
Research Article
Efficient Resources Provisioning Based on
Load Forecasting in Cloud

Rongdong Hu,1 Jingfei Jiang,1 Guangming Liu,1,2 and Lixin Wang1

1 School of Computer, National University of Defense Technology, Changsha 410073, China
2National Supercomputer Center, Tianjin 300457, China

Correspondence should be addressed to Rongdong Hu; rongdonghu@nudt.edu.cn

Received 4 November 2013; Accepted 19 December 2013; Published 20 February 2014

Academic Editors: J. Comellas, J.-X. Du, and S.-S. Liaw

Copyright © 2014 Rongdong Hu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud providers should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in
a fine-grained mode according to application’s actual resources demand. The necessary precondition of this strategy is obtaining
future load information in advance.We propose amulti-step-ahead load forecastingmethod, KSwSVR, based on statistical learning
theorywhich is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved
support vector regression algorithm and Kalman smoother. Public trace data taken from multitypes of resources were used to
verify its prediction accuracy, stability, and adaptability, comparing with AR, BPNN, and standard SVR. Subsequently, based on the
predicted results, a simple and efficient strategy is proposed for resource provisioning. CPU allocation experiment indicated it can
effectively reduce resources consumption while meeting service level agreements requirements.

1. Introduction

Cloud computing offers near-infinite amount of resources
capacity (e.g., CPU, memory, Network I/O, disk, etc.) at a
competitive rate and allows customers to obtain resources
on-demand with pay-as-you-go pricing model. Instead of
incurring high upfront costs in purchasing InformationTech-
nology (IT) infrastructure and dealing with the maintenance
and upgrades of both software and hardware, organizations
can outsource their computational needs to the cloud. The
proliferation of cloud computing has resulted in the estab-
lishment of large-scale data centers containing thousands
of computing nodes and consuming enormous amounts of
electrical energy.

According to previous studies in the past decade, the rea-
son for this extremely high energy consumption is not just the
quantity of computing resources and the power inefficiency of
hardware but rather the inefficient usage of these resources.
The data collected from more than 5000 production servers
over a 6-month period have shown that although servers
usually are not idle, the utilization rarely approaches 100%.
Most of the time, servers operate at 10%∼50% of their full

capacity, leading to extra expenses on overprovisioning and
thus extra total cost of acquisition [1]. Another problem is
the narrow dynamic power range of servers. Even completely
idle servers still consume about 70% of their peak power [2].
Therefore, keeping servers underutilized is highly inefficient
from the energy consumption perspective.

Many techniques can improve energy efficiency, such
as improvement of applications’ algorithms, energy efficient
hardware, Dynamic Voltage and Frequency Scaling (DVFS),
terminal servers, and thin clients. Cloud computing mainly
leverages the capabilities of the virtualization technology to
address the energy inefficiency problem [3]. The virtualiza-
tion technology allows cloud providers to create multiple
virtual machine (VM) instances on a single physical server,
thus improving the utilization of resources and increasing the
return on investment. The reduction in energy consumption
can be achieved by switching idle nodes to low-power modes
(i.e., sleep or hibernation), thus eliminating the idle power
consumption.Moreover, by using livemigration [4], the VMs
can be dynamically consolidated to the minimal number of
physical nodes according to their current resources require-
ments.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 321231, 12 pages
http://dx.doi.org/10.1155/2014/321231



2 The Scientific World Journal

However, virtualization also creates a new problem. One
essential requirement of a cloud computing environment
is providing reliable QoS defined in terms of service level
agreements (SLA). Modern applications often experience
highly variable workloads causing dynamic resources usage
patterns. The consolidation of VMs can lead to performance
degradation when an application encounters an increasing
demand resulting in an unexpected rise of resources usage.
This may lead to SLA violation—increasing response times,
time outs, or failures. Overprovisioning may help to ensure
SLA, but it leads to inefficiency when the load decreases. The
optimal strategy is to timely adjust resources provisioning
according to the actual demands of the application. The pre-
condition of this approach is to find out the future workload.

The focus of this work is on improving the efficiency
of resources provisioning by forecasting the load of various
resources in cloud. We propose a multi-step-ahead load
prediction method, KSwSVR, mainly based on statistical
learning technology, support vector regression (SVR), which
is suitable for the complex and dynamic characteristics of the
cloud computing environment. To the best of our knowledge,
it is the first time that SVR is used for load forecasting in
cloud. KSwSVR integrates our improved SVR algorithm and
Kalman smoothing technology. Experiments with public
trace data have shown that, in comparison with AutoRegres-
sive (AR), Back-Propagation Neural Network (BPNN), and
standard SVR, KSwSVR always has the minimum prediction
error. Furthermore, KSwSVR is very stable; that is, its pre-
diction error increases quite slowly when the predicted steps
increase. We also verified the broad adaptability of KSwSVR
with real trace data of various resources related to network,
CPU, memory, and storage systems. Based on the predicted
results, a simple and efficient strategy is proposed for resource
provisioning, considering the variations of prediction error
and SLA levels. Finally, the usefulness of this method is
demonstrated in a CPU allocation experiment. With the
assistance of KSwSVR, dynamic provisioning strategy can
save 17.20%∼48.12% CPU capacities under different SLA
levels, comparing with static provisioning.

The rest of this paper is organized as follows. Section 2
describes the background andmotivation. Section 3 discusses
the detailed design and implementation of the proposed
approach and Section 4 presents the experimental evaluation.
Section 5 examines the related work and Section 6 makes the
conclusion.

2. Background and Motivation

2.1. Definitions

2.1.1. Load. The object processed by the entity. For different
entities, load refers to different objects, such as user requests
of web server, computing tasks of CPU, read/write requests of
storage system, and I/O requests of external device.

2.1.2. Utilization/Usage. The amount of system resources
used by applications, usually expressed as the ratio of the used
part to the total resource. Efficient utilization/usage means

that applications use the resources allocated to them as fully
as possible.

2.1.3. QoS. Quality of service refer to a certain level of
performance and availability of a service. It also covers other
aspects which are outside the scope of this paper, such as
security and reliability.

2.1.4. SLA. Service level agreements, a series of goals
obtained through negotiating between service providers and
customers. Its purpose is to achieve and maintain a specific
QoS. Typical parameters of cloud computing SLA include
CPU and memory capacity, resource expansion speed and
permissions, resource availability and reliability, application
response time, communication delay, and security and pri-
vacy. It also defines the penalties that should be imposed
when someone violates the relevant terms.

2.1.5. VM Size. The quantity of each resource of virtual
machine, such as CPU,memory, storage, bandwidth. It is usu-
ally a multidimensional variable, for example, “2core∗3GHz
CPU, 2G memory, 30G disk, and 10M bandwidth”.

2.2. Load in Cloud. With the proliferation of private and pub-
lic cloud data centers, it is quite common today to lease virtual
machines to host applications instead of physical machines.
Cloud users typically pay for a statically configured VM size,
irrespective of the actual resources consumption of the appli-
cation (e.g., Amazon EC2). This charging mode is obviously
unreasonable especially for applications with variable load. It
is usually difficult for cloud users to figure out which size of
VM is suitable for their applications as their loads are rarely
constant. They certainly do not like to pay for the resources
they hold but not use when load is light. Furthermore, they
have to face the risk of performance degradation when the
load is heavy. In addition, cloud providers, such as Amazon
EC2, provide resources on a VM basis. VMs are added,
released, or migrated according to variation of load. Each
process involves significant overhead but does not bring any
actual benefit. It would be highly desirable for cloud providers
to provide dynamically finer-grained online scalable services
that allocate resources according to application’s demand that
could encourage the customer to pay a higher price for better
service compared to paying a flat fee based on the size of
their VMs. Moreover, cloud providers can have the flexibility
to dynamically optimize the resources allocation, improve
resources utilization, and achieve maximum benefit.

Timely and dynamic fine-grained online scalability will
greatly increase the pressure on management system to
rapidly detect and resolve SLA violation problems. Typically,
problem detection is done by specifying threshold tests.
Examples include “Do ping response times exceed 0.5s?” and
“Are HTTP operations greater than 12 per second on server?”
Unfortunately, once the detection occurs, there is often little
time to take corrective actions. In addition, if the load changes
dramatically, there will be frequent SLA violations. It is
desirable that the resources can be acquired earlier than the
time when the load actually increases. We need a predictive



The Scientific World Journal 3
Tw

ee
ts 

pe
r m

in
ut

e
11

:0
0

am

11
:2
0

am

11
:4
0

am

12
:0
0

pm

12
:2
0

pm

12
:4
0

pm

1
:0
0

pm

Today
Last week

Figure 1: Load of Twitter on Obama’s inauguration day.

solution instead of a reactive strategy.This outcome would be
possible only if the future load can be predicted. According to
the predictive value, we can prepare for retrieving upcoming
idle resources, providing them to other users or converting
them to energy saving mode in advance or we can add
resources for the upcoming peak load in advance to ensure
a stable QoS.

However, load forecasting is difficult in cloud computing
environment for the following reasons. First, most modern
applications have fluctuant loads which lead to complex
behaviors in resources usages as their intensity and com-
position change over time. For example, Figure 1 depicts a
real-world scenario wherein Twitter experienced dramatic
load fluctuations on Obama’s inauguration day [5]. Such a
load is very typical in modern commercial websites, and
load forecasting for such application is not easy. Second,
for security and privacy, cloud service providers are usually
forbidden to access the internal details of the application.
So, cloud management system cannot take advantage of
the application’s internal characteristics (e.g., a loop code
indicates that resources usage will exhibit periodic similarity)
to forecast load. For example, Niehorster et al. used sensors to
read the behavior of application [6]. It is infeasible in most
cases. Third, unlike traditional computing environment, in
cloud, the external environment which the applications have
to face is dynamic. Interference among applications hosted on
the same physical machine leads to complex resources usage
behaviors as they compete for various types of resources
which are hard to strictly partition. For instance, in the
exclusive nonvirtualized environment, an application with
constant workload should have relatively stable resources
demand. But in cloud where cohosted applications compete
for the shared last level cache or disk I/O bandwidth, the usage
of resources that can be strictly partitioned and allocated (e.g.,
CPU or memory) will likely fluctuate.

2.3. Support Vector Machine. Modern cloud computing dat-
acenters is comprised of heterogeneous and distributed
components, making them difficult to manage piecewise, let
alone as a whole. Furthermore, the scale, complexity, and
growth rate of these systems render any heuristic and rule-
based system management approaches insufficient. It is also
infeasible to forecast load by modeling the behaviors of the
various applications and their relationships to each other. In
response to these challenges, statistics-based techniques for
building gray or black box models of applications load can
better guide resources provisioning decision in cloud. Our
study treats the load forecasting as a time series prediction
problem and makes use of statistical learning method—
support vector machine (SVM).

SVM was developed by Vapnik and used for many
machine learning tasks such as pattern recognition, object
classification, regression analysis, and time series prediction
[7]. It is based on the structural risk minimization (SRM)
principle which tries to control the model complexity as well
as the upper bound of generalization risk. The principle is
based on the fact that the generalization error is bounded by
the sum of the empirical error and a confidence interval term
that depends on the Vapnik-Chervonenkis (VC) dimension.
On the contrary, traditional regression techniques, including
traditional artificial neural networks (ANN) [8], are based on
empirical risk minimization (ERM) principle, which tries to
minimize the training error only. Furthermore, the learning
process ofANN is quite complex and inefficient formodeling,
and the choices of model structures and parameters are
lack of rigorous theoretical guidance. So, it may suffer from
overfitting or underfitting with ill-chosen parameters. In
contrast, SVMhas strict theory andmathematical foundation
that do not have the problem of local optimization and
dimensional disaster. It can achieve higher generalization
performance especially for small samples set. It has a limited
number of parameters to choose formodeling, and there exist
fast and memory-efficient algorithms.

SVR is the methodology by which a function is estimated
using observed data which in turn train the SVM. Its goal is to
construct a hyperplane that lays close to as many of the data
points as possible.This goal is achieved by arriving at themost
flat function which ensures that the error does not exceed a
threshold 𝜀. Flatness is defined in terms of minimum norm
whereas the error threshold is introduced as a constraint.
Slack variables are introduced to deal with the situations
where the above definition followed in the strict sense leads
to an infeasible solution.

When performing time series prediction by SVM, each
input vector 𝑥

𝑖
is defined as a finite set of consecutive

measurements of the series. The output vector 𝑦
𝑖
contains

the 𝑥
(𝑛+1)

observation, where 𝑛 determines the amount of
history data. Each combination (𝑥

𝑖
, 𝑦
𝑖
) constitutes a training

point. There are 𝑁 such training points used for fitting the
SVR. SVM is a linear learning machine. The linear function
is formulated in the high dimensional feature space, with the
form

𝑓 (𝑥) = 𝑤𝜙 (𝑥) + 𝑏, (1)



4 The Scientific World Journal

w

𝜙

Figure 2: Mapping data from input space to feature space.

where 𝑥 is nonlinearly mapped from the “input” space to
a higher dimension “feature” space via mapping function
𝜙; see Figure 2. To simplify the mapping, kernel function
𝐾(𝑥

𝑖
, 𝑥

𝑗
) = ⟨𝜙(𝑥

𝑖
), 𝜙(𝑥

𝑗
)⟩ is used. The most widely used

kernel functions are

linear: 𝐾(𝑥
𝑖
, 𝑥

𝑗
) = 𝑥

𝑇

𝑖
𝑥

𝑗

polynomial:𝐾(𝑥
𝑖
, 𝑥

𝑗
) = (𝛾𝑥

𝑇

𝑖
𝑥

𝑗
+ 𝑟)

𝑑

, 𝛾 ≥ 0

radial basis function (RBF): 𝐾(𝑥

𝑖
, 𝑥

𝑗
) =

exp(−𝛾‖𝑥
𝑖
− 𝑥

𝑗
‖

2
), 𝛾 ≥ 0

sigmoid:𝐾(𝑥
𝑖
, 𝑥

𝑗
) = tanh(𝛾𝑥𝑇

𝑖
𝑥

𝑗
+ 𝑟).

We choose the RBF kernel as it is easier to compute and
has fewer parameters to adjust.

The goal is to find “optimal” weights 𝑤 and threshold 𝑏
as well as to define the criteria for finding an “optimal” set
of weights. First is the “flatness” of the weights, which can
be measured by the Euclidean norm (i.e., minimize‖𝑤‖2).
Second is the error 𝑅emp generated by the estimation process
of the value, also known as the empirical risk that is to be
minimized. The overall goal is to minimize the regularized
risk 𝑅reg (using the 𝜀-insensitive loss function) as

minimize𝑅reg =
1

2

‖𝑤‖

2
+ 𝑅emp

=

1

2

‖𝑤‖

2
+ 𝐶

𝑛

∑

𝑖=1

𝐿

𝜀
(𝑦

𝑖
, 𝑓 (𝑥

𝑖
)) ,

(2)

where

𝐿

𝜀
(𝑦

𝑖
, 𝑓 (𝑥

𝑖
)) =

{

{

{









𝑦

𝑖
− 𝑓 (𝑥

𝑖
)









− 𝜀









𝑦

𝑖
− 𝑓 (𝑥

𝑖
)









≥ 𝜀,

0 otherwise,
(3)

𝑅emp in (2) is measured by the 𝜀-insensitive loss function
𝐿

𝜀. 𝐶 is the regularization constant determining the tradeoff
between the empirical risk and regularized risk. It should be
noted that both 𝜀 and 𝐶 are user defined constants and are
typically computed empirically. Introduction of the positive
slack variables, 𝜁 and 𝜁∗, which, respectively, denote the errors

above and below 𝜀, leads (2) to the following constrained
function:

minimize 𝑅reg =
1

2

‖𝑤‖

2
+ 𝐶

𝑛

∑

𝑖=1

(𝜁

𝑖
+ 𝜁

∗

𝑖
)

subject to 𝑓 (𝑥

𝑖
) − 𝑤𝜙 (𝑥

𝑖
) − 𝑏

𝑖
≤ 𝜀 + 𝜁

𝑖

𝑤𝜙 (𝑥

𝑖
) + 𝑏

𝑖
− 𝑓 (𝑥

𝑖
) ≤ 𝜀 + 𝜁

∗

𝑖
,

𝜁

(∗)

𝑖
≥ 0.

(4)

From the implementation point of view, training SVM
is equivalent to solving a linearly constrained quadratic pro-
gramming (QP) problem with the number of variables equal
to the number of training data points.The sequentialminimal
optimization (SMO) algorithm [9] is very effective in training
SVMs for solving the regression estimation problem.

3. Approach

The main body of our multi-step-ahead load forecasting
method is based on our improved SVR. Rather than giving the
same consideration to the training data within a sliding win-
dow in standard SVR, our multi-step-ahead load forecasting
strategy gives more weight to more “important” data.

In order to enhance prediction accuracy, the Kalman
Smoother is used for data preprocessing. We argue that
Kalman smoother is suitable for the cloud application’s load
estimation because it was originally developed to estimate
time-varying states in dynamic systems.This approach essen-
tially uses a filtering technique to eliminate the noise of
resources usage signal coming from error of measurement
technique while still discovering its real main fluctuations.

We give this method a name, KSwSVR.

3.1. Kalman Smoother (KS). The Kalman filter [10] has been
widely used in the area of autonomous or assisted navigation.
One of the main advantages of the filter is that it can estimate
hidden parameters indirectly from measured data and can
integrate data from as many measurements as are available,
in an approximately optimal way.The Kalman filter estimates
the state 𝑥 of a discrete-time controlled process which is
governed by the linear stochastic difference equation:

𝑥

𝑘
= 𝐴𝑥

𝑘−1
+ 𝐵𝑢

𝑘−1
+ 𝑤

𝑘−1
. (5)

With a measurement 𝑧 that is

𝑧

𝑘
= 𝐻𝑥

𝑘
+ V
𝑘
, (6)

where 𝐴 is a transform matrix from time step 𝑘 − 1 to
𝑘. 𝑢
𝑘−1

represents a known vector. 𝐵 is a control matrix.
𝐻 is a matrix that presents the relation of 𝑧

𝑘
and 𝑥

𝑘
. The

random variables 𝑤
𝑘−1

∼ 𝑁(0, 𝑄

𝑘−1
) and V

𝑘
∼ 𝑁(0, 𝑅

𝑘
)

represent the process and measurement noise, respectively.
They are assumed to be white and independent of each other.
The Kalman filter estimates a process by using a form of
feedback control: the filter estimates the process state and
then obtains feedback in the form of (noisy) measurements.



The Scientific World Journal 5

As such, the equations for the Kalman filter fall into two
groups: time update (7) (predictor) and measurement update
equations (8) (corrector). 𝐾 is known as Kalman Gain. The
time update projects the current state estimate ahead of time.
Themeasurement update adjusts the projected estimate by an
actual measurement at that time

Time update 𝑥

−

𝑘
= 𝐴𝑥

𝑘−1
+ 𝐵𝑢

𝑘−1
,

𝑃

−

𝑘
= 𝐴𝑃

𝑘−1
𝐴

𝑇
+ 𝑄,

(7)

Measurement update 𝐾

𝑘
= 𝑃

−

𝑘
𝐻

𝑇
(𝐻𝑃

−

𝑘
𝐻

𝑇
+ 𝑅)

−1

,

𝑥

𝑘
= 𝑥

−

𝑘
+ 𝐾

𝑘
(𝑧

𝑘
− 𝐻𝑥

−

𝑘
) ,

𝑃

𝑘
= (𝐼 − 𝐾

𝑘
𝐻)𝑃

−

𝑘
.

(8)

TheKalman filter only considers𝑃(𝑥
𝑡
| 𝑦

0:𝑡
) as the filtered

estimate of 𝑥
𝑡
only takes into account the “past” information

relative to 𝑥
𝑡
. By incorporating the “future” observations

relative to 𝑥
𝑡
, we can obtain a more refined state estimate.

That is why we choose the Kalman smoother as our noise
reduction method. The Kalman smoother, which can be
calculated from the Kalman filter results by recursions,
estimates 𝑃(𝑥

𝑡
| 𝑦

0:𝑇
, 𝑡 < 𝑇), taking into account both past

and future information. It is also computationally attractive,
due to its recursive computation, since the production of the
next estimate only requires the updated measurements and
the previous estimations.

In our scenario of cloud application load, there is no
control input, so 𝑢 = 0. The noisy measurement is of the
state directly, so𝐻 = 1. We assume the state does not change
from step to step, so 𝐴 = 1. Given the existence of relatively
accurate measurement tools, we set 𝑄 = 0.1 and 𝑅 = 1.
Therefore, we use the (5) and (6) as follows:

𝑥

𝑘
= 𝑥

𝑘−1
+ 𝑤

𝑘−1
,

𝑧

𝑘
= 𝑥

𝑘
+ V
𝑘
,

𝑤 ∼ 𝑁 (0, 0.1) , V ∼ 𝑁 (0, 1) .

(9)

3.2. SVR with Weighted Training Data (wSVR). Treating
all data of a time series equally is clearly unreasonable.
We should take advantage of the data according to their
“importance”—usefulness of data for improving prediction
accuracy.

In the time series of nonstationary system, the depen-
dency between input variables and output variables gradually
changes over time. Specifically, recent past data could provide
more important information than the distant past data.
This conclusion is also true in this paper’s cloud scenario.
One of the most powerful arguments is locality of reference,
also known as principle of locality [11]. As one of the
cornerstones of computer science, locality of reference was
born from efforts to make virtual memory systems work
well, which is a phenomenon of the same value or related
storage locations being frequently accessed. But today, this
principal has found application well beyond virtual memory

and directly influenced the design of processor caches, disk
controller caches, storage hierarchies, network interfaces,
database systems, graphics display systems, human-computer
interfaces, individual application programs, search engines,
web browsers, edge caches for web-based environments, and
computer forensics.Therefore, we have good reason to believe
that cloud load would follow the law as well. Hence we
take the same principle that gives more weight to the more
important recent historical data of the load. The newer the
data are, the more important they are.

Another factor that influences the importance of data is
their “credibility.” In our multi-step-ahead load forecasting,
there are two types of data—measured data and predicted
data. Measured data refer to the true historical resources
usage information collected by the system monitor. Many
popular monitor tools, such as the top for Linux and the
xentop for Xen [3], are available for obtaining system infor-
mation (e.g., usage of CPU, memory, network, and block
device on host or VM). Monitor periodically collects system
information for decision making. As mentioned before,
cloud system is usually soft real time. Therefore, there is
generally not a severe time constraint on monitoring period.
Furthermore, too small monitoring granularity will bring
more decision making costs and is not conducive to the
improvement of system resource utilization. For example,
once every 5 seconds is enough. Measured data are believed
to have a high credibility (more important). Predicted data,
the result of load forecasting algorithm, have lower cred-
ibility (less important) because any prediction algorithm
has prediction error. A multi-step-ahead prediction can be
achieved by running one-step-ahead prediction iteratively.
Time series data related to once m-step-ahead prediction are
{. . . , 𝑥

𝑡−2
, 𝑥

𝑡−1
, 𝑥

𝑡
, 𝑥

𝑡+1
, 𝑥

𝑡+2
, . . . , 𝑥

𝑡+𝑚−1
}. The prediction of

𝑥

𝑡+𝑚−1
is based on the series {. . . , 𝑥

𝑡−2
, 𝑥

𝑡−1
, 𝑥

𝑡
, 𝑥

𝑡+1
, 𝑥

𝑡+2
, . . . ,

𝑥

𝑡+𝑚−2
}, where only {. . . , 𝑥

𝑡−2
, 𝑥

𝑡−1
} are themeasured data and

{𝑥

𝑡
, 𝑥

𝑡+1
, 𝑥

𝑡+2
, . . . , 𝑥

𝑡+𝑚−2
} are predicted data. This process is

based on a significant hypothesis that predicted data are
assumed to be measured data when performance next step
prediction. However, due to prediction error and dynamic
feature of cloud, this hypothesis cannot be satisfied all the
time when multi-step-ahead prediction carried out. Partic-
ularly, we need to address the accumulation of prediction
errors. Every one-step-ahead prediction may cause an error.
Therefore, using the former prediction results as the input
data for next prediction will cause accumulation of errors.
Figure 3 depicts the relationship between prediction mean
absolute error (MAE) and predicted steps, where the load
series we used is collected from a real world I/O trace of an
online transaction processing (OLTP) applications [12] and
predictor is AR(16) [13]. It indicates that with the increase of
predicted steps, the MAE is increasing drastically; that is, the
predicted data’s credibility is decreasing.

To sum up the above arguments, in multi-step-ahead
load forecasting of cloud, the importance of input data series
gradually increases and then decreases. The inflection point
is between last measured data and first predicted data.

From (2), it can be observed that the performance of SVR
is sensitive to the regularization constant 𝐶. A small value for
𝐶 will underfit the training data because the weight placed



6 The Scientific World Journal

1.2

1

0.8

0.6

0.4

0.2

0
5 10 15 20 25

Predicted steps

M
ea

n 
ab

so
lu

te
 er

ro
r

AR(16)

Figure 3: Relationship between MAE and predicted steps.

on the training data is too small thus resulting in large value
of prediction error. On the contrary, when 𝐶 is too large,
SVR will overfit the training data, leading to deterioration of
generalization performance.

By using a fixed value of𝐶 in the regularized risk function,
standard SVR assigns equal weights to all the 𝜀-insensitive
errors between the measured and predicted data, treating
two types of data equally. For illustration, the empirical risk
function in standard SVR is expressed by

𝑅emp std = 𝐶
𝑛

∑

𝑖=1

(𝜁

𝑖
+ 𝜁

∗

𝑖
) . (10)

As discussed above, this is unreasonable. Thus, it is
beneficial to place different weight on the 𝜀-insensitive
errors according to the importance of training data. So, we
add a weight coefficient 𝑤

𝑖
to the regularization constant,

translating the empirical risk function to

𝑅emp 𝑤 = 𝐶
𝑛

∑

𝑖=1

𝑤

𝑖
(𝜁

𝑖
+ 𝜁

∗

𝑖
) ,

𝑤

𝑖
= {

𝑓measured (𝑖) 𝑖 < 𝑡,

𝑓predicted (𝑖) 𝑖 ≥ 𝑡,

(11)

where 𝑓measured(𝑖) is monotonically increasing function for
measured data, while 𝑓predicted(𝑖) is monotonically decreasing
function for predicted data. 𝑓

∗
(𝑖) may be a linear function,

an exponential function, or others meeting the monotonicity
requirement. Obviously, the choice of 𝑓

∗
(𝑖) will affect the

subsequent prediction accuracy. The optimal solution is
taking into account characteristics of the data.This is another
point worth studying.

3.3. Resources Provisioning Based on KSwSVR. Directly tak-
ing the predicted value as the final resources provisioning
value may lead to unacceptable SLA violation since any
prediction algorithm has an error range. Furthermore, as we
can see in the latter experiment, even the same algorithm
will have different prediction errors as the prediction object
changes. That is, for different system resources (CPU, mem-
ory, or I/O) or the same resource at different time, allocating

SLA Violation
estimating

Predictor
(KSwSVR)

Application
performance

xalloc
t

xuse
i

s

di

Cloud
system

Error
computing

f(x̂t, s, di)
x̂t

Figure 4: Decision-making process of resource provisioning.

resources directly according to forecasting results cannot
guarantee a stable QoS.

Therefore, we propose a simple resource allocationmech-
anism based on load forecasting for two considerations.
First, load spike, which will lead to underprovisioning, is
difficult to predict for any prediction algorithm especially
in dynamic cloud. Second, in cloud computing model, the
user’s requirements of QoS also can change at any time. We
need a flexible mechanism to deal with different SLA levels in
this multitenant environment. The actual allocation value is
computed as

𝑥

alloc
𝑡

= 𝑠𝑥

𝑡
+

1

𝑘

𝑡−𝑘

∑

𝑖=𝑡−1

𝑑

𝑖
,

𝑑

𝑖
= max {0, 𝑥use

𝑖
− 𝑥

alloc
𝑖
} ,

(12)

𝑥

use
𝑡
, 𝑥
𝑡
, and 𝑥alloc

𝑡
separately represent real resources usage,

predicted value, and actual resources allocation value at time
𝑡.With𝑑

𝑖
, we use the information of underprovisioning in the

last 𝑘 periods, while ignoring overprovisioning. This allows
system to quickly respond to load spike. 𝑠 is an incremental
coefficient which is highly correlated with QoS of cloud. Its
value depends on the gap between the actual application
performance and SLA. The greater the gap, the bigger the
𝑠. Bigger 𝑠 means allocating more resources and fewer SLA
violations. It is a proactive (KSwSVR) and QoS-driven (𝑠)
decision making process with a feedback (𝑑

𝑖
); shown in as

Figure 4. Obviously, it is also applicable to other predictors.

4. Evaluation

In this section, the performance of KSwSVRwill be evaluated
by using various types of real-world trace data and comparing
with other typical load forecasting technology. We prefer
using public trace data rather than historical data generated
by ourselves for the purpose of giving comparable and
reproducible results.

4.1. Prediction Algorithm. In order to highlight the prediction
performance of KSwSVR, two widely used prediction meth-
ods are chosen for comparison. They are typical represen-
tatives of linear prediction algorithm and machine learning



The Scientific World Journal 7

x̂t

h1

hk

xt−p

xt−p+1

xt−1

...

...

Input layer Hidden layer Output layer

Figure 5: Standard multilayer feedforward neural network.

technology—AR and BPNN. Meanwhile, standard SVR is
also our comparison object.

4.1.1. Linear Prediction—AR. Dinda and O’Hallaron [13]
studied different linear load forecastingmodels includingAR,
moving average, autoregressive moving average, autoregres-
sive integrated moving average, and autoregressive fraction-
ally integrated moving average models. Their conclusion is
that the simple ARmodel is the best model and is appropriate
and sufficient to be used for load prediction.

AR is a basic linear time series prediction algorithm in
which the current value can be represented by the sum of a
linear combination of several previous values and an error
𝜀. The general expression of AR(𝑝) model can be denoted as
(13), where {𝑥

1,
𝑥

2
, . . . , 𝑥

𝑡
} is the time series, 𝑝 is the order of

ARmodel, 𝜑 = (𝜑
1
, 𝜑

2
, . . . , 𝜑

𝑝
) denotes the coefficients of AR

model.
Consider

𝑥

𝑡
=

𝑝

∑

𝑖=1

𝜑

𝑖
𝑥

𝑡−𝑖
+ 𝜀

𝑡
. (13)

We adopt Dinda’s recommendation that AR(16) is the best in
consideration of both overhead and prediction accuracy.

4.1.2. Machine Learning—BPNN. As SVR, ANN [8] is also a
typical machine learning strategy in the category of regres-
sion computation. ANN is a powerful tool for self-learning,
and it can generalize the characteristics of load by proper
training. It is inherently a distributed architecture with high
robustness and has been used in resources state prediction
in the past. It is indicated by Eswaradass et al. [14] that the
ANN prediction outperforms the Network Weather Service
methods [15].

The structure of a standardmultilayer feedforward neural
network is in Figure 5. It consists of an input layer with input
neurons [𝑥

𝑡−𝑝
, 𝑥

𝑡−𝑝+1
, . . . , 𝑥

𝑡−1
], a hidden layer with hidden

neurons [ℎ
1
, ℎ

2
, . . . , ℎ

𝑘
], and an output layer with one output

neuron 𝑥
𝑡
. Every node in a layer is connected to every other

node in the neighboring layer. These connections are known
as synapses. Each synapse is associated with a weight which
is to be determined during training. During the training

phase, the network is fed with input vectors, and random
weights are assigned to the synapses. After presentation of
each input vector, the network generates a predicted output
𝑥

𝑡
. The generated output is then compared with the actual

output 𝑥
𝑡
. The difference between the two is known as the

error term.
The BPNN algorithm is the most popular and the oldest

supervised learning feedforward neural network algorithm
proposed by Rumelhart and Mcclelland [16]. The BPNN
learns by calculating the errors of the output layer to find the
errors in the hidden layers. The algorithm is highly suitable
for the solution to problems in which no relationship is found
between the output and inputs. Due to its flexibility and
learning capabilities, BPNN has been successfully used in
wide range of applications. Therefore, we chose it as one of
the comparison object and empirically configure it with six
input neurons and one hidden layer with ten hidden neurons,
as considering both prediction overhead and accuracy.

4.1.3. SVR and KSwSVR. Parameter configuration of stan-
dard SVR and KSwSVR in this work is as follows.

SVM-type: 𝜀-regression
SVM-kernel: radial basis function (RBF)
Cost (C): 1, penalty parameter of the error term
Gamma: 0.0625, parameter of the RBF
Epsilon (𝜀): 0.1, 𝜀-insensitive loss function
𝑓

∗
(𝑖): linear function, for KSwSVR in (11).

It is worth emphasizing that we do not have tuned param-
eters of BPNN, SVR, and KSwSVR for specific predictions
object, but set the sameparameters for all trace data according
to domain knowledge. Therefore, the experimental result of
this paper is representative.

4.2. Experiment Setup. The implementation of KSwSVR is
based on libsvm [17].

In order to highlight the adaptability of KSwSVR, we
have collected public trace data of various type resources,
involving the network, CPU, memory, and storage systems
(see Figure 6).

(1) Gcpu/Gmem. 7 hours of CPU and memory usage data
in Google cluster (TraceVersion1) [18]. For confidentiality
reasons, the consumption of CPU and memory is obscured
using a linear transformation before release. We randomly
selected a long duration job with jobID 1485896354.

(2) CScpu. CPU load trace of a big memory compute
server in the CMCL (Computers, Media, and Communica-
tion Laboratory) at CarnegieMellonUniversity [19].The data
is the number of processes that are running or are ready to
run, which is the length of the ready queuemaintained by the
scheduler.

(3) OLTPio. Storage system data request rate derived from
I/O trace of an OLTP applications running at large financial
institutions [12].

(4) SEio. Storage system data request rate derived from
I/O trace of a search engine [20].

(5) WC98. Client request rate observed in World Cup 98
web servers, from 1998-06-22:00.00 to 1998-06-22:23.59 [21].



8 The Scientific World Journal

0 20 40 60
20

25

30 Gcpu

0 20 40 60
3.5

4

4.5 Gmem

0 5000 10000
0

1

2 CScpu

OLTPio

0 5000 10000
0

2

4

×106

0 5000 10000
0

5

10 SEio

×106

0 2 4 6 8
0

1000

2000
WC98

Time
×104

Figure 6: Trace data used in this work.

First, we have evaluated the forecast performance of
KSwSVR. The first 2000 points of each trace is used as our
experiment data and translated to mean value of five inter-
vals, except Google cluster data for its limited amount. As
previously mentioned, our prediction work is for timely and
dynamic fine-grained online scalability of cloud, so that the
overhead of each prediction would be as small as possible.
In order to ensure forecasting speed, six training data were
used each time in BPNN, standard SVR, and KSwSVR in our
experiment.

Then, by simulating dynamic CPU allocation, we have
shown the high efficiency of KSwSVR in resources provision-
ing.

4.3. Experimental Results

4.3.1. Prediction Accuracy Evaluation. Before the training
process begins, data normalization is performed by linear
transformation as

𝑥

𝑛

𝑖
=

𝑥

𝑖
− 𝑥min

𝑥max − 𝑥min
, (14)

where 𝑥𝑛
𝑖
and 𝑥

𝑖
represent the normalized and original

measured data, respectively, and 𝑥min and 𝑥max represent the
minimum andmaximum value among the original measured
data, respectively.

The evaluation of prediction performance is based on the
mean absolute error (MAE) which is a widely used error
metric for evaluating results of time-series forecasting, as
shown in (15).

MAE = 1
𝑛

𝑛

∑

𝑖=1









𝑥

𝑖
− 𝑥

𝑖









, (15)

where 𝑥
𝑖
and 𝑥

𝑖
represent the predicted and original data,

respectively, and 𝑛 is the number of predicted data points.
The detailed experimental results are shown in Figure 7.

Because the total number of samples is limited, performance
trend feature of Google’s two traces fluctuate slightly. But
we can still reach this conclusion: KSwSVR has the best
prediction accuracy, followed successively by standard SVR
and AR and BPNN.

Table 1: Improvement of prediction error.

Trace Data Gcpu Gmem CScpu OLTPio SEio WC98
MAE Improvement 12.9% 17.9% 22.0% 28.1% 20.8% 22.5%

AR, as a typical representative of the linear prediction
technology that cannot be well adapted to the nonlinear
regression problem, has a relatively high prediction error.
Furthermore, when data have high volatility (e.g., CScpu and
OLTPio), the error cumulative effect of AR is quite obvious.
This makes it unsuitable for multi-step-ahead long-term load
forecasting in cloud.

As an excellent machine learning technology, the neural
network should have a better nonlinear regression perfor-
mance. However, as mentioned before, timely and dynamic
fine-grained online scalability of cloud needs a fast and
efficient load forecasting algorithm. For this reason, the
training data set for a predicted data should not be too large.
So, suffering from this restriction, the performance of BPNN
deteriorates significantly, and its prediction accuracy is even
lower than that of AR. Its error cumulative effect is also large.

In contrast, the theory foundation of SVM determines its
excellent performance in the face of small training sample set.
For all six traces, SVR and KSwSVR have always maintained
a relatively high prediction accuracy and stability and their
error cumulative effect is quite slight.

We further compared KSwSVR and standard SVR with
more predicted steps; see Figure 8. Benefiting from Kalman
smoother and weight technology, KSwSVR outperforms
standard SVR all the time, except two points of Gcpu for
its small samples set. Furthermore, the prediction error of
KSwSVR increases quite more slowly as predicted steps
increases. That means its prediction accuracy is very stable.
In contrast, the performance of standard SVR fluctuates with
predicted steps. Specifically, improvedMAE of KSwSVR is in
Table 1.

4.3.2. Computational Costs. As mentioned earlier, SVM is
a relatively new machine learning method that optimizes
model on training data. Because dot products in feature space
can be represented by kernel functions, the transformation



The Scientific World Journal 9

1 2 3 4 5
0

Gcpu MAE
0.4

0.3

0.2

0.1

1 2 3 4 5

Gmem MAE

0

0.4

0.3

0.2

0.1

1 2 3 4 5

CScpu MAE
0.2

0.15

0.1

0.05

0

AR SVR

1 2 3 4 5

0.2

0.15

0.1

0.05

0

OLTPio MAE

1 2 3 4 5

BPNN KSwSVR

0.4

0.3

0.2

0.1

0

SEio MAE

1 2 3 4 5

0.1

0.05

0

WC98 MAE

Predicted steps

(a) (b) (c)

(d) (e) (f)

Figure 7: MAE comparison.

0 5 10 15 20
0.13

0.15

0.17
Gcpu MAE

0 5 10 15 20
0.13

0.15

0.17

0.19 Gmem MAE

0 5 10 15 20
0.07

0.09

0.11
CScpu MAE

SVR

0 5 10 15 20

OLTPio MAE
0.1

0.08

0.06
0 5 10 15 20

0.14

0.16

0.18
SEio MAE

KSwSVR

0 5 10 15 20
0.05

0.065

0.08
WC98 MAE

Predicted steps

(a) (b) (c)

(d) (e) (f)

Figure 8: KSwSVR versus standard SVR.

from input space to feature space is implicit. Training SVM is
converted to solving a linearly constrained QP problem.That
greatly reduces the computational complexity.

Moreover, the use of SMO to solve the SVM QP problem
can further accelerate the training speed. SMO avoids the
numerical QP optimization steps and requires no extra
matrix storage at all [9].

Based on the above theories, we believe that the KSwSVR
based on SVM should be efficient. With four traces in

Figure 6, we have compared the temporal costs of AR,
BPNN, standard SVR, and KSwSVR on the same computing
platform. The choices of experimental parameters are the
same as before, except that 10,000 data points of each trace
are used as test data.

Experimental results, in Table 2, show that the two algo-
rithms based on SVR have obvious efficiency advantages.The
computational cost of KSwSVR increases slightly compared
with that of standard SVR. However, as analyzed above,



10 The Scientific World Journal

Table 2: Comparison of total computational costs (𝑠).

Trace Data AR BPNN SVR KSwSVR
CScpu 29.1467 409.5801 0.4287 0.6549
OLTPio 29.0108 410.7172 0.4480 0.7548
SEio 29.4803 411.9297 0.4308 0.6627
WC98 29.3089 409.8534 0.4415 0.7111

100 200 300 400 500 600 700 800 900 1000
0

0.2
0.4
0.6
0.8

1
1.2

Time

CP
U

AD 5%
AS 5%

AD 3%
AS 3%
AD 1%
AS 1%

R

P

Figure 9: CPU allocation of dynamic/static strategy. 𝑅—real
usage; 𝑃—predicted value; AD/AS—actual dynamic/static alloca-
tion value; 𝑥%: SLA violation rate.

the introduction of the Kalman smoother significantly
improves the forecasting performance. It is worthwhile. For
any trace data, the total computational cost of KSwSVR is
only about 0.7 seconds, which accounts for approximately
2% of the cost of AR (about 29 s) or 0.17% of the cost of
BPNN (about 410 s). The algorithm complexity of BPNN
determines its high computational cost. As a linear time
series prediction algorithm, AR should have low temporal
cost. However, in order to achieve acceptable prediction
accuracy, AR requires more training samples each time that
increases the computational cost. Since all data are processed
as time series, the temporal costs of different types of traces
are almost equal for the same prediction algorithm. That
is, the computational cost of load forecasting algorithm is
independent of the type of load. Thus, we can conclude that
the KSwSVR has a relatively lower computational cost and
is very suitable for online load forecasting. It can effectively
support the timely and dynamic fine-grained scalability for
real-time applications.

4.3.3. Dynamic CPU Allocation Based on KSwSVR. We dem-
onstrated the advantage of accurate load forecasting for
resources provisioning with a real CPU load trace, CScpu
[19]. To be clearer, we only use its first half in this experiment.
Static CPU allocation with fixed allocation value was com-
pared with our dynamic CPU allocation based on KSwSVR.

We assume that SLA only requires no CPU underprovi-
sioning. Any SLA violation rate can be achieved by adjusting
incremental coefficient 𝑠 in (12). The detailed experimental
results are shown in Figure 9. Under the same SLA violation
rate, the total CPUconsumption of dynamic strategy is always

Table 3: Comparison of total CPU consumption.

Incremental coefficient (𝑠) 3.0 3.8 5.6
SLA violation rate 5% 3% 1%
(Static-dynamic)/static 17.20% 29.81% 48.12%

less than static method. For example, when the SLA violation
rate is 5%, dynamic CPU allocation strategy based on the
KSwSVR (blue solid line) can reduce the CPU consumption
by 17.20%, compared with the static CPU allocation strategy
(blue dashed line). Detailed data is shown in Table 3. With
the decrease of SLA violation rate, the benefit produced by
KSwSVR becomes more significant. Specifically, the total
allocated CPU amount even reduces by nearly half when SLA
violation rate is 1%.

By cooperatingwith other technologies such as virtualiza-
tion andDVFS, ourmethod can effectively improve resources
utilization and energy saving.

5. Related Work

We classify the related work into two categories: (1) forecast-
ing technology in grid, cloud, and virtualization environment
and (2) SVM/SVR related to our work. Other forecasting
technology in computer science is not considered here.

The Network Weather Service (NWS) [15] is the most
famous system designed to provide dynamic resources per-
formance forecasts and has been mainly deployed as a grid
middleware service. The predictive methods currently used
include running average, sliding window average, last mea-
surement, adaptive window average, median filter, adaptive
window median, 𝛼-trimmed mean, stochastic gradient, and
AR. Xu et al. [22] use fuzzy logic to model and predict the
load of virtualized web applications.The VCONF project has
studied using reinforcement learning combinedwith ANN to
automatically tune the CPU and memory configurations of
a VM in order to achieve good performance for its hosted
application [23]. This solution is specifically targeted for only
the CPU resources. Roy et al. [24] used a second order
autoregressive moving average method filter for workload
forecasting in cloud. Jiang et al. [25] proposed a self-adaptive
prediction solution to enable the instant cloud resources
provisioning. They employ a set of different prediction
techniques as the base predictors, including moving average,
AR, ANN, SVM, and gene expression programming. For the
sake of well handling of the prediction task, a prediction
ensemble method was proposed to combine the power of
individual prediction techniques. One of the characteristics
of this method is the large amount of calculation. It is not
suitable for fine-grained online forecasting. In [26], PRESS
first employs signal processing techniques (Fast Fourier
Transform) to identify repeating patterns called signatures
that are used for its predictions. If no signature is discovered,
PRESS employed a statistical state-driven approach (discrete-
time Markov chain) to capture short-term patterns of load.
Experimental results show that its accuracy is similar to



The Scientific World Journal 11

AR. Based on similar characteristics of web traffic, Caron
et al. [27] proposed a pattern matching algorithm to identify
closest resembling patterns similar to the present resources
utilization pattern in a set of past usage traces of the cloud
client. The resulting closest patterns were then interpolated
by using a weighted interpolation to forecast approximate
future values that were going to follow the present pattern.
However, their approach has two problems. Firstly, searching
for similar patterns each time over the entire set of historical
data is inefficient. And secondly, it may lead to overspe-
cialization, thus turning out to be ineffective. Islam et al.
[28] explored Error Correction Neural Network (ECNN)
and linear regression to make prediction on future resources
requirement in the cloud. The authors also mentioned that
it is also possible to accommodate other learning methods
(e.g., SVM) for prediction of future resources usage. Bey et al.
[29] presented a modeling approach to estimating the future
value of CPU load. This modeling prediction approach uses
the combination of Adaptive Network-based Fuzzy Inference
Systems (ANFIS) and the clustering process applied on the
CPU load time series. Liang et al. [30] presented a long-
term prediction model applying Fourier transform to exploit
the periods of the CPU waves and using tendency-based
methods to predict the variation. Wu et al. [31] adopted
an Adaptive Hybrid Model (AHModel) for long-term load
prediction in computational grid. It is an improvement of
their previous work HModel [32]. Both are based on AR
and confidence interval estimations. However, the prediction
range of AHModel is limited to 50-step-ahead. Moreover,
AHModel cannot predict the load variation very well, espe-
cially the variation around the peak points.

SVM is widely used in financial data prediction, general
business applications, environmental parameter estimation,
electric utility load forecasting, machine reliability forecast-
ing, control system, and signal processing [33]. As a relatively
new forecasting technology, its application related to our
work is comparatively rare at present. Prem and Raghavan
[34] directly used SVM to forecast resources derived from
NWS. SVR was used to build models predicting response
time given a specified load for individual workloads cohosted
on shared storage system in [35]. SVR has also been used
to model power consumption as a function of hardware and
software performance counters in [36]. Kundu et al. [37]
proposed to use SVR and ANN to model the relationship
between the resources provisioning to a virtualized applica-
tion and its performance. Such a model can then be used to
predict the resources need of an application tomeet its perfor-
mance target. But, their work was based on one assumption
that application has static workloads and its behavior is stable.
Obviously this assumption will severely restrict the feasibility
of their method in dynamic cloud environment. Moreover,
their offline performance modeling cannot timely respond
to changes of environment and load. Niehorster et al. [6]
used SVM to enable the SaaS (software as a service) provider
to predict the resources requirements of an application.
Different from our method, theirs is coarse-grained and
offline. In addition, feature extraction of their work needs
to know the application’s internal detail, but this is generally
prohibited in cloud.

6. Conclusion and Future Work

In order to achieve efficient resources provisioning in cloud,
we propose a multi-step-ahead load prediction method,
KSwSVR, based on statistical learning technology which is
suitable for the complex and dynamic characteristics of the
cloud computing environment. It integrates an improved
support vector regression algorithm and Kalman smoothing
technology and does not require access to the internal details
of application.The improved SVR gives more weight to more
“important” data than standard SVR, using the historical
informationmore reasonably. Kalman Smoother is employed
to eliminate the noise of resources usage data coming from
measurement error. Public trace data of various resources
were used to verify the excellent prediction accuracy, sta-
bility, and adaptability. In comparison with AR, BPNN, and
standard SVR, KSwSVR always has the minimum prediction
error facing every type of resources and different predicted
steps.This statistical learning-based approach is not designed
for a specific forecast object, so we believe it will exhibit
outstanding performance when faced with various subjects
(job, application, VM, host, and cloud system) and resources
(computing, storage, and network). Subsequently, based on
the predicted results, a simple and efficient strategy is pro-
posed for resource provisioning, considering the variations of
prediction error and SLA levels. CPU allocation experiment
has shown that accurate load forecasting could significantly
reduce resources consumption while ensuring QoS. It is
beneficial to improve resources utilization and energy saving.
We plan to integrate this method into an automated cloud
resources management system in future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (NSFC) under Grant no. 61303070.
An earlier version of this paper was presented at the 10th
International Conference on Services Computing, June 27-
July 2, 2013, CA, USA (IEEE SCC2013).

References

[1] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[2] X. Fan, W. Weber, and L. Barroso, “Power provisioning for a
warehousesized computer,”ACMSIGARCHComputerArchitec-
ture News, vol. 35, no. 2, pp. 13–23, 2007.

[3] P. Barham, B. Dragovic, K. Fraser et al., “Xen and the art of
virtualization,” in Proceedings of the 9th ACM Symposium on
Operating Systems Principles, vol. 37 of ACM SIGOPS Operating
Systems Review, pp. 164–177, 2003.

[4] C. Clark, K. Fraser, S. Hand et al., “Live migration of virtual
machines,” in Proceedings of the 2nd Conference on Symposium



12 The Scientific World Journal

on Networked Systems Design & Implementation, vol. 2, pp. 273–
286, USENIX Association, 2005.

[5] “Inauguration Day on Twitter,” 2013, https://blog.twitter.com/
2009/inauguration-day-twitter.

[6] O. Niehorster, A. Krieger, J. Simon, and A. Brinkmann, “Auto-
nomic resource management with support vector machines,”
in Proceedings of the 12th IEEE/ACM International Conference
on Grid Computing (GRID ’11), pp. 157–164, IEEE Computer
Society, 2011.

[7] V. N. Vapnik, “An overview of statistical learning theory,” IEEE
Transactions on Neural Networks, vol. 10, no. 5, pp. 988–999,
1999.

[8] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Aca-
demic Press, San Diego, Calif, USA, 4th edition, 2008.

[9] J. Platt, “Sequential minimal optimization: a fast algorithm
for training support vector machines,” Microsoft Research
Technical Report MSR-TR-98-14, 1998.

[10] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45,
1960.

[11] P. J. Denning, “The locality principle,” Communications of the
ACM, vol. 48, no. 7, pp. 19–24, 2005.

[12] “OLTP applications,” 2013, http://skuld.cs.umass.edu/traces/
storage/Financial1.spc.bz2.

[13] P. Dinda and D. O’Hallaron, “Host load prediction using linear
models,” Cluster Computing, vol. 3, no. 4, pp. 265–280, 2000.

[14] A. Eswaradass, X.-H. Sun, andM.Wu, “A neural network based
predictive mechanism for available bandwidth,” in Proceedings
of the 19th IEEE International Parallel andDistributed Processing
Symposium (IPDPS ’05), p. 33a, IEEE, 2005.

[15] M. Swany and R. Wolski, “Multivariate resource performance
forecasting in the network weather service,” in Proceedings of
the ACM/IEEE Conference on Supercomputing (Supercomputing
’02), pp. 1–10, IEEE Computer Society Press, 2002.

[16] D. Rumelhart and J. Mcclelland, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Volume 1.
Foundations, 1986.

[17] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 3, article 27, 2011.

[18] “The google cluster trace data,” 2013, http://code.google.com/
p/googleclusterdata/.

[19] “CPU load trace from CMCL,” 2013, http://people.cs.uchicago
.edu/lyang/Load/abyss10000.dat.

[20] “Search engine,” 2013, http://skuld.cs.umass.edu/traces/storage/
WebSearch2.spc.bz2.

[21] “World Cup 98,” 2013, http://ita.ee.lbl.gov/html/contrib/World-
Cup.html.

[22] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “Auto-
nomic resource management in virtualized data centers using
fuzzy logic-based approaches,” Cluster Computing, vol. 11, no. 3,
pp. 213–227, 2008.

[23] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “VCONF: a
reinforcement learning approach to virtual machines auto-
configuration,” in Proceedings of the 6th International Con-
ference on Autonomic Computing (ICAC ’09), pp. 137–146,
Association for Computing Machinery, 2009.

[24] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in
the cloud using predictive models for workload forecasting,”
in Proceedings of the IEEE International Conference on Cloud
Computing (CLOUD ’11), pp. 500–507, IEEE, 2011.

[25] Y. Jiang, C.-S. Perng, T. Li, and R. Chang, “ASAP: a self-
adaptive prediction system for instant cloud resource demand
provisioning,” in Proceedings of the 11th IEEE International
Conference on Data Mining (ICDM ’11), pp. 1104–1109, IEEE,
2011.

[26] Z. Gong, X. Gu, and J.Wilkes, “Press: predictive elastic resource
scaling for cloud systems,” in Proceedings of the International
Conference on Network and Service Management (CNSM ’10),
pp. 9–16, IEEE, 2010.

[27] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid
and cloud computing on-demand resources based on pattern
matching,” in Proceedings of the IEEE Second International Con-
ference on Cloud Computing Technology and Science (CloudCom
’10), pp. 456–463, 2010.

[28] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,” Future
Generation Computer Systems, vol. 28, no. 1, pp. 155–162, 2012.

[29] K. B. Bey, F. Benhammadi, A. Mokhtari, and Z. Guessoum,
“CPU load prediction model for distributed computing,” in
Proceedings of the 8th International Symposium on Parallel and
Distributed Computing (ISPDC ’09), pp. 39–45, IEEE, 2009.

[30] J. Liang, J. Cao, J. Wang, and Y. Xu, “Long-term CPU load pre-
diction,” in Proceedings of the 9th IEEE International Conference
on Dependable, Autonomic and Secure Computing (DASC ’11),
pp. 23–26, IEEE, 2011.

[31] Y. Wu, K. Hwang, Y. Yuan, and W. Zheng, “Adaptive workload
prediction of grid performance in confidence windows,” IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 7,
pp. 925–938, 2010.

[32] Y. Wu, Y. Yuan, G. Yang, andW. Zheng, “Load prediction using
hybrid model for computational grid,” in Proceedings of the 8th
IEEE/ACM International Conference on Grid Computing (GRID
’07), pp. 235–242, IEEE, 2007.

[33] N. Sapankevych and R. Sankar, “Time series prediction using
support vector machines: a survey,” IEEE Computational Intel-
ligence Magazine, vol. 4, no. 2, pp. 24–38, 2009.

[34] H. Prem and N. R. S. Raghavan, “A support vector machine
based approach for forecasting of network weather services,”
Journal of Grid Computing, vol. 4, no. 1, pp. 89–114, 2006.

[35] S. Uttamchandani, L. Yin, G. Alvarez, J. Palmer, and G. Agha,
“Chameleon: a self-evolving, fully-adaptive resource arbitrator
for storage systems,” in Proceedings of the USENIX Annual
Technical Conference, pp. 75–88, 2005.

[36] J. Mccullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy,
A. Snoeren, and R. Gupta, “Evaluating the effectiveness of
model-based power characterization,” in Proceedings of the
USENIX Annual Technical Conference, 2011.

[37] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta,
“Modeling virtualized applications using machine learning
techniques,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environment (VEE ’12), ACM
SIGPLAN Notices, pp. 3–14, 2012.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


