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Mitochondrial dysfunction is implicated in many cardiovascular diseases, including hypertension, and may be associated with
an overactive renin-angiotensin system (RAS). Angiotensin (Ang) II, a potent vasoconstrictor hormone of the RAS, also impairs
barore�ex and mitochondrial function. Most deleterious cardiovascular actions of Ang II are thought to be mediated by NADPH-
oxidase- (NOX-) derived reactive oxygen species (ROS) that may also stimulate mitochondrial oxidant release and alter redox-
sensitive signaling pathways in the brain. Within the RAS, the actions of Ang II are counterbalanced by Ang-(1–7), a vasodilatory
peptide known to mitigate against increased oxidant stress. A balance between Ang II and Ang-(1–7) within the brain dorsal
medulla contributes to maintenance of normal blood pressure and proper functioning of the arterial baroreceptor re�ex for control
of heart rate. We propose that Ang-(1–7) may negatively regulate the redox signaling pathways activated by Ang II to maintain
normal blood pressure, barore�ex, and mitochondrial function through attenuating ROS (NOX-generated and/or mitochondrial).

1. Introduction

e renin-angiotensin system (RAS), and in particular
angiotensin (Ang) II, is implicated in the impairment of
arterial barore�ex function and reduction of heart rate
variability (HRV) commonly associated with hypertension
[1–4]. However, more recent studies suggest that a part of
the de�cit in sensitivity of the barore�ex function (BRS)
in hypertension results from a reduction in Ang-(1–7), an
alternative product of the RAS, rather than a frank increase in
Ang II [5, 6]. Ang II blockade attenuates oxidant production
and improves mitochondrial function in peripheral tissues
in various experimental models of hypertension [7–10]. e
contributions of Ang-(1–7) to the bene�cial effects of Ang
II blockers are increasingly recognized [11–16], but few
studies have directly addressed the role of Ang-(1–7) in
mitochondrial function. In this paper, we summarize (1) the

role of Ang II in reactive oxygen species (ROS) genera-
tion and (2) the implication of ROS and redox-signaling
on blood pressure, barore�ex, and mitochondrial function,
with a particular focus on potential mechanisms for the
counterbalancing role of Ang-(1–7) (Figure 1). Furthermore,
we highlight the recent studies in transgenic rats with altered
brain RAS (summarized in Figure 2) as a tool to study
changes in brain ROS and signaling pathways in response
to Ang peptides [Ang II and Ang-(1–7)] and their effect on
BRS and mitochondrial function. e transgenic (mRen2)27
rat strain which overexpresses the murine Ren2 gene is
hypertensive and has impaired BRS for control of heart rate
(HR) with high levels of Ang II relative to Ang-(1–7) in
the brain medullary tissue compared to the normotensive
Sprague-Dawley (SD) rats [17, 18]. In contrast, transgenic
rats with low glial angiotensinogen (ASrAOGEN) have lower
mean arterial pressure (MAP) and HR suggesting decreased
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sympathetic nerve activity and enhanced BRS for control
of HR relative to SD rats [19, 20]. While we would expect
that both Ang II and Ang-(1–7) would be reduced in the
glial cells, nonglial sources (neuronal and/or circulating) of
angiotensinogen and Ang peptides appear to be intact in
ASrAOGEN rats [21]. Tissue levels of Ang II relative to
Ang-(1–7) in the medulla have not been reported; however,
blockade of Ang II actions by an AT1 receptor antagonist
revealed that there was no Ang II tone attenuating the BRS
in anesthesized ASrAOGEN rats and we conclude that glia-
derived Ang II is responsible for this action. In contrast, since
blockade of endogenous Ang-(1–7) attenuates BRS in both
younger and older anesthesized ASrAOGEN rats, a nonglial
source of Ang-(1–7) likely contributes to the preservation of
BRS in these animals [5, 22]. us, there appears to be low
Ang II but maintenance of Ang-(1–7) tone contributing to
the enhanced BRS seen in the medulla of these animals.

2. Angiotensin Peptides and
ROS Generation in the Brain

Overactivation of the RAS in pathological conditions, such as
hypertension, results in excessive ROS production through
the prooxidant actions of Ang II [24, 25]. e contribution
of cytoplasmic NADPH-oxidase-(NOX)-generated ROS by
Ang II in neurogenic hypertension is well established [26–
28]. Ang II also stimulates mitochondrial ROS; both as a
result of cytoplasmic NOX-derived ROS or direct effects
on mitochondria [29–32]. Scavenging mitochondrial ROS,
through agents such as Mito-TEMPO that preferentially
targets the mitochondria, prevents Ang II-induced hyper-
tension in mice [31, 33]. Antioxidant therapies targeting
mitochondria are suggested to disrupt the mitochondrial
ROS-dependent stimulation of cytoplasmic NOX activity,
thereby providing bene�cial effects in hypertension [34].
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However, recent studies show that the NOX isoforms are also
present within mitochondria [35–37] and the contribution
of mitochondrial NOX to overall mitochondrial ROS in
hypertension is unknown. Molecular interventions to target
speci�c NOX isoforms within the mitochondria or other
cellular organelle are required to address this issue.

Ang-(1–7) has emerged as a major counter-regulatory
peptide to Ang II actions and may serve to inhibit Ang
II-stimulated ROS production through inhibiting NOX
and/or increased ROS scavenging by augmenting antioxidant
enzymes such as catalase [38, 39]. Indeed we �nd that higher
Ang II actions relative to Ang-(1–7) in the brain dorsal
medulla of hypertensive (mRen2)27 rats are associated with
increased cytoplasmic NOX activity and ROS in isolated
brain dorsal medullary mitochondria compared with the
hypotensive ASrAOGEN [with higher Ang-(1–7) actions
relative toAng II] or the normotensive SD rats [40].e levels
of ROS were similar in the ASrAOGEN rats compared to SD
rats under basal conditions suggesting that Ang-(1–7) may
serve to inhibit NOX and/or activate antioxidant enzymes
in response to Ang II stimulation. Although this concept
is supported by several studies [38, 41], it has not been
investigated directly in the brain to our knowledge. us, in
this respect, it would be interesting to test whether blockade
of endogenous Ang-(1–7) in ASrAOGEN rats will result in
increased NOX activity/ROS levels in response to Ang II
infusion/microinjection in the brain.

3. ROS and Redox-Signaling in the Brain:
�n�uence� on Blood �re��ure� Barore�ex�
andMitochondrial Function

Excessive ROS in brain contributes to increased sympathetic
out�ow [42, 43] and impairs mitochondrial [8, 31, 44, 45]
and BRS function [46–48]. Our recent studies �nd that Ang-
(1–7) via chronic ICV infusion improved vagal function inde-
pendent of any blood pressure lowering effect in transgenic
hypertensive (mRen2)27 rats [49]. is effect was in contrast
to the response to AT1 receptor antagonist, candesartan,
which normalized blood pressure but did not signi�cantly
improve the vagal indices of BRS or HRV. We have yet to
determine the effect of these treatments on mitochondrial
ROS, but neither treatment altered cytoplasmic NOX activity.
Central infusion of the ROS scavenger tempol did not lower
blood pressure or in�uence indices of barore�ex function, but
signi�cantly reduced cytoplasmic NOX activity, suggesting
independence from ROS-relatedmechanisms for blood pres-
sure lowering and autonomic nervous system balance in the
hypertensive (mRen2)27 strain. However, we do not know
whether tempol efficiently targets mitochondrial ROS or the
extent that alterations inmitochondrial ROS would in�uence
blood pressure and/or BRS in the transgenic rats. Dikalova
and colleagues have reported blood pressure lowering effects
of Mito-TEMPO in both Ang II-induced and DOCA salt
hypertension in mice while a similar dose of tempol alone
did not lower blood pressure in this study [33]. Further-
more, mitochondria are in close structural proximity to the
endoplasmic reticulum (ER), and ER stress is implicated in

mitochondrial dysfunction [50]. Indeed, the recent study by
Young and colleagues link Ang II-induced hypertension to
ER and oxidative stress in the brain [51].ese results provide
a compelling case to investigate the effects of mitochondrial
ROS, independent of cytoplasmic NOX.

AngII/AT1 receptor/NOX-derived ROS are implicated in
the activation of the MAP Kinases (MAPK) p38 and ERK1/2
that contribute to an impaired BRS and the pressor effects of
Ang II in the RVLM [52–54]. A role for AT1 receptors and
MAPKs in activation of mitochondrial apoptotic pathways in
neural regulation of blood pressure and BRS is also apparent
[54]. However, hypertensive (mRen2)27 rats which show an
increased NOX activity in the brain dorsal medulla but not
activated p38, ERK1/2, or JNK-1 in comparison to SD rats
suggesting a lack of association of MAPK signaling pathways
with high blood pressure or oxidative stress [40]. In con-
trast, (mRen2)27 rats have an upregulated phosphoinositol
3 kinase (PI3K) pathway that contributes to the elevated
MAP and impaired BRS [55]. Hypotensive ASrAOGEN
rats with normal NOX activity exhibit reduced levels of
phosphorylated ERK1/2 and JNK-1 but not p38 in the brain
dorsal medulla [40]. ese animals have signi�cantly higher
expression of MAPK phosphatase-1 [MKP-1, a negative
regulator of MAPK signaling [40]] supporting the concept
that Ang-(1–7) increases regulatory phosphatases that may
buffer against acute Ang II-stimulated signaling. Indeed,
ASrAOGEN rats show greater impairments in the BRS for
control ofHR following acute solitary tract nucleus inhibition
of protein tyrosine phosphatase 1b (PTP1b), a negative
regulator of the PI3K pathway, suggestive of increased
expression and/or activity of this phosphatase within the
dorsal medulla (Figure 3(a)). However, protein expression of
total PTP1b (phosphorylated and nonphosphorylated forms)
is similar in the dorsal medulla among the three rat strains
under baseline conditions (Figure 3(b)). erefore, given
the functional differences observed following inhibition of
PTP1b activity, quanti�cation of the phosphorylated active
form of PTP1b is necessary to con�rm increased PTP1b
activity in the ASrAOGEN rats. Differences in ROS [higher
in (mRen2)27 versus SD or AsrAOGEN] or the upstream-
regulatory kinases/phosphatases can modulate the phos-
phatase activity by changes in phosphorylation status at a
number of different sites, despite lack of changes in the total
protein [56]. While an upregulation of phosphatase expres-
sion and activity within the dorsal medulla may contribute
to the enhanced resting BRS in the ASrAOGEN animals
relative to the normal barore�ex function in SD rats [23],
the lack of endogenous PTP1b tone in transgenic (mRen2)27
rats (Figure 3(a)) could result in increased PI3K activity that
contributes to an impaired BRS and increased MAP in these
animals [55].

An interesting paradox to the bene�cial role of these
regulatory phosphates is that both MKP-1 and PTP1b have
negative effects onmetabolic function [57, 58]. In this regard,
global knockdown of these phosphatases improves insulin-
sensitivity and prevents diet-induced obesity [59, 60]. MKP-
1 is suggested to impair mitochondrial biogenesis in skeletal
muscle in response to a high-fat diet through negative regula-
tion of the p38 MAPKs [61]. However, ASrAOGEN rats that
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F 4: Hypertensive (mRen2)27 rats show signi�cantly increased phosphorylated AMP-Kinase (AMPK) in the brain dorsal medulla.
AMPK-𝛼𝛼 (a) and 𝛽𝛽1 (b) activities were measured by Western blot hybridization using phospho-speci�c antibodies (Cell Signaling) in
brain dorsal medulla tissues from (mRen2)27 [mRen], Sprague-Dawley (SD), and ASrAOGEN (AS) rats. Top: Densitometry analyses of
phoshorylated protein levels normalized to total AMPK-𝛼𝛼 and 𝛽𝛽1/𝛽𝛽2; bottom: representative Western blots. Data are mean ± SEM (𝑛𝑛 𝑛 𝑛–6
per group); ∗𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 versus SD; †𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 versus AS rats.

have increased activity of these phosphatases at least in dorsal
medulla are resistant to diet-induced obesity and spared age-
related decline in cardiovascular and metabolic functions
[62, 63]. ese animals have increased life-span and their
phenotype mimics animals with long-term RAS blockade

where improved mitochondrial function is reported [7, 62–
64].Whether the brain-speci�c actions of these phosphatases
contribute to the bene�cial metabolic e�ects in ASrAOGEN
rats is of interest and currently unknown. us, further
studies dissecting the role of these brain signaling pathways
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in regulating MAP, BRS, mitochondrial, and metabolic func-
tions are warranted.

Altered mitochondrial oxidant and/or energy levels are
associated with a stimulated AMP-activated protein kinase
(AMPK) pathway that is activated in response to depleted
cellular energy levels, to restore mitochondrial biogenesis
and ATP levels [65, 66]. AMPK was signi�cantly activated
(phosphorylated AMPK-𝛼𝛼 and 𝛽𝛽1 subunits, Figures 4(a) and
4(b), resp.,) in the dorsal medulla of transgenic (mRen2)27
rats that exhibit increased cytoplasmic NOX activity and
ROS levels in the brain dorsal medullary mitochondria
relative to SD rats [40]. While we expected lower ATP
levels (Figure 5(a)) and the mitochondrial content/number
(assessed indirectly using themarker ofmitochondrial health
or activity, citrate synthase enzyme activity, Figure 5(b)) in
the (mRen2)27 rats, these markers were not different in the
dorsal medulla of the three strains. erefore, activation of
AMPK in the (mRen2)27 rats may represent a compensatory
response to restore normal ATP and mitochondrial activity
in the hypertensive strain in the face of increased ROS.
Additional studies are necessary to address whether (1)
blockade of AMPK activation lowers mitochondrial content
and depletes ATP levels and (2) targeting mitochondrial
ROS improves MAP, BRS, and mitochondrial function in the
hypertensive (mRen2)27 rats.

4. Conclusions and Perspectives

Mitochondria-derived ROS which oen accompanies
impaired autonomic function is an emerging therapeutic
target in hypertension [31, 33, 34, 45–47]. Increased cellular
ROS may manifest as impaired BRS for the control of HR
and reduced HR� (decreased parasympathetic out�ow or
vagal tone); and these indices of autonomic imbalance are
associated with increased overall mortality, independent
of blood pressure. erefore, determining the key cellular
mechanisms underlying the bene�cial actions of Ang-(1–7)

(such as altered kinase-phosphatase signaling) in in�uencing
barore�ex function may help elucidate new therapeutic
targets for reducing cardiometabolic pathologies. While
Ang-(1–7) has been investigated for its role in attenuation
of ROS, studies speci�cally addressing the mitochondria are
lacking and few investigators are studying the interactions
in brain. us, targeting improved vagal and mitochondrial
function in addition to MAPmay provide better target organ
protection than lowering blood pressure alone, leading to
reductions in all cause mortality.
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