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We put forward a fragile zero watermarking scheme to detect and characterize malicious modifications made to a database relation.
Most of the existing watermarking schemes for relational databases introduce intentional errors or permanent distortions as marks
into the database original content. These distortions inevitably degrade the data quality and data usability as the integrity of a
relational database is violated. Moreover, these fragile schemes can detect malicious data modifications but do not characterize the
tempering attack, that is, the nature of tempering. The proposed fragile scheme is based on zero watermarking approach to detect
malicious modifications made to a database relation. In zero watermarking, the watermark is generated (constructed) from the
contents of the original data rather than introduction of permanent distortions as marks into the data. As a result, the proposed
scheme is distortion-free; thus, it also resolves the inherent conflict between security and imperceptibility. The proposed scheme
also characterizes themalicious datamodifications to quantify the nature of tempering attacks. Experimental results show that even
minor malicious modifications made to a database relation can be detected and characterized successfully.

1. Introduction

Digital watermarking is a class of information hiding tech-
nique that provides measures for copyright protection,
broadcast monitoring, covert communication, copy control,
tamper, and integrity proof of digital assets. The water-
marking techniques were primarily proposed for multimedia
content [1–4]; however, in the last decade, the research
community has extended these techniques to relational
databases for its copyright protection, temper detection, and
integrity proof. Most of the existing watermarking schemes
for relational databases [5–20] introduce intentional errors
or distortions as marks in the underlying data with some
error tolerance so that it does not have a significant impact
on the usefulness of data. However, this results in degrading
data quality as the integrity of a relational database is
violated. A large collection of real-world datasets has a strong
usability constraint that disallows any permanent distortions
or intentional errors. For example, the safety critical datasets
are designed to minimize errors rather than to introduce

intentional errors. Similarly, a business application may
require that local properties like item-cost, ordered-quantity,
and so forth, are preserved as well as global properties
like natural join between item and sales, employees and
department, and so forth. Moreover, in business datasets,
the semantic constraints are not violated, like dissimilarity
in attribute value for two similar transactions [21]. Query
processing is sensitive due to selection criteria and has well-
defined semantics; therefore, the watermarking schemes that
introduce distortion into the database original content are not
appropriate for certain applications.

Based on the intent of marking, the watermarking
schemes presented in the literature can be categorized into
robust and fragile schemes. The robust schemes [5–16] are
aimed at copyright protection, whereas the fragile schemes
[17–25] are used for tamper detection and integrity proof of
database relations. Most of the robust schemes for copyright
protection [5–16] introduce distortions into the database
original content which affects data integrity and usability.
These robust schemes may work for numeric [5–10] and
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categorical attributes [11, 12] of relational databases to embed
watermarks. Some techniques embedmeaningless bit pattern
[5, 6]; whereas in other techniques meaningful bit patterns
like image [13–15] and owner’s speech [16] are used as water-
marks for embedding in relational databases. In data sales
environment, some of these robust schemes are extended to
fingerprinting domain for unique identification of each buyer
and also for traitor detection [21, 26–28]. Compared with the
robust schemes, the fragile watermarking schemes are not
adequately addressed and relatively little work is available for
integrity proof of relational databases [20]. In this paper, we
focus on fragile watermarking schemes for temper detection
and integrity proof of database relations.

The initial work on fragile watermarking schemes can
be found on images [29–31], which is extended to audio
[32, 33] and video [3, 34] schemes. Recently, the importance
of other data domains is recognized and fragile schemes
for text [35, 36] and relational databases [17–20, 22–25] are
proposed. Like robust schemes, most of the fragile schemes
for relational databases [17–20] introduce distortion into the
database original contents that degrades data quality and
also affects data usability. These schemes are based on the
content characteristics of database relation itself to create a
secure hash (used as a watermark) which is stored in Least
Significant Bits (LSBs) of database original contents, thus
introducing distortion.

A fragile watermarking scheme presented by Guo et
al. [17] detects malicious modifications made to a database
relation. In their scheme, the watermark generation is based
on the content characteristics of the database relation itself.
The generated watermarks are embedded in at most two
LSBs of all attributes in the database relation that introduces
considerable distortion in the database original contents.The
fragile scheme presented by Khataeimaragheh and Rashidi
[18] is also a distortion-based scheme for integrity proof of
database relations. Like [17], the watermarks are embedded
in at most two LSBs of all attributes in the relation that
forms a two-bit watermark grid.The fragile scheme presented
by Iqbal et al. [19] logically partitions the database relation
into three groups and generates self-constructing fragile
watermark information from each group. The generated
watermarks are embedded at LSBs of numerical attributes in
each group of a database relation which introduces distortion
in database original contents. Prasannakumari [20] presented
a fragile scheme for temper detection in database relations.
This technique also introduces distortion as it inserts a fake
attribute in database relation to act as a watermark. The data
values for the newly inserted attribute are determined by
applying aggregate function on original database content.

Beside distortion-based techniques, some researches also
presented distortion free fragile watermarking schemes [22–
25] for integrity proof of database relations.The main feature
of these schemes is that the watermark embedding in actual
fact is the tuples or attributes reordering based on the
content characteristics of database relation. A fragile scheme
proposed by Li et al. [22] detects and localizes malicious
modifications made to the database relations. Their scheme
partitions the database relation into disjoint groups and
the watermark is embedded and verified in each group

independently. In their scheme, the watermark is embedded
as tuple reordering and the order of each tuple pair in
group is changed or unchanged depending on the tuple hash
values and the corresponding group hash value. Though
their technique does not introduce any distortion in the
database relation, but it works only for categorical data type.
Kamel [23] presented a fragile scheme to protect the integrity
of database relations. Their scheme divides the database
relations in groups and each group is marked independently.
As in [22], the watermark embedding is reordering of tuples
in each group that corresponds to the value of some secret
watermark. The fragile scheme proposed by Bhattacharya
and Cortesi [24] detects malicious modifications in database
relations having categorical attributes. Their scheme divides
the database relation into groups on the basis of categorical
attribute values. Like [22, 23], tuple hash value is used to
obtain a watermark as permutation of tuples. A fragile zero
watermarking scheme is presented by Hamadou et al. [25]
for authentication of database relations. Their technique is
distortion-free and is based on attribute reordering method.
Initially, the attributes of database relation are virtually
sorted on hash values of attribute names to define a secret
initial order of attributes. For each attribute in database
relation, the Most Significant Bits (MSBs) are extracted and
used for watermark generation. The generated watermark
is then registered with the Certification Authority (CA) for
certification purpose. As their technique is based on virtual
sorting of attributes by their names, so any change in attribute
name by attacker would fail the temper detection process.

In the previous discussion, we have identified two impor-
tant issues in existing fragilewatermarking schemes. First, the
fragile schemes are distortion based [17–20] that inevitably
degrade data integrity and thus affect data usability; therefore,
these schemes are not applicable to non-error-tolerant data
like safety critical datasets, and so forth. Second, though there
exist some fragile schemes like [22–25] that are distortion-
free, but the watermarking approach is based on reordering
of tuples or attributes; so, they are vulnerable to sorting
attacks. Also, if the modification is small, such that, it
does not affect the order of tuples, the temper detection
would fail. To address these issues, we propose a fragile
scheme based on zero watermarking approach that does not
modify any part or properties of the database relations itself;
therefore, the proposed scheme assures imperceptibility and
overcomes weaknesses like data integrity and data usability
in existing fragile watermarking schemes. Also, the proposed
scheme is independent of tuple ordering as well as attributes
ordering and naming, so it is not vulnerable to sorting
attacks.The watermark generation in the proposed scheme is
based on algorithmically evaluating the local characteristics
of database relation like frequency distribution of digit
count, length and range of data values. This enables us to
characterize the malicious data modifications on parameters
like the fraction of digit, length and range of data values
attacked, the type of attack (insertion, deletion, or update),
and the effect of attack (low to high, high to low, or no
change) on data values. Also, to the best of our knowledge,
there is no such distortion-free fragile watermarking scheme
that can characterize the tempering attacks, that is, the
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nature of tempering. Experimental results show that the
proposed scheme can detect and characterize malicious data
modifications successfully.

2. Materials and Methods

In this section, we present our proposed fragile zero water-
marking scheme to detect and characterize malicious modi-
fications made to a database relation. The proposed scheme
exhibits the following important properties of a fragile water-
marking system as discussed in [17].

(1) Fragility. The proposed scheme is designed to be
fragile; that is, if there are any malicious data modi-
fications, the embedded watermark is not detectable
(destroyed).

(2) Imperceptibility. As the proposed scheme is based on
zero watermarking approach, it does not introduce
any distortion in the underlying data; therefore, the
embedded watermark is invisible or imperceptible.

(3) Key-Based System. The watermark generation and
verification in the proposed scheme is a key-based
system. Also, to detect and characterize malicious
data modifications, a secret key is required.

(4) Blindness. In the proposed scheme, the original
database relation is not required to detect and char-
acterize malicious data modifications.

(5) Tuple and Attribute Ordering. The existing fragile
schemes are based on tuple ordering [22–24] and
attribute ordering and naming [25]. The proposed
scheme is independent of tuple and attributes order-
ing so it is not vulnerable to sorting attacks.

(6) Characterization. The proposed scheme not only
detects but also characterizes the malicious data
modifications in database relation to quantify the
nature of tempering attacks.

2.1. Watermark Generation. Let 𝑅 be a database rela-
tion with primary key PK and ] attributes denoted by
𝑅(PK, 𝐴1, 𝐴2, . . . , 𝐴]). The watermark generation in the
proposed scheme is based on the content characteristics of
numeric data values, so we assume that some attributes of
the database relation are numeric. Figure 1 shows the water-
mark generation process that comprises of subwatermark
generation for digit count, length, and range of data values.
The generated watermark is registered with the Certification
Authority (CA) for certification purpose. Table 1 presents the
list of notations used in our algorithms and discussion.

The algorithm for watermark generation is presented in
Algorithm 1. At lines 1–3, the digit, length, and range of data
values in a database relation are algorithmically evaluated to
generate the subwatermarks as presented in Algorithms 2–
4. These subwatermarks are then used to generate a database
relation watermark 𝜔

𝑅
as shown at line 4. At line 5, the

relation watermark 𝜔
𝑅
is encrypted with a secret key SK

known only to the database owner. We assume that the
secret key is selected from large key space such that it is
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Figure 1: Proposed model for watermark generation and registra-
tion.

(1) 𝜔
𝑑
= digit sub-watermark generation()

//See Algorithm 2
(2) 𝜔
𝑙
= length sub-watermark generation()

//See Algorithm 3
(3) 𝜔
𝑟
= range sub-watermark generation()

//See Algorithm 4
(4) 𝜔
𝑅
= 𝜔
𝑑
‖ 𝜔
𝑙
‖ 𝜔
𝑟

(5) 𝐸𝜔
𝑅
= 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝜔

𝑅
, 𝑆𝐾)

(6) 𝜔
𝐶
= 𝐸𝜔
𝑅
‖ 𝑜𝑤𝑛𝑒𝑟 𝑖𝑑 ‖ 𝑑𝑎𝑡𝑒 ‖ 𝑡𝑖𝑚𝑒

(7) Register 𝜔
𝐶
to 𝐶𝐴

Algorithm 1: Watermark generation.

computationally infeasible for attacker to guess a key. At lines
6-7, the encrypted relation watermark 𝐸𝜔

𝑅
is concatenated

with owner Id along with date and time stamp to generate a
watermark certificate 𝜔

𝐶
, which is then registered with the

CA before publishing the database for certification purpose.
Algorithm 2 generates a digit subwatermark which is

based on digit frequency for all data values present in
adatabase relation. At lines 1–3, the length of each data value
is determined which is then used to extract the individual
digits as shown at lines 4-5. Lines 6-7 compute the frequency
of each digit and the total number of digits present in the
database relation. At line 11, the relative frequency of each
digit 𝑟𝑓𝑑

𝑖
is determined which is then used to generate a digit

subwatermark 𝜔
𝑑
as shown at line 13. At lines 15-16, the digit

subwatermark 𝜔
𝑑
is concatenated with total digit count and

is returned to the watermark generation algorithm. It is to be
noted that the digit subwatermark is composed of each digit
relative frequency 𝑟𝑓𝑑

𝑖
and the total count of all digits. In

fact, this information is used for characterization of attacks
as discussed in Section 3.

The subwatermark generation for length of data values
in a database relation is presented in Algorithm 3. At lines
1–3, the length of each data value is determined. Lines 4-5
determine the frequency for each length of data values and
the total count of data values length present in the database
relation. At line 9, the relative frequency for each length of
data value 𝑟𝑓𝑙

𝑗
is computed which is then used to generate
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(1) For Each tuple 𝑟
𝑖
C relation 𝑅 Do

(2) For Each attribute 𝐴
𝑗
C relation 𝑅 Do

(3) length = Len(𝑟
𝑖
⋅ 𝐴
𝑗
)

(4) For 𝑖 = 0 to length – 1Do
(5) 𝑑

𝑖
= Mid$(𝑟

𝑖
⋅ 𝐴
𝑗
, 𝑖, 1)

(6) digit frequency[𝑑
𝑖
]++

(7) total digit count++
(8) End For
(9) End For
(10) End For
(11) For Each 𝑖 C digit Do
(12) 𝑟𝑓𝑑

𝑖
= (digit frequency[𝑖]/total digit count) ∗ 100

(13) 𝜔
𝑑
= 𝜔
𝑑
‖ 𝑟𝑓𝑑
𝑖

(14) End For
(15) 𝜔

𝑑
= 𝜔
𝑑
‖ total digit count

(16) Return 𝜔
𝑑

Algorithm 2: Digit sub-watermark generation.

Table 1: Notations.

Symbol Description
𝑅 Database relation
PK Primary key attribute
𝑟
𝑖

The 𝑖th tuple
𝐴
𝑗

The 𝑗th attribute
𝜂 Number of tuples in a database relation
] Number of attributes in a database relation
𝜔
𝑑

Digit sub-watermark
𝜔
𝑙

Length sub-watermark
𝜔
𝑟

Range sub-watermark
𝜔
𝑅

Watermark for database relation 𝑅
𝜔
𝐶

Watermark certificate
SK Secret key
𝑑
𝑖

The 𝑖th digit
𝑙
𝑗

The 𝑗th length
𝑟
𝑘

The 𝑘th range
𝑓𝑑
𝑖

Frequency for digit 𝑖 of data values
𝑓𝑙
𝑗

Frequency for length 𝑗 of data values
𝑓𝑟
𝑘

Frequency for range 𝑘 of data values
𝑟𝑓𝑑
𝑖

Relative frequency for digit 𝑖 of data values
𝑟𝑓𝑙
𝑗

Relative frequency for length 𝑗 of data values
𝑟𝑓𝑟
𝑘

Relative frequency for range 𝑘 of data values
Δ𝑓𝑑
𝑖

Change in frequency of digit 𝑖
Δ𝑓𝑙
𝑗

Change in frequency for length j
Δ𝑓𝑟
𝑘

Change in frequency for range k
ΔF𝑑
𝑖

Fractional change in digit frequency for digit 𝑖
ΔF𝑙
𝑗

Fractional change in length frequency for length j
ΔF𝑟
𝑘

Fractional change in range frequency for range 𝑘
CA Certification authority
WAR Watermark accuracy rate
WDR Watermark distortion rate

(1) For Each tuple 𝑟
𝑖
C relation 𝑅 do

(2) For Each attribute 𝐴
𝑗
C relation 𝑅 do

(3) length = Len(𝑟
𝑖
⋅ 𝐴
𝑗
)

(4) length frequency[length]++
(5) total length count++
(6) EndFor
(7) End For
(8) For Each 𝑖 C length do
(9) 𝑟𝑓𝑙

𝑗
= (length frequency[𝑖]/total length count) ∗ 100

(10) 𝜔
𝑙
= 𝜔
𝑙
‖ 𝑟𝑓𝑙
𝑗

(11) End For
(12) 𝜔

𝑙
= 𝜔
𝑙
‖ total length count

(13) Return 𝜔
𝑙

Algorithm 3: Length sub-watermark generation.

length subwatermark 𝜔
𝑙
as shown at line 10. At lines 12-13,

the length subwatermark 𝜔
𝑙
is concatenated with total length

count and is returned.
Algorithm 4 presents the algorithm for subwatermark

generation for range of data values in a database relation.
At line 1, different data ranges are defined in which the data
value of a database relation may fall. It is to be noted that
the defined data ranges may be adjusted as per the nature
of data values in the database relation and also for more
precise characterization of malicious data modifications, as
discussed in Section 3. Lines 1–3 determine the attribute
value, within each tuple. Lines 5–13 determine the frequency
for different data ranges in which the data value may fall
and the total number of data ranges present in the database
relation. At lines 16-17, the relative frequency for each range
of data value 𝑟𝑓𝑟

𝑘
is computed, which is then used to generate

range subwatermark 𝜔
𝑟
. Lines 19-20 show that the range

subwatermark 𝜔
𝑟
is concatenated with total range count and

is returned.
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(1) range = {0–99, 100–999, 1000–9999, 10000–99999, 100000–999999}
(2) For Each tuple 𝑟

𝑖
C relation 𝑅 do

(3) For Each attribute 𝐴
𝑗
C relation 𝑅 do

(4) x = 𝑟
𝑖
⋅ 𝐴
𝑗

(5) Select Case x
(6) x in range 0: range frequency[0]++
(7) x in range 1: range frequency[1]++
(8) x in range 2: range frequency[2]++
(9) x in range 3: range frequency[3]++
(10) x in range 4: range frequency[4]++
(11) End Select
(12) total range count++
(13) End For
(14) End For
(15) For Each 𝑖 C range do
(16) 𝑟𝑓𝑟

𝑘
= (range frequency[𝑖]/total range count) ∗ 100

(17) 𝜔
𝑟
= 𝜔
𝑟
‖ 𝑟𝑓𝑟
𝑘

(18) End For
(19) 𝜔

𝑟
= 𝜔
𝑟
‖ total range count

(20) Return 𝜔
𝑟

Algorithm 4: Range sub-watermark generation.

Suspicious 
database Matching Certification 

authority

No

Malicious modifications detected

SK

Watermark
regeneration

𝜔
𝑅
󳰀𝑅

󳰀 𝜔
𝑅

Figure 2: Proposed model for detection of malicious tempering.

2.2. Watermark Verification. Figure 2 shows the model for
detection of malicious modifications in suspicious database
relation𝑅󸀠. For detection ofmalicious datamodifications, the
relation watermark𝜔

𝑅

󸀠 is regenerated for suspicious database
relation 𝑅󸀠 and compared with the relation watermark 𝜔

𝑅

registered at CA; if both watermarks are different then the
suspicious database relation 𝑅󸀠 is considered as a tempered
relation.

The algorithm for watermark detection is presented in
Algorithm 5. At line 1, the watermark 𝜔

𝑅

󸀠 is generated by
using Algorithm 1 for suspicious database relation 𝑅󸀠. The
watermark certificate 𝜔

𝐶
which is already registered at CA is

used to extract database relation watermark 𝜔
𝑅
as shown at

lines 2–4. At lines 5–10, each digit of 𝜔
𝑅
is compared with the

corresponding digit of 𝜔
𝑅

󸀠 and match count is incremented
on each successful match. At line 9, the total count is
computed to know the number of digits tested. At lines 11-12,
theWAR (Watermark Accuracy Rate) andWDR (Watermark
Distortion Rate) are computed. If the distortion exists in
the suspicious database relation 𝑅󸀠, then 𝑅󸀠 is rejected as a
tempered relation with distortion rateWDR as shown at lines
13–15.

The algorithm for characterization of malicious data
modifications is presented in Algorithm 6. At line 2, the

relative frequency of each digit 𝑟𝑓𝑑
𝑖
is extracted from digit

subwatermark 𝜔
𝑑
as 𝜔
𝑑
⊆ 𝜔
𝑅
and 𝜔

𝑅
is already registered at

CA.The frequency distribution of each digit 𝑓𝑑
𝑖
in relation 𝑅

is determined at line 3. At line 4, the frequency distribution
of each digit 𝑓𝑑

𝑖

󸀠 for suspicious database relation 𝑅󸀠 is
determined. The change in frequency distribution of each
digit Δ𝑓𝑑

𝑖
is computed at line 5 and the fractional change

in each digit ΔF𝑑
𝑖
is determined at line 6. The computed

value of ΔF𝑑
𝑖
is then used to characterize the malicious

modificationsmade to the database relation𝑅. For example, if
ΔF𝑑
𝑖
is zero, then the suspicious relation 𝑅󸀠 is not tempered.

A positive ΔF𝑑
𝑖
indicates that F fraction of digit 𝑑

𝑖
is

maliciously inserted by attacker as an attempt to transform
low data values to high in database relation 𝑅. Similarly,
a negative ΔF𝑑

𝑖
indicates that F fraction of digit 𝑑

𝑖
is

maliciously deleted by attacker as an attempt to transform
high data values to low in database relation 𝑅. At lines 8–
14 and 15–21, a similar method as discussed earlier is used
to determine ΔF𝑙

𝑗
and ΔF𝑟

𝑘
to characterize the attacks on

length and range of data values in database relation 𝑅. The
characterization of malicious data modifications is further
elaborated in Section 3.2 with experimental results.

3. Results and Discussion

Suppose that Alice is the database owner and she has used the
proposed algorithms along with the secret key to generate a
watermark for the database relation 𝑅. The attacker Mallory
for his own nefarious objectives may attempt to make mali-
cious modifications in Alice watermarked database relation.
We conducted our experiments inMicrosoftVisual Basic and
Microsoft Access, on 3.2GHz Intel core i3 CPU with 2GB of
RAM. The proposed watermarking scheme is evaluated on a
real-life dataset namely Forest Cover Type data set, available
at UCI Machine Learning Repository [37]. This dataset has
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(1) Compute 𝜔
𝑅

󸀠 for 𝑅󸀠 (by using Algorithm 1)
(2) Obtain 𝜔

𝐶
from CA

(3) Extract 𝐸𝜔
𝑅
from 𝜔

𝐶

(4) 𝜔
𝑅
= Decrypt(𝐸𝜔

𝑅
, 𝑆𝐾)

(5) For 𝑖 = 1 to length(𝜔
𝑅
) Do

(6) If 𝜔
𝑅
[𝑖] = 𝜔

𝑅

󸀠
[𝑖] Then

(7) match count =match count + 1
(8) End if
(9) total count = total count + 1
(10) End For
(11) 𝑊𝐴𝑅 =match count/total count ∗ 100
(12) 𝑊𝐷𝑅 = 1 –𝑊𝐴𝑅
(13) If 𝑊𝐷𝑅 ̸= 0Then
(14) Database Relation 𝑅󸀠 is tempered with distortion rate𝑊𝐷𝑅
(15) End if

Algorithm 5: Watermark verification.

(1) For Each 𝑑
𝑖
C digit do

(2) Extract 𝑟𝑓𝑑
𝑖
from 𝜔

𝑑

(3) 𝑓𝑑
𝑖
= 𝑟𝑓𝑑

𝑖
/total digit count

(4) Generate 𝑓𝑑
𝑖

󸀠 from 𝑅󸀠 (by using Algorithm 2)
(5) Δ𝑓𝑑

𝑖
= 𝑓𝑑
𝑖
− 𝑓𝑑
𝑖

󸀠

(6) ΔF𝑑
𝑖
= Δ𝑓𝑑

𝑖
/𝑓𝑑
𝑖
∗ 100

(7) End For
(8) For Each 𝑙

𝑗
C length do

(9) Extract 𝑟𝑓𝑙
𝑗
from 𝜔

𝑙

(10) 𝑓𝑙
𝑗
= 𝑟𝑓𝑙
𝑗
/total length count

(11) Generate 𝑓𝑙
𝑗

󸀠 from 𝑅󸀠 (by using Algorithm 3)
(12) Δ𝑓𝑙

𝑗
= 𝑓𝑙
𝑗
− 𝑓𝑙
𝑗

󸀠

(13) ΔF𝑙
𝑗
= Δ𝑓𝑙

𝑗
/𝑓𝑙
𝑗
∗ 100

(14) End For
(15) For Each 𝑟

𝑘
C range do

(16) Extract 𝑟𝑓𝑟
𝑘
from 𝜔

𝑟

(17) 𝑓𝑟
𝑘
= 𝑟𝑓𝑟
𝑘
/total range count

(18) Generate 𝑓𝑟
𝑘

󸀠 from 𝑅󸀠 (by using Algorithm 4)
(19) Δ𝑓𝑟

𝑘
= 𝑓𝑟
𝑘
− 𝑓𝑟
𝑘

󸀠

(20) ΔF𝑟
𝑘
= Δ𝑓𝑟

𝑘
/𝑓𝑟
𝑘
∗ 100

(21) End For

Algorithm 6: Characterization of malicious data modifications.

581,102 tuples, each with 10 integer attributes, 44 Boolean
attributes, and 1 categorical attribute. In our experiments,
we have used all 10 integer attributes. It is to be noted that
in robust watermarking schemes, the aim of Mallory is to
destroy the Alice watermark without affecting the database
relation, whereas in fragile schemes, Mallory attempts to
makemaliciousmodifications inAlice watermarked database
relation without affecting the watermark. The experimental
results presented in this section show that the watermark is
adversely affected by even minor malicious data modifica-
tions; therefore, the generated watermark is fragile.

3.1. Detection of Malicious Modifications. In this set of exper-
iments, we randomly introduce malicious modifications in

Table 2: Detection of malicious insertion of tuples with different
attack rates (𝜂 = 106).

Insertion attack rate WAR WDR Temper detection
10% 18.14 81.86 Yes (High)
30% 18.56 81.44 Yes (High)
50% 20.41 79.59 Yes (High)
70% 16.67 83.33 Yes (High)
90% 16.32 83.68 Yes (High)

Table 3: Detection of malicious deletion of tuples with different
attack rates (𝜂 = 106).

Deletion attack rate WAR WDR Temper detection
10% 24.32 75.68 Yes (High)
30% 17.88 82.12 Yes (High)
50% 20.95 79.05 Yes (High)
70% 13.08 86.92 Yes (High)
90% 14.14 85.86 Yes (High)

Forest Cover Type data set [37]. As discussed in Algorithm 5,
these malicious modifications are detected by generating the
watermark for the suspicious database relation 𝑅󸀠 to obtain
𝜔
𝑅

󸀠, which is then compared with the registered watermark
𝜔
𝑅
to determine the WAR (Watermark Accuracy Rate) and

WDR (Watermark Distortion Rate).
Table 2 shows the WAR and WDR for the malicious

insertions made to the database relation with different attack
rates. For example, when 10% of the fake but similar tuples are
randomly inserted into the database relation 𝑅, the WDR is
found to be high and malicious insertions are detected with
lowWAR.

Tables 3-4 show similar results as of insertion attack for
malicious deletions andupdatesmade to the database relation
𝑅.

Figure 3 summarizes the insertion, deletion, and update
attacks and shows that the WDR is always high for different
volume of malicious data modifications.
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Table 4: Detection of malicious update of tuples with different
attack rates (𝜂 = 106).

Update attack rate WAR WDR Temper detection
10% 20.42 79.58 Yes (High)
30% 19.89 80.11 Yes (High)
50% 19.89 80.11 Yes (High)
70% 18.94 81.06 Yes (High)
90% 14.13 85.87 Yes (High)
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Figure 3: Watermark distortion rate for malicious insertion, dele-
tion, and update of tuples with different attack rates (𝑛 = 106).

In another set of attacks, we simultaneously perform
malicious insertion, deletion, and update of tuples with
different attack rates in database relation 𝑅. Table 5 shows the
WDR for this set of attack.

The experimental results presented in Tables 2–5 show
that the malicious modifications are always detected and
fragility of the registered watermark 𝜔

𝑅
is observed for

even low volumes of attack. The WAR is low and WDR is
high for different volume of malicious insertions, deletions,
and updates made to the database relation. The low WAR
indicates the extent to which the database relation has been
attacked, whereas the high WDR indicates that the database
relation has been tampered and is not authentic.The accuracy
of watermark is adversely affected even with minor malicious
datamodifications and thewatermark fragility proves that the
database relation has been attacked.

3.2. Characterization of Malicious Modifications. One of the
important features of the proposed watermarking scheme
is to characterize the malicious modifications made to the
database relations. As discussed in Algorithm 1, the water-
mark generation is based on the content characteristics of
database relation itself which enable us to characterize the
malicious data modifications. Algorithm 6 elaborates the
algorithm for characterization of malicious data modifica-
tions by evaluating the fractional change in each digit ΔF𝑑

𝑖
,

length ΔF𝑙
𝑗
and range ΔF𝑟

𝑘
of data values in the tempered

database relation 𝑅󸀠.

We have conducted experiments for both random and
deterministic attacks for characterization of malicious data
modifications. In random tempering attacks, we randomly
attack the digit frequency, length, and range of data values
in the database relation, whereas in deterministic attacks, the
attack is performedwith the specific attack rates.The random
tempering attacks are presented in this section and the results
of detailed deterministic attacks are shown in the Appendix
for reference.

3.2.1. Attacks on Digit Frequency. In this set of attacks,
Mallory randomly performs malicious insertion, deletion,
and update attacks on digit frequency in Alice’s watermarked
relation 𝑅. For example, in insertion attack, Mallory may
attempt to maliciously insert some digits in 𝑅. Table 6 shows
the experimental results obtained for characterization of
malicious insertion attack on digits 9 and 0 as discussed
in Algorithm 6. A positive value of ΔF𝑑

𝑖
indicates that F

fraction of digits 9 and 0 is maliciously inserted by Mallory
in the database relation 𝑅. The characteristic of this attack is
an attempt to relatively increase the low data values to high
in database relation 𝑅 as an increase of 35.84% and 24.42%
is observed in ΔF𝑑

𝑖
of digits 9 and 0, respectively. As the

other digits are not attacked, soΔF𝑑
𝑖
is zero for digits 1–8 and

there is no change in the digit frequency Δ𝑓𝑑
𝑖
of these digits.

This characteristic of attack, when combined with the nature
of data, may provide useful information about the attacker
intention. For example, in the product sales environment,
these malicious insertions indicate that the attacker may have
attempted to increase the low volume and amount of product
sales.

Table 7 shows the result for random malicious deletions
of digits 9 and 0 made to the database relation 𝑅. A negative
value of ΔF𝑑

𝑖
indicates that F fraction of digits 9 and 0 is

maliciously deleted by the attacker. The characteristic of this
attack is an attempt to relatively decrease the high data values
to low in the database relation 𝑅. In this attack, 14.70% of
digit 9 and 12.44% of digit 0 are randomly deleted from the
database relation. As the other digits are not deleted, soΔF𝑑

𝑖

is zero for digits 1–8. Table 8 shows similar result for random
malicious update for digits 9 and 0 made to the database
relation. In this attack, digits 9 and 0 are randomly replaced
with some other digits, so the digit frequency Δ𝑓𝑑

𝑖
of digits 9

and 0 is decreased (high to low), where as the digit frequency
Δ𝑓𝑑
𝑖
of digits 1–8 is increased (low to high).

Figure 4 summarizes the malicious insertion, deletion,
and update attacks on digits 9 and 0. The insertion attack
shows a positive increase (low to high) on attacked digits,
where as a negative trend (high to low) is observed in attacked
digits for deletion attack. In update attack, both negative
(high to low) and positive trends (low to high) are observed
for attacked and unattacked digits, respectively.

In another set of attacks, we randomly insert, delete and
update 10% (lower bound) and 90% (upper bound) of the
tuples from the database relation 𝑅. Table 9 shows the effect
on fractional change in digit frequency ΔF𝑑

𝑖
for each digit.

It is to be noted that, in insertion attack, a 𝑘 fraction of
positive trend (low to high) is being observed in each digit
frequency of database relation 𝑅. For example, when 10% of
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Table 5: Detection of malicious data modifications with different attack rates (𝜂 = 106).

Insertion attack
rate Deletion attack rate Update attack rate WAR WDR Temper detection

10% 10% 10% 15.85 84.15 Yes (High)
30% 30% 30% 10.98 89.02 Yes (High)
50% 50% 50% 10.28 89.72 Yes (High)
70% 70% 70% 13.33 86.67 Yes (High)
90% 90% 90% 10.98 89.02 Yes (High)

Table 6: Characterization of malicious insertion attacks on digit frequency.

𝑑
𝑖

𝑟𝑓𝑑
𝑖

𝑓𝑑
𝑖

𝑟𝑓𝑑
𝑖

󸀠
𝑓𝑑
𝑖

󸀠
Δ𝑓𝑑
𝑖

ΔF𝑑
𝑖

Characteristic
0 8.63 1435163 10.28 1785659 +350496 +24.42% ↑Low to High
1 18.02 2995771 17.24 2995771 0 0 No change
2 19.48 3238818 18.64 3238818 0 0 No change
3 11.70 1945572 11.20 1945572 0 0 No change
4 8.22 1366062 7.86 1366062 0 0 No change
5 7.48 1244089 7.16 1244089 0 0 No change
6 6.65 1105210 6.36 1105210 0 0 No change
7 6.45 1072363 6.17 1072363 0 0 No change
8 6.60 1097669 6.32 1097669 0 0 No change
9 6.76 1123819 8.78 1526545 +402726 +35.84% ↑Low to High

Table 7: Characterization of malicious deletion attacks on digit frequency.

𝑑
𝑖

𝑟𝑓𝑑
𝑖

𝑓𝑑
𝑖

𝑟𝑓𝑑
𝑖

󸀠
𝑓𝑑
𝑖

󸀠
Δ𝑓𝑑
𝑖

ΔF𝑑
𝑖

Characteristic
0 8.63 1435163 7.72 1256568 −178595 −12.44% ↓High to Low
1 18.02 2995771 18.40 2995771 0 0 No change
2 19.48 3238818 19.89 3238818 0 0 No change
3 11.70 1945572 11.95 1945572 0 0 No change
4 8.22 1366062 8.39 1366062 0 0 No change
5 7.48 1244089 7.64 1244089 0 0 No change
6 6.65 1105210 6.79 1105210 0 0 No change
7 6.45 1072363 6.59 1072363 0 0 No change
8 6.60 1097669 6.74 1097669 0 0 No change
9 6.76 1123819 5.89 958569 −165250 −14.70% ↓High to Low

Table 8: Characterization of malicious update attacks on digit frequency.

𝑑
𝑖

𝑟𝑓𝑑
𝑖

𝑓𝑑
𝑖

𝑟𝑓𝑑
𝑖

󸀠
𝑓𝑑
𝑖

󸀠
Δ𝑓𝑑
𝑖

ΔF𝑑
𝑖

Characteristic
0 8.63 1435163 5.71 948993 −486170 −33.88% ↓High to Low
1 18.02 2995771 19.01 3159784 +164013 +5.47% ↑Low to High
2 19.48 3238818 20.97 3485451 +246633 +7.61% ↑Low to High
3 11.70 1945572 11.91 1980325 +34753 +1.79% ↑Low to High
4 8.22 1366062 8.52 1416889 +50827 +3.72% ↑Low to High
5 7.48 1244089 8.22 1365803 +121714 +9.78% ↑Low to High
6 6.65 1105210 6.90 1146565 +41355 +3.74% ↑Low to High
7 6.45 1072363 7.14 1187586 +115223 +10.74% ↑Low to High
8 6.60 1097669 6.78 1127651 +29982 +2.73% ↑Low to High
9 6.76 1123819 4.85 805489 −318330 −28.33% ↓High to Low
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Figure 4: Characterization of malicious insertion, deletion, and
update attacks on digits 9 and 0 of data values.

similar tuples are inserted in database relation, an increase of
approximately 10% is being observed in ΔF𝑑

𝑖
for each digit

of database relation. Similarly, in deletion attack, a 𝑘 fraction
of negative trend (high to low) is observed in ΔF𝑑

𝑖
for each

digit of database relation. In update attack, no specific trend
is observed in ΔF𝑑

𝑖
as 𝑘 fractions of digits are randomly

replaced by some other digits.
It is to be noted that the attack on digit frequency (as

discussed above) can be characterized on parameters like the
digits being attacked, the fraction of each digit attacked, the
type of attack (insertion, deletion, or update) on each digit,
and the effect of attack (low to high, high to low, or no change)
on data values.

3.2.2. Attack on Length of Data Values. In this set of attacks,
Mallory randomly performs malicious insertion, deletion,
and update attacks on length of data values. Table 10 shows
the experimental result for characterization of malicious
insertion on data values of length 3 in the database relation
𝑅. A positive value of ΔF𝑙

𝑗
indicates that F fraction of

length 𝑙
𝑗
is maliciously inserted in the database relation 𝑅.

The characteristic of this attack is to relatively increase the
low data values to high as an increase of 18.27% is observed in
ΔF𝑙
𝑗
for data values of length 3. Also,ΔF𝑙

𝑗
is zero for lengths

1, 2, and 4, which shows that the data values of these lengths
are not attacked.

Table 11 shows result of random malicious deletion for
data values of length 3. As in deletion of digit frequency
attack, a negative value of ΔF𝑙

𝑗
indicates that F fraction

of length 𝑙
𝑗
is maliciously deleted with characteristic of

decreasing high data values to low in database relation. Also,
as inmalicious insertion, theΔF𝑙

𝑗
is zero for lengths 1, 2, and

4, which indicates that the data values of these lengths are not
deleted. Table 12 shows results for malicious updates on data
values of length 3. In this attack, the data values of length 3
are randomly replaced by lengths 1, 2, and 4.This attack shows
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Length

Insertion attack
Deletion attack
Update attack

−40

−30

−20

−10

0

10

20

30

40

Fr
ac

tio
n 

of
 at

ta
ck

 (%
)

Figure 5: Characterization of malicious insertion, deletion, and
update attacks on length 3 of data values.

a decrease inΔF𝑙
𝑗
for length 3, where as theΔF𝑙

𝑗
for lengths

1, 2, and 4 is increased.
Figure 5 summarizes the malicious insertion, deletion,

and update attacks on length 3 of data values. The insertion
attack shows a positive increase (low to high) in attacked
length, where as a negative trend (high to low) on attacked
length is observed in deletion attack. In modification attack,
a negative trend (high to low) is observed on attacked length,
where as a positive trend (low to high) is observed on un-
attacked length of data values.

Table 13 shows the effect on fractional change in length
frequency ΔF𝑙

𝑗
, when 10% (lower bound) and 90% (upper

bound) of tuples are maliciously inserted, deleted, and
updated in the database relation. In insertion attack, the
fractional change in length frequency ΔF𝑙

𝑗
has a 𝑘 fraction

of positive trend (low to high) for each length of data values.
Similarly, in deletion attack, a 𝑘 fraction of negative trend
(high to low) is observed for each length of data values.
For example, when 10% of tuples are randomly deleted
from a database relation, a decrease of approximately 10% is
observed in ΔF𝑙

𝑗
for each length of data values. The update

attack does not show any specific trend as 𝑘 fraction of
different length of data values are randomly replaced by some
other length of data values.

It is to be noted that the attack on length of data values can
be characterized on parameters like the length of data values
being attacked, the fraction of each length of data values
attacked, the type of attack (insertion, deletion, or update),
and the effect of attack (low to high, high to low, or no change)
on each length of data values.

3.2.3. Attack on Range of Data Values. In this set of attacks,
Mallory randomly performs insertion, deletion, and update
attack on range 1, that is, (100–999) of data values present
in the database relation 𝑅. Table 14 shows the experimental
results for characterization of malicious insertion for range 1
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Table 9: Characterization of malicious modifications on digit frequency.

Insertion attack Deletion attack Update attack
Attack rate 10% 90% 10% 90% 10% 90%
𝑑
𝑖

ΔF𝑑
𝑖
% ΔF𝑑

𝑖
% ΔF𝑑

𝑖
% ΔF𝑑

𝑖
% ΔF𝑑

𝑖
% ΔF𝑑

𝑖
%

0 +9.51 +90.77% −9.63% −89.65% +0.41 +0.45
1 +10.51 +94.47% −10.11% −89.05% +0.80 +15.91
2 +10.49 +90.14% −10.67% −90.20% −0.57 −3.72
3 +9.63 +94.72% −9.87% −90.30% −2.12 +3.39
4 +9.47 +83.78% −10.07% −90.82% −0.28 −7.34
5 +9.01 +82.00% −9.43% −91.26% +0.40 −11.43
6 +9.08 +81.84% −9.48% −91.01% +0.13 −7.78
7 +10.17 +88.20% −9.95% −89.83% +0.05 +1.46
8 +10.23 +88.86% −10.06% −89.89% −0.22 +2.16
9 +10.25 +88.36% −10.37% −90.66% −0.96 −2.62
The detailed experiments for this set of attacks are presented in the Appendix (Tables 18(a)–18(f)).

Table 10: Characterization of malicious insertion attacks on length of data values.

𝑙
𝑗

𝑟𝑓𝑙
𝑗

𝑓𝑙
𝑗

𝑟𝑓𝑙
𝑗

󸀠
𝑓𝑙
𝑗

󸀠
Δ𝑓𝑙
𝑗

ΔF𝑙
𝑗

Characteristic
1 5.74 325894 5.27 325894 0 0 No change
2 20.19 1146469 18.54 1146469 0 0 No change
3 48.66 2762791 52.85 3267609 +504818 +18.27% ↑Low to High
4 25.41 1442906 23.34 1442906 0 0 No change

of data values. The characteristic of this attack is to relatively
increase the low data values to high as an increase of 17.33%
is observed in ΔF𝑟

𝑘
for range 1 of data values. The ΔF𝑟

𝑘
for

range 0 and 2 is zero as the data values of these ranges are not
attacked.

Table 15 shows the results of random malicious deletion
for data values of range 1. As in deletion of digit frequency
attack, a negative value of ΔF𝑟

𝑘
indicates that F fraction

of range 1 is maliciously deleted with characteristic of trans-
forming high data values to low in database relation 𝑅. As
the data values of ranges 0 and 2 are not attacked, so the
ΔF𝑟
𝑘
is zero for these ranges. Table 16 shows the results for

malicious updates on data values of range 1. In this attack, the
data values of range 1 are randomly replaced by ranges 0 and
2. This attack shows a decrease in ΔF𝑟

𝑘
for range 1, where as

the ΔF𝑟
𝑘
for range 0 and 2 is increased.

The malicious insertion, deletion, and update attacks on
range 1 of data values are summarized in Figure 6. A positive
increase is observed in the attacked range for insertion attack
(low to high) and a negative trend (high to low) is observed
in attacked range for deletion attack. The modification attack
shows a negative trend (high to low) for attacked range,
that is, range 1 of data values and a positive increase for
nonattacked ranges, that is, range 0 and 2 of data values.

In another set of attacks, we randomly inserted, deleted,
and updated 10% (lower bound) and 90% (upper bound) of
tuples from the database relation 𝑅. Table 17 shows the effect
on fractional change in range frequencyΔF𝑟

𝑘
, for each range

of data values.The fractional change in range frequencyΔF𝑟
𝑘

has a 𝑘 fraction of positive trend (low to high) for malicious
insertion in each range of data values. Similarly, in deletion
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Figure 6: Characterization of malicious insertion, deletion, and
update attacks on range 1 (100–999) of data values.

attack, a 𝑘 fraction of negative trend (high to low) is observed
for each range of data values. For example, when 10%of tuples
are randomly deleted from a database relation, a decrease of
approximately 10% is observed inΔF𝑟

𝑘
for each range of data

values. The update attack does not show any specific trend
as 𝑘 fraction of different range of data values are randomly
replaced by some other range of data values.

It is to be noted that the data characteristics used for
our experiments like digit, length, and range of data values
are cohesive to each another. Due to this relationship, we
evaluated the effect of malicious data modifications on these
three data characteristics. For example, ifMallorymaliciously
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Table 11: Characterization of malicious deletion attacks on length of data values.

𝑙
𝑗

𝑟𝑓𝑙
𝑗

𝑓𝑙
𝑗

𝑟𝑓𝑙
𝑗

󸀠
𝑓𝑙
𝑗

󸀠
Δ𝑓𝑙
𝑗

ΔF𝑙
𝑗

Characteristic
1 5.74 325894 6.52 325894 0 0.00 No change
2 20.19 1146469 22.92 1146469 0 0.00 No change
3 48.66 2762791 41.71 2085761 −677030 −24.51% ↓High to Low
4 25.41 1442906 28.85 1442906 0 0.00 No change

Table 12: Characterization of malicious update attacks on length of data values.

𝑙
𝑗

𝑟𝑓𝑙
𝑗

𝑓𝑙
𝑗

𝑟𝑓𝑙
𝑗

󸀠
𝑓𝑙
𝑗

󸀠
Δ𝑓𝑙
𝑗

ΔF𝑙
𝑗

Characteristic
1 5.74 325894 6.31 358142 +32248 +9.90% ↑Low to High
2 20.19 1146469 27.57 1565462 +418993 +36.55% ↑Low to High
3 48.66 2762791 34.27 1945657 −817134 −29.58% ↓High to Low
4 25.41 1442906 31.86 1808799 +365893 +25.36% ↑Low to High

Table 13: Characterization of malicious modifications on length of data values.

Insertion attack Deletion attack Update attack
Attack rate 10% 90% 10% 90% 10% 90%
𝑙
𝑗

ΔF𝑙
𝑗
% ΔF𝑙

𝑗
% ΔF𝑙

𝑗
% ΔF𝑙

𝑗
% ΔF𝑙

𝑗
% ΔF𝑙

𝑗
%

1 +9.55 100.58 −8.94 −91.25 −3.65 −38.67
2 +10.20 89.64 −10.21 −89.28 1.89 6.13
3 +10.35 89.91 −9.98 −88.92 1.57 11.03
4 +9.41 87.71 −10.16 −91.93 −2.94 −12.33
The detailed experiments for this set of attacks are presented in the Appendix (Tables 19(a)–19(f)).

Table 14: Characterization of malicious insertion attacks on range of data values.

Range 𝑟
𝑘

𝑟𝑓𝑟
𝑘

𝑓𝑟
𝑘

𝑟𝑓𝑟
𝑘

󸀠
𝑓𝑟
𝑘

󸀠
Δ𝑓𝑟
𝑘

ΔF𝑟
𝑘

Characteristic
0 0–99 25.59 1436986 23.60 1436986 0 0 No change
1 100–999 48.73 2736731 52.72 3210988 +474257 +17.33% ↑Low to High
2 1000–9999 25.68 1442223 23.68 1442223 0 0 No change

Table 15: Characterization of malicious deletion attacks on range of data values.

Range 𝑟
𝑘

𝑟𝑓𝑟
𝑘

𝑓𝑟
𝑘

𝑟𝑓𝑟
𝑘

󸀠
𝑓𝑟
𝑘

󸀠
Δ𝑓𝑟
𝑘

ΔF𝑟
𝑘

Characteristic
0 0–99 25.59 1436986 29.12 1436986 0 0 No change
1 100–999 48.73 2736731 41.65 2054875 −681856 −24.92% ↓High to Low
2 1000–9999 25.68 1442223 29.23 1442223 0 0 No change

Table 16: Characterization of malicious update attacks on range of data values.

Range 𝑟
𝑘

𝑟𝑓𝑟
𝑘

𝑓𝑟
𝑘

𝑟𝑓𝑟
𝑘

󸀠
𝑓𝑟
𝑘

󸀠
Δ𝑓𝑟
𝑘

ΔF𝑟
𝑘

Characteristic
0 0–99 25.59 1436986 30.07 1688965 251979 +17.54% ↑Low to High
1 100–999 48.73 2736731 40.42 2269854 −466877 −17.06% ↓High to Low
2 1000–9999 25.68 1442223 29.51 1657121 214898 +14.91% ↑Low to High

Table 17: Characterization of malicious data modifications on range of data values.

Insertion attack Deletion attack Update attack
Attack rate 10% 90% 10% 90% 10% 90%

Range 𝑟
𝑘

ΔF𝑟
𝑘
% ΔF𝑟

𝑘
% ΔF𝑟

𝑘
% ΔF𝑟

𝑘
% ΔF𝑟

𝑘
% ΔF𝑟

𝑘
%

0 0–99 +9.97 +92.33 −9.84 −89.76 0.39 −5.91
1 100–999 +10.34 +89.86 −9.99 −88.90 1.48 10.46
2 1000–9999 +9.41 +87.71 −10.16 −91.93 −2.94 −12.41
The detailed experiments for this set of attacks are presented in the Appendix (Tables 20(a)–20(f)).
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Table 18: Characterization of malicious attacks on digit frequency (deterministic).

(a) Characterization of malicious insertion attacks on digit frequency (𝜂 = 106, attack rate = 10%)

𝑑
𝑖

𝑟𝑓𝑑
𝑖

𝑓𝑑
𝑖

𝑟𝑓𝑑
𝑖

󸀠
𝑓𝑑
𝑖

󸀠
Δ𝑓𝑑
𝑖

ΔF𝑑
𝑖

Characteristic
0 8.44 247345 8.40 270858 23513 +9.51% ↑Low to High
1 16.28 477362 16.37 527535 50173 +10.51% ↑Low to High
2 19.88 582616 19.97 643745 61129 +10.49% ↑Low to High
3 11.37 333378 11.34 365471 32093 +9.63% ↑Low to High
4 8.83 258748 8.79 283251 24503 +9.47% ↑Low to High
5 8.31 243554 8.24 265510 21956 +9.01% ↑Low to High
6 7.14 209399 7.09 228418 19019 +9.08% ↑Low to High
7 6.40 187586 6.41 206659 19073 +10.17% ↑Low to High
8 6.49 190268 6.51 209737 19469 +10.23% ↑Low to High
9 6.86 201050 6.88 221653 20603 +10.25% ↑Low to High

(b) Characterization of malicious insertion attacks on digit frequency (𝜂 = 106, attack rate = 90%)

𝑑
𝑖

𝑟𝑓𝑑
𝑖

𝑓𝑑
𝑖

𝑟𝑓𝑑
𝑖

󸀠
𝑓𝑑
𝑖

󸀠
Δ𝑓𝑑
𝑖

ΔF𝑑
𝑖

Characteristic
0 8.44 247345 8.51 471852 224507 +90.77% ↑Low to High
1 16.28 477362 16.73 928331 450969 +94.47% ↑Low to High
2 19.88 582616 19.97 1107797 525181 +90.14% ↑Low to High
3 11.37 333378 11.70 649150 315772 +94.72% ↑Low to High
4 8.83 258748 8.57 475532 216784 +83.78% ↑Low to High
5 8.31 243554 7.99 443279 199725 +82.00% ↑Low to High
6 7.14 209399 6.86 380768 171369 +81.84% ↑Low to High
7 6.40 187586 6.36 353031 165445 +88.20% ↑Low to High
8 6.49 190268 6.48 359339 169071 +88.86% ↑Low to High
9 6.86 201050 6.83 378696 177646 +88.36% ↑Low to High

(c) Characterization of malicious deletion attacks on digit frequency (𝜂 = 106, attack rate = 10%)

𝑑
𝑖

𝑟𝑓𝑑
𝑖

𝑓𝑑
𝑖

𝑟𝑓𝑑
𝑖

󸀠
𝑓𝑑
𝑖

󸀠
Δ𝑓𝑑
𝑖

ΔF𝑑
𝑖

Characteristic
0 8.44 247345 8.48 223528 −23817 −9.63% ↓High to Low
1 16.28 477362 16.27 429114 −48248 −10.11% ↓High to Low
2 19.88 582616 19.74 520475 −62141 −10.67% ↓High to Low
3 11.37 333378 11.40 300483 −32895 −9.87% ↓High to Low
4 8.83 258748 8.83 232703 −26045 −10.07% ↓High to Low
5 8.31 243554 8.37 220577 −22977 −9.43% ↓High to Low
6 7.14 209399 7.19 189555 −19844 −9.48% ↓High to Low
7 6.40 187586 6.41 168921 −18665 −9.95% ↓High to Low
8 6.49 190268 6.49 171131 −19137 −10.06% ↓High to Low
9 6.86 201050 6.83 180196 −20854 −10.37% ↓High to Low

(d) Characterization of malicious deletion attacks on digit frequency (𝜂 = 106, attack rate = 90%)

𝑑
𝑖

𝑟𝑓𝑑
𝑖

𝑓𝑑
𝑖

𝑟𝑓𝑑
𝑖

󸀠
𝑓𝑑
𝑖

󸀠
Δ𝑓𝑑
𝑖

ΔF𝑑
𝑖

Characteristic
0 8.44 247345 8.89 25612 −221733 −89.65% ↓High to Low
1 16.28 477362 18.14 52276 −425086 −89.05% ↓High to Low
2 19.88 582616 19.80 57072 −525544 −90.20% ↓High to Low
3 11.37 333378 11.22 32342 −301036 −90.30% ↓High to Low
4 8.83 258748 8.24 23758 −234990 −90.82% ↓High to Low
5 8.31 243554 7.38 21281 −222273 −91.26% ↓High to Low
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(d) Continued.

𝑑
𝑖

𝑟𝑓𝑑
𝑖

𝑓𝑑
𝑖

𝑟𝑓𝑑
𝑖

󸀠
𝑓𝑑
𝑖

󸀠
Δ𝑓𝑑
𝑖

ΔF𝑑
𝑖

Characteristic
6 7.14 209399 6.53 18815 −190584 −91.01% ↓High to Low
7 6.40 187586 6.62 19071 −168515 −89.83% ↓High to Low
8 6.49 190268 6.67 19239 −171029 −89.89% ↓High to Low
9 6.86 201050 6.52 18780 −182270 −90.66% ↓High to Low

(e) Characterization of malicious update attacks on digit frequency (𝜂 = 106, attack rate = 10%)

𝑑
𝑖

𝑟𝑓𝑑
𝑖

𝑓𝑑
𝑖

𝑟𝑓𝑑
𝑖

󸀠
𝑓𝑑
𝑖

󸀠
Δ𝑓𝑑
𝑖

ΔF𝑑
𝑖

Characteristic
0 8.438048 247345 8.49 248357 1012 +0.41% ↑Low to High
1 16.28496 477362 16.46 481186 3824 +0.80% ↑Low to High
2 19.87565 582616 19.81 579315 −3301 −0.57% ↓High to Low
3 11.37302 333378 11.16 326311 −7067 −2.12% ↓High to Low
4 8.827055 258748 8.82 258020 −728 −0.28% ↓High to Low
5 8.30872 243554 8.36 244519 965 +0.40% ↑Low to High
6 7.143539 209399 7.17 209680 281 +0.13% ↑Low to High
7 6.3994 187586 6.42 187678 92 +0.05% ↑Low to High
8 6.490895 190268 6.49 189845 −423 −0.22% ↓High to Low
9 6.858718 201050 6.81 199111 −1939 −0.96% ↓High to Low

(f) Characterization of malicious update attacks on digit frequency (𝜂 = 106, attack rate = 90%)

𝑑
𝑖

𝑟𝑓𝑑
𝑖

𝑓𝑑
𝑖

𝑟𝑓𝑑
𝑖

󸀠
𝑓𝑑
𝑖

󸀠
Δ𝑓𝑑
𝑖

ΔF𝑑
𝑖

Characteristic
0 8.438048 247345 8.46 248462 1117 +0.45% ↑Low to High
1 16.28496 477362 18.84 553334 75972 +15.91% ↑Low to High
2 19.87565 582616 19.10 560965 −21651 −3.72% ↓High to Low
3 11.37302 333378 11.74 344665 11287 +3.39% ↑Low to High
4 8.827055 258748 8.16 239767 −18981 −7.34% ↓High to Low
5 8.30872 243554 7.35 215727 −27827 −11.43% ↓High to Low
6 7.143539 209399 6.58 193116 −16283 −7.78% ↓High to Low
7 6.3994 187586 6.48 190330 2744 +1.46% ↑Low to High
8 6.490895 190268 6.62 194384 4116 +2.16% ↑Low to High
9 6.858718 201050 6.67 195785 −5265 −2.62% ↓High to Low

inserts a digit in a data value, the length and range of the
data value are also increased. Similarly, if Mallorymaliciously
decreases the length of a data value, the digit count and range
of the data value are also decreased (Tables 9, 13, and 17).

At the end, we summarize our findings and observations
for characterization of malicious data modifications as fol-
lows.

(i) If there is a positive trend in fractional change ΔF
of data values in tempered database relation 𝑅󸀠, it
means that F fraction of digit, range, and length
of data values is maliciously inserted by Mallory in
Alice’s watermarked relation 𝑅. The characteristic of
this attack is to relatively increase the low data values
to high in database relation 𝑅 (Tables 6, 10, and 14).

(ii) If there is a negative trend in fractional change ΔF
of data values in tempered database relation 𝑅󸀠, it
means that F fraction of digit, range, and length of
data values is maliciously deleted by Mallory from
Alice’s watermarked relation 𝑅. The characteristic of

this attack is to relatively decrease the high data values
to low in database relation 𝑅 (Tables 7, 11, and 15).

(iii) If there is both positive and negative trends in
fractional change ΔF for digit, range, and length of
data values in tempered database relation𝑅󸀠, it means
that the negative trend fractional change ΔF of data
values is maliciously replaced (updated) by positive
trend fractional change ΔF of data values (Tables 8,
12, and 16).

(iv) If there is a uniform increase of 𝑘 in fractional change
ΔFof all data values in tempered database relation𝑅󸀠,
it means that 𝑘 fraction of similar tuples ismaliciously
inserted byMallory in Alice’s watermarked relation𝑅.
The characteristic of this attack is to relatively increase
the low data values to high in database relation 𝑅
(Tables 9, 13, and 17).

(v) If there is a uniform decrease of 𝑘 in fractional change
ΔF of all data values in tempered database relation
𝑅
󸀠, it means that 𝑘 fraction of tuples is maliciously

deleted by Mallory from Alice’s watermarked relation
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Table 19: Characterization of malicious attacks on length of data values (deterministic).

(a) Characterization of malicious insertion attacks on length of data values (𝜂 = 106, attack rate = 10%)

𝑙
𝑗

𝑟𝑓𝑙
𝑗

𝑓𝑙
𝑗

𝑟𝑓𝑙
𝑗

󸀠
𝑓𝑙
𝑗

󸀠
Δ𝑓𝑙
𝑗

ΔF𝑙
𝑗

Characteristic
1 7.11 71085 7.08 77875 6790 +9.55% ↑Low to High
2 19.76 197605 19.80 217767 20162 +10.20% ↑Low to High
3 45.18 451787 45.32 498531 46744 +10.35% ↑Low to High
4 27.95 279523 27.80 305827 26304 +9.41% ↑Low to High

(b) Characterization of malicious insertion attacks on length of data values (𝜂 = 106, attack rate = 90%)

𝑙
𝑗

𝑟𝑓𝑙
𝑗

𝑓𝑙
𝑗

𝑟𝑓𝑙
𝑗

󸀠
𝑓𝑙
𝑗

󸀠
Δ𝑓𝑙
𝑗

ΔF𝑙
𝑗

Characteristic
1 7.11 71085 7.50 142584 71499 +100.58% ↑Low to High
2 19.76 197605 19.72 374737 177132 +89.64% ↑Low to High
3 45.18 451787 45.16 857986 406199 +89.91% ↑Low to High
4 27.95 279523 27.62 524693 245170 +87.71% ↑Low to High

(c) Characterization of malicious deletion attacks on length of data values (𝜂 = 106, attack rate = 10%)

𝑙
𝑗

𝑟𝑓𝑙
𝑗

𝑓𝑙
𝑗

𝑟𝑓𝑙
𝑗

󸀠
𝑓𝑙
𝑗

󸀠
Δ𝑓𝑙
𝑗

ΔF𝑙
𝑗

Characteristic
1 7.11 71085 7.19 64733 −6352 −8.94% ↓High to Low
2 19.76 197605 19.71 177421 −20184 −10.21% ↓High to Low
3 45.18 451787 45.19 406721 −45066 −9.98% ↓High to Low
4 27.95 279523 27.90 251125 −28398 −10.16% ↓High to Low

(d) Characterization of malicious deletion attacks on length of data values (𝜂 = 106, attack rate = 90%)

𝑙
𝑗

𝑟𝑓𝑙
𝑗

𝑓𝑙
𝑗

𝑟𝑓𝑙
𝑗

󸀠
𝑓𝑙
𝑗

󸀠
Δ𝑓𝑙
𝑗

ΔF𝑙
𝑗

Characteristic
1 7.11 71085 6.22 6221 −64864 −91.25% ↓High to Low
2 19.76 197605 21.19 21186 −176419 −89.28% ↓High to Low
3 45.18 451787 50.04 50039 −401748 −88.92% ↓High to Low
4 27.95 279523 22.55 22554 −256969 −91.93% ↓High to Low

(e) Characterization of malicious update attacks on length of data values (𝜂 = 106, attack rate = 10%)

𝑙
𝑗

𝑟𝑓𝑙
𝑗

𝑓𝑙
𝑗

𝑟𝑓𝑙
𝑗

󸀠
𝑓𝑙
𝑗

󸀠
Δ𝑓𝑙
𝑗

ΔF𝑙
𝑗

Characteristic
1 7.11 71085 6.85 68488 −2597 −3.65% ↓High to Low
2 19.76 197605 20.13 201333 3728 +1.89% ↑Low to High
3 45.18 451787 45.89 458869 7082 +1.57% ↑Low to High
4 27.95 279523 27.13 271310 −8213 −2.94% ↓High to Low

(f) Characterization of malicious update attacks on length of data values (𝜂 = 106, attack rate = 90%)

𝑙
𝑗

𝑟𝑓𝑙
𝑗

𝑓𝑙
𝑗

𝑟𝑓𝑙
𝑗

󸀠
𝑓𝑙
𝑗

󸀠
Δ𝑓𝑙
𝑗

ΔF𝑙
𝑗

Characteristic
1 7.11 71085 4.36 43599 −27486 −38.67% ↓High to Low
2 19.76 197605 20.97 209711 12106 +6.13% ↑Low to High
3 45.18 451787 50.16 501622 49835 +11.03% ↑Low to High
4 27.95 279523 24.51 245068 −34455 −12.33% ↓High to Low

𝑅. The characteristic of this attack is to relatively
decrease the high data values to low in database
relation 𝑅 (Tables 9, 13, and 17).

4. Conclusions

In this paper, a fragile watermarking scheme to detect and
characterize malicious tempering made in database relations
is presented. The proposed scheme is based on zero water-
marking approach that does not alter the database original

content, and thus it overcomes the limitation of data integrity
and data usability in existing watermarking schemes. In
the proposed scheme, the watermarks are generated by
using the local characteristics of database relation itself, like
frequency distribution of various digits, lengths, and ranges
of data values. This enables us to characterize the malicious
modifications made to the database relations. Experimental
results showed that the proposed scheme can detect and
characterize malicious data modifications successfully. In the
future, we intend to work on some other local characteristics
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Table 20: Characterization of malicious attacks on range of data values (Deterministic).

(a) Characterization of malicious insertion attacks on range of data values (𝜂 = 106, attack rate = 10%)

Range No 𝑟
𝑘

𝑟𝑓𝑟
𝑘

𝑓𝑟
𝑘

𝑟𝑓𝑟
𝑘

󸀠
𝑓𝑟
𝑘

󸀠
Δ𝑓𝑟
𝑘

ΔF𝑟
𝑘

Characteristic
0 0–99 25.59 1436986 26.49 288506 26164 +9.97% ↑Low to High
1 100–999 48.73 2736731 45.43 494709 46373 +10.34% ↑Low to High
2 1000–9999 25.68 1442223 28.08 305806 26304 +9.41% ↑Low to High

(b) Characterization of malicious insertion attacks on range of data values (𝜂 = 106, attack rate = 90%)

Range No 𝑟
𝑘

𝑟𝑓𝑟
𝑘

𝑓𝑟
𝑘

𝑟𝑓𝑟
𝑘

󸀠
𝑓𝑟
𝑘

󸀠
Δ𝑓𝑟
𝑘

ΔF𝑟
𝑘

Characteristic
0 0–99 25.59 1436986 26.83 504566 242224 +92.33% ↑Low to High
1 100–999 48.73 2736731 45.27 851193 402857 +89.86% ↑Low to High
2 1000–9999 25.68 1442223 27.90 524663 245161 +87.71% ↑Low to High

(c) Characterization of malicious deletion attacks on range of data values (𝜂 = 106, attack rate = 10%)

Range No 𝑟
𝑘

𝑟𝑓𝑟
𝑘

𝑓𝑟
𝑘

𝑟𝑓𝑟
𝑘

󸀠
𝑓𝑟
𝑘

󸀠
Δ𝑓𝑟
𝑘

ΔF𝑟
𝑘

Characteristic
0 0–99 25.59 1436986 26.54 236532 −25810 −9.84% ↓High to Low
1 100–999 48.73 2736731 45.28 403562 −44774 −9.99% ↑Low to High
2 1000–9999 25.68 1442223 28.18 251104 −28398 −10.16% ↓High to Low

(d) Characterization of malicious deletion attacks on range of data values (𝜂 = 106, attack rate = 90%)

Range No 𝑟
𝑘

𝑟𝑓𝑟
𝑘

𝑓𝑟
𝑘

𝑟𝑓𝑟
𝑘

󸀠
𝑓𝑟
𝑘

󸀠
Δ𝑓𝑟
𝑘

ΔF𝑟
𝑘

Characteristic
0 0–99 25.59 1436986 27.08 26857 −235485 −89.76% ↓High to Low
1 100–999 48.73 2736731 50.18 49757 −398579 −88.90% ↑Low to High
2 1000–9999 25.68 1442223 22.74 22547 −256955 −91.93% ↓High to Low

(e) Characterization of malicious update attacks on range of data values (𝜂 = 106, attack rate = 10%)

Range No 𝑟
𝑘

𝑟𝑓𝑟
𝑘

𝑓𝑟
𝑘

𝑟𝑓𝑟
𝑘

󸀠
𝑓𝑟
𝑘

󸀠
Δ𝑓𝑟
𝑘

ΔF𝑟
𝑘

Characteristic
0 0–99 25.59 1436986 26.61 263370 1028 +0.39% ↑Low to High
1 100–999 48.73 2736731 45.97 454956 6620 +1.48% ↑Low to High
2 1000–9999 25.68 1442223 27.41 271271 −8231 −2.94% ↓High to Low

(f) Characterization of malicious update attacks on range of data values (𝜂 = 106, attack rate = 90%)

Range No 𝑟
𝑘

𝑟𝑓𝑟
𝑘

𝑓𝑟
𝑘

𝑟𝑓𝑟
𝑘

󸀠
𝑓𝑟
𝑘

󸀠
Δ𝑓𝑟
𝑘

ΔF𝑟
𝑘

Characteristic
0 0–99 25.59 1436986 25.01 246838 −15504 −5.91% ↓High to Low
1 100–999 48.73 2736731 50.18 495248 46912 +10.46% ↑Low to High
2 1000–9999 25.68 1442223 24.81 244819 −34683 −12.41% ↓High to Low

of relational databases for watermark generation and to
extend the proposed scheme to semifragile watermarking
schemes.

Appendix

(i) Characterization of malicious attacks on digit fre-
quency (deterministic) (see Table 18).

(ii) Characterization of malicious attacks on length of
data values (deterministic) (see Table 19).

(iii) Characterization ofmalicious attacks on range of data
values (deterministic) (see Table 20).
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