM is assigned a virtual CD-ROM device for contextualization on which the host-specific
and thus provider contextualization data can be found. When a VM is migrated from one
host to another events describing this action are triggered by the Hypervisor, which can be
registered to via the Libvirt API. In response to these events, the recontextualizer software
triggers a detachment of the virtual device mounted with contextualization information,
and once the migration is completed a new virtual device with context information rele-
vant for the new host is automatically attached to the VM as it resumes operation after
migration.

Virtual Machine

Host A Host B

(1) Detach (3) Attach

Device A

Host A

Context

Device B

Host B

Context

Virtual Machine

(2)

Migrate

Figure 6.11. Recontextualization approach overview.

Event support including migrations is present in several Hypervisors, including
Xen [21] and KVM [149]. The Libvirt API enables a unified approach to VM manage-
ment available and includes event support. An initial version of the recontextualization
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system was implemented using KVM with QEMU [200] specific event and control APIs
and the second version was implemented using Libvirt to make the solution Hypervi-
sor independent. Libvirt provides a number of event types that can be monitored via a
callback: i) Started, ii) Suspended, iii) Resumed, iv) Stopped, and v) Shutdown. Upon
receiving an event callback details are returned on the specific cause of the event, for ex-
ample the shutting down of a VM on a host machine triggered by migration terminating
successfully.

6.4.2.2 Architecture

The architecture of the implemented system is shown in Figure 6.12. Up-to-date context
data is dynamically bundled as ISO images on the host. The recontextualizer, imple-
mented in Python, manages the attachment and detachment of virtual CD-ROM devices
inside a VM that contain the data held within the ISO image media in response to events
from the Hypervisor. The Python Libvirt API bindings were used to access the Libvirtd
daemon for the purpose of abstracting the specifics of the underlying Hypervisor and to
improve interoperability.

Virtual Machine n

Hypervisor (e.g KVM, XEN)

Libvirtd

Recontextualizer

Context Data

HostImage service

ISO

Image

EventAttach
Detach

Figure 6.12. Architecture overview.

6.4.3 Detailed Design

The recontextualization mechanism, outlined in Algorithm 1, registers interest with libvirt
for VM start and stop events by means of a callback function before beginning its oper-
ation. After starting the recontextualization mechanism waits in a loop for new events
from Libvirt. When an event is registered in the callback function it is classified and
appropriate action taken.



Chapter 6 155 Contextualization

Algorithm 1 Recontextualization Mechanism
connection = libvirt.open(‘URL’) . Connect to libvirt at a given URL
libvirt.EventRegister(Callback()) . Register interest in event callbacks from libvirt
while true do

if connection.event then . New event from Libvirt
function CALLBACK(connection.event)

if connection.event == vmStop then . A VM stopped, remove device
detachDevice(deviceId) . Force removal of device with given ID
updateDevices()

end if
if connection.event == vmStart then . A VM started, provide data

contextData() . Generate new context data
makeIso() . Make ISO CDROM image
attachDevice(deviceDefinition) . Attach device specified in XML
updateDevices()

end if
end function

end if
Sleep()

end while

If a stop event is detected the previous device containing contextualization data is
detached and the device change is committed via libvirt, which proceeds to propagate the
virtual hardware change at the Hypervisor level. In the case of a start event being detected,
new contextualization data is generated then packaged into an ISO CD ROM image. The
recontextualization mechanism defines a new CD ROM device pointing to the ISO via a
simple XML definition understandable via Libvirt:

<disk type=’file’ device=’cdrom’>

<target dev=’hdc’/>

<source file=’/some/iso/file/location/an.iso’/>

<readonly/>

</disk>

Again the virtual hardware change is then committed to the Hypervisor via a call to
the Libvirt API after which the contextulization data used is cleaned up.
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6.5 Evaluation

In this section of the chapter the Contextualization Tool performance in a multi-user en-
vironment is evaluated including the time taken to covert an image to a specific infras-
tructure when using value added features such as encryption. The overhead of the Recon-
textualization approach is assessed using the Hypervisors Xen and KVM and provides an
additional insight into the performance each Hypervisor to perform live migration.

6.5.1 Contextualization Tool Performance

To confirm the validity of the contextualisation approach used, an implementation of the
VM Contextualizer was tested on the Cloud testbed, outlined in Section 5.4.1, using a
Dual CPU (Intel Xeon E5630) server with 16 GB of RAM and 1 TByte WD SATA
7200 rpm HDD. Figure 6.13(a) and 6.13(b) provide evidence on the potential perfor-
mance of the contextualization approach with regards to preparing a VM Image for re-
ceipt of context agnostic of the operating system type used of various sizes in the range
of 1-5 GByte in increments of 1 Gbyte and with varying numbers of concurrent user re-
quests from 10-100 in increments of 10, to create ISO CD Images containing 1 Mbyte
of context data (See Section 6.3.3.4 for details on the these contextualization steps). The
results show adequate scalability and response time over 10 iterations of experimentation
with minimal variance, as shown by the error bars on the graphs.
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(a)

(b)

Figure 6.13. a) Time to Prepare a VM Image. b) Response Time of Concurrent User Requests to
Generate ISO Images.

In addition to the above performance results, the VM Contextualizer is able to con-
vert between image formats with various features enabled, including compression and
encryption in the case of QCow2. The performance results are presented in Figure 6.14.
Conversion of images is of particular use in more advanced Cloud deployment scenarios
such as in Hybrid and Multi-Cloud environments.
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Figure 6.14. Image Conversion Performance Results From Raw.

The conversion experiment was performed on 64Bit Debian 6.0 using a 2.6Ghz Intel
Core i7 2677M CPU with 8GB of DDR3 at 1333Mhz and a SandForce SF-2281 SATA III
RunCore Sold State Disk. Each conversion was performed over 10 iterations to minimise
variance. A image of the Raw format, containing a basic installations of the CentOS 5
Linux operating system with a total size of 1.5GB, was used for conversion. From the
results it can be seen that the VM Contextualizer is able to convert between formats in an
acceptable time frame given that it can take a few minutes for a VM to boot, taking less
than 30 seconds to perform conversion excluding compressed and encrypted images. The
results with compression enabled while converting to a QCow2 image illustrate the size
benefit of using this feature. After compression the image size was 500MB, a compres-
sion ratio of 3:1. Encrypting the QCow2 image during conversion added an overhead of
roughly 15 seconds to the conversion process.

The time it takes to convert an image has the potential drawback of reducing the re-
action time of a Cloud provider when scaling on demand but the reduction in the time to
transfer an image from one provider to another could make conversion with compression
a worth while endeavour and provides a interesting trade-off point for future investiga-
tion. One must also take into consideration that both compression and encryption have an
adverse effect on the performance a VM when carrying out I/O on block storage devices.

6.5.2 Recontextualization Performance

A series of tests to evaluate the feasibility of the recontextualization approach in Sec-
tion 6.4 have been performed. For all tests, Libvirt version 0.9.9 was used to monitor
and manage the VMs. QEMU-KVM version 1.0.50 and Xen version 4.0.0 were used as
Hypervisors, both running on the same hardware using CentOS 5.5 (final) with kernel
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version 2.6.32.24. The hosts used in these tests are on the same subnet, have shared stor-
age and are comprised of a quad core Intel Xeon X3430 CPU @ 2.40GHz, 4GB DDR3
@ 1333MHz, 1GBit NIC and a 250GB 7200RPM WD RE3 HDD.

The results of the evaluation are shown in Figure 6.15(a). The first set of bars illus-
trate the time to migrate a VM from one host to another with recontextualization running
and context data attached, and the second set of columns illustrate the same migrations
with recontextualization turned off and no virtual devices mounted. The third column il-
lustrates the time spent within the recontextualizer software during the tests from the first
column, measured from when the event for migration was received in the recontextualizer
until the device had been removed and reattached. The values shown are the averages
from ten runs, and all columns have error bars with the (marginal) standard deviations
which are all in the 0.03 to 0.07s range.

Based on the evaluation it can be conclude that the recontextualization process adds
about an 18% overhead using either Hypervisor compared to doing normal migrations.
For KVM, most of the extra time required for recontextualization is spent outside the
bounds of the component, likely associated with processing events and extra overhead
imposed by preparing migration with virtual devices attached. In the case of Xen the
device management functionality in Libvirt proved unreliable and therefore had to bypass
the Libvirt API and rely on sub-process calls from the recontextualizer to Xen using the
xm utility. This workaround increased the time needed for recontextualization in the Xen
case.

There are four major phases associated with the recontextualization process. First,
information about the VM corresponding to the event is resolved using Libvirt when the
migration event is received. In the second phase, any current virtual contextualization
device is identified and detached. Third, new contextualization information is prepared
and bundled into a virtual device (ISO9660) image. Finally, the new virtual device is
attached to the VM.



Chapter 6 160 Contextualization

(a)

(b)

Figure 6.15. a) Time Measurements of Recontextualization. b) Breakdown of Time Spent During
Recontextualization.

A detailed breakdown of the time spent in different phases of recontextualization is
presented in Figure 6.15(b). The above mentioned workaround for Xen interactions af-
fects the second and fourth phase (detaching and attaching of devices), most likely in-
creasing the time required for processing. In the first and third phases Xen requires sig-
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nificantly longer time than KVM despite the VMs being managed using the same calls in
the Libvirt API, indicating performance flaws either in the link between Libvirt and Xen
or in the core of Xen itself.

6.5.3 Feature Comparison

Due to the inherent novelty of the Contextualization and Recontextualization mechanism
presented in the Contextualization Tool in this Chapter, there is little in the way of re-
lated technology that provide similar approaches, features and functionality. For what
technologies that do exist and exhibit some form of contextualization, the following table
provides a summary of their differences:

Table 6.3. Comparison of Technologies with Similar Functionality to the Contextualization Tools

Feature Contextualization
Tools [Chapter 6]

OpenNebula
[188]

Nimbus
[177]

Contrail
[52]

Infrastructure
Level Contextual-
ization

Supported Supported Supported Supported

Platform Level
Contextualization

Supported Unsupported Unsupported Unsupported

Recontextualization
On Migration

Supported Unsupported Unsupported Unsupported

ISO As Context
Data Storage
Medium

Supported Supported Unsupported Supported

6.6 Summary

In this chapter issues surrounding configuring the Cloud service software stack were dis-
cussed including the relevance of Autonomic computing and Configuration Management
tools in combating the management headache of the Cloud’s large scale. Three configura-
tion management tools were compared and their suitability in Cloud Computing assessed.
A conclusion was draw that although these tools are useful management aids, they do not
accommodate for the dynamic nature of Cloud environments or cover the configuration
of the entire Cloud service software stack.
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The nature of contextualization was introduced in the light of the OPTIMIS Project
and details presented on the implementation of a tool for the contextualization of platform
level services as well as virtual infrastructure that can be deployed alongside a range of
PaaS and IaaS solutions due to its generic self-contained architecture. The implication of
contextualization in Clouds was discussed, the motivation behind the research and a land-
scape suggested for the evolution of contextualization tools across all classes of Clouds
as part of the ecosystem of the future. Both the image and instance level contextual-
ization of VMs was contributed and the potential effectiveness of the Contextualization
Tool illustrated through an example scenario and performance results. The need for con-
textualization of platform tools in the OPTIMIS toolkit was described and the problems
overcome to support it. Finally, some related work on alternative contextualization mech-
anisms were discussed and differentiated from the work presented in this chapter.

Furthermore, the chapter discussed the data gathered by the Contextualization Tool
and how this is achieved through a number of interactions with devices and services
within a VM’s environment. This enables updates to be made to a Cloud application’s
entire software stack and is only made possible via the proposed contextualization ap-
proach’s support for the configuration of platform level services. This ability is a major
distinguishing feature of the tool from other approaches in the literature.

In addition, recontextualization: the autonomous updating of configuration during
runtime was described and defined. Moreover, it was shown that recontextualization is a
key enabler to using multiple Cloud sites concurrently. Different alternative mechanisms
were evaluated for recontextualization based on a set of requirements. The chosen ap-
proach, based on automatic mounting of dynamically generated images as virtual devices,
is highly interoperable supporting a variety of Hypervisors and virtually all operating sys-
tems. Apart from CD-ROM mounting routines, which are standard in most operating
systems, no custom software is required inside the guest VM to make the contextualiza-
tion data available at the file system level.
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Cloud Resources for Research

7.1 Introduction

With the advent of pay per use on demand Cloud Computing, the academic community
has shown an interest in adopting the paradigm to facilitate and speed up research [14,23,
57]. Clouds offer many functional and economical benefits to academic users including a
close fit with the short life-cycle of research projects where costs savings can be made by
renting infrastructure rather than incurring large hardware procurement costs. In addition
Clouds provide a reduction in resource contention where the quantity and size of Cloud
resources can be tailored and provisioned to fit a user’s application requirements. An
academic need not wait for shared resources, as is typical in Grids, with resources pro-
visioned on demand. Finally, reductions in operating expenditure are achievable through
the economy of scale enabled by a Cloud provider and by outsourcing the costs of infras-
tructure support staff.

On the other hand, there are a number of drawbacks and hurdles to overcome before
academic insinuations fully adopt Cloud Computing. Clouds evolved to support SOA and
scalable web based applications that do not fit well with the historical design of scientific
applications that achieve scalability and parallelism through batch oriented middleware
such as The Globus Toolkit [88], UNICORE [218, 250] and gLite [154] in addition to
other technologies the likes of the Message Passing Interface (MPI) and OpenMP [187].
Typically these applications tend to be short-lived and workflow based, while Clouds
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applications often persist over many months or years.
Figure 7.1 illustrates typical workflow types run on Grid infrastructure [161,284], the

dependencies between jobs and are classified as Balanced and Unbalanced. Balanced
workflows consist of parallel chains of tasks (pipelines) connected with an initial and
terminal node, as shown in Figure 7.1(a). The number of nodes in each chain is the
same. Unbalanced workflows are arbitrary acyclic graphs, also with initial and terminal
nodes, as shown in Figure 7.1(b). Both workflow types pose different challenges when
mapping scientific applications to Cloud resources. Balanced workflow pipelines provide
a reasonable fit with the resource spawning mechanism found in Clouds, where VM of the
same type are duplicated from a based image and would enable resources currently unused
(such as the initial node) to be terminated or the state of a VM saved to disk for later use.
The chaotic nature of dependencies in Unbalanced workflows is more problematic and
could possibly limit efficient Cloud resource usage.

(a) (b)

Figure 7.1. Typical Workflow Structures: a) Balanced b) Unbalanced.

Another hurdle to overcome is the dynamic nature of Cloud environments where vir-
tual machines are brought on and offline frequently as needed and as demand changes.
This is in contrast to the relatively static resource pools of Grids, meaning that current
scientific applications are not designed to fully leverage the benefits of VM elasticity. In
addition, many scientific applications require HPC hardware such as Infiniband or have
large memory footprints in the range of 128-512GB of RAM which is above and beyond
what can typically be found in Clouds comprised of commodity servers. This is slowly
being rectified with Amazon introducing HPC instances in limited quantities [6].
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In the previous chapter contextualization was introduced as a concept for abstracting
away the problems surrounding the use of dynamically changing resources at the software
and platform level. This chapter discusses its use and application in an academic context
where a static Grid environment is augmented with contextualization and executable on
an IaaS provider’s virtual resources with the added benefit of provider neutrality and inter-
operability above and beyond the current state of the art solutions. The concept of virtual
Grids is introduced and an implementation presented with its effectiveness highlighted by
the research it has enabled in the School of Computing at the University of Leeds.

In addition, the impact of Cloud technology on legacy applications used in academic
research is discussed and light shone on how contextualization can facilitate in migrating
these applications to the Cloud. An architecture is proposed for enhancing the scalability
of a legacy pathology application using contextualization. Results outline performance
and scalability bottlenecks that could be addressed by the proposed rearchitected pathol-
ogy application. Finally a model of demand is presented for testing the performance and
scalability of legacy applications in the Cloud.

The contributions of this chapter are as follows:

• A software implementation of an interoperable self configuring virtual grid infras-
tructure. Deploying grid infrastructure onto Clouds in an self-configurable and
provider interoperable fashion is a key step to providing support for legacy appli-
cations. Consolidating the differences between the static environment of traditional
grids and the dynamic environment of Cloud infrastructure is challenging. The abil-
ity to add resources to a grid middleware dynamically requires careful orchestration
and a deep understanding of Grid resource management is needed to enable the de-
velopment of a software solution that can support a multitude of Grid applications.

• Insights on re-engineering a legacy pathology application deployable on a Cloud
with improved scalability as there is little understanding of the implications and
benefits that Cloud Computing can offer for the deployment of legacy applications.
Porting the pathology application is non-trival as the Cloud architecture to support
it is an order of magnitude more complex than the application itself and requires
bespoke contextualization. In addition, to the performance of the Cloud enhanced
application, a non-trivial model of demand is required for testing in a realistic fash-
ion. Finally, contextualization of a legacy application in not trivial because of the
high number and complex interaction of platform level components.

This rest of this chapter is organised as follows: Section 7.2 introduces the standards
used and components of the Globus Toolkit. In addition, the concept and implementation
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of a Virtual Grid, runnable on Cloud infrastructure, is presented. Section 7.3 discuss the
migration of legacy applications to Clouds, proposes an architecture for a Cloud enhanced
legacy pathology application and defines a model for placing demand on Cloud resources.
Finally, Section 7.4 evaluates the features of the implemented Virtual Grid, the Globus
Virtual Cluster, against functionality provided in Nimbus for creating “one-click-clusters”
and presents performance results on the pathology application.

7.2 Globus Middleware in the Cloud

The Globus Toolkit [78, 88] has become the de facto standard in Grid middleware and
due to its popularity is thus the focus of the research. This does not mean that the results
presented here in are not applicable to other middlewares as, discussed in Section 4.5. For
example, the contextualisation approach discussed later in the next subsections could be
applied elsewhere because of the features and functionality shared between middlewares.
The toolkit enables the selective use of some or all of its components to support specific
types of grid application. This can range from simple parameter sweeps, to complex
workflows and in in some versions SOAs.

The Globus Toolkit implements a number of standards created by the OGF [183] in-
cluding: Open Grid Services Architecture (OGSA) based on the work of Foster et al. [77]
and OGSI [248] intended to provide an infrastructure layer to OGSA that was developed
to account for the stateless nature of Web Services (WS) and extends them to accommo-
date for the transient and stateful nature of the Grid. This functionality is now obsolete
and instead replaced by WSRF [276]. WSRF provides a set of operations that web ser-
vices may implement to become stateful where clients can communicate with services
that allow data to be stored and retrieved.

The toolkit is secured via an implementations of the Grid Security Infrastructure spec-
ification. This includes certificate based authentication and identification tools. To stage
data into and out of Grid resources, Globus makes use of the GridFTP [4] protocol for
its data management needs. GridFTP is an encryptable, high performance implementa-
tion of the original FTP that makes use of multiple TCP connections to saturate network
connectivity to obtain maximum bandwidth.

In the Globus Toolkit, resources are managed via the Grid Resource Allocation and
Management Protocol (GRAM) [99], a set of services that supports communication with
a number of job schedulers and batch queuing systems, such as the Portable Batch Sys-
tem (PBS) [196], via a common protocol. GRAM can locate, submit, monitor and cancel
jobs providing reliable operation in the case of resource failure achieved with stateful
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monitoring. Moreover, GRAM can operate securely with the use of GSI for credential
management and uses GridFTP for file staging. Monitoring of resources is achieved via
the Monitoring and Discovery Service (MDS) [100]. MDS enables resources to be regis-
tered along with associated properties and attributes and is presented as an index service
that can be queried by clients for information on available resources.

Figure 7.2. Components in Globus Toolkit Version 4.

The Globus Toolkit has evolved over multiple iterations of development, implement-
ing new features and adopting Web Services and SOA. Version 3, GT3 [109], of the toolkit
was the first to introduce Java web service technology as a means to offer an application-
to-application integration framework for the creation of Grid services. The WSDL [275]
was adopted as standard interface and binding description language. This version of the
toolkit was poorly received by the academic community due to performance and stabil-
ity issues caused by a complete rewrite of many components in the toolkit to support
Web Services. There was also a lack of interest in the adoption of SOA design from the
science community, who are adversed to change and preferred to continue to use their
existing knowledge and expertise in developing job and batch oriented applications.

GT4 [78, 79, 110] brought improvements to performance and scalability with the in-
troduction of GRAM4 [102] but the complexity of the toolkit, as illustrated in Figure 7.2,
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continued to cause headaches when setting up scalable Globus enabled clusters. Version 5
of the toolkit, GT5 [111] as depicted in Figure 7.3, rectified this issue with the introduction
of GRAM5 [103], an enhanced version of GRAM2 [101] that removed the Web Service
and SOA aspects of the toolkit that were poorly received by the academic community. In
essence the latest version has regressed to GT2 [108], with the improvements from GT4,
simplifying maintenance. The Java WS Core, Reliable File Transfer component, WS en-
abled GRAM4 and the programming model used in GT4 have instead migrated to a new
project named Globus Crux [90].

Figure 7.3. Architectural Overview of the Globus Toolkit Version 5

7.2.1 Virtual Grids

The concept of a Virtual Grid pertains to the the execution of Grid middleware on top
of Cloud infrastructure which in turn runs Grid enabled applications. Nimbus [177] is
an example that provides virtual workspaces of the Globus Toolkit for application de-
velopment that arose due to the difficulties associated with configuring the toolkit. Due
to the dynamic nature of Cloud Computing and its inherent scalability enabled through
virtual machine elasticity, configuring Grids to function on top is a non-trivial task. This
is complicated further by the multitude of job submission mechanisms and underlying
programming models supported in Grid environments. Figure 7.4 illustrates an example
software stack necessary to run a workflow based image processing application utilizing
both Cloud IaaS and Grid middleware.
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Figure 7.4. Virtual Grid Architecture.

From the figure it can be seen that the use of a Virtual Infrastructure Manager provides
a mechanism to control a virtual cluster of Grid resources built on top of on a single instan-
tiated base image. A base image is needed that can be contextualized in such a fashion as
to enable the dynamic removal and addition of virtual Cloud resources without interfering
with the operation of the application running on top of the Grid middleware. Contextual-
ization needs to account for security, enabling explicit white list certificate based access
to the virtual resources. In addition, resource management at the Grid level by whatever
job scheduler or batch queue management system is used, must be contextualized in such
a fashion as to be able to deal with an unreliable cluster of resources. Finally, any base
image must be instantiated and contextualized such that it is agnostic of the underlying
Cloud infrastructure. This enables interoperability amongst different Cloud providers and
would allow academic institutions to avoid vendor lock-in and combat the technological
fracturing found in the Cloud ecosystem.

7.2.2 An Implementation - Globus Virtual Cluster

To investigate the possibility of running Grids on Clouds in an interoperable fashion above
and beyond the current state of the art, a Virtual Grid was implemented using the Globus
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Toolkit at its core. The middleware was configured to enable the execution of Web Ser-
vices (via Java WS Core containers), job and batch applications via the integration of
GRAM4 with Torque [247]. Torque is an actively developed open source resource man-
ager forked from PBS that provides control of batch jobs over distributed compute nodes.
Torque provides additional features and functionality that enhance scalability and reliabil-
ity. Torque was configured to use Maui [164], an open source cluster scheduler support-
ing a number of scheduling polices including advanced reservation and fairshare. Support
for secure data management and authorization/authentication was enabled via the use of
GridFTP and GSI respectively. In addition, MPI job submission was enabled by installing
and configuring MPICH2 [215] with a Torque enabled mpiexec binary avoiding the
need to configure mpd, the MPI daemon, on worker nodes, which complicates MPI job
submission. The architecture of the Globus Virtual Cluster can be seen in Figure 7.5

Figure 7.5. Globus Virtual Cluster Architecture.

No components in the Globus Virtual Cluster interact with the underlying Cloud in-
frastructure. The Grid middleware is thus unaware that it is running virtualised across
an number of virtual machines in a dynamically changing environment. This enables in-
teroperability with a wide number of IaaS provides as long as the base virtual machine
image, with which the Grid middleware software stack is installed in, is of a format that
is supported by the IaaS provider’s Hypervisor.

The Globus Virtual Cluster makes use of contextualization, as outlined in Chapter 6,
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to set the networking context in either dynamic DHCP or static environments and selects
an appropriate pre-generated client and server certificate at boot time enabling the contex-
tualized node to be accessible by other nodes in the cluster. The first node to come on-line
automatically takes on the role of the head node, maintains a list of available worker
nodes and acts as a gateway to GRAM via a “globus” client account accessible via GSI
OpenSSH that uses X509 certificates and the OpenCA [186] Public Key Infrastructure
(PKI).

Fault tolerance and reliability mechanisms in the Grid middleware software stack are
configured so that the cluster can take advantage of new virtual resources that come online
and also accommodate for VMs that are taken offline for cost savings when enhanced
scalability and elasticity is no longer required. Jobs that fail due to a resource terminated
at the Cloud infrastructure level are reassigned to nodes that are currently online and re-
executed when these nodes become available.

There are a number of limitations with the current implementation. Since certificates
are pre-generated for use with GSI there is a predefined upper limit on the number of
virtual resources that can be brought online. This is currently statically configured to
1000 nodes and can be increased if needed. In addition, there is no monitoring of the
Grid middleware performed by the Cloud IaaS to enable the dynamic scaling of resources
on demand given a certain KPI such as the queue depth of the Maui scheduler. This is
planned future work but the user who created the cluster is able to pro-actively provision
more resources manually to reduce the runtime of an application.

A number of tests were created to confirm the correct configuration of all the com-
ponents within the software stack of the Globus Virtual Cluster due to the complexity of
the system and to facilitate interoperability testing on IaaS providers. To validate that all
the components within the Globus Toolkit were configured correctly, two tests were cre-
ated that submitted dummy jobs using both WS enabled GRAM and traditional Pre-WS
GRAM. The WS-GRAM test utilised the Resource Specification Language (RSL) [214]
to define a job, while the Pre-WS GRAM test used the gatekeeper daemon to dispatch
a job using the GSI library for communication.
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Listing 7.1. GRAM4 Test RSL Job Description

<j o b>
<e x e c u t a b l e>my echo< / e x e c u t a b l e>
<d i r e c t o r y> / home / g l o b u s c l i e n t / ws−gram− t e s t< / d i r e c t o r y>
<argument>H e l l o< / a rgument>
<argument>World !< / a rgument>
<s t d o u t> / home / g l o b u s c l i e n t / ws−gram− t e s t / s t d o u t< / s t d o u t>
< s t d e r r> / home / g l o b u s c l i e n t / ws−gram− t e s t / s t d e r r< / s t d e r r>
< f i l e S t a g e I n>

< t r a n s f e r>
<s o u r c e U r l> g s i f t p : / / g l o b u s 0 1 : 2 8 1 1 / b i n / echo< / s o u r c e U r l>
<d e s t i n a t i o n U r l> f i l e : / / / home / g l o b u s c l i e n t / ws−gram− t e s t

/ my echo< / d e s t i n a t i o n U r l>
< / t r a n s f e r>

< / f i l e S t a g e I n>
<f i l e C l e a n U p>

<d e l e t i o n>
< f i l e> f i l e : / / / home / g l o b u s c l i e n t / ws−gram− t e s t / my echo< /

f i l e>
< / d e l e t i o n>

< / f i l e C l e a n U p>
< / j o b>

As part of the WS-GRAM test, the use of GridFTP was specified in the RSL for
staging data to worker nodes to confirm that GSI secured GridFTP (GSIFTP) was fully
operational and is shown in Listing 7.1. An additional test was created to confirm that the
execution of MPI jobs was possible. This test utilised GRAM2 RSL and the underlying
“qsub” command to test Torque and Maui functionality. The RSL used in this test is
shown in Listing 7.2.

Listing 7.2. Job Description for Testing MPI with GRAM2 RSL

&( j o b t y p e=mpi ) ( e x e c u t a b l e= ‘ / home / g l o b u s c l i e n t / mpi− t e s t /
h e l l o w o r l d . b i n ′ ( c o u n t=‘8 ′ ′ )

( s t d o u t= ‘ / home / g l o b u s c l i e n t / mpi− t e s t / s t d o u t . t x t ′ ) ( s t d e r r= ‘ /
home / g l o b u s c l i e n t / mpi− t e s t / s t d e r r . t x t ′ )

An unforeseen benefit of the development of the Globus Virtual Cluster, in addition to
evaluating whether running Grids on Clouds in an interoperable fashion is possible, has
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been the facilitation of research in the subject area of Grid Computing at the University
of Leeds, School of Computing by a number of postgraduate students [55, 224]. These
students have made use of the Globus Virtual Cluster to perform experiments on the rene-
gotiation of SLA and to gain an understanding of Web Services in Grid architectures. In
addition, a number of final year undergraduate students have performed quantitative eval-
uations on the negligible performance overheads of running MPI jobs on virtualised Grid
infrastructure.

7.3 Legacy Applications in the Cloud

Many academic institutions and businesses depend on applications written before the ad-
vent of Cloud Computing for day to day operations. Legacy systems tend to run on ex-
pensive obsolete platforms and are often written in archaic programming languages that
are not well understood by current staff. In the previous chapter contextualization was
discussed as a mechanism to enable the configuration of applications deployable onto
Cloud infrastructure. In this subsection contextualization enables the simplified migra-
tion of legacy applications to the Cloud by providing a framework with which to integrate
with that abstracts away the dynamic nature of the Cloud while enabling enhanced per-
formance through scalability.

Legacy applications have been defined as:

Definition Legacy Application Any information system that significantly resists modifi-
cation and evolution. [33]

Legacy applications are often used well beyond their intended lifespan and can con-
tinue to have an impact on an organization even after decommissioning. Their continued
use can be for a variety of reasons such as to gain a return on an investment or because of
cultural issues associated with change management and result in maintenance challenges.
In addition, there is motivation to migrate away or further enhance integration with legacy
applications to improve usability and performance respectively.

Migrating legacy applications away from the underlying hardware with which they
are run was not possible before the arrival of advanced Virtualization techniques. As dis-
cussed in Chapter 5, Virtualization enables the emulation of entire instructions sets via
binary translation providing a layer of abstraction that can be used to deploy a legacy
application unaltered on to newer but dissimilar hardware. This provides the benefit of
maintaining the stability of the application and removes the expense of hiring experts
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to port legacy code to a new architecture. Cloud Computing presents additional oppor-
tunities to enhance legacy applications by enabling improved scalability in combination
with Virtualization and by enabling the outsourcing of resources reducing the total cost
of ownership.

There are performance ramifications for migrated legacy applications that are not from
the x86 64 architecture typically found in Clouds. Many enterprise legacy applications
run on RISC processors that are big endian and based on the Power and SPARC archi-
tectures. This is not as much of a potential performance issue as it would seem as most
applications running on expensive legacy servers are running in resource partitions and
have resources requirements that are usually smaller than the entire server with which
they run on or the resource utilization rate is near the data center norm of 15%. In addi-
tion, the performance difference between modern processors and legacy servers is such
that an application running in a legacy server can easily be accommodated by a modern
Cloud server.

There are different ways in which legacy applications can be migrated that deal with
a number of architectural issues [26]. In Clouds, to provide the benefits of enhanced scal-
ability, legacy applications can be encapsulated to enable API interoperability and then
combined with existing technologies, including Cloud platform services such as block
storage and load balancers. The rational behind this approach is to maximise the utility
of technologies already designed to scale on the Cloud. The remainder of this section
provides details on this approach in the context of a legacy Pathology application that
exhibits poor scalability as its user base increases.

7.3.1 A Cloud Enhanced Pathology Application?

To analyse the ramifications of migrating a legacy academic application to the Cloud,
a Pathology application that services requests for slide images was chosen as a suitable
candidate as its architecture exhibits poor scalability when accessed by many concurrent
users. These performance related issues are discussed in detail within Section 7.4.2.

The Pathology application provides the functionality of a digital microscope that aids
pathologist in the analysis and visualisation of gigapixel tissue slides as illustrated in
Figure 7.6. It enables greater efficiency when diagnosing diseases at a cellar level by
allowing a pathologist to browse and analyse slides via a client. In addition, analyse can
be performed automatically via the use of image processing algorithms, an ongoing area
of research at the School of Computing at the University of Leeds [43]. An example of
such an algorithm is Nuclear Quantification, where the number of cell nuclei in a given
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area of tissue can be used as an indicator of diseases such as cancer. The application is
makes us of the commercial software offerings of Aperio [11], a specialist in solutions for
digital pathology. The specific product that was enhanced is the Aperio ImageServer [128]
that services requests for parts of a slide.

Figure 7.6. Visualised Pathology Slide Served By Aperio ImageServer.

Aperio ImageServer provides a high-performance interface to digital slide images
stored as SVS files, a proprietary TIFF format that utilize JPEG2000 compression. The
software acts as a web server making it a perfect candidate for “cloudification” given the
web oriented nature of Cloud technologies. The web server returns designated regions of
an image using a HTTP based API. Image sizes up to 250,000 pixels in width and height
are supported as well as server-side algorithm processing.

The architecture of the ImageServer is based on a monolithic client-server design
where a single process services all requests. Under heavy load or during periods of heavy
traffic, such as flash crowd events where a surge of users access the server, the software
exhibits very high response times. In the following subsection an architecture is proposed
to address this issue using the principles of Cloud Computing.

7.3.2 Proposed Architecture

The ImageServer places both high load on computational and data resources due to algo-
rithmic analysis performable and the size of the slides with which are operated on. This
has consequences for any architecture aiming to improve scalability and brings the re-
quirement that scalability must be enhanced for both compute and data resources in the
Cloud. Figure 7.7 illustrates the proposed Cloud architecture for the Pathology Image-
Server application. The architecture is comprised of three tiers:

• Client Layer
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• Application Layer

• Data Layer

Each tier of the architecture is made up of a set of cooperating VMs. Each set of VMs
is fabricated from a single base VM image and is assigned context at runtime, through a
set of contextualisation scripts embedded in the image as outlined in Section 6.3.

A Client Layer is included for the purpose of performance testing, emulates the work-
load of a pathology application using “wget” and the Load Generator component. The
“wget” software package uses HTTP calls to interface with the Application Layer, via
the Aperio Web API, to retrieve sub-images of slides held in the Data Layer. The Load
Generator, embedded in a VM Head node, utilises a global usage trace for the entire sys-
tem and generates individual traces from it for each VM. The individual traces define the
frequency of requests that particular VM should make to the Application Layer over the
lifetime of the VM. The Load Generator, using the global usage trace, controls the num-
ber of Client VMs that are online via the Contextualizer component and provides context
to the VMs in regards to what specific trace the VM will perform. The Contextualizer
has a mechanism to alter the number of online Clients VMs through an interface to the
underlying Virtual Infrastructure Manager (VIM).
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Figure 7.7. Three-tier Architecture of Cloud Pathology Application.

The Application Layer VM instances contain the Aperio Image Server binary and a
component for monitoring KPIs. In addition to the VMs, an installation of the Apache
HTTP Server is embedded in a VM head node and is used to cache and proxy requests.
The Apache Cache stores requests containing frequently retrieved slide data bypassing
the Application VMs and the retrieval overhead associated with accessing the Data Layer.
When a cache miss occurs, the request is passed to the Apache Proxy, which is used to
load balance requests from the Client Layer across multiple Application VMs, distributing
the workload to a single instance of the Aperio Image Server. This instance retrieves slide
data from a mounted NFS volume, which is then returned to the Apache Proxy. The
Apache Proxy returns the data to Application Layer by mapping the serviced request
back to the specific Application VM that made it. Concurrently the data is cached for
future use in the Apache Cache. The KPI Monitor is used to monitor the resource usage
and average request response time of the Aperio Image Server instances. This data is
provided to and digested by the Contextualiser component, which caters for changes in
demand by provisioning the correct number of VMs, at the VIM level, as the need arises.
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The Data Layer provides a DFS over NFS via a set of Data VMs that provide vir-
tual RAID to the Application Layer through GlusterFS [91]. GlusterFS was selected over
other DFSs such as Hadoop HDFS [113, 270] due to support for mounting files systems
at the operating system level, a requirement for legacy applications that cannot be altered.
Virtual RAID 0 or mirroring of data is used to increase I/O throughput, where by each
Data VM contains a complete set of slide files. Virtual RAID 0 is justified due to the em-
barrassingly parallel nature of the client requests. I/O operation per second are monitored
by the KPI Monitor and sent to the Contextualiser component, which alters the number of
Data VMs executing on demand and situates each VM image on a unique HDD resource
to prevent contention.

7.3.3 Modelling Demand

To test the design of the Cloud enhanced Pathology architecture, planned future work
discussed in Section 8.3, a model of the demand on the system is necessary to demonstrate
scalability in the two dimensions:

• Computation

• Data

Although there are Cloud simulators available, such as CloudSim [38], there is a lack
of realistic workload generators that emulate real Cloud usage patterns. In addition, since
this simulation tool is based on GridSim [106], workload traces available for CloudSim
are based on parallel, Grid and supercomputing systems that do not fit the on demand
service provisioning paradigm of Cloud Computing. Current CloudSim users must resort
to implementing their own workload generators.

As data on the usage of real Cloud applications is hard to come by due to the closed
nature of Cloud hosting environments where provider’s operate behind closed doors, a
formal model has been defined to create a sensible approximation of a workload of the
Pathology application in a real Cloud environment. Requests are generated using a Pois-
son distribution, as for the sake of demonstration this gives a good approximation for
request inter-arrival rates within service based systems [137]. There is however con-
troversy surrounding the use of the Poisson distribution in the modelling of computer
networks [195]. In Figure 7.8 when an event ε occurs, it is defined by three phases:

• Ramp Up

• Sustained
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• Ramp Down

Figure 7.8. ScalabilityTime.eps

The Ramp Up phase α occurs between t0 and t1:

α = t1− t0 (7.1)

In this phase, a linear increase in load on the system is experienced. The rate of the
Ramp Up phase is defined by:

∆α =
α

rEvent− rNormal
(7.2)

The Sustained Phase β occurs between t1 and t2:

β = t2− t1 (7.3)

Finally, the Ramp Down phase γ occurs between t2 and t3:

γ = t2− t1 (7.4)

The rate of the Ramp Down phase is defined by:
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∆γ =
γ

rEvent− rNormal
(7.5)

Altering the ratio of time between the three phases α : β : γ over the duration of an
event ε , where ε = α +β + γ , will provide an insight into the system and its ability to
react to change. Figure 7.9 illustrates how the changes in demand defined by the model
will cause the system to react, starting and terminating VMs from the perspective of the
application layer. Once the KPI reaches a certain threshold additional resources are pro-
visioned to cover the increase in load. Each VM has a specific number of requests that it
can service without adversely effecting QoS and the response time of a request.

Figure 7.9. On Demand Scaling of VMs

In the simplest case where vm0 is sufficient to cope with demand outside of ε the total
number of VMs required for ε can be calculated by:

n =
rEvent

σ
(7.6)

Where rEvent number of requests are serviced by provisioning n number of identical
VMs with the property σ , the maximum number of requests a VM can service without
breaching a given SLA. Given n, the total capacity σmax of all VMs is:
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σmax =
n

∑
i=1

σi (7.7)

Due to the time overhead, shown in Figure 7.10, of bringing a new virtual resources
online, interesting opportunities existing in exploring prediction methods for when best
to scale and will be discussed later in Section 8.3 as part of future work.

Figure 7.10. Properties of on Demand Scaling

More specifically the overhead associated with starting and stopping VMs will have a
direct impact on the ability of the system to adhere to KPI thresholds.

Figure 7.11 illustrates a theoretical Cloud usage trace using the above defined model
with varying changes in demand over time that could be used to test the proposed en-
hanced Pathology architecture realistically. A flash crowd event increases load on the
system over the period of a few days that is beyond the normal expect load. The normal
expect load on the system oscillates with an assumed peak demand on the system during
the hours of 5pm to 11pm and requests are again generated using a Poisson distribution.
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Figure 7.11. Theoretical Usage Trace

As demand on the system increases or deceases, the application layer will induce
differing loads on the data layer. Altering the thresholds of the data layer KPIs, used to
decide when to start and stop resources, will provide insight into this relationship and
expose how the performance of the application layer will be effected.

7.4 Evaluation

In the following section of the thesis, the aforementioned Globus Virtual Cluster is eval-
uated against Nimbus and the performance of the Pathology application is disclosed as a
baseline for the previously discussed enhanced architecture.

7.4.1 Globus Virtual Cluster

To assess the validity of the Globus Virtual Cluster (GVC) solution, this subsection pro-
vides a feature comparison with Nimbus enabled Grid clusters and discusses the limited
IaaS provider interoperability of Nimbus when compared to GVC.

7.4.1.1 Feature Comparison Against Nimbus Clusters

Nimbus is an open-source toolkit for providing IaaS capabilities tailored to the scientific
community. It focuses on three goals:

i. Enable academic resource providers to build private and community IaaS Clouds.
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Two complementary tools are available for use: the Nimbus Workspace Service
provides access to compute resources and Cumulus a quota based storage system.

ii. Enable academic users to access both private and public Cloud resources. This is
achieved via the Context Broker [179] tool, which provides common configuration
and security context across Cloud resources providers.

iii. Enable developers to extend and customise Nimbus via a highly configurable and
extendible open source IaaS implementation. Resources are manageable via tradi-
tional resource schedulers such as PBS and via an interface that mimics the de facto

standard of Amazon EC2.

Nimbus provides a number of features relevant to and aid in the deployment of Grids
resources on to Clouds that are comparable to those of the GVC solution:

• One-click Clusters: Allows a Cloud client to launch “one-click” clusters of VMs.
Each node is securely configured to operate in new network and security environ-
ment.

• Configuration Management: Optional mechanisms to perform configuration ac-
tions such as DHCP network assignment and arbitrary image customization where
by files can be inserted in an image.

• VM Network Configuration: A collection of tools to assign network attributes to
a VM at deployment time.

The Context Broker [179] service is primarily used to configure and coordinate the
lunching of virtual cluster resources and provide these features. The broker stores a num-
ber of cluster configuration files that can be altered by a user to define the cluster size and
networking attributes. Contextualization is achieved via a Context Agent [178], a boot
time script that runs on each VM. The agent securely contacts the Context Broker ser-
vice using a secret key. This key is created on the fly and seeded into each VM instance.
The agent gathers context data on the cluster configuration from the Context Broker and
applies this as boot-time changes to a VM.

Comparing these features, the Globus Virtual Cluster is preconfigured and automat-
ically contextualized without relying on a pervasive external runtime contextualization
mechanism that requires modification of a provider’s IaaS software stack to support it.
Instead VM network configuration is applied via encoding a NIC’s MAC address in the
case of a static environment, as discussed in Section 6.3, or applied automatically by de-
tecting the presence of a DHCP server. GVC does not require the user to understand
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how to configure the Globus Toolkit and its software supporting stack, it is usable “out-

of-the-box”. In addition clusters within Nimbus require network connectivity between
the Context Agent and the Context Broker to operate, GVC does not. The GVC is pre-
contextualised before deployment time and can be used in a virtualised desktop environ-
ment for development and testing purposes, where network connectivity maybe limited.

7.4.1.2 Provider Interoperability

There is a need for IaaS provider interoperability when deploying Grid applications on
to a Cloud so that more advanced scenarios such as Federated and Multi-Clouds (see
Section 6.3.3.1 for details), with the benefits of resource sharing and increased scalability,
can be supported.

There are limitations inherent within Nimbus that prevent its clustering mechanism
from being interoperable with other Cloud infrastructures. Nimbus does feature interop-
erability with other IaaS via a Web Service interfaces that mimic Amazon EC2 but does
not provide interoperable contextualization. Nimbus instead provides a generic contextu-
alization mechanism that can only be used with the Nimbus software stack in private and
hybrid Cloud scenarios where end to end network connectivity is available.

The GVC enables the use of Grid Middleware on Cloud resources across organisa-
tional boundaries and maintains interoperability by being agnostic of the underlying IaaS
and Hypervisor software.

7.4.2 Pathology Application Performance

The objective of the following subsection is to ascertain the performance of the Pathol-
ogy application in Section 7.3 for later comparison with the Cloud enhanced version.
The experiments were performed on a Quad Core Intel Q9550 at 2.83Ghz with 4GB of
DDR3 1333Mhz memory and a Seagate Barracuda 7200rpm 500GB hard disk drive. The
experimental design is as follows:

• Requests are made for a single 2000 by 2000 pixel sector from 1, 2 and 4 gigapixel
(filesize: 1–1.1GByte) images concurrently.

• Requests are made for 1, 2, 4 different 2000 by 2000 pixel sector concurrently from
a single mega pixel image.

• The number of concurrent requests are varied from 20 to 200 in increments of 20
spread evenly across each mega pixel images or 2000 by 2000 pixel sector.
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• Ten iterations of the experiment are performed.

Figure 7.12 illustrate the average times to service a concurrent number of requests for
a sector of a gigapixel image. The results provide insight into the performance and design
of Aperio Image Server.

(a)

(b)

(c)

Figure 7.12. Time to service requests across a) 1 Image, b) 2 Images and c) 4 Images.
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It can be seen when comparing Figures 7.12(a), 7.12(b) and 7.12(c) that increasing the
number of images accessed concurrently from one to two to four respectively induces a
linear reduction in the average request time. Figure 7.12(b) shows a 43% reduction in the
average time to service a request split between 2 images compared with that of a single
image in Figure 7.12(a). Likewise, Figure 7.12(c) shows a 41% reduction in the average
time to service a request split between four images compared to Figure 7.12(b). Further
comparing Figures 7.12(a) and 7.13, where the number of concurrently accessed sectors
increase from one to two to four; no change in the average service time of a request is seen.
Thus, it can be deduced from the results: increasing the number of concurrently accessed
images reduces the average time to service a request, if the requests are spread evenly
between the images and that increasing the number of concurrently accessed sectors in an
image yields no change in the average request time.

Figure 7.12 features a linear increase in the average request time. Each request showed
an increase in the time to service from the last, illustrated further in Figure 7.13. This
behaviour suggests file level locking of the images and would account for the serialisation
of requests on a per image basis.

The error bars present in Figure 7.12 show the variance in the time to service a re-
quest through all ten iterations of the experiment. It can be seen that as the number of
concurrent requests increases so does the variance in the time to service a request. A pos-
sible explanation for this could be socket contention between concurrent HTTP requests
at the TCP level, where by additional latency is incurred due to the overheads induced by
polling the state of a large number of sockets.

Figure 7.13. Individual Service Times for a Request as Part of 200 Concurrent Requests.
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Using these results, it can be seen that by increasing the number of Aperio Image
Server binaries, as described in the Cloud enhanced version of the pathology application,
could alleviate the poor scalability exhibited. This would avoid image level locking if a
number of pathologists were to access the same slide concurrently and reduce the overall
response time. Further improvements could be made to the response time of a request by
limiting each Aperio server instances to 60 concurrent requests where variance is at an
acceptable level, as illustrated in Figure 7.13.

7.5 Summary

In this chapter the motivation behind and benefits of using Cloud Computing for academic
research was discussed. The concept of a Virtual Grid, where Grid Middleware runs
on Cloud infrastructure, was introduced. The standards and components of the Globus
Toolkit usable in the creation of Grid infrastructure were highlighted. More over, a dis-
cussion of the evolution of the toolkit was presented. An implementation of a Virtual Grid
using the Globus Toolkit and its standards and components, the Globus Virtual Cluster,
was presented and then later evaluated against Nimbus. Nimbus although capable of cre-
ating Virtual Grids, is limited by its design with regards to Cloud provider interoperability
and ease of use by academic users.

Furthermore, this Chapter has highlighted the relevance of the configurable parame-
ters discussed in Chapters 3 and 4. Issues of Grid resource collections, their connectivity
to one another and the continuous monitoring of these resources were all considered in
Section 7.2. In addition, issues of resource discoverability and the selection of API’s at
runtime were acknowledge in Section 7.3.

In addition, the issues surrounding academic legacy applications in the Cloud were
discussed and highlighted via a Pathology application that exhibits poor scalability and
performance. A Cloud enhanced architecture enabled via contextualisation was proposed
to overcome the scalability and performance issues. A model of demand for the purpose
of testing the scalability of the proposed architecture was developed and performance
results of the native pathology application were presented for future comparison with the
implemented Cloud enhanced architecture.
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Conclusion

8.1 Summary

The work presented in this thesis demonstrates the performance and scalability of two
open source IaaS implementations and two associated Hypervisors, including the over-
heads associated with their Virtualization technologies relating to block device I/O Par-
avirtualization. In addition, contextualization was presented as a mechanism to improve
the QoS obtainable from an application by improving its (re-)configurability, enabling
more complex applications deployments that exhibit improved scalability, availability and
performance. In addition, contextualization enabled the deployment of Grid Middleware
onto Cloud resources, while maintaining provider interoperability. The highlights of the
thesis are as follows:

• Chapter 2: Introduced the concept of Cloud Computing, its classifications, de-
ployment models and a range of Cloud types. The landscape of Cloud architectures
both open source and commercial were presented covering all levels of the Cloud
Service Stack, including IaaS, PaaS and SaaS. A number of End-User applications
were presented that make use of Cloud Computing. Finally, the topic of Resource
Management within Cloud Computing including the importance elasticity plays in
scalability, resource scheduling in an open source and commercial Cloud sched-
ulers and some tools for Cloud resource monitoring, were discussed. Additionally,
the chapter presented the concept of Virtualization and virtual resource manage-
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ment in the context of Cloud Computing. The technology behind Virtualization,
the Hypervisor, was discussed and classified as either Type 1 or Type 2, along with
the techniques used to virtualise resources. The importance of migration and live
migration of VMs was presented. Finally, a survey of contemporary Hypervisors,
both open source and commercial, was presented including a discussion on their
applicability to Cloud Computing.

• Chapter 3: Introduced Cloud application composition and the heritage it draws on
from within the topic of Service Oriented Architectures. Service Orientation and
Web Service technology was discussed in detail, including the technologies that
enable their use. Cloud Engineering was discussed as a systematic approach to the
creation and composition of Cloud applications and a number of issues to consider
when contemplating the use of Cloud Computing were presented. In addition, a
number of Cloud simulators were discussed as tools to ascertain the performance
of an application before development and/or deployment.

• Chapter 4: Discussed the paradigm of Grid Computing, including the architectural
philosophies and applications that make use of it. In addition, Resource Manage-
ment in Grids including the topics of QoS, resource allocation and monitoring were
discussed. The relevance of Service Level Agreements in Grids was related back
to Cloud Computing. More so, a survey of Grid Middleware and the role that it
plays within Grid Computing was presented. Finally, a comparison of Grids and
Clouds was discussed, highlighting a need for research into how these paradigms
can complement each other.

• Chapter 5: Discussed the performance of Cloud infrastructure, identifying a num-
ber of issues and additionally, related work on Cloud performance was critiqued.
The topic of Virtual Machine image management was introduced, along side the
storage systems used to store the images within an IaaS provider. The performance
overheads associated with the propagation of images, from an image repository to a
host machine, in two Cloud infrastructure management systems, was discussed and
compared. In addition, a number of image maintenance and management issues
were discussed. The topic of high performance Virtualization within Cloud in-
frastructure was presented and two contemporary Hypervisors were compared. In
addition the topic of Block I/O Paravirtualization was discussed, as a performance
limiting factor in Cloud Computing virtual resources. Finally, performance evalua-
tions of Virtual Machine image formats, the resource provisioning and propagation
delays in two Cloud management technologies in addition to the overheads of vir-
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tual block I/O devices, were presented. These evaluations highlighted a number of
areas for performance and scalability improvement in Cloud Computing.

• Chapter 6: Introduced the concept of contextualization as a mechanisms to en-
able the autonomous configuration of Cloud Computing software and discusses the
landscape of tools available to help manage the complexity and scale of Cloud Com-
puting systems. An generalised architecture for the contextualization of a range of
Cloud software was presented. An implementation based on this architecture, the
Contextualization Tools, and the non-functional requirements it enables the fulfil-
ment of, was discussed. Additionally, the concept of Recontextualization, a mech-
anism and an architecture was presented, as a way to enable the reconfiguration of
a system after deployment. A number of Recontextualization approaches were dis-
cussed and one showing the most promise was selected and implemented. Finally,
the performance of the Contextualization and Recontextualization implementations
were evaluated and the functionality they provide compared to related Cloud tech-
nologies.

• Chapter 7: Discussed the application of Cloud Computing resources in research
through the execution of Grid Middleware on the Cloud. The concept of a Virtual
Grid was introduced and an implementation, the Globus Virtual Cluster, presented.
Additionally, the implications of running legacy applications were discussed, in
light of a model for generating Cloud usage traces. A legacy application, used by
Pathologists for the purpose of distributing parts of gigapixel images of tissue sam-
ples for analysis, was discussed including the benefits the application can leverage
from using Cloud Computing technologies. In addition a Cloud architecture for
enhancing the pathology application’s scalability and performance was presented.
Finally, an evaluation of the Globus Virtual Cluster with an emphasis on compar-
ing its features with existing solutions and its interoperability, in addition to the
performance of the legacy pathology application, were presented.

8.2 Research Contributions

The objectives of this thesis, as discussed in Section 1.2, were to discover issues relating
to QoS and Resource Management in Cloud Computing, then improve the QoS provi-
sioned by a Cloud Provider and received by a Cloud End-User, beyond current best-effort
practices. During the research, it became apparent that a number of contributions were
needed to support these objectives. The contributions are summarised as following:
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• Experimental results on the performance and scalability of the two open source
IaaS solutions: OpenNebula and Nimbus, with regards to the delays associated
with provisioning VM resources, for the purpose of ascertaining the suitability of
these technologies to provide QoS to an End-User.

• A performance evaluation of the Paravirtualization techniques used in the two Hy-
pervisor: Xen and KVM, for the previsioning of performant block devices to VMs.
An area of research that looks the most promising for providing the largest improve-
ment to QoS in Cloud Computing.

• A performance evaluation on the range of VM image formats available for use in
a Cloud application, for the purpose of ascertaining their suitability for supporting
the performance based QoS requirements of an End-User’s application.

• A Contextualization tool software prototype that enables the configuring of a VM’s
hardware and embedded application, including any PaaS dependencies, at Deploy-
ment time.

• A prototype Recontextualization mechanism for reconfiguring an application and
its supporting software dependencies after live migration during the Operation phase
of the service life-cycle.

• A Virtual Grid prototype, the Globus Virtual Cluster, which enables the deploy-
ment of Grid applications, for academic use cases, onto public and private Cloud
providers. The prototype maintains interoperability from the provider’s resource
management stack as it has no dependencies on the underlying IaaS technology.

• A performance evaluation of a Cloud enhanced architecture for a legacy scientific
application used by Pathologists that currently exhibits poor End-User QoS with
regards to scalability and fault tolerance.

• A model for the generation of realistic workloads when simulating the demand
placed on a Cloud application and its supporting PaaS and IaaS stack.

8.3 Future Work

There are many ways in which the work presented in this thesis can be extended. The
most promising extensions are listed bellow:
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8.3.1 Additional Evaluations On Cloud Infrastructure

Extension could be made to the work on Hypervisor performance to evaluate the perfor-
mance of the newly released XEN 4.2 that sees the introduction of new version of the
redesigned block device backend, blktap2, which due to time constraints could not be
included in this thesis. In addition, the trade off between the features, such as compres-
sion and encryption, of enhanced image formats, such as QCOW2, VMware’s VMDK
and Microsoft’s VHD, could be assessed. This could in turn lead to additional work eval-
uating the performance of Cloud resource migration and fault tolerance techniques and
how these are effected by the implementation of VM image formats. Additionally, further
work could be carried out to evaluate the overheads surrounding other popular IaaS so-
lutions such as Eucalyptus [71]. Further more, experiments on the ability of open source
IaaS solutions to manage increase numbers of physical resource, could provide interesting
insights into the scalability of these solutions, at the scales that true Cloud providers oper-
ate. This was not feasibly within this thesis due to lack of funds to access such a resource
pool large enough to perform the experiments. Finally, an in-depth survey of source code,
investigating and analysing the root causes of many of the performance related issues dis-
covered in the evaluations, could shed light on what specific improvements are needed to
be made to enhance QoS in future software releases.

8.3.2 Extended Contextualization

Future work could be made to the Contextualization Tools to extend the existing architec-
ture to enable support for a greater number of image formats and Hypervisors. In addi-
tion, further integration with other core components of the OPTIMIS toolkit, such as the
tools responsible for VM level monitoring, could provide addition support for more non-
functional and functional application requirements. Finally, plans to implement advanced
caching mechanisms that improve the ability of the tools to reuse existing contextual-
ized images, could increase the general applicability of the solution to a wider number of
applications that require rapid deployment.

8.3.3 Integrated Recontextualization

Future work could include creating a unified mechanism for Contextualization and Re-
contextualization, integrating the generalised solution with a number of major software
projects, including the OPTIMIS toolkit. In addition, Recontextualization mechanisms
for the dynamic binding of PaaS APIs could be explored. Finally, further studies and
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improvements on the implemented approach could be evaluated to reduce the overhead
imposed by Recontextualization.

8.3.4 Globus Virtual Cluster Overheads

Further work on the Globus Virtual Cluster could entail evaluating the overheads of run-
ning a number of Grid based applications or HPC benchmarks on the prototype. In addi-
tion, deploying the Globus Virtual Cluster on a number of public Cloud providers could
provide further insight into its scaling behaviour, as the number of Cloud resources it uses
grow above the eight machines available in the Leeds Cloud Testbed.

8.3.5 Cloud Enhanced Pathology Application

Future work on the Pathology application could involve the full implementation of the
proposed Cloud enhanced architecture, in addition to carrying out a comparative perfor-
mance evaluation. The performance evaluation could make use of the proposed model of
user demand and the results of which could be compared to original implementation to
ascertain any reductions in overheads or improvements in scalability in both computation
and storage resource dimensions.
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Figure A.1. Overview Class Diagram of the Contextualization Tools.


	Abstract
	Acknowledgements
	Declaration
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Research Motivation
	Aim and Objectives
	Methodology
	Main Contributions
	Thesis Overview

	Quality of Service in Cloud Computing
	Introduction
	Cloud Computing
	Deployment Models

	Classifications
	Cloud Service Model
	Infrastructure As A Service
	Platform As A Service
	Software As A Service

	Other Cloud Types
	Storage As A Service
	Hardware As A Service
	Desktop As A Service
	Security As A Service


	Open Source Architectures
	Infrastructure as a Service
	OpenNebula
	Eucalyptus
	CloudStack
	Nimbus

	Platform as a Service
	OPTIMIS Toolkit
	OpenStack
	Hadoop

	Other Architectures

	Commercial Clouds
	Commercial Providers
	Amazon
	Google
	IBM
	Microsoft
	Rackspace
	SalesForce
	Flexiscale

	Commercial Software Stacks
	VMware vCloud
	Enomaly
	CA AppLogic
	Flexiant Cloud Orchestration

	End-User Applications
	Cloud Storage
	Office Suites
	Cloud Gaming


	Resource Management
	Elasticity
	Scheduling
	OpenNebula
	Haizea
	vSphere Distributed Resource Scheduler

	Monitoring
	Ganglia
	Nagios


	Resource Virtualization
	Hypervisor Classifications
	Type 1 Hypervisor
	Type 2 Hypervisor

	Virtualization Techniques
	Live Migration

	Virtual Machine Images
	Storage Backends
	Local VM Storage
	Remote VM Storage
	Selecting a Storage Backend for the Cloud

	Virtual Appliances, Packaging and Distribution
	Image Formats
	Image Maintenance and Management Issues


	Contemporary Hypervisors
	Open Source
	KVM
	XEN
	VirtualBox

	Commercial Variants
	VMware
	Hyper-V

	Operating System-Level Variants
	OpenVZ
	VServer


	Summary

	Cloud Application Composition
	Introduction
	Service Oriented Architectures
	Service Orientation
	Web Services
	Simple Object Access Protocol (SOAP)
	Representational state transfer (REST)
	Markup Languages

	Service Orchestration

	Cloud Engineering
	Challenges
	Requirements
	Web Scale Computing
	Big Data
	Design Patterns

	Issues to Consider
	Pros and Cons
	Disadvantages
	Advantages

	Best Practice
	Simulators

	Configurable Parameters
	Summary

	Grids on Clouds
	Introduction
	Grid Computing
	Architectures
	Applications

	Resource Management
	Quality of Service
	Resource Allocation
	Monitoring

	Service Level Agreements
	Grid Middleware
	Globus Tookit
	UNICORE
	gLite
	GridWay
	Oracle Grid Engine
	Other Grid Middlewares

	Grids Vs Clouds
	Configurable Parameters
	Summary

	Cloud Infrastructure Performance
	Introduction
	Performance Issues in Clouds
	Related Work

	Image Propagation
	Virtual Infrastructure Management
	OpenNebula
	Nimbus
	A Comparison


	High Performance Virtualization
	Virtual Machine Management
	XEN and KVM
	Block I/O Paravirtualization

	Evaluation
	Testbed Architecture
	Benchmarks
	Methodology
	Experimental Results
	Image Format Performance Analysis
	Propagation Delay Performance Analysis
	Block I/O Performance Analysis


	Summary

	Contextualization
	Introduction
	Configuring The Cloud
	Autonomous Cloud Computing
	Configuration Management Tools
	CFEngine
	Puppet
	Chef
	A Comparison


	Contextualization Tools
	Contextualization Challenges
	Related Work
	Requirements and Architecture
	The OPTIMIS Toolkit
	License Management
	Cloud Security
	Architecture
	Detailed Design
	Example Scenario


	Recontextualization
	Requirements and Architecture
	Problem Statement and Requirements
	Example Scenario
	Recontextualization Approaches

	A Recontextualization Solution
	Mechanism
	Architecture

	Detailed Design

	Evaluation
	Contextualization Tool Performance
	Recontextualization Performance
	Feature Comparison

	Summary

	Cloud Resources for Research
	Introduction
	Globus Middleware in the Cloud
	Virtual Grids
	An Implementation - Globus Virtual Cluster

	Legacy Applications in the Cloud
	A Cloud Enhanced Pathology Application?
	Proposed Architecture
	Modelling Demand

	Evaluation
	Globus Virtual Cluster
	Feature Comparison Against Nimbus Clusters
	Provider Interoperability

	Pathology Application Performance

	Summary

	Conclusion
	Summary
	Research Contributions
	Future Work
	Additional Evaluations On Cloud Infrastructure
	Extended Contextualization
	Integrated Recontextualization
	Globus Virtual Cluster Overheads
	Cloud Enhanced Pathology Application


	Bibliography
	Contextualization Tools Class Diagram

