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The difference equation 𝑦
𝑛+1

− 𝑦
𝑛
= −𝛼𝑦

𝑛
+∑
𝑚

𝑗=1
𝛽
𝑗
𝑒
−𝛾𝑗𝑦𝑛−𝑘𝑗 is studied and some sufficient conditions which guarantee that all solu-

tions of the equation are oscillatory, or that the positive equilibrium of the equation is globally asymptotically stable, are obtained.

1. Introduction

The delay differential equation

𝑑𝑁 (𝑡)

𝑑𝑡
= −𝛼𝑁 (𝑡) + 𝛽𝑒

−𝛾𝑁(𝑡−𝜏)

, for 𝑡 ≥ 0, (1)

was first proposed by Wazewska-Czyzewska and Lasota [1]
as a model for the survival of red blood cell in an animal.
Here, 𝑁(𝑡) denotes the number of red blood cells at time 𝑡,
𝛼 is the probability of death of red blood cells, 𝛽 and 𝛾 are
positive constants which are related to the production of red
blood cells, and 𝜏 is the time which is required to produce
a red blood cell. The oscillation and global attractivity of (1)
were studied by Győri and Ladas [2] and Li and Cheng [3],
while the bifurcation and the direction of the stability were
investigated by Song et al. [4]. Xu and Li [5] and Liu [6]
considered its generalizationwith several delays and obtained
sufficient conditions for the global stability of survival blood
cells model with several delays and piecewise constant argu-
ment.

Research on the oscillation and global stability of the dis-
crete analogue of (1), that is, for the equation

𝑥
𝑛+1

− 𝑥
𝑛
= −𝛼𝑥

𝑛
+ 𝛽𝑒
−𝛾𝑥𝑛−𝑘 , 𝑛 = 0, 1, 2, . . . , (2)

where

𝛼 ∈ (0, 1) , 𝛽, 𝛾 ∈ (0,∞) , 𝑘 ∈ {1, 2, . . .} , (3)

was proposed by Kocić and Ladas [7] as an open problem.

Kubiaczyk and Saker [8] investigated the oscillation of (2)
about its positive equilibrium point 𝑥, where 𝑥 is the unique
solution of the equation

𝛼𝑥 = 𝛽𝑒
−𝛾𝑥

, (4)

and showed that every solution of (2) oscillates about 𝑥 if

𝛽𝛾𝑒
−𝛾𝑥

> (
𝑘

𝑘 + 1
)

𝑘+1

(1 − 𝛼)
𝑘+1

. (5)

Meng and Yan [9] investigated the global attractivity of
the positive equilibrium point 𝑥 and showed that 𝑥 is a global
attractor of all positive solutions of (2) if

𝛽
2

𝛾
2

𝛼2
𝑒
𝛾(𝑄1+𝑥) < 1, (6)

where 𝑄
1
= (𝛽/𝛼)𝑒

−𝛽𝛾/𝛼.
Zeng and Shi [10] established another condition for global

attractivity of 𝑥 and showed that 𝑥 is a global attractor of all
positive solutions of (2) if

𝛽𝛾

𝛼
≤ 𝑒. (7)

Obviously, the condition (7) improves (6).
Kubiaczyk and Saker [8] also considered (2) when 𝑘 = 1

and proved that 𝑥 is a global attractor of all positive solutions
of (2) provided that

𝛽𝛾𝑒
−𝛾𝑥

< 𝛼. (7
󸀠

)
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Ma and Yu [11] proved that 𝑥 is a global attractor of all
solutions of (2) if

𝛾𝑥 (1 − (1 − 𝛼)
𝑘+1

) ≤ 1. (8)

By (2), we have

𝑥𝑒
𝛾𝑥

=
𝛽

𝛼
. (9)

So, if (7) holds, then we have 𝛾𝑥𝑒𝛾𝑥 = 𝛽𝛾/𝛼 ≤ 𝑒, which
implies that 𝛾𝑥 ≤ 1. Hence, (8) is satisfied. But, the converse
is not true. So, the condition (8) improves (7).

In addition, we can also easily see that the conditions (7)
and (7󸀠) are equivalent to the condition 𝛾𝑥 ≤ 1.

For the system with delay, many authors deemed that
arbitrary finite number of discrete delays is more appropriate
than the single discrete delay; see [12–14] and the references
cited therein.

Stemming from the above discussion, the difference equa-
tion in the following form will be studied in this paper:

𝑦
𝑛+1

− 𝑦
𝑛
= −𝛼𝑦

𝑛
+

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦𝑛−𝑘𝑗 , (10)

where

𝛼 ∈ (0, 1) , 𝛽
𝑗
, 𝛾
𝑗
∈ (0,∞) , 𝑘

𝑗
∈ {1, 2, . . .} ,

𝑗 = 1, 2, . . . , 𝑚;

𝑚

∑

𝑗=1

𝛽
𝑗
= 𝛽.

(11)

Besides, we denote that 𝑘 = max
1≤𝑗≤𝑚

{𝑘
𝑗
}, 𝑙 = min

1≤𝑗≤𝑚
{𝑘
𝑗
},

𝛾
∗

= min
1≤𝑗≤𝑚

{𝛾
𝑗
}.

Obviously, the case 𝑚 = 1 is the form of (2). Besides,
if 𝑦
−𝑘
, 𝑦
−𝑘+1

, . . . , 𝑦
−1
, 𝑦
0
∈ [0,∞), then, the corresponding

solution of (10) is positive, and (10) has a unique positive
equilibrium point 𝑦, which satisfies

𝛼𝑦 =

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦. (12)

The aim of this paper is to investigate the oscillation and
the global asymptotic stability of (10).

2. Some Lemmas

Lemma 1 (see [7, page 6]). Assume that 𝑝
𝑖
∈ (0,∞) and 𝑘

𝑖
∈

{0, 1, . . .} with ∑𝑚
𝑖=1
(𝑝
𝑖
+ 𝑘
𝑖
) ̸= 1, 𝑖 = 1, 2, . . . , 𝑚. Let {𝑝

𝑖
(𝑛)} be

sequences of positive numbers such that

lim inf
𝑛→∞

𝑝
𝑖
(𝑛) ⩾ 𝑝

𝑖
𝑓𝑜𝑟 𝑖 = 1, 2, . . . , 𝑚. (13)

Suppose that the linear difference inequality

𝑧
𝑛+1

− 𝑧
𝑛
+

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) 𝑧
𝑛−𝑘𝑖

⩽ 0 𝑓𝑜𝑟 𝑛 = 0, 1, . . . (14)

has an eventually positive solution. Then, the difference equa-
tion

𝑥
𝑛+1

− 𝑥
𝑛
+

𝑚

∑

𝑖=1

𝑝
𝑖
𝑥
𝑛−𝑘𝑖

= 0 (15)

has a positive solution.

Lemma 2 (see [7, page 5]). Consider the linear homogeneous
difference equation

𝑥
𝑛+𝑘

+

𝑘

∑

𝑖=1

𝑞
𝑖
𝑥
𝑛+𝑘−𝑖

= 0 𝑓𝑜𝑟 𝑛 = 0, 1, . . . , (16)

where 𝑘 is a nonnegative integer and 𝑞
𝑖
∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑘.

Then, the following statements are equivalent:

(a) every solution of (16) oscillates;
(b) the characteristic equation of (16)

𝜆
𝑘

+

𝑘

∑

𝑖=1

𝑞
𝑖
𝜆
𝑘−𝑖

= 0 (17)

has no positive roots.

Lemma 3 (see [7, page 12]). Assume that 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑘
∈ 𝑅

and 𝑘 is a nonnegative integer.Then,∑𝑘
𝑖=1
|𝑝
𝑖
| < 1 is a sufficient

condition for the asymptotic stability of the difference equation

𝑥
𝑛+𝑘

+ 𝑝
1
𝑥
𝑛+𝑘−1

+ ⋅ ⋅ ⋅ + 𝑝
𝑘
𝑥
𝑛
= 0 𝑓𝑜𝑟 𝑛 = 0, 1, . . . . (18)

Lemma 4. Assume that (11) holds, and {𝑦
𝑛
} is a solution of

(10) with positive initial conditions 𝑦
−𝑘
, . . . , 𝑦

0
. Then,

lim sup
𝑛→∞

𝑦
𝑛
≤
𝛽

𝛼
. (19)

Proof. Clearly, we have 𝑦
𝑛
> 0, for 𝑛 = −𝑘, −𝑘 + 1, . . . , 0,

1, 2, . . . . So by (10), we can find that

𝑦
𝑛+1

= (1 − 𝛼) 𝑦
𝑛
+

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦𝑛−𝑘𝑗

≤ (1 − 𝛼) 𝑦
𝑛
+ 𝛽.

(20)

Define a sequence {𝜔
𝑛
} by

𝜔
𝑛+1

= (1 − 𝛼) 𝜔
𝑛
+ 𝛽, 𝜔

0
= 𝑦
0
. (21)

Obviously,

𝑦
𝑛
≤ 𝜔
𝑛
= (1 − 𝛼)

𝑛

𝜔
0
+
𝛽

𝛼
[1 − (1 − 𝛼)

𝑛

] . (22)

So, we have

lim sup
𝑛→∞

𝑦
𝑛
≤
𝛽

𝛼
. (23)
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Lemma 5. Assume that (11) holds, and
𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝑟𝑗𝑦 < 𝛼. (24)

Then, the positive equilibrium 𝑦 of (10) is locally asymptot-
ically stable.

Proof. To prove that the positive equilibrium 𝑦 is locally
asymptotically stable, it suffices to prove that the zero solution
of the linear equation of (10) is locally asymptotically stable.
The linearized equation associated with (10) about positive
equilibrium 𝑦 is

𝑦
𝑛+1

= (1 − 𝛼) 𝑦
𝑛
−

𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦𝑦
𝑛−𝑘𝑗

, (25)

which satisfies

|1 − 𝛼| +

𝑚

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦

󵄨󵄨󵄨󵄨󵄨
≤ 1. (26)

Then, by Lemma 3, the positive equilibrium solution𝑦 of (10)
is locally asymptotically stable.

Lemma 6 (see [15]). The following system of inequalities,

𝜇 ≤ 𝑒
−𝜆

− 1, 𝜆 ≥ 𝑒
−𝜇

− 1, (27)

with 𝜆, 𝜇 being real numbers, have exactly one solution 𝜆 = 𝜇 =
0.

3. Main Results

Theorem 7. Assume that (11) holds, and
𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦(1 − 𝛼)

−𝑙−1

> 1. (28)

Then, every positive solution of (10) oscillates about the positive
equilibrium 𝑦.

Proof. Assume for the sake of contradiction that (10) has a
positive solution {𝑦

𝑛
} which does not oscillate about 𝑦. We

assume that 𝑦
𝑛
> 𝑦 eventually. If 𝑦

𝑛
< 𝑦 eventually, the proof

is similar and will be omitted. So, there exists an 𝑛
0
⩾ 0 such

that 𝑦
𝑛
> 𝑦 for 𝑛 ⩾ 𝑛

0
, and consequently 𝑦

𝑛−𝑘
> 𝑦 for 𝑛 ⩾ 𝑛

1
,

where 𝑛
1
= 𝑛
0
+ 𝑘.

From Lemma 4, we have {𝑦
𝑛
} as a bounded sequence. In

the following, we will claim that

lim
𝑛→∞

𝑦
𝑛
= 𝑦. (29)

Otherwise, let

𝜇 = lim sup
𝑛→∞

𝑦
𝑛
. (30)

Then, 𝜇 > 𝑦 and there exists a subsequence {𝑦
𝑛𝑖
} such that

lim
𝑖→∞

𝑦
𝑛𝑖+1

= 𝜇, 𝑦
𝑛𝑖+1

− 𝑦
𝑛𝑖
> 0

for 𝑛
𝑖
≥ 𝑛
1
, 𝑖 = 1, 2, . . . .

(31)

Equation (10) can be reformulated in the form

𝑦
𝑛+1

= (1 − 𝛼) 𝑦
𝑛
+

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦𝑛−𝑘𝑗 . (32)

Then, from (31) and (32), we find that

𝛼𝑦
𝑛𝑖+1

≤

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦𝑛𝑖−𝑘𝑗 . (33)

So, we obtain

𝛼𝜇 ⩽ lim sup
𝑖→∞

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦𝑛𝑖−𝑘𝑗 ≤

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦 = 𝛼𝑦, (34)

which is a contradiction. Accordingly, (29) holds.
Set

𝑦
𝑛
= 𝑦 + 𝑥

𝑛
for 𝑛 = −𝑘, −𝑘 + 1, . . . . (35)

By the assumption 𝑦
𝑛
> 𝑦, we have that 𝑥

𝑛
is an eventually

positive solution of the difference equation

𝑥
𝑛+1

− (1 − 𝛼) 𝑥
𝑛
+ 𝛼𝑦 −

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗(𝑦+𝑥𝑛−𝑘𝑗

)

= 0,

𝑛 = 0, 1, . . . ,

(36)

which can also be rewritten in the form

𝑥
𝑛+1

− (1 − 𝛼) 𝑥
𝑛
+

𝑚

∑

𝑗=1

𝑝 (𝑛 − 𝑘
𝑗
) 𝑥
𝑛−𝑘𝑗

= 0,

𝑛 = 0, 1, . . . ,

(37)

where 𝑝(𝑛 − 𝑘
𝑗
) = (𝛽

𝑗
𝑒
−𝛾𝑗𝑦 − 𝛽

𝑗
𝑒
−𝛾𝑗(𝑦+𝑥𝑛−𝑘𝑗

)

) / (𝑥
𝑛−𝑘𝑗

), 𝑗 =
0, 1, . . . , 𝑚.

By some simple calculations and (29), we get

lim
𝑛→∞

𝑝 (𝑛 − 𝑘
𝑗
) = 𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦 > 0. (38)

One can easily see that the hypothesis of Lemma 1 is sat-
isfied and so the linear equation

𝑥
𝑛+1

− (1 − 𝛼) 𝑥
𝑛
+

𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦𝑥
𝑛−𝑘𝑗

= 0 (39)

has an eventually positive solution.
Let {𝑥

𝑛
} be an eventually positive solution of (39); then

𝑧
𝑛
= (1 − 𝛼)

−𝑛

𝑥
𝑛
is an eventually positive solution of

𝑧
𝑛+1

− 𝑧
𝑛
+

𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦(1 − 𝛼)

−𝑘𝑗−1𝑧
𝑛−𝑘𝑗

= 0,

𝑛 = 0, 1, . . . .

(40)

Let

𝐹 (𝜆) = 𝜆
𝑛+1

− 𝜆
𝑛

+

𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦(1 − 𝛼)

−𝑘𝑗−1𝜆
𝑛−𝑘𝑗 (41)
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be the characteristic polynomial of (40). Now, we prove that
𝐹(𝜆) > 0, for 𝜆 > 0.

If 𝜆 ⩾ 1, then obviously 𝐹(𝜆) > 0. Else if 0 < 𝜆 < 1, we
have

𝐹 (𝜆) = 𝜆
𝑛

(𝜆 − 1 +

𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦(1 − 𝛼)

−𝑘𝑗−1𝜆
−𝑘𝑗)

⩾ 𝜆
𝑛

(𝜆 − 1 +

𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦(1 − 𝛼)

−𝑙−1

𝜆
−𝑘𝑗)

⩾ 𝜆
𝑛

(𝜆 − 1 +

𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦(1 − 𝛼)

−𝑙−1

)

≥ 𝜆
𝑛+1

> 0.

(42)

Therefore, the characteristic equation of (40)

𝜆
𝑛+1

− 𝜆
𝑛

+

𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝛾𝑗𝑦(1 − 𝛼)

−𝑘𝑗−1𝜆
𝑛−𝑘𝑗 = 0 (43)

has no positive roots.
According to Lemma 2, (40) has no nonoscillatory solu-

tion.
This is a contradiction. The proof is completed.

Theorem 8. Assume that (11) holds, and

𝑦 [1 − (1 − 𝛼)
𝑘+1

] ≤ 1. (44)

Then, the positive equilibrium 𝑦 of (10) is a global attractor of
all positive solutions of (10).

Proof. To prove that the positive equilibrium 𝑦 is a global
attractor of all positive solutions of (10), it suffices to show
that (29) holds.

We will prove that (29) holds in each of the following two
cases.

Case 1 ({𝑦
𝑛
} is nonoscillatory). Let {𝑦

𝑛
} be eventually posi-

tive.The case that {𝑦
𝑛
} is eventually positive is similar andwill

be omitted. So,there exists an 𝑛
0
⩾ 0 such that 𝑦

𝑛
> 𝑦 for

𝑛 ⩾ 𝑛
0
, and consequently 𝑦

𝑛−𝑘
> 𝑦 for 𝑛 ⩾ 𝑛

1
, where 𝑛

1
=

𝑛
0
+ 𝑘.
From Lemma 4, we have {𝑦

𝑛
} as a bounded sequence.

Assume for the sake of contradiction that (29) is not satisfied.
Let

𝜇 = lim sup
𝑛→∞

𝑦
𝑛
. (45)

Then, 𝜇 > 𝑦 and there exists a subsequence {𝑦
𝑛𝑖
} such that

lim
𝑖→∞

𝑦
𝑛𝑖+1

= 𝜇, 𝑦
𝑛𝑖+1

− 𝑦
𝑛𝑖
> 0

for 𝑛
𝑖
≥ 𝑛
1
, 𝑖 = 1, 2, . . . .

(46)

It follows from (10) that

𝛼𝑦
𝑛𝑖+1

≤

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦𝑛𝑖−𝑘𝑗 . (47)

So, we obtain

𝛼𝜇 ⩽ lim sup
𝑖→∞

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦𝑛𝑖−𝑘𝑗 ≤

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦 = 𝛼𝑦, (48)

which is a contradiction. Accordingly, (29) holds.

Case 2 ({𝑦
𝑛
} is strictly oscillatory). To show that (29) holds,

it suffices to prove that lim
𝑛→∞

𝑥
𝑛
= 0 holds, when {𝑥

𝑛
} is a

strictly oscillatory solution of (36).
To this end, let

{𝑥
𝑝𝑖+1

, 𝑥
𝑝𝑖+2

, . . . , 𝑥
𝑞𝑖
} (49)

be the 𝑖th positive semicycle of {𝑥
𝑛
} followed by the 𝑗th neg-

ative semicycle

{𝑥
𝑞𝑖+1

, 𝑥
𝑞𝑖+2

, . . . , 𝑥
𝑠
} . (50)

Let 𝑥
𝑀𝑖
, 𝑥
𝑚𝑖

be the extreme values in these two semicycles
with the smallest possible indices𝑀

𝑖
and𝑚

𝑖
. Then, we claim

that

𝑀
𝑖
− 𝑝
𝑖
⩽ 𝑘 + 1, 𝑚

𝑖
− 𝑞
𝑖
⩽ 𝑘 + 1. (51)

In the following, we will prove that (51) holds for positive
semicycles, while for negative semicycles, the proof is similar
and will be omitted. Assume for the sake of contradiction
that the first inequality in (51) is not true. Then, 𝑀

𝑖
− 𝑝
𝑖
>

𝑘 + 1 and the terms 𝑥
𝑀𝑖−𝑘−1

, 𝑥
𝑀𝑖−𝑘

, . . . , 𝑥
𝑀𝑖−1

are in a positive
semicycle. Because of 𝑥

𝑀𝑖
> 𝑥
𝑀𝑖−1

, (36) renders

𝛼𝑥
𝑀𝑖
+ 𝛼𝑦 ≤

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗(𝑦+𝑥𝑀𝑖−𝑘𝑗−1

)

. (52)

So, we have

𝑥
𝑀𝑖
⩽
1

𝛼

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗(𝑦+𝑥𝑀𝑖−𝑘𝑗−1

)

− 𝑦

=
1

𝛼

[

[

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗(𝑦+𝑥𝑀𝑖−𝑘𝑗−1

)

−

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦]

]

=
1

𝛼

[

[

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦 (𝑒

−𝛾𝑗𝑥𝑀𝑖−𝑘𝑗−1 − 1)]

]

.

(53)

So there exists at least a 𝑗 s.t. 𝑥
𝑀𝑖−𝑘𝑗−1

< 0, which contradicts
that 𝑥

𝑀𝑖−𝑘𝑗−1
is in the positive semicycle. So, (51) is true.

Noting that {𝑦
𝑛
} is bounded from Lemma 4, we can let

𝜆 = lim inf
𝑛→∞

𝑥
𝑛
= lim inf
𝑖→∞

𝑥
𝑚𝑖
,

𝜇 = lim sup
𝑛→∞

𝑥
𝑛
= lim sup
𝑖→∞

𝑥
𝑀𝑖
.

(54)

To prove that lim
𝑛→∞

𝑥
𝑛
= 0 holds, it is sufficient to show

that 𝜆 = 𝜇 = 0.
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From (54), it follows that if 𝜖 ∈ (0, 𝜆) is given, then there
exists 𝑛

2
⩾ 0 such that

𝜆 − 𝜖 ⩽ 𝑥
𝑛
⩽ 𝜇 + 𝜖 for 𝑛 ⩾ 𝑛

2
+ 𝑘. (55)

Equation (36) can be reformulated in the form

𝑥
𝑛+1

− (1 − 𝛼) 𝑥
𝑛
= −𝛼𝑦 +

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗(𝑦+𝑥𝑛−𝑘𝑗

)

. (56)

Multiplying (56) by (1 − 𝛼)−𝑛−1 and then summing up from
𝑛 = 𝑝
𝑖
to 𝑛 = 𝑀

𝑖
− 1 for 𝑖 being sufficiently large, we get

(1 − 𝛼)
−𝑀𝑖𝑥
𝑀𝑖
− (1 − 𝛼)

−𝑝𝑖𝑥
𝑝𝑖

=

𝑀𝑖−1

∑

𝑛=𝑝𝑖

(−𝛼𝑦) (1 − 𝛼)
−𝑛−1

+

𝑀𝑖−1

∑

𝑛=𝑝𝑖

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗(𝑦+𝑥𝑛−𝑘𝑗

)

(1 − 𝛼)
−𝑛−1

.

(57)

From (55) and 𝑥
𝑝𝑖
< 0, we have

(1 − 𝛼)
−𝑀𝑖𝑥
𝑀𝑖
⩽ (−𝛼𝑦)

𝑀𝑖−1

∑

𝑛=𝑝𝑖

(1 − 𝛼)
−𝑛−1

+

𝑀𝑖−1

∑

𝑛=𝑝𝑖

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗(𝑦+𝑥𝑛−𝑘𝑗

)

(1 − 𝛼)
−𝑛−1

≤ (−𝛼𝑦)

𝑀𝑖−1

∑

𝑛=𝑝𝑖

(1 − 𝛼)
−𝑛−1

+

𝑀𝑖−1

∑

𝑛=𝑝𝑖

𝑚

∑

𝑗=1

𝛽
𝑗
𝑒
−𝛾𝑗𝑦𝑒
−𝛾
∗
(𝜆−𝜀)

(1 − 𝛼)
−𝑛−1

= (−𝛼𝑦)

𝑀𝑖−1

∑

𝑛=𝑝𝑖

(1 − 𝛼)
−𝑛−1

+ (𝛼𝑦) 𝑒
−𝛾
∗
(𝜆−𝜀)

𝑀𝑖−1

∑

𝑛=𝑝𝑖

(1 − 𝛼)
−𝑛−1

= (−𝛼𝑦)
(1 − 𝛼)

−𝑀𝑖 − (1 − 𝛼)
−𝑃𝑖

𝛼

+ 𝛼𝑦𝑒
−𝛾
∗
(𝜆−𝜀) (1 − 𝛼)

−𝑀𝑖 − (1 − 𝛼)
−𝑃𝑖

𝛼

= 𝑦 [(1 − 𝛼)
−𝑀𝑖 − (1 − 𝛼)

−𝑃𝑖] [𝑒
−𝛾
∗
(𝜆−𝜀)

− 1] .

(58)

So,

𝑥
𝑀𝑖
⩽ 𝑦 [𝑒

−𝛾
∗
(𝜆−𝜀)

− 1] [1 − (1 − 𝛼)
𝑀𝑖−𝑃𝑖] . (59)

By using (54), 𝜀 is arbitrary and𝑀
𝑖
− 𝑝
𝑖
⩽ 𝑘 + 1; we get

𝜇 ⩽ 𝑦 [𝑒
−𝛾
∗
𝜆

− 1] [1 − (1 − 𝛼)
𝑘+1

] . (60)

From the assumption of the theorem, we have

𝜇 ⩽ 𝑒
−𝛾
∗
𝜆

− 1. (61)

By the same trick as in proving (61), we can prove that

𝜆 ≥ 𝑒
−𝛾
∗
𝜇

− 1. (62)

Therefore, by Lemma 6, we can get 𝜆 = 𝜇 = 0; that is,
lim
𝑛→∞

𝑥
𝑛
= 0, which implies that 𝑦 is a global attractor of

all positive solutions of (10).
By Lemma 3 and Theorem 8, we can get the following

result.

Theorem 9. Suppose that (11) holds and that

𝑚

∑

𝑗=1

𝛽
𝑗
𝛾
𝑗
𝑒
−𝑟𝑗𝑦 < 𝛼, 𝑦 [1 − (1 − 𝛼)

𝑘+1

] < 1. (63)

Then, the positive equilibrium 𝑦 is globally asymptotically sta-
ble.

Remark 10. From Theorem 7, it is clear that if the condition
(28) holds, then the oscillation condition for 𝑚 = 1 as
established by Kubiaczyk and Saker [8] is already satisfied.

Remark 11. When 𝑚 = 1, the condition of Theorem 8 is
independent from the argument 𝛾.
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