
Scientific Programming 17 (2009) 97–111 97
DOI 10.3233/SPR-2009-0274
IOS Press

High performance protein sequence database
scanning on the Cell Broadband Engine

Adrianto Wirawan, Bertil Schmidt, Huiliang Zhang and Chee Keong Kwoh
School of Computer Engineering, Nanyang Technological University, Singapore
E-mails: {adri0004, asbschmidt, hlzhang, asckkwoh}@ntu.edu.sg

Abstract. The enormous growth of biological sequence databases has caused bioinformatics to be rapidly moving towards a
data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing
rapidly as well. The recent emergence of low cost parallel multicore accelerator technologies has made it possible to reduce
execution times of many bioinformatics applications. In this paper, we demonstrate how the Cell Broadband Engine can be used
as a computational platform to accelerate two approaches for protein sequence database scanning: exhaustive and heuristic. We
present efficient parallelization techniques for two representative algorithms: the dynamic programming based Smith–Waterman
algorithm and the popular BLASTP heuristic. Their implementation on a Playstation®3 leads to significant runtime savings
compared to corresponding sequential implementations.

Keywords: Heterogeneous multi-cores, Cell BE, bioinformatics, dynamic programming, BLAST

1. Introduction

Scanning genomic sequence databases is a common
and often repeated task in molecular biology. The scan
operation consists of finding similarities between a par-
ticular query sequence and all sequences of a bank.
There are two basic algorithmic approaches to perform
this scanning.

1. Exhaustive dynamic programming algorithms.
This approach computes an optimal pairwise
alignment between the query sequence and each
subject sequence in the database. The dynamic
programming (DP) based Smith–Waterman (SW)
algorithm [20] for computing the optimal local
alignment is commonly used for this task.

2. Heuristics. This approach generates alignments
that are valid paths through the underlying align-
ment model but are not guaranteed to be optimal.
However, these alignments can generally be cal-
culated more rapidly than in the exhaustive ap-
proach. Heuristics are based on filtration. Filtra-
tion assumes that good alignments usually con-
tain short exact matches. Such matches can be
quickly identified using data structures such as
lookup tables. Identified matches are then used as
seeds for further detailed analysis. Several filtra-
tion tools for sequence database searching have

been introduced, e.g. [2,9,11]. Among them,
BLAST (the Basic Local Alignment Search
Tool [1,2]) is the most popular software and is
used to run millions of queries each day.

The computational complexity of the exhaustive ap-
proach is quadratic with respect to the lengths of
the alignment targets (query sequence and subject se-
quence). Filtration has been introduced as a heuris-
tic to reduce the complexity at the cost of a generally
lower quality of the results [3]. However, evaluating
a single query to a large database such as GenBank
with BLAST still takes several minutes on a modern
workstation. These runtime requirements are likely to
become even more severe due to the rapid growth of
the sizes of genomic sequence databases. Hence, find-
ing fast solutions for both algorithmic approaches is of
high importance to research.

In this paper we present new approaches to paral-
lelize the scanning of protein databases using both the
exhaustive SW approach and the BLASTP heuristic on
the Cell Broadband Engine (Cell BE) processor. The
design of efficient parallel algorithms on the Cell BE
requires the partitioning of computation and communi-
cation between its heterogeneous cores. Furthermore,
data has to be organized to deal with a highly restricted
amount of local memory and to allow SIMD vectoriza-
tion, if possible.

1058-9244/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194959371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

98 A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE

The SW algorithm has a highly regular structure
and can therefore easily be vectorized. The approach
chosen in this paper uses vectors of elements paral-
lel to the query sequence. This simplifies the depen-
dency relationship and parallel loading of the vector
scores from memory can be achieved, thus accelerating
the DP matrix calculation. Our implementation on a
Playstation®3 (PS3) performs from 2 to 30 times faster
than any other previous attempt available on commod-
ity hardware.

Compared to the highly regular SW algorithm, par-
allelization of BLASTP requires a different approach
since it consists of a pipeline of computations with dif-
ferent memory and processing requirements. In order
to exploit the characteristics of the Cell BE processor
we have used a compressed deterministic finite state
automaton for hit detection in order to reduce memory
consumption as well as a double-buffered communi-
cation scheme. Our implementation on a PS3 achieves
an average speedup of 3.2 compared to the optimized
FSA-BLASTP tool and 3.6 compared to the commonly
used NCBI-BLASTP software on a Pentium 4, 3 GHz.

The rest of the paper is organized as follows. Sec-
tion 2 highlights features of the Cell BE architec-
ture (CBEA). An overview of the SW algorithm, the
BLASTP algorithm and previous parallelization ap-
proaches is given in Section 3. Section 4 presents our
parallelization approaches on the Cell BE Performance
is evaluated in Section 5. Section 6 concludes the pa-
per.

2. Cell BE architecture

The Cell BE [8] is a single-chip heterogeneous
multi-core processor. It contains two types of proces-
sors: a PowerPC Processor Element (PPE) and eight
Synergistic Processor Elements (SPEs) [10]. An inte-
grated high-bandwidth bus called the Element Inter-
connect Bus (EIB) connects the processors and their
ports to external memory and I/O devices. A block di-
agram of the Cell BE is shown in Fig. 1. The PPE is a
64-bit PowerPC architecture. It is fully compliant with
the 64-bit Power Architecture specification and can run
32-bit and 64-bit operating systems and applications.
Each SPE is able to run its own individual application
program. It consists of a processor designed for stream-
ing workloads, a local memory, and a globally coher-
ent DMA engine. The SPE implements a Cell-specific
set of SIMD instructions. With all eight SPEs active,
the Cell BE is capable of a peak performance of around
200 GFlops using single precision floating point arith-
metic.

Although it is a multiprocessor system on a chip, the
Cell BE processor is not a traditional shared-memory
multiprocessor. One of the major characteristics is that
an SPE can execute programs and directly load and
store data only from and to its private Local Store (LS).
Since SPEs lack shared memory, they must communi-
cate explicitly with the PPE or other SPEs using one of
three available communication mechanisms:

Fig. 1. Block diagram of the CBEA.

A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE 99

– DMA transfers,
– mailbox messages, and
– signal-notification messages.

All three communication mechanisms are controlled
by the SPE’s MFC (Memory Flow Controller).

The design of a parallel algorithm on the Cell BE re-
quires an efficient partitioning of the computation be-
tween PPE and SPEs. A general approach is to per-
form as much as possible computations on the SPEs
while the PPE is used for coordinating the control flow.
Furthermore, the local memory (LS) of an SPE is very
limited (only 256 kB for storing both instructions and
data). Therefore, parallelized applications on the Cell
BE need to be carefully structured in order to ensure
that data transfers between main memory and SPEs do
not become a bottleneck.

The PS3 uses the Cell BE as its processor, hence
making it possible for users to create a high-powered
computing environment for a fraction of the cost of a
Cell Blade server. The PS3 utilizes seven of the eight
SPEs, in which the eighth SPE is disabled to improve
chip yields, i.e. chips do not have to be discarded if one
of the SPEs is defective. Only six of the seven SPEs are
accessible to developers as one is reserved by the op-
erating system. Generally available PS3’s can be used
for scientific high performance computing through in-
stallation of Linux. Programs can be developed using
the freely available C-based Cell BE SDK. Thus, the
PS3 offers a good alternative to other accelerator tech-
nologies such as FPGAs or GPUs.

3. Related work

3.1. Smith–Waterman algorithm

Surprising relationships have been discovered be-
tween protein sequences that have little overall simi-
larity but in which similar subsequences can be found.
In that sense, the identification of similar subsequences
is probably the most useful and practical method for
comparing two sequences. The Smith–Waterman algo-
rithm finds the most similar subsequences of two se-
quences (the local alignment) by dynamic program-
ming (DP). The algorithm compares two sequences
by computing a distance that represents the minimal
cost of transforming one segment into another. Two el-
ementary operations are used: substitution and inser-
tion/deletion (also called a gap operation). Through se-
ries of such elementary operations, any segments can
be transformed into any other segment. The smallest

number of operations required to change one segment
into another can be taken into as the measure of the
distance between the segments.

Consider two strings S1 and S2 of length l1 and l2.
To identify common subsequences, the Smith–Water-
man algorithm computes the similarity H(i, j) of two
sequences ending at position i and j of the two se-
quences S1 and S2. The computation of H(i, j), for
1 � i � l1, 1 � j � l2, is given by the following
recurrences:

H(i, j) = max{0, E(i, j), F (i, j),

H(i − 1, j − 1)

+ sbt(S1[i], S2[j])},

E(i, j) = max{H(i, j − 1)

− α, E(i, j − 1) − β},

F (i, j) = max{H(i − 1, j)

− α, F (i − 1, j) − β},

where sbt is a character substitution cost table. Ini-
tialization of these values are given by H(i, 0) =
E(i, 0) = H(0, j) = F (0, j) = 0 for 0 � i � l1,
0 � j � l2. Multiple gap costs are taken into account
as follows: α is the cost of the first gap; β is the cost of
the following gaps. This type of gap cost is known as
affine gap penalty. Some applications also use a linear
gap penalty, i.e. α = β. For linear gap penalties the
above recurrence relations can be simplified to:

H(i, j) = max{0, H(i, j − 1) − α, H(i − 1, j)

− α, H(i − 1, j − 1)

+ sbt(S1[i], S2[j])}.

Each position of the matrix H is a similarity value.
The two segments of S1 and S2 producing this value
can be determined by a traceback procedure. Figure 2
illustrates an example.

3.2. Hardware-accelerated Smith–Waterman

The recent emergence of accelerator technologies
such as FPGAs, GPUs, and specialized processors
have made it possible to achieve an excellent improve-
ment in execution time for many bioinformatics ap-
plications, compared to current general-purpose plat-
forms. However, special-purpose hardware implemen-
tations such as FPGAs [12,16] tend to be very expen-

100 A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE

Fig. 2. Example of the Smith–Waterman algorithm to compute the local alignment between two DNA sequences ATCTCGTATGATG and
GTCTATCAC. The matrix H(i, j) is shown for the linear gap cost α = 1, and a substitution cost of +2 if the characters are identical and −1
otherwise. From the highest score (+10 in the example), a traceback procedure delivers the corresponding alignment (shaded cells), the two
subsequences TCGTATGA and TCTATCA.

sive and hard-to-program. Hence, they are not suitable
for many users. Recent usage of easily accessible ac-
celerator technologies to improve the search time of
the SW algorithm include Intel SSE2 [6] and GPUs
[13,14].

Farrar [6] exploits the SSE2 SIMD multimedia ex-
tension of general-purpose CPUs. His implementation
utilizes vector registers, which are parallel to the query
sequence and are accessed in a striped pattern. Simi-
lar to the implementation by Rognes and Seeberg [18],
a query profile is calculated only once for each data-
base search. However, Farrar’s implementation allows
moving the conditional calculation of the F -matrix
outside the inner loop. Therefore, this implementation
achieves a speed up of factors 2–8 over the previous
SIMD implementations by Wozniak [21] and Rognes
and Seeberg [18].

Liu et al. [13] first reported the implementation of
the Smith–Waterman algorithm on graphics hardware.
The SW algorithm is implemented using the stream-
ing architecture of GPUs by reformulating it in terms
of computer graphics primitives. The implementation
relies on OpenGL, in which a conversion of the prob-
lem to the graphical domain is needed, as well as a re-
verse procedure to convert back the results. Although,
it achieves a high efficiency, programming in OpenGL
requires specialized skills. Therefore, Manavski and
Valle [14] re-implemented the SW algorithm on a GPU
with the recently released C-based CUDA program-
ming environment.

In this paper, we demonstrate how the PS3, a com-
modity hardware powered by the Cell BE, can be
used as a low cost computational platform to acceler-
ate the Smith–Waterman algorithm. Our implementa-
tion is able to outperform both the striped method as

well as the CUDA-based GPU implementation. A pre-
vious implementation by Sachdeva et al. [19] ports
the diagonal-based Smith–Waterman vectorization by
Wozniak [21] to the Cell BE. However, it uses only
eight sequences of exact length of 2048 amino acids,
which is a very small dataset. The papers by Rognes
and Seeberg [18] and Farrar [6] have also shown that
column-based vectorization is faster than diagonal-
based vectorization.

3.3. BLASTP algorithm

The basic idea for fast sequence database search is
filtration. Filtration assumes that good alignments usu-
ally contain short exact matches. Such matches can
be quickly computed by using data structures such as
lookup tables. Identified matches are then used as seeds
for further detailed analysis. The analysis pipeline of
the BLASTP algorithm is shown in Fig. 3. It consists
of four stages. Each stage progressively reduces the
search space in the database for significant alignment.
We briefly describe each step in the following. More
details can be found in [1,2].

Stage 1: This stage identifies hits. Each hit is de-
fined as an offset pair (i, j) for which

∑w−1
k=0 sbt(Q[i+

k], D[j + k]) � T , where sbt is a amino acid substi-
tution matrix (e.g. BLOSUM65), w is the user-defined
word length, T is a user-defined threshold, Q is the
query sequence and D is the database. BLASTP im-
plements this stage by preprocessing Q as follows. For
each position i of Q the neighborhood N (Q[i, . . . , i +
w − 1], T) is computed consisting of all w-mers p
for which

∑w−1
k=0 sbt(Q[i + k], p[k]) � T . The com-

plete neighborhood of a query is typically stored in
an efficient data structure such as a lookup table or

A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE 101

Fig. 3. The BLASTP processing pipeline.

a finite-state automaton. The default parameter values
are w = 3 and T = 11.

Stage 2: Stage 2 outputs HSPs (high-scoring seg-
ment pairs) between Q and D. HSPs are identi-
fied by performing an ungapped extensions on a di-
agonal d which contains a non-overlapping hit pair
(i1, j1), (i2, j2) within a window A; i.e. d = i1 − j1 =
i2 − j2 and w � i2 − i1 � A. If the resulting ungapped
alignment scores above a certain threshold it is passed
to Stage 3.

Stage 3: This stage outputs HSAs (high scoring
alignments) between Q and D. HSAs are identified by
performing a seeded banded gapped dynamic program-
ming based alignment algorithm using the previously
identified HSPs as seeds. Alignments that score above
a certain threshold are then passed to the final stage.

Stage 4: The final alignments of the highest scoring
sequences are calculated and displayed to the user. This
requires the computation of the traceback path using
the Smith–Waterman algorithm.

An execution profiling of the BLASTP algorithm for
scanning the Genbank non-redundant protein database
shows the following breakdown of execution time:

Stage 1: 37%, Stage 2: 31%,

Stage 3: 30%, Stage 4: 2%.

Hence, in order to efficiently map BLASTP on the
Cell BE all stages except Stage 4 need to be paral-
lelized. Previous work on parallelizing BLASTP has
focused on distributed memory architectures such as
clusters [15] and reconfigurable hardware [7]. This pa-
per is to our knowledge the first ever reported paral-
lelization of BLASTP on the Cell BE.

4. Parallelization of database scanning on
the Cell BE

4.1. Parallelization approach

In order to achieve an efficient parallelization of
protein sequence database scanning on the Cell BE
processor, we need to address the following chal-
lenges:

• Limited local storage of the SPE. A major limita-
tion when designing SPE kernels is that their lo-
cal memory is only 256 kB for both instructions
and data. Using default parameter for w and T the
size of the lookup table used for Stage 1 by NCBI
BLASTP is already around 400 kB for a query se-
quence of average length [5]. Therefore, we need
to use an alternative data structure which requires
significantly less memory.

• Data transfer and coordination between PPE and
SPEs. The runtime of the SW algorithm merely
depends on the length of the query and subject se-
quence. Therefore, a static load balancing strat-
egy can be used for this approach; i.e. the work
load is known at the start and distributed equally
across the SPEs. However, the different stages of
the BLASTP algorithm constitute a processing
pipeline where the throughput of each stage in the
pipeline depends on the filtration efficiency of the
previous stage. Therefore, an efficient and flexible
mechanism to transfer sequences from the data-
base to the SPEs needs to be implemented for this
approach.

• SIMD vectorization. There are two basic ap-
proaches to vectorize SW. All elements in the
same minor diagonal of the DP matrix can be
calculated independent of each other. Therefore,
a possible vectorization approach is to compute
the DP matrix in minor diagonal order [21]. An-
other approach vectorizes the DP matrix com-
putation in a column-wise order [6,18]. By us-
ing vectors of elements parallel to the query
sequence, the much-simplified dependency rela-
tionship and parallel loading of the vector scores
from memory can be achieved, thus accelerat-
ing the DP matrix calculation. We have decided
to use the column-based approach for vector-
ization on the Cell BE processor since: (1) the
column-based approach outperforms the minor-
diagonal approach on Intel SSE2 architectures,
and (2) since we only need to store one column of
the DP matrix instead of two diagonals for the mi-
nor diagonal method, the column-based approach
requires less SPE memory.

102 A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE

4.2. Smith–Waterman

Our parallelization takes advantage of the 128-bit
wide SIMD vector registers of each SPEs. The vector-
ization strategy is based on a column-based approach
[6,18]. It also employs a static load balancing strategy,
which means that the work load is known at the start
and distributed equally across the SPEs. Figure 4 illus-
trates the mapping of different stages of SW-based pro-
tein sequence database scanning application onto the
Cell BE processor. The PPE starts by reading the query
sequence and the database from the respective files. It
then pre-processes the query sequence such that it is
suitable for vector operations. The pre-processed query
sequence, together with some context data, is sent to
each respective SPEs, which in turn will generate its
own query profile. This process is done using DMA
transfers, namely mfc_get() and mfc_put().

Given a database D consisting of |D| sequences and
k SPEs. Each SPE aligns the query sequence to |D|/k
database sequences. The pseudocode of the SPE code

is shown in Fig. 5. Scores obtained from those align-
ments are sorted locally in the SPEs and the b highest
scores are sent to the PPE, where they are sorted once
again to obtain the b overall highest scores.

The size of the SPE program in our implementa-
tion is 150 kB. The longest sequence in the Swiss-
Prot database is 35,213 amino acids (accession num-
ber A2ASS6). In order to accommodate such a long
protein sequence, we allocate dynamic memory of up
to 64 kB to store subject sequences. Our implementa-
tion also allocates 16 kB for the read buffer. Due to
these limitations, the maximum query sequence length
allowed for our implementation is limited to 852.

In order to calculate H(i, j) in the SW DP ma-
trix, the value sbt(S1[i], S2[j]) needs to be added to
H(i − 1, j − 1). To avoid performing this table lookup
for each element in the DP matrix, Rognes and See-
berg [18] and Farrar [6] suggested calculating a query
profile parallel to the query sequence beforehand. As-
suming that S1, S2 ∈ Σ∗ and S1 is the query sequence,
the query profile is defined as a set P = {Px | x ∈ Σ}

Fig. 4. Mapping of the different stages of database scanning with SW onto the Cell BE.

Input: SPE id i, total number of SPEs num, query sequence Q, chunk of databases
sequence Di+j·num, (0 � j � |D|/num)

Output: Database sequences with b highest SW-scores

1. Initialize
2. Fetch context data from PPE using DMA
3. Fetch query sequence Q
4. Fetch first database sequence Di

5. For j = 0 to |D|/num do
5a. Compute SW-score between Q and Di+j·num
5b. Insert score into list of sorted scores
5c. Fetch next database sequence Di+(j+1)·num
6. Send b highest scores with associated sequence id’s to PPE using DMA

Fig. 5. Pseudocode of the program running on SPE(i).

A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE 103

Fig. 6. The query profile layout for (a) sequential method, (b) striped method.

consisting of |Σ| numerical strings of length l1 each,
where l1 = |S1 |. Each string Px ∈ P consists of
all substitution table values that are needed to com-
pute a complete column j of the DP matrix for which
S2[j] = x. Pre-computing the query profile greatly re-
duces the amount of substitution table lookup in the
SW DP matrix computation, since |Σ| is usually much
smaller than |S2 |.

The query profile can be calculated in a straightfor-
ward sequential layout [18] (see Fig. 6(a)) or in a more
complex striped layout [6] (see Fig. 6(b)). The values
in the query profile are defined as:

Px[i] = sbt(S1[i], x)

for all 1 � i � l1 [sequential layout],

Px[i] = sbt

(
S1

[
(((i − 1)%p)t)

+
⌊

i − 1
p

⌋
+ 1

]
, x

)

for all 1 � i � l1 [striped layout],

where p is the number of segments and t is the segment
length.

In the striped layout, p corresponds to the number of
elements that can be processed in a SIMD vector regis-
ter (e.g. for 128-bit wide SIMD registers, p = 8 when
using 16-bit precision). The length of each segment, t,
is equal to �(l1 + p − 1)/p�.

Both approaches allow efficient vectorization on
SSE2-compatible processors using the corresponding
SIMD instruction set. Using the pre-calculated query
profile, the computation of the DP matrix can be per-
formed in column-wise order. Due to the simplified de-
pendency relationship and parallel loading of the vec-
tor scores from memory, fast DP matrix calculations
can be achieved. The advantage of the striped layout
compared to the sequential layout is that data depen-
dencies between vector registers are moved outside the
inner loop. For instance, when calculating vectors for
the DP matrices H or F with the sequential layout, the
last element in the previous vector has to be moved to
the first element in the current vector. When using the
striped query layout, this needs to be done just once
in the outer loop when processing the next subject se-
quence character. We have, therefore, chosen to map
the striped layout onto the Cell BE processor.

In addition, the inner loop of the algorithm re-
quires saturation arithmetic, namely saturated addi-
tions and saturated subtractions. However, different
from the SSE2 instruction set, the Cell BE proces-
sor lacks the saturation arithmetic support. In order
to tackle this problem, we have introduced two new
functions, namely spu_adds() and spu_subs() to han-
dle saturated additions and saturated subtractions, re-
spectively.

4.3. BLASTP

Figure 7 shows our mapping of the different stages
of the BLASTP algorithm onto the Cell BE. Stage 4

104 A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE

Fig. 7. Mapping of the different stages of the BLASTP algorithm onto the Cell BE.

Fig. 8. Illustration of the compressed FSA data structure for w = 3.

includes a ranking procedure on all database sequences
that have passed Stages 1–3: the top 500 or less match-
ing sequences whose scores exceed a certain threshold
are displayed in descending order. Thus, this stage is
performed by the PPE. SPE kernels filter the database
as follows. Information about all subject sequences
from the database that have passed Stages 1–3 on an
SPE are sent to the main storage. Subsequently, the
PPE completes Stages 1–4 for these subject sequences.
The reason why not only Stage 4 is performed on the
PPE is that this stage requires additional information
from the previous stages. Storing this on the SPEs
would be too memory-intensive in terms of both data
and instructions. Therefore, we have decided to repeat
Stages 1–3 on the PPE. Please note that this redundant
computation is merely performed for very few sub-
ject sequences the additional runtime is relatively small
(see Section 5 for details).

As mentioned above, the size of the codeword
lookup data structure used by NCBI BLAST is too

large for the local store of the SPEs. Therefore, we
are using a more memory-efficient data structure for
Stage 1. The utilized data structure is a compressed de-
terministic finite-state automaton (DFA), which is sim-
ilar to the approach used by FSA-BLAST [4,5]. The
compressed DFA for w = 3 is illustrated in Fig. 8.

Each possible prefix of lengths w − 1 is represented
by a state; i.e. for w = 3 there are 400 states repre-
senting the prefixes AA to YY, which are stored in the
array DFA[i] in Fig. 8. Each state has two transitions:
one to the next state (DFA[i].next) and one to a list of
20 words (DFA[i].nextWords). Each entry in this list
(currentBlock[0 . . . 19]) contains a pointer to an array
of query positions. These query positions represent the
neighborhood N (w, T) of the associated w-mer. This
data structure allows the compression of frequently
used query positions that are in neighborhoods of sim-
ilar w-mers. For example in Fig. 8, N (‘CYY’, T) =
{33, 16, 7} and N = {‘CYA’, T} = {16, 7}. By stor-
ing these positions in subsequent order terminated by

A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE 105

“0” it is possible to re-use memory for both neighbor-
hoods. Our experiments have shown that the size the
compressed DFA is only 43.8 kB on average. Hence, it
is possible to store the complete data structure on each
SPE for most queries.

The DFA is transferred into each SPE. The PPE
then reads sequences from the database and transfers
them to the SPEs by Direct Memory Access (DMA).
In order to hide latencies and achieve good load bal-
ancing, we have implemented four buffers per SPE
on main memory and two buffers on each SPE’s lo-
cal store (see Fig. 9). Our double buffering scheme al-
lows SPEs to receive a new subject sequence through
DMA while processing another previously received se-
quence. The PPE continuously prepares sequence data
for free buffers. Once a buffer is filled, the PPE sends
a mailbox notification to the corresponding SPE. The
number of buffers in the PPE for each SPE is there-
fore restricted by the size of the SPE’s Read Inbound

Mailbox (which is four). Furthermore, the PPE dynam-
ically assigns protein sequences to buffers depending
on their lengths and the available memory. The maxi-
mum number of sequences inside a buffer is 32.

All sequences inside a buffer are filtered by
Stages 1–3 on one of the SPEs. If a sequence passes all
these stages, the corresponding bit in the matching sig-
nal (32 bits) is set. After all sequences are processed,
this matching signal is sent back to the PPE via a mail-
box. The PPE then identifies all sequences that have
passed Stages 1–3 on SPE and perform Stages 1–4 on
them.

Pseudocodes of the programs running on the PPE
and each SPE are shown in Figs 10 and 11. The size
of the SPE program is 100 kB. Thus, we have at
most 156 kB for storing the DFA data structure, the
two buffers as well as other parameters and interme-
diate results. Hence, we have assigned 10 kB to each
buffer and up to 80 kB to the DFA. 80 kB is suffi-

Fig. 9. Buffering scheme.

1. Initialization
2. Create DFA
3. Start SPEs and send parameters and DFA lookup table to SPEs
4. Check whether there is mail from SPEs

If there is a mail
Collect information of sequences that passed Stages 1–3 and keep in a queue
Mark the corresponding buffer as free

5. Check whether there is a free buffer
If a free buffer is found

Prepare data into it and mark it as occupied
Else

Do BLASTP searching Stages 1 and 2 for sequences in the queue
6. Repeat 4–5 until there is no sequence in database
7. Send commands to SPEs to complete last buffered sequences
8. Wait until all buffers are marked as free
9. Do BLASTP Stages 3 and 4

Fig. 10. Pseudocode of the program running on the PPE.

106 A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE

1. Initialization
2. Receiving parameters and DFA from PPE
3. Receiving mail with command from PPE
4. If command is new-data-available

DMA the new data
If this is the 1st data

Goto 3
Else

4.5 Wait for last data to be completely DMA transferred
Do Stages 1–3 for sequences in the last data

4.7 Return matching signal to PPE through SPU Write Outbound Mailbox
Goto 3

5. If command is finish-last-sequence
Do Stages 1–3 for sequences in the last data
Return matching signal to PPE through SPE Write Outbound Mailbox
Exit

Fig. 11. Pseudocode of the program running on the SPE.

cient for DFAs for query sequences of up to 2000 base-
pairs (bps). In our experiment, the average DFA size
is 43.8 kB. If the length of a subject sequence is over
10 kBps, it will be put directly into the sequence queue
of the PPE without sending it to an SPE. Furthermore,
some database sequences exceed a certain memory
threshold during they are processed on the SPE. Such
sequences will be marked and passed to the PPE for
further processing. Although, this creates additional
work, the number of such sequences is usually negli-
gible. It is also another reason why the PPE performs
all stages of the BLASTP algorithm instead of only
Stage 4. Furthermore, note that we do not return results
of matching sequences from SPEs because we do not
want to increase SPE code size by increasing program
complexity to return the search results.

5. Performance evaluation

5.1. Smith–Waterman

We analyze the performance of our parallel algo-
rithm for various query sequence lengths using se-
quences from Swiss-Prot database release 55.2 com-
prising 130,497,792 amino acids in 362,782 sequence
entries. Searches for 18 query sequences with various
lengths between 63–852 amino acids using the para-
meters α = 10, β = 2, and BLOSUM45 have been
performed. The experiments have been carried out on
a standalone PS®3 with the Linux Fedora 7 operat-

ing system and the Cell Software Development Kit
(SDK) 3.0.

The performance statistics measured are execution
time and MCUPS (Mega Cell Updates Per Second).
Given a query sequence of size Q and a database of
size D, MCUPS rating (million cell updates per sec-
ond) is calculated by:

|Q| × |D| × 106

t
,

where |Q| = size of query sequence in amino acids,
|D| = size of database sequences in amino acids, t =
run time (including input from file, initialization and
result output).

Table 1 shows the performance of our parallel al-
gorithm on the above mentioned datasets. By using
6 SPEs available in the PS3, our parallel algorithm
reaches a peak performance of 3,663.40 MCUPS for a
query sequence of length 852.

We express the execution time T of our implementa-
tion by: T = Toverhead +Tcomp, where Tcomp = compu-
tation time, i.e. time needed to compute all alignment
score and Toverhead = overhead time, i.e. initialization,
communication and result output.

In order to establish a theoretical saturation limit of
the performance of our implementation, we have es-
timated the overhead time of our Cell BE implemen-
tation. This was done by measuring the total runtime
for scanning Swiss-Prot 55.2 with a query sequence
of length one on a PS3. This yielded a time of T =
13.13 s. Since the query sequence is very small, Tcomp

A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE 107

Table 1

Performance of CBESW for different query sequences for scanning
Swiss-Prot 55.2

Accession Query sequence CBESW CBESW

number length (s) (MCUPS)

O29181 63 14.55 565.04

P03630 127 14.74 1124.37

P02232 143 14.97 1246.57

P05013 189 15.06 1637.72

P14942 222 15.18 1908.47

P00762 246 15.35 2091.37

P53765 255 15.49 2148.29

Q8ZGB4 361 17.57 2681.26

P10318 362 17.64 2678.02

P07327 374 17.90 2726.60

P01008 464 20.89 2898.56

P10635 497 21.34 3039.24

P58229 511 22.13 3013.30

P25705 553 22.84 3159.60

P42357 657 26.14 3279.92

P21177 729 27.85 3415.90

Q38941 850 30.29 3662.04

O60341 852 30.35 3663.40

is negligible and the overhead time, Toverhead is similar
to T , which is 13.13 s. From Table 1 we can see that
the percentage of Toverhead compared to T continuously
decreases with the query sequence length: it ranges
from 90.24% (for shortest query sequence) to 43.26%
(for the longest query sequence). We have therefore de-
rived a theoretical saturation limit of the performance
of our implementation by subtracting the overhead
time from the runtime for the longest query sequence
(852) as (130,497,792 × 852)/(30.35 s − 13.13 s) =
6.457 MCUPS.

Furthermore, we have compared the performance of
our CBESW implementation with other publicly avail-
able implementations of SW-based protein database
scanning, namely SSEARCH [17], Striped Smith–
Waterman (Striped SW) [6] and CUDA [14], as shown
in Fig. 12. SSEARCH is a SW implementation which
is part of the FASTA package. The SSEARCH and the
Striped SW performance is benchmarked on an Intel
Core Duo 2.4 GHz CPU with 1 GB RAM. Both codes
use only a single thread and therefore use only one of
the two available cores. The substitution matrix used
was BLOSUM45. Nine query sequences with lengths
of 63, 127, 255, 361, 511, 657, 729, 850 and 852 amino
acids are used. The comparison with the CUDA im-
plementation is benchmarked on a GeForce 8800GTX
512 installed in a PC with a Dual-Core AMD Opteron

2210 1.8 GHz CPU, 2 GB RAM running Fedora 6.
The substitution matrix used was BLOSUM50. Seven-
teen query sequences with lengths of 63, 127, 143, 189,
222, 246, 255, 361, 362, 374, 464, 497, 553, 657, 729,
850 and 852 amino acids were used.

As shown in Fig. 12, for a query sequence of length
852 (accession number O60341), SSEARCH, Striped
SW and CUDA achieve a performance of 121.91,
2220.09 and 1212 MCUPS, respectively. Hence, the
peak performance of our implementation is about
2–30 times faster compared to the other implementa-
tions.

5.2. BLASTP

We have implemented the described Cell BE
BLASTP program using CELL BE SDK 3.0 and eval-
uated it on a PlayStation®3 (PS3), which contains a
Cell BE as its main processor. In order to evaluate the
performance on a PS3, we have installed LINUX ver-
sion 2.6.23-rc3 (gcc version 4.1.1 20061011 (Red Hat
4.1.1-30)). Please note that on the PS3 only six out of
eight SPEs can be used for user programs. Therefore,
our experiments can only use up to six SPEs.

We have compared the performance of our Cell BE
BLASTP program to FSA-BLASTP (available from:
www.fsa-blast.org) and NCBI-BLASTP (www.ncbi.
nlm.nih.gov/BLAST/developer.shtml). FSA-BLAST
uses an optimized sequential algorithm and is around
15% faster than NCBI-BLASTP with no loss in ac-
curacy [4,5]. FSA-BLASTP and NCBI-BLASTP are
tested on a HP workstation xw4200 with Dual-core
Pentium®4 (P4) CPU 3 GHz, 2 GB of RAM. Both
codes use only a single thread and, therefore, use only
one of the two available cores. The Two-hit model [2]
is used for all BLASTP programs. Default values of
W = 3 and T = 11 are adopted. The produced match-
ing results by FSA-BLASTP and Cell BE BLASTP are
exactly the same.

The protein sequence database we used in our exper-
iments is the GenBank Non-Redundant Protein Data-
base (downloaded from: ftp://ftp.ncbi.nih.gov/blast/db/
FASTA/nr.gz), which contains 6,375,605 protein se-
quences. We have chosen 100 random sequences from
the database as queries. The lengths of the query
sequences are distributed uniformly between 1 and
2000 bps.

A performance comparison of the presented paral-
lel Cell BE BLASTP program to the sequential FSA-
BLASTP and NCBI-BLASTP programs are shown in
Fig. 13. It can be seen that Cell BE BLASTP is faster

108 A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE

Fig. 12. Performance comparison of CBESW to CUDA-SW, Striped-SW and SSEARCH.

Fig. 13. Runtime comparison between FSA-BLASTP on a P4 3 GHz and Cell BE BLASTP on a PS3 for varying query sequence lengths.

than FSA-BLAST in most cases. The average search-
ing times are 217.5 s for FSA-BLASTP, 244.75 s for
NCBI-BLASTP, and 67.97 s for Cell BE BLASTP.
This corresponds to an average speedup of 3.2 and 3.6,
respectively.

More detailed statistics are shown in Tables 2 and 3.
Table 2 shows the runtime of FSA-BLASTP for the
different stages. Note that the runtime for Stages 1
and 2 are combined since they are implemented in an
interleaved fashion. Separating them would require ad-
ditional memory for storing hits identified in Stage 1.
Table 3 shows the runtime of the corresponding stages
of Cell BE BLASTP on the PPE, whereby the runtime

Table 2

Detailed runtime analysis (in seconds) of FSA-BLASTP on a P4
3 GHz

Query length
range

FSA-BLASTP

Stages 1 and 2 Stage 3 Stage 4 Total

1–300 40.1 5.66 0.30 46.5

301–500 74.0 23.09 0.32 97.8

501–800 110.3 46.57 0.50 157.8

801–1100 151.0 50.98 0.92 203.4

1101–1400 183.0 76.32 1.80 261.6

1401–1700 216.9 109.01 3.22 329.6

1701–2000 241.8 141.53 2.02 385.9

A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE 109

Table 3

Detailed runtime analysis (in seconds) of Cell BE BLASTP on a PS3 (speedup is compared to the runtime in Table 2)

Query length
range

Cell BE BLASTP Speedup

Stages 1 and 2 on
PPE and all SPE

computation

Stage 3 on PPE Stage 4 on PPE Total

1–300 28.9 1.77 0.74 32.9 1.41

301–500 35.4 3.10 0.81 40.9 2.39

501–800 44.5 4.30 1.10 51.5 3.06

801–1100 52.8 4.74 1.83 61.6 3.33

1101–1400 61.8 10.25 4.18 79.0 3.31

1401–1700 67.2 15.19 7.98 92.4 3.57

1701–2000 83.9 18.77 4.57 109.0 3.54

Table 4

Average number of sequences processed by each stage of FSA-BLASTP on a P4 and by the PPE in Cell BE BLASTP

Query length FSA-BLASTP Cell BE BLASTP (PPE only) Matching output

Stages 1 and 2 Stage 3 Stages 1 and 2 Stage 3

Semi Gapped Semi Gapped

1–300 96,954 9443 2113 2062 1731 328

301–500 334,494 13,749 2591 2570 1462 324

501–800 617,225 19,602 5480 5471 3713 443

801–1100 6,375,605 586,139 24,163 5408 5402 3569 471

1101–1400 761,097 34,028 7193 7189 5178 443

1401–1700 1,096,186 43,616.1 15,404 15,402 12,901 438

1701–2000 1,206,705 38,761 6734 6733 4126 428

for Stages 1 and 2 on the PPE also includes the pre-
filtration steps (Stages 1–3) on the SPEs (see Fig. 7).
The speedup of the Cell BE mostly comes from this
step which is running on the six SPEs and the PPE
in parallel. Note that Stage 3 on the PPE is signif-
icantly faster compared to Step 3 of FSA-BLASTP
since it is executed for fewer sequences. The num-
bers of sequences that are processed in each stage by
FSA-BLASTP and in the PPE by Cell BE BLASTP
are shown in Table 4. In FSA-BLASTP, every database
sequence is processed by Stages 1 and 2. The PPE in
Cell BE BLASTP only processes a very small faction
of database sequences since most sequences have been
filtered by SPEs in parallel. This reduced number of
sequences contributes to the less total runtime of Cell
BE BLASTP. However, the ideal speedup of around six
is not reached since the parallel SPE filters add some
data transfer and coordination overhead and the PPE is
less powerful than a P4. It should also be noted that the
speedup for shorter query sequences is generally lower
since the runtime is too short to effectively compensate
for the associated overheads.

Also note that for Cell BE BLASTP in Table 4,
the number of database sequences is larger than the

number of found matching sequences. This can be ex-
plained as follows. Firstly, if a sequence is too long to
be sent to the SPE, it will be processed by the PPE di-
rectly. In the experiment, 72 sequences are longer than
the maximum buffer length (10 kB). Secondly, some
sequences in Stages 1–3 in the SPE exceed the maxi-
mum available memory space. These sequences are re-
turned as matches and need further processing on the
PPE.

Figure 13 also shows that some query sequences
require more processing time by both FSA-BLASTP
and Cell BE BLASTP than queries of similar lengths.
The statistics of the three such exceptional sequences
is shown in Table 5. It can be seen that for these three
queries, a bigger number of database sequences need
to be processed than average. This increases both CPU
and PPE workload.

6. Conclusion

In this paper, we have presented parallelization
strategies for scanning protein sequence databases on

110 A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE

Table 5

Runtime statistics (in seconds) of three exceptional sequences

Query length Method Time

Stages 1 and 2 Stage 3 Stage 4 Total

Semi Gapped

605 FSA-BLAST 63.55 160.89 6.40 0.80 232.13

Cell BE 58.65 11.63 1.85 1.88 75.61

1455 FSA-BLAST 138.97 348.58 0.38 24.96 513.43

Cell BE 84.48 65.49 1.28 66.17 219.43

1945 FSA-BLAST 225.87 316.33 1.02 2.63 546.35

Cell BE 132.11 109.53 1.36 6.98 251.52

Query length Method Number of sequences Matching output

Stages 1 and 2 Stage 3

Semi Gapped

605 FSA-BLAST 6, 375, 605 1, 890, 358 33, 061 500

Cell BE 5536 5536 2288 500

1455 FSA-BLAST 6, 375, 605 2, 981, 242 23, 895 500

Cell BE 8344 8344 4115 500

1945 FSA-BLAST 6, 375, 605 1, 555, 474 170, 541 500

Cell BE 27, 681 27, 677 25, 473 500

the Cell BE using two approaches: (1) the exhaus-
tive DP SW-method, and (2) the BLASTP heuris-
tic. In order to derive efficient mappings onto this
type of heterogeneous multi-core architecture, we have
utilized SIMD vectorization, parallel data partition-
ing and communication schemes, and a compressed
deterministic finite state automaton for hit detection
in order to reduce memory consumption. Our Cell
BE SW implementation achieves a performance of
up to 3663.46 MCUPS on a PS®3. This perfor-
mance of about 30 times faster than the straightfor-
ward C-implementation in SSEARCH. It is also 1.64
faster than the highly optimized striped SW implemen-
tation on an Intel processor and around 3 times faster
than a CUDA implementation on an Nvidia GeForce
8800GTX. Our BLASTP implementation on a PS®3
achieves an average speedup of 3.2 compared to the
optimized FSA-BLASTP and 3.6 compared to NCBI-
BLASTP. The very rapid growth of biological se-
quence databases demands even more powerful high-
performance solutions in the near future. Hence, our
results are especially encouraging since high perfor-
mance computer architectures are developing towards
heterogeneous multi-core systems. Therefore, the tech-
niques presented in this paper are of particular impor-
tance since they compare and analyze the efficiency of
parallelization approaches on different parallel archi-
tectures.

Acknowledgment

The work was supported by the A*Star BMRC Re-
search Grant 04/1/22/19/375.

References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers and D.J. Lip-
man, Basic local alignment search tool, Journal of Molecular
Biology 215(3) (1990), 403–410.

[2] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang,
W. Miller and D.J. Lipman, Gapped BLAST and PSI-BLAST:
A new generation of protein database search programs, Nucleic
Acid Research 25(7) (1997), 3389–3402.

[3] S. Brenner, C. Chothia and T. Hubbard, Assessing sequence
comparison methods with reliable structurally identified distant
evolutionary relationships, Biochemistry 95(11) (1998), 6073–
6078.

[4] M. Cameron, H.E. Williams and A. Cannane, Improved gapped
alignment in BLAST, IEEE Transactions on Computational Bi-
ology and Bioinformatics 1(3) (2004), 116–129.

[5] M. Cameron, H.E. Williams and A. Cannane, A determinis-
tic finite automaton for faster protein hit detection in BLAST,
Journal of Computational Biology 13(4) (2006), 965–978.

[6] M. Farrar, Striped Smith–Waterman speeds database searches
six times over other SIMD implementations, Bioinformatics
23(2) (2007), 156–161.

A. Wirawan et al. / High performance protein sequence database scanning on the Cell BE 111

[7] A. Jacob, J. Lancaster, B. Harris, J. Buhler and R. Chamberlain,
Mercury BLASTP: Accelerating protein sequence alignment,
ACM Transactions on Reconfigurable Technology and Systems
1(2) (2008), Article 9.

[8] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer
and D. Shippy, Introduction the Cell multiprocessor, IBM Jour-
nal of Research and Development 49(4/5) (2005), 598–604.

[9] W.J. Kent, BLAT – The BLAST-like alignment tool, Genome
Research 12(4) (2002), 656–664.

[10] M. Kistler, F. Perrone and F. Petrini, Cell multiprocessor com-
munication network: built for speed, IEEE Micro 26(3) (2006),
10–23.

[11] M. Li, B. Ma, D. Kisman and J. Tromp, Patternhunter II:
Highly sensitive and fast homology search, Journal of Bioin-
formatics and Computational Biology 2(3) (2004), 417–439.

[12] I.T. Li, W. Shum and K. Truong, 160-fold acceleration of the
Smith–Waterman algorithm using a field programmable gate
array (FPGA), BMC Bioinformatics 8(185) (2007).

[13] W. Liu, B. Schmidt, G. Voss and W. Müller-Wittig, Stream-
ing algorithms for biological sequence alignment on GPUs,
IEEE Transactions on Parallel and Distributed Systems 18(10)
(2007), 1270–1281.

[14] S.A. Manavski and G. Valle, CUDA compatible GPU cards as
efficient hardware accelerators for Smith–Waterman sequence
alignment, BMC Bioinformatics 9(Suppl. 2) (2008), S10.

[15] C. Oehmen and J. Nieplocha, ScalaBLAST: A scalable im-
plementation of BLAST for high-performance data-intensive

bioinformatics analysis, IEEE Transactions on Parallel and
Distributed Systems 17(8) (2006), 740–749.

[16] T. Oliver, B. Schmidt and D. Maskell, Reconfigurable archi-
tectures for bio-sequence database scanning on FPGAs, IEEE
Transactions on Circuits and Systems II 52(12) (2005), 851–
855.

[17] W.R. Pearson, Flexible sequence similarity searching with the
FASTA3 program package, Methods in Molecular Biology 132
(2000), 185–219.

[18] T. Rognes and E. Seeberg, Six-fold speed-up of Smith–
Waterman sequence database searches using parallel process-
ing on common microprocessors, Bioinformatics 16(8) (2000),
699–706.

[19] V. Sachdeva, M. Kistler, E. Speight and K. Tzeng, Exploring
the viability of the Cell Broadband Engine for bioinformat-
ics applications, in: 6th IEEE International Workshop on High
Performance Computational Biology (HiCOMB 2007), Long
Beach, CA, USA, 2007.

[20] T.F. Smith and M.S. Waterman, Identification of common
molecular subsequences, Journal of Molecular Biology 147(1)
(1981), 195–197.

[21] A. Wozniak, Using video-oriented instructions to speed up
sequence comparison, Computer Applications in Biosciences
13(2) (1997), 145–150.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

