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Mouse picking is the most commonly used intuitive operation to interact with 3D scenes in a variety of 3D graphics applications.
High performance for such operation is necessary in order to provide users with fast responses. This paper proposes a fast and
reliable mouse picking algorithm using graphics hardware for 3D triangular scenes. Our approach uses a multi-layer rendering
algorithm to perform the picking operation in linear time complexity. The objectspace based ray-triangle intersection test is
implemented in a highly parallelized geometry shader. After applying the hardware-supported occlusion queries, only a small
number of objects (or sub-objects) are rendered in subsequent layers, which accelerates the picking efficiency. Experimental results
demonstrate the high performance of our novel approach. Due to its simplicity, our algorithm can be easily integrated into existing
real-time rendering systems.
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1. Introduction

Mouse picking, as the most intuitive way to interact with
3D scenes, is ubiquitous in many interactive 3D graphics
applications, such as mesh editing, geometry painting and
3D games. In many Massive Multi-player Role Playing Games
(MMRPGs), for instance, thousands of players compete
against each other, and the picking operation is frequently
applied. Such applications require picking to be performed
as fast as possible in order to respond to players with
a minimum time delay. In recent years, programmable
graphics hardware is getting more and more powerful. How
to make full use of the co-processors in the picking operation
becomes important.

The WYSIWYG method, which takes advantage of
graphics hardware to rerender scene objects into an auxiliary
frame buffer, was first proposed by Robin Forrest in the mid-
1980s and used in 3D painting by Hanrahan and Haeberli
[1]. In their method, each polygon is assigned a unique
color value which is used as an identifier. Given the cursor
position on the screen and the id buffer, the picked position
on the surface can be found by retrieving data from the
frame buffer. However, this approach has weaknesses for
complex scenes in that all objects in the view frustum must
be rerendered. This may take a long time for complex scenes

and therefore lower the picking performance. By integrating
the WYSIWYG method and hardware bilinear interpolation
[2], Lander presented a method to calculate the exact
intersection information, that is, the barycentric coordinate
in the intersected triangle. By setting additional color values
with (1, 0, 0), (0, 1, 0), (0, 0, 1) (normalized with floating-
point precisions) to the three triangle vertices respectively, he
calculated the barycentric coordinate by interpolation after
the rasterization stage. However, the computed barycentric
coordinate is in the projected screen-space but not in the
object-space, which may restrict its application.

In this paper, we propose a simple, fast and reliable
picking algorithm (FRMP) using graphics hardware for
3D triangular scenes. By combining the multi-layer culling
approach of Govindaraju et al. [3] with a GPU-based
implementation of Möller and Trumbore’s ray-intersection
test [4], the picking can be performed in linear time
complexity. Our approach has the following features.

(1) It is fast—our approach is 2 to 14 times as fast as the
traditional GPU-based picking one.

(2) It is reliable—our approach performs the operation
in object-space, and the exact intersection informa-
tion can be computed.
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(3) It is parallel—the ray-triangle intersection detection
is implemented as a geometry shader.

(4) It is simple—our novel approach operates directly on
triangular meshes and can be easily integrated into
existing real-time rendering systems.

The rest of the paper is organized as follows. Section 2
reviews some related work. Section 3 describes our new
algorithm, whereas experimental results and discussions are
presented in Section 4. We conclude the paper and suggest
future work in Section 5.

2. Related Work

Intersection detection is widely used in computer graphics.
The mouse picking operation can be performed by an
ordinary ray-object intersection test and accelerated by lots
of schemes for high efficiency.

The methods for interference detection are typically
based on bounding volume data structures and hierarchical
spatial decomposition techniques. They are K-d trees [5],
sphere trees [6, 7], AABB trees [8, 9], K-DOPs trees [10],
and OBB trees [11]. The objects (triangles) are organized in
clusters promoting faster intersection detection. The spatial
hierarchies are often built in the preprocessing stage and
should be updated from frame-to-frame when the scene
changes, which is not appropriate in most cases for mouse
picking.

Hardware occlusion queries are also used in collision
detection for large environments to efficiently compute all
the contacts at high frame rates by Govindaraju et al. [3,
12, 13]. These GPU-based algorithms use a linear time
multi-pass rendering algorithm to compute the potentially
colliding set. They even achieve interactive frame rates for
deformable models and breaking objects. In their method,
the objects (triangles) list can be traversed from the begin-
ning up to the end and thus no spatial organization (KD
and other trees) are required. The WYSIWYG method for
mouse picking, which was first proposed by Robin Forrest
in the mid-1980s and used in 3D paint by Hanrahan and
Haeberli [1] and further studied by Lander [2], Akenine-
Möller and Haines [14], belongs to this class. Its efficiency
is high in many cases. However, it has limitations as
discussed in the introduction section. CPU methods for
picking objects were introduced by [15] in the Direct3D
platform and by [16] in the OpenGL platform. However,
their efficiency decreases dramatically as the number of input
primitives increases. Motivated by the multi-layer culling
approach of Govindaraju et al., we do not construct a time
consuming hierarchy. Instead, we use a multi-layer rendering
algorithm to perform a linear time picking operation. In this
paper, we perform the exact object-space-based ray-triangle
intersection test [4] in a geometry shader by taking advantage
of its geometric processing capability. The overall approach
makes no assumptions about the object’s motion and can be
directly applied to all triangulated models.

Some acceleration techniques for real-time rendering
need to be applied in our method. Triangle strips and view
frustum culling were introduced by [17, 18], respectively. It
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Figure 1: Algorithm workflow.

is possible to triangulate the bounding boxes of objects as
strips and to cull away objects that are positioned out of
the view frustum. Hardware occlusion queries for visibility
culling were studied by [19–21]. GPU-based visibility culling
is also important in our algorithm.

3. Hardware Accelerated Picking

Our mouse picking operation takes the screen coordinate of
the cursor and the scene to be rendered as input, and outputs
the intersection information, such as object id, triangle id,
and even the barycentric coordinate of the intersection point.
In this section, we first present an overview of our algorithm
and then we discuss it in detail.

3.1. Algorithm Overview. Our FRMP method exploits the
new features of the 4th generation of PC-class programmable
graphics processing units [22]. Figure 1 illustrates the
algorithm workflow. The overall algorithm is outlined as
follows.

(1) Once the user clicks on the screen, compute the pick-
ing ray origin and direction in the view coordinate
system.

(2) Set the render target with one-pixel size.

(3) Set the render statesDepthClipEnable andDepthEn-
able to FALSE.

(4) After the view frustum culling, render the bounding
boxes of the visible objects. We issue a boolean
occlusion query for each object during this rendering
pass.

(5) Render the bounding boxes of all sub-objects whose
corresponding occlusion query returns TRUE. Again
we issue a boolean occlusion query for each sub-
object during this rendering pass.

(6) Reset the states DepthClipEnable and DepthEnable
to TRUE.

(7) Render the actual triangles whose corresponding
occlusion query returns TRUE. Now we only issue
one occlusion query for all triangles.

(8) If the occlusion query returns TRUE, trivially read
back the picking information from the one-pixel-
sized render target data; otherwise, no object is
picked.

The novel multi-layer rendering pass on programmable
graphics shaders is outlined below:
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(1) Transform the per-vertex position to the view coor-
dinate system in the vertex shader.

(2) Perform the object-space-based ray-triangle intersec-
tion test in the geometry shader, output a point with
picking information if the triangle is intersected. The
x- and y-components of the intersection point are set
to 0, and the z-component is assigned as the depth
value of the point. Then the point is passed to the
rasterization stage.

(3) Output the picking information directly in the pixel
shader.

3.2. New Features in the Shader Model 4.0 Pipeline. The
Shader Model 4.0 fully supports 32-bit floating-point data
format, which meets the appropriate precision requirement
for general purpose GPU computing (GPGPU). The occlu-
sion query can return the number of pixels that pass the
z-testing, or just a boolean value indicating whether or not
any pixel passes the z-testing. In our case, we only need the
boolean result that whether some objects are rendered or
none are rendered.

The Geometry Shader, which is first introduced into the
shader model 4.0 pipeline, takes the vertices of a single
primitive (point, line segment, or triangle) as input and
generates the vertices of zero or more primitives. The input
and output primitive types need not match but they are
fixed for the shader program. We use a triangle as the input
primitive, as the ray-triangle intersection detection needs
to be implemented here. We get a point as output. If the
intersection test is passed, a point primitive with intersection
information is returned. If the test is failed, no point is
output.

3.3. Intersection Test in the Geometry Shader. In this section,
we present the ray-intersection test introduced by Möller and
Trumbore [4]. We implement the algorithm in a geometry
shader by taking advantage of its geometric processing
capability.

A ray, r(t), is defined by an origin point, o, and a
normalized direction vector, d. Its mathematical formula is
shown in (1):

r(t) = o + td. (1)

Here the scalar, t, is a variable that is used to generate
different points on the ray, where t-values of greater than zero
are said to lie in front of the ray origin and so are a part of
the ray and negative t-values lie behind it. Also, since the ray
direction is normalized, a t-value generates a point on the ray
that is t distance units away from the ray origin.

When the user clicks the mouse, the screen coordinates
of the cursor are transformed through the projection matrix
into a view-space ray that goes from the eye-point through
the point clicked on the screen and into the screen.A point,
t(u, v), on a triangle is given by the explicit formula (2).

t(u, v) = (1− u− v)v0 + uv1 + vv2, (2)

where (u, v) is the barycentric coordinate, which satisfies
u ≥ 0, v ≥ 0 and u + v ≤ 1. The point of intersection

r(t) = o + td
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Figure 2: (Left) a simple ray and its parameters. (Right) barycentric
coordinate for a triangle, along with some example point values.

between the picking ray, r(t), and the triangle, t(u, v), satisfies
the equation r(t) = t(u, v), which yields:

o + td = (1− u− v)v0 + uv1 + vv2. (3)

An illustration of a ray and the barycentric coordinate for a
triangle are shown in Figure 2. Denoting e1 = v1 − v0, e2 =
v2 − v0, and s = o − v0, the solution to (3) can be easily
obtained by using Cramer’s rule [23]:

⎛
⎜⎜⎝

t

u

v

⎞
⎟⎟⎠ =

1
det(−d, e1, e2)

⎛
⎜⎜⎝

det(s, e1, e2)

det(−d, s, e2)

det(−d, e1, s)

⎞
⎟⎟⎠. (4)

As a result, the intersection information is obtained by
solving (4). As this process is independent of the triangles,
we can parallelize it in graphics hardware. This equation
is adapted with optimizations since the determinant of a
matrix is an intrinsic function in the High Level Shading
Language (HLSL). The intersection test is conducted in the
view space and if it is passed, we output a point primitive.
The x- and y-components of its position coordinate are 0
because the render target used in our algorithm is only one-
pixel in size. The z-component is the depth value which
is obtained by transforming the distance value into the
projection space. The GPU will automatically add a primitive
id as the triangle identifier in the Input Assembler Stage.
In addition, the barycentric coordinate value (u, v) and the
object id are also obtained from the picking information.
The pseudo-code in the geometry shader is presented in
Algorithm 1.

3.4. Multi-Layer Visibility Queries. We use a multi-layer
rendering algorithm to perform linear time intersection tests,
taking advantage of the 4th generation of PC-class pro-
grammable graphics processing units. The overall approach
makes no assumption about the object’s motion and is
directly applicable to all triangulated models.

First of all, we set a 1 × 1 sized texture as a render
target after the view frustum culling. Instead of rendering
the actual triangles, we then render the bounding boxes
of the visible objects. We issue a boolean occlusion query
for each object during this rendering pass. As we know,
the render state DepthClipEnable controls whether to clip
primitives whose depth values are not in the range of [0, 1]
or not; the render state DepthEnable determines whether
to perform the depth testing or not. After the view frustum
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(1) float 3× 3 edge; float4 Picker
(2) edge[0] = input[1]− input[0]
(3) edge[1] = input[2]− input[0]
(4) Picker.w = det(float3× 3(−Ray, edge[0], edge[1]))
(5) if Picker.w == 0 then
(6) return
(7) end if
(8) if Picker.w < 0 then
(9) Picker.w = −Picker.w
(10) edge[2] = input[0]− float3(0, 0, 0)
(11) else
(12) edge[2] = float3(0, 0, 0) − input[0]
(13) Picker.x = det(float3× 3(−Ray, edge[2], edge[1]))
(14) end if
(15) if Picker.x < 0 || Picker.x > Picker.w
(16) return
(17) end if
(18) Picker.y = det(float3× 3(−Ray, edge[0], edge[2]))
(19) if Picker.y < 0 || Picker.x + Picker.y > Picker.w
(20) return
(21) end if
(22) // get the distance in the view-space
(23) Picker.z = det(float3× 3(edge[2], edge[0], edge[1]))
(24) Picker.z = Picker.z / Picker.w ∗ PickingRay.z
(25) PICKING GS OUTPUT output
(26) output.Pos = float4(0, 0, Picker.z, 1)
(27) // transform the distance value into projection space
(28) output.Pos.zw = mul(output.Pos.zw,

float2× 2(mxProj[2].yz, mxProj[3].yz))
(29) output.Info = float4(Picker.xy/Picker.w, FacetID,

ObjectID)
(30) outStream.Append(output)

Algorithm 1: Object-based intersection test.

culling, there are some objects intersected with the near-
plane or the far-plane of view frustum. The depth values
of some vertices may not be in the range of [0, 1]. In order
to collect all the possible intersected objects for the next
layer, we set DepthClipEnable and DepthEnable to FALSE.
If any occlusion query is passed, the corresponding object
may intersected with the picking ray and thus its actual
triangles will be rendered; otherwise, it is pruned. Since a
large number of objects are not intersected during this step,
we can greatly reduce the rendering time compared with
the WYSIWYG method, which requires us to render all the
objects.

Second, we render the bounding boxes of all sub-objects
whose corresponding occlusion query returns TRUE. Again
we issue a boolean occlusion query for each sub-object
during this rendering pass. Since some systems need to
handle large models, which may not fit entirely into the
GPU memory, we group adjacent local triangles to form a
sub-object and prune the potential regions considerably as
suggested in [3].

Next, the actual triangles of the unpruned sub-objects
are rendered. We only issue one occlusion query for all the
triangles during this step. We would like to get the exact

(a) (b)

(c) (d)

Figure 3: The four test scenes: the toy elk (upper left), Venus (upper
right) the teapots (lower left) and the tori (lower right). Note that
the picked objects are shown in wireframe and the picked triangles
are shown in black, whereas other objects are shaded normally.

intersection result after this step. Triangles outside the view
frustum are discarded, and only the closest triangle is needed.
Thus the render states DepthClipEnable and DepthEnable
are reset to TRUE.

Lastly, if the occlusion query passes, the triangle with
the minimal distance from the eye-point is picked and its
intersection information can be retrieved from the 1 × 1
sized render target texture. This causes an additional delay
while reading back data from the graphics memory to the
system memory. In the WYSIWYG method, we need to lock
the window-sized texture to get the picking information but
this is slow when the window size is large. Actually our novel
algorithm only needs to store the information in the smallest
sized texture. If the occlusion query fails, we need not read
the data from the render target because we know that nothing
has been picked. In the WYSIWYG method, however, one
cannot know if anything has been picked until one reads the
corresponding data from the texture.

4. Experimental Results and Discussion

Our algorithm takes the screen coordinates of the cursor
and the scene to be rendered as the input, and outputs
intersection information, such as object id, triangle id, and
even the barycentric coordinate of the intersection point.
Now our algorithm can be used with platforms which
support Direct3D 10 APIs. We have incorporated our FRMP
method into a Direct3D 10-based scene graph library and
tested it on four scenes in order to evaluate its efficiency for
different scene types. All tests were conducted on a PC with
a 1.83 GHz Intel Core 2 Duo 6320 CPU, 2 GB main memory,
an NVIDIA Geforce 8800 GTS GPU, 320 MB graphics
memory, and Windows Vista 64bit Operating System.
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Figure 4: Processing time comparisons for the toy elk (upper left), the Venus (upper right), the teapots (lower left) and the tori (lower right).
Note that the lower two scenes use a logarithmic scale to capture the high variations in processing times. Note that if no object is picked, the
processing times of our method will even be faster because we picked one object on purpose to perform these tests.

4.1. The Test Scenes. The four test scenes comprise of an
arrangement of a toy elk model (3290 polygons), a Venus
model (43 357 polygons), 2000 randomly rotated teapots
(12.64 M polygons) and 10 000 randomly rotated tori (8 M
polygons), all are in resolution of 1024× 768 pixels. The test
scenes are depicted in Figure 3.

The toy elk scene only has 3290 triangles, while the Venus
scene consists of large number of triangles. Both are simple

cases to handle for the picking operation as only one object
is used and is not occlusion culled. These two scenes were
tested in order to evaluate the efficiencies in simple cases.
Such cases may occur in mesh editing or geometry painting
applications.

The teapots scene with 12.64 M triangles and the tori
scene with 8 M triangles are complex cases and are designed
to rotate randomly from frame-to-frame. They can offer
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Table 1: Statistics for the four test scenes. The processing times are in (miliseconds).

Model name Triangles per
model

Modelnumber Method
Longest

time(miliseconds)
Shortest

time(miliseconds)
Average

time(milisecond)
Speedup

Toy elk 3290 1
CPU 3.064 2.852 2.910 1.000

WYSIWYG 6.993 6.390 6.464 0.450

FRMP 0.891 0.314 0.441 6.599

Venus 43 357 1
CPU 42.497 37.824 38.859 1.000

WYSIWYG 11.974 10.010 10.948 3.549

FRMP 2.249 1.521 1.702 22.831

Teapot 6320 2000
CPU 4500.598 4320.855 4387.013 1.000

WYSIWYG 165.392 160.398 163.254 26.872

FRMP 83.334 78.293 80.959 54.188

Torus 800 10 000
CPU 1720.887 1696.976 1706.358 1.000

WYSIWYG 47.918 38.016 42.411 40.234

FRMP 19.636 14.120 17.651 96.672

good occlusions as most of their objects are occluded in most
instances.

4.2. Comparison of the Results. For each test scene, we report
the processing times of our fast and reliable mouse picking
(FRMP) algorithm in comparison to the CPU implementa-
tion of our algorithm, and to the traditional GPU method
(WYSIWYG) (see Figure 4). Note that in our tests we have
picked an object. Had we not done so, our algorithm would
have performed even better than the competition. This is
because when no bounding box intersects with the picking
ray, our approach will not render the actual triangles and
return FALSE directly.

As we can see from a number of scene statistics shown
in Table 1, our method can produce a speedup of more
than two as compared to the traditional WYSIWYG method.
In the toy elk scene, our method was 2469 miliseconds
faster than the CPU method, while the WYSIWYG method
was 3554 miliseconds slower than the CPU method. That is
because the whole window-sized texture data needs to be
read back to the main memory to check the intersection
even for small models. In the Venus scene, as the triangle
number is increased, our method and the WYSIWYG
method produce a speedup of 22.831 and 3.549, respectively.
Even in the teapot scene and in the torus scene, our method
maintained a good speedup over the WYSIWYG method. If
a very large model cannot be loaded into the video memory
in its entirety, then our GPU-based algorithm seems to
be slower than the CPU-based approach. Fortunately such
occurrences are rare in many real-time applications.

5. Conclusions and Future Work

We have presented a novel algorithm for intersection tests
between a picking ray and multiple objects in an arbitrarily
complex 3D environment using some new features of
graphics hardware. The algorithm in this paper is fast,
more reliable, parallelizable, and simple. Our algorithm is
applicable to all triangulated models, making no assump-
tions about the input primitives and can compute the exact

intersection information in object-space. Furthermore, our
FRMP picking operation can achieve high efficiency as
compared with traditional methods. Due to its simplicity,
our algorithm can be easily integrated into existing real-time
rendering applications. Our FRMP picking approach is of
relevance to interactive graphics applications.The presented
approach still leaves some room for improvement and for
extensions. For instance, alternative acceleration techniques
for real-time rendering may be applied to our FRMP method.
Moreover, additional hardware features will be useful with
the progress of the graphics hardware. In the future, we
would like to extend and to apply our technique to the
generic collision detection field.
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