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Iterating an orientation-preserving piecewise isometry𝑇 of 𝑛-dimensional Euclidean space, the phase space can be partitioned with
full measure into the union of the rational set consisting of periodically coded points, and the complement of the rational set is
usually called the exceptional set. The tangencies between the periodic cells have been studied in some previous papers, and the
results showed that almost all disk packings for certain families of planar piecewise isometries have no tangencies. In this paper,
the authors further investigate the structure of any periodic cells for a general piecewise isometry of even dimensional Euclidean
space and the tangencies between the periodic cells. First, we show that each periodic cell is a symmetrical body to a center if the
piecewise isometry is irrational; this result is a generalization of the results in some previously published papers. Second, we show
that the periodic cell packing induced by an invertible irrational planar piecewise rotation, such as the Sigma-Delta map and the
overflow map, has no tangencies. And furthermore, we generalize the result to general even dimensional Euclidean spaces. Our
results generalize and strengthen former research results on this topic.

1. Introduction

Piecewise isometries (or PWIs in short) appear in a variety
of contexts, including digital filters [1, 2], overflow oscillators
[3], Hamiltonian systems, and dual billiards. Recently, some
researchers investigated this area from a pure mathematics
point of view, and PWIs can be treated as the natural
generalizations of interval exchange transformations (IETs)
discussed in details in [4–7].

In [8–10], some planar PWIs are studied systematically
with a particular focus on geometry and symbolic dynamics.
In [11–13], the singularity structure and the Devaney-chaos
of 2-dimensional invertible PWIs are discussed by classifying
singularity into three types with respect to their geometrical
properties. In [14], the stability of periodic cells of planar
piecewise rotations is investigated; the results showed that
the periodic cells are stable if the planar piecewise rotation
is irrational. Moreover, in [15, 16], the stability of periodic
points of a general piecewise isometry of Euclidean space
R𝑛 is discussed by using the Euclidean group structure of
isometries, and by which we will investigate the structure of

periodic cells of general PWIs in this paper. In our opinion,
the Euclidean group of isometries is an important and helpful
method to study the dynamics of general PWIs of Euclidean
space R𝑑.

Iterating an orientation-preserving piecewise isometry
𝑇 of 𝑛-dimensional Euclidean space R𝑛, the phase space
can be partitioned with full measure into the union of the
rational set consisting of all periodically coded points, and
its complement is called the exceptional set. For a planar
irrational piecewise isometry (the rotation parameter 𝜃 is
incommensurable with 𝜋), a periodic cell of all points with
the same periodic coding is a disk [14, 17, 18]; hence, the
rational set gives rise to a disk packing of the phase space𝑀. A
natural problem is whether any two periodic cells are tangent
(see Figure 1).

For the tangent-free property of disk packing induced by
planar PWIs, some results have been presented in previous
papers. All these previous results have suggested that the
packing is typically very “loose”; that is, there are almost
no tangencies between any two disks, and this supports
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Figure 1: (a) The illustration to the invariant disks packing of
the Sigma-Delta map for the parameter 𝜃 = 1.75. (b) The local
magnification of the square [0, 0.5] × [−0.25, 0.25], we can see that
the disk packing is very “loose” and there is no tangencies between
any pair of invariant disks.

the conjecture that the irrational set has positive measure for
an irrational planar piecewise isometry. In [18] it is shown that
the disk packings induced by invariant periodic cells cannot
contain certain Apollonian packings, namely, the Arbelos.
It is revealed in [19] that for planar irrational piecewise
rotations, only finitely many tangencies are possible to any
disk. In [17, 20], the tangent-free property of disk packing
induced by a one-parameter family of PWIs (the Sigma-Delta
map and the Overflow map) is investigated, and the results
(as summarized inTheoremAbelow) showed that tangencies

between disks in this packing are rare, and this was proven by
discussing analytic functions of the parameters.

Theorem A (see, Fu et al.’s [17, 20]). There is at most a
countable set of 𝜃 for which there are any tangencies between
periodic disk in the disk packing induced by the overflow map
(the Sigma-Delta map). Therefore, there is a full measure set of
𝜃 such that the disk packing induced by the Overflow map (the
Sigma-Delta map) has no tangencies.

In [21], it is shown that the result above can be generalized
to some quite general planar PWIs under some reasonable
constraints (Theorem B below).

TheoremB (see, Fu et al.’s [21]). There is a countable set of 𝜃 in
the parameter range for which there are no tangencies between
the invariant periodic disks in the disk packing induced by a
PWI; therefore, there is a full measure of 𝜃 such that the disk
packing has no tangencies.

Although the previous results show that all tangencies
may occur at a countable set of parameter values, the
possibility that a dense set of parameters do have tangencies
is not excluded. Naturally, we have the following questions.

(Q1) Whether does the disk packing induced by a planar
PWI has no tangencies if the rotation parameter 𝜃 is
incommensurable with 𝜋?

(Q2) How to characterize the tangent-free property
between periodic cells for higher dimensional PWIs?

In this paper, we will focus on the above questions. For
Question one (Q1), we will give a positive answer which is
one special issue of higher dimensional PWIs if 𝑛 is even. For
Question two (Q2), we must at first investigate the structure
of the periodic cells induced by a general higher dimensional
piecewise isometry. As mentioned in some previous papers
[14, 17, 18], a periodic cell of planar PWIs is either a disk
(the rotation parameter 𝜃 is incommensurable with 𝜋) or a
polygonal region (the rotation parameter 𝜃 is commensurable
with 𝜋). However, the structure of a periodic cell of a higher
dimensional PWI is more complicated. In Section 3.5, we
show that a periodic cell may be represented as the product
space of two disks. For generality, we show in Theorem 3
that the closure of any periodic cell is symmetrical about the
center (the unique fix point) if 𝑛 is even and the piecewise
isometry is irrational. Moreover, we obtain the main result
(Theorem 8, Section 3.2) about the tangent-free property of
the periodic cell packing induced by higher dimensional
PWIs.

In particular, we confirm that for any invertible planar
irrational piecewise rotations, such as the Sigma-Delta map
and the Overflow map, there are no tangencies between
periodic disks in the disk packing. Our results are more
general and more precise than some previous known results
presented in [17, 20, 21] (e.g., Theorem A and Theorem B),
and our proofs are simpler.

The rest of this paper is organized as follows. In Section 2,
we will introduce the preliminaries about piecewise isome-
tries, including the definitions of PWIs, codings, and cells.
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In Section 3, we investigate the periodic cells and their
tangent-free properties, which are the main part of this
paper. And some examples are also provided in this section,
and it can be found that it is very easy to verify that
these example systems have no tangencies according to our
results. Furthermore, a 4-dimensional PWI is investigated
in Section 3.5, and it is shown that any periodic cell is the
product space of two disks, and there exist no tangencies
between two periodic cells. Finally, in Section 4, we present
some remarks and discussions about our research in this
paper.

2. Preliminaries

The structure of the Euclidean groups plays an important role
for the discussion of high-dimensional piecewise isometries.
We briefly recall some notations about piecewise isometries
and the structure of the Euclidean groups as papers [15, 22]
in this part.

The Euclidean group E(𝑛) = O(𝑛) ⋉ R𝑛 is the semidirect
product of the orthogonal groupO(𝑛) andR𝑛, whereO(𝑛) =
{𝐴 ∈ GL(𝑛,R) : 𝐴𝐴

𝑡

= 𝐼𝑑}. Denote an element of
𝑔 ∈ E(𝑛) as a pair (𝐴, V) where 𝐴 ∈ O(𝑛) and V ∈ R𝑛.
The group multiplication is given by (𝐴

1
, V
1
) ⋅ (𝐴

2
, V
2
) =

(𝐴
1
𝐴
2
, 𝐴
1
V
2
+ V
1
). The subgroup SO(𝑛) ⊂ O(𝑛) called

special orthogonal group consists of orientation-preserving
transformations, defined by SO(𝑛) = {𝐴 ∈ O(𝑛) | det(𝐴) =
1}. The special Euclidean group SE(𝑛) is the semidirect
product of SO(𝑛) and R𝑛.

Let𝑀 be a connected subset of Euclidean spaceR𝑛 and let
M = {𝑀

0
,𝑀
1
, . . . ,𝑀

𝑟−1
} be a finite collection of connected

open convex set. We callM a partition of𝑀 and each set𝑀
𝑖

a partition atom if the following conditions hold:

(1) 𝑀 = 𝑀
1
∪ ⋅ ⋅ ⋅ ∪ 𝑀

𝑟−1
;

(2) 𝑀
𝑖
∩𝑀
𝑗
= 0 for 𝑖 ̸= 𝑗.

A map 𝑇 : 𝑀 \ D → 𝑀 is called a piecewise isometry
on 𝑀 if 𝑇(𝑥) = 𝑇

𝑖
(𝑥), 𝑥 ∈ 𝑀

𝑖
, where 𝑇

𝑖
∈ E(𝑛). And

D = ∪
𝑖 ̸=𝑗
(𝑀
𝑖
∩ 𝑀
𝑗
) is said to be the discontinuity set. For

convenience, we denote by E(M) the set of all piecewise
isometries and bySE(M) the set of all orientation-preserving
piecewise isometries on the partitionM.

In this paper, we consider the case where the orientation-
preserving piecewise isometries (𝑇

𝑖
∈ SE(𝑛), 𝑖 = 0, 1, . . . , 𝑟 −

1) and each of the partition atoms𝑀
𝑖
(𝑖 = 0, 1, . . . , 𝑟 − 1) is

an open convex polyhedron of R𝑛 which is surrounded by
𝑚
𝑖
number of (𝑛 − 1)-dimensional hyperplanes taking the

form n
𝑖𝑗
⋅ 𝑥 = 𝑐

𝑖𝑗
(𝑗 = 1, 2, . . . , 𝑚

𝑖
), where n

𝑖𝑗
representing

the unit normal vector of the hyperplane is an element of the
projective space P𝑛−1 (i.e., ignoring the difference between
±n), 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ R𝑛 is a column vector, and
𝑐
𝑖𝑗
∈ R is a constant. We say that two unit vectors n and n

are equal means that n = n or n = −n. In [18], the authors
characterized similarly the boundary of partition atoms for
planar PWIs.

Let 𝜕M = ∪
𝑟

𝑖=0
𝜕𝑀
𝑖
be the boundary of the partition

M and D = ∪
𝑖 ̸=𝑗
(𝑇(𝑀

𝑖
) ∩ 𝑇(𝑀

𝑗
)) the backward discon-

tinuity set. A piecewise isometry is said to be invertible if

𝑇(𝑀
𝑖
) ∩ 𝑇(𝑀

𝑗
) = 0 (𝑖 ̸= 𝑗) and ∪𝑟−1

𝑖=0
𝑇(𝑀
𝑖
) = 𝑀. Obviously,

all of the sets 𝜕𝑀, D, and D consist of a finite number of
(𝑛 − 1)-dimensional polyhedral regions for invertible PWIs.

In the following, for convenience, we say 𝐿 is a (𝑛 − 1)-
dimensional hyperplane of 𝜕M (or D,D), if 𝐿 ⊂ 𝜕M (or
D,D) is a (𝑛 − 1)-dimensional polyhedral region of 𝜕M
(orD,D). For a (𝑛 − 1)-dimensional hyperplane 𝐿, let n(𝐿)
be a unit normal vector of 𝐿 and N(M) =: ∪

𝐿⊂𝜕M{n(𝐿)} =
∪
𝑟−1

𝑖=0
∪
𝑚𝑖

𝑗=1
{n
𝑖𝑗
} the set of all unit normal vectors of hyperplanes

ofM. Similarly, we define N(D) and N(D).
The partition M = {𝑀

0
,𝑀
1
, . . . ,𝑀

𝑟−1
} of 𝑀 associated

with a piecewise isometry 𝑇 gives rise to a natural one-sided
coding map. Let E− = ∪∞

𝑘=0
𝑇
−𝑘

(D) andA = {0, 1, . . . , 𝑟 − 1}

the alphabet set; a map 𝜒 : 𝑀 \ E− → AN is called a coding
map, if for any point 𝑥 ∈ 𝑀 \E−,

[𝜒 (𝑥)]
𝑗
= 𝜔
𝑗
, iff 𝑇𝑗 (𝑥) ∈ 𝑀

𝜔𝑗
, 𝑗 = 0, 1, 2, . . . . (1)

And we call the infinite sequence 𝜔 = 𝜔
0
𝜔
1
𝜔
2
. . . the

coding of the orbit {𝑇𝑗(𝑥)}∞
𝑗=0

(or the coding of the point
𝑥 for simplicity). An infinite sequence 𝜔 = 𝜔

0
𝜔
1
. . . is

said to be admissible, if there exists a point 𝑥 such that
𝜒(𝑥) = 𝛼. Similarly, a finite sequence 𝛽 = 𝛽

0
𝛽
1
⋅ ⋅ ⋅ 𝛽
𝑛−1

with length 𝑛 is said to be admissible, if there exists a point
𝑥 such that 𝛽 is the preword of 𝜒(𝑥). A coding 𝜔 is said
to be periodic, if there exists a natural number 𝑝 such that
𝜔
𝑝+𝑘

= 𝜔
𝑘
for all 𝑘 ∈ N, and we denote the coding 𝜔 by

𝜔 = P(𝜔
0
𝜔
1
⋅ ⋅ ⋅ 𝜔
𝑝−1
), where P(⋅) represents concatenation

operation. A coding 𝜔 is said to be rational, if it is eventually
periodic. Otherwise, the coding 𝜔 is said to be irrational. In
fact, for an invertible piecewise isometry, a rational coding is
periodic. Sometimes, wemay denote 𝑗-dimensional coding as
paper [23] for convenience. Namely, let the alphabet setA =

{𝛼
0
, 𝛼
1
, . . . , 𝛼

𝑟−1
} and every element 𝛼

𝑖
= (𝛼
𝑖1
, 𝛼
𝑖2
, . . . , 𝛼

𝑖𝑗
) is a

𝑗-dimensional vector.

Definition 1. If a coding 𝜔 (finite or infinite) is admissible, we
call the set of all points following the same coding 𝜔 a cell,
denoted by 𝐶(𝜔).

The structure of cells of planar PWIs has been investigated
by some researchers; some of the results are stated in the
following proposition.

Proposition 2 (see [9, 14, 17, 18, 24]). For a planar piecewise
isometry with convex polygonal partition, a cell 𝐶(𝜔) is a
convex set. More precisely, it has interior if and only if 𝜔 is
rational, and if 𝜔 is irrational, then the cell is either a point
or a line segment.

In [25], it is shown that for an irrational piecewise
rotation, if the admissible coding 𝜔 is irrational, then the cell
𝐶(𝜔) consists of only a point.

Let 𝑇
𝜔
= 𝑇
𝜔𝑚−1

⋅ 𝑇
𝜔𝑚−2

⋅ ⋅ ⋅ 𝑇
𝜔0

and 𝐴
𝜔
= 𝐴
𝜔𝑚−1

⋅ 𝐴
𝜔𝑚−2

⋅ ⋅ ⋅

𝐴
𝜔0
for every finite coding. A piecewise isometry𝑇 ∈ SE(M)

is said to be incommensurate if Fix𝐴
𝜔

= {0} for every
finite word 𝜔 in the alphabet A. As mentioned in [15], if 𝑛
is even then almost every piecewise isometry in SE(M) is
incommensurate.
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3. Periodic Cells and
the Tangent-Free Property

Based on the fact revealed by Mendes and Nicol in [15] that
if 𝑛 is odd, then almost every piecewise isometry in SE(M)

has no recurrent points with rational coding (consequently,
has no periodic points), and we will only discuss the periodic
cells and the tangent-free property of the even dimensional
piecewise isometries in this part.

3.1. Periodic Cells. If 𝑛 is even and 𝜔 = 𝜔
0
⋅ ⋅ ⋅ 𝜔
𝑚−1

is admis-
sible, then the linear part 𝐴

𝜔
of the map 𝑇

𝜔
= (𝐴
𝜔
, V) can be

orthogonally diagonalized as diag{𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛/2
} under one

orthogonal basis, where 𝐵
𝑗
= (cos 𝜃

𝑗
, sin 𝜃
𝑗
; − sin 𝜃

𝑗
, cos 𝜃

𝑗
),

𝜃
𝑗

∈ [0, 2𝜋). It is obvious that an even dimensional
orientation-preserving PWI is incommensurate if and only
if all 𝜃

𝑗
are incommensurable with 𝜋 in diagonalization

representation of𝐴
𝜔
for every finite word𝜔. Furthermore, we

say the PWI is irrational if it is incommensurable and all 𝜃
𝑗

are rationally independent in diagonalization representation
of 𝐴
𝜔
for every finite word 𝜔.

Let𝜔=P(𝛼) be an admissible periodic coding, where𝛼 =
𝜔
0
𝜔
1
⋅ ⋅ ⋅ 𝜔
𝑚−1

is of length 𝑚, then the self-map 𝑇
𝛼
: 𝐶(𝜔) →

𝐶(𝜔) can be represented as the product of 𝑛/2 number of
planar rotations since the linear part 𝐴

𝛼
can be orthogonally

diagonalized. Namely, every point of 𝐶(𝜔) can be rewritten
as complex number coordinate 𝑧 = (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛/2
), and the

map 𝑇
𝛼
can be represented as 𝑇

𝛼
= �̃�
1
× �̃�
2
× ⋅ ⋅ ⋅ × �̃�

𝑛/2
,

�̃�
𝑗
(𝑧
𝑗
) = 𝑒

𝑖⋅𝜃𝑗 + 𝑐
𝑗
, 𝑗 = 1, 2, . . . , 𝑛/2. We have the following

result.

Theorem 3. Suppose 𝑛 is even, 𝑇 ∈ SE(M), then every
periodic cell is convex and of positive Lebesgue measure.
Furthermore, if 𝑇 is irrational then the closure of the periodic
cell is centrosymmetric with respect to a unique fixed point.

Proof. The proof of the convexity of the cell is similar to
the one given in [18]; here we almost repeat the procedure.
Let 𝜔 = P(𝛼) be an admissible periodic coding, where
𝛼 = 𝜔

0
𝜔
1
⋅ ⋅ ⋅ 𝜔
𝑚−1

is of length 𝑚, then the cell 𝐶(𝜔) can be
represented as

𝐶 (𝜔) = {𝑥 : 𝜒 (𝑥) = 𝜔}

= {𝑥 : 𝑥 ∈ 𝑀
𝜔0
, 𝑇
𝑘

(𝑥) ∈ 𝑀
𝜔𝑘

fo𝑟 𝑘 ∈ N}

= 𝑀
𝜔0
∩ 𝑇
−1

(𝑀
𝜔1
) ∩ 𝑇
−2

(𝑀
𝜔1
) ∩ ⋅ ⋅ ⋅

=

∞

⋂

𝑘=0

𝑇
−𝑘

(𝑀
𝜔𝑘
) .

(2)

At the same time, we have

𝑇
−𝑘

(𝑀
𝜔𝑘
) = 𝑇
−1

𝜔1

∘ ⋅ ⋅ ⋅ ∘ 𝑇
−1

𝜔𝑘

(𝑀
𝜔𝑘
) , (3)

where𝑀
𝜔𝑘
is convex and each of themaps {𝑇−1

𝜔1

, 𝑇
−1

𝜔2

, . . . , 𝑇
−1

𝜔𝑘

}

is an isometry, then the set𝑇−𝑘(𝑀
𝜔𝑘
) is convex, consequently,

the cell 𝐶(𝜔) is convex.

Since the map 𝑇
𝛼
: 𝐶(𝜔) → 𝐶(𝜔) is isometric and

𝑇
𝛼
(𝐶(𝜔)) = 𝐶(𝜔), the cell 𝐶(𝜔) at least contains a fixed point

denoted by 𝑝∗. Let

𝑑 =
1

2
min
0≤𝑖≤𝑝−1

{𝜌 (𝑇
𝑖

(𝑝
∗

) , 𝜕M)} , (4)

then 𝐵(𝑝∗, 𝑑) ⊂ 𝐶(𝜔), which implies that the cell 𝐶(𝜔) is of
positive Lebesgue measure.

Now, we prove the latter claim. Suppose, without loss of
generality, the map 𝑇

𝛼
is represented as the product of 𝑛/2

planar rotations and every point of 𝐶(𝜔) has the form of
complex coordinate. Furthermore, assume the unique fixed
point equals 0 of the map 𝑇

𝛼
since the piecewise isometry 𝑇

is irrational. We will show that 𝑧 = {𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛/2
} ∈ 𝐶(𝜔)

implies that every point 𝑧 = {𝑧


1
, 𝑧


2
, . . . , 𝑧



𝑛/2
} ∈ 𝐶(𝜔) with

‖𝑧


𝑖
‖ = ‖𝑧

𝑖
‖ (1 ≤ 𝑖 ≤ 𝑟

2
), (i.e., T𝑛/2 ⊂ 𝐶(𝜔)), where

T𝑛/2 = {(𝑧1
 𝑒
𝛼1 ,
𝑧2
 𝑒
𝛼2 , . . . ,


𝑧
𝑟2


𝑒
𝛼𝑛/2) | 𝛼

𝑖
∈ [0, 2𝜋) ,

𝑖 = 1, 2, . . . , 𝑟
2
}

(5)

is the (𝑛/2)-dimensional torus in the phase space. For 𝑧 =

{𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛/2
} ∈ 𝐶(𝜔), and there exists a point 𝑧⋆ = {𝑧

⋆

1
,

𝑧
⋆

2
, . . . , 𝑧

⋆

𝑛/2
} ∈ 𝐶(𝜔) such that for any 𝜖 > 0,

𝑧 − 𝑧
⋆ <

𝜖

𝑛
. (6)

Let

T𝑛/2
1

= { (
𝑧
⋆

1

 𝑒
𝛼1 ,
𝑧
⋆

2

 𝑒
𝛼2 , . . . ,


𝑧
⋆

𝑟2


𝑒
𝛼𝑛/2) | 𝛼

𝑖
∈ [0, 2𝜋) ,

𝑖 = 1, 2, . . . ,
𝑛

2
}

(7)

be another torus in the phase space. At the same time, the
orbit Orb+(𝑧⋆) under the map 𝑇

𝛼
: 𝐶(𝜔) → 𝐶(𝜔) is dense

in the torus T𝑛/2
1

because the map 𝑇 is irrational. For any
point 𝑧 = (𝑧



1
, . . . , 𝑧



𝑛/2
) ∈ T𝑛/2, then 𝑧 = (‖𝑧

⋆

1
/𝑧


1
‖𝑧


1
, . . . ,

‖𝑧
⋆

𝑖
/𝑧


𝑖
‖𝑧


𝑖
, . . . , ‖𝑧

⋆

𝑛/2
/𝑧


𝑛/2
‖𝑧


𝑛/2
) ∈ T𝑛/2

1
. Consequently, there

exists a natural number 𝑘 such that


𝑇
𝑘

𝛼
(𝑧
⋆

) − 𝑧

<
𝜖

2
. (8)

Because


𝑧


𝑖
−


𝑧
⋆

𝑖

𝑧


𝑖


⋅ 𝑧


𝑖


=




𝑧


𝑖


−
𝑧
⋆

𝑖


𝑧


𝑖



⋅ 𝑧


𝑖



=



𝑧


𝑖


−
𝑧
⋆

𝑖





=

𝑧𝑖
 −

𝑧
⋆

𝑖




≤
𝑧𝑖 − 𝑧

⋆

𝑖



(9)
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for all 𝑖 = 1, 2, . . . , 𝑛/2, from (9) and (6) we obtain


𝑧


− 𝑧

≤

𝑛/2

∑

𝑖=1


𝑧


𝑖
−


𝑧
⋆

𝑖

𝑧


𝑖


⋅𝑧


𝑖


≤

𝑛/2

∑

𝑖=1

𝑧𝑖 − 𝑧
⋆

𝑖

 ≤
𝜖

2
. (10)

Consequently, from (8) and (10), we have

𝑇
𝑘

𝛼
(𝑧
⋆

) − 𝑧


≤

𝑇
𝑘

𝛼
(𝑧
⋆

) − 𝑧

+

𝑧


− 𝑧

<
𝜖

2
+
𝜖

2
= 𝜖,

(11)

namely, 𝑧 ∈ 𝐶(𝜔). Consequently, the periodic cell is centro-
symmetric with respect to the unique fixed point.

Remark 4. According to Theorem 3, since the set 𝐶(𝜔) is
convex, then 𝑧 = (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛/2
) ∈ 𝐶(𝜔) implies 𝑧 =

(𝑧


1
, 𝑧


2
, . . . , 𝑧



𝑛/2
) ∈ 𝐶(𝜔) with ‖𝑧

𝑖
‖ ≤ ‖𝑧

𝑖
‖ for all 1 ≤ 𝑖 ≤ 𝑛/2.

Let Θ(𝑧) = {𝑧 | ‖𝑧
𝑖
‖ ≤ ‖𝑧

𝑖
‖, 𝑖 = 1, . . . , 𝑛/2} be the product

of 𝑛/2 number of discs, then the closure of the periodic cell
𝐶(𝜔) is the union of some such sets as Θ(𝑧).

Let 𝛾
𝑖
= max{‖𝑧

𝑖
‖ | (𝑧

1
, . . . , 𝑧

𝑖
, . . . , 𝑧

𝑛/2
) ∈ 𝐶(𝜔)} for all

𝑖 = 1, 2, . . . , 𝑛/2, and Θ = {𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛/2
) | ‖𝑧

𝑖
‖ ≤

𝛾
𝑖
, 𝑖 = 1, 2, . . . , 𝑛/2}. According to the analysis above, we can

obtain that 𝐶(𝜔) = Θ, which is the product of 𝑛/2 discs. We
have the following corollary.

Corollary 5. Suppose 𝑛 is even, 𝑇 ∈ SE(M) is irrational, if
there exists a point 𝑧 = (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛/2
) with ‖𝑧

𝑖
‖ = ‖𝛾

𝑖
‖ (𝑖 =

1, . . . , 𝑛/2) such that 𝑧 ∈ 𝐶(𝜔), then 𝐶(𝜔) = Θ is the product
of 𝑛/2 number of discs.

Note that the result in the above theorem is a general-
ization of the results in [14, 17, 18], where it is shown that a
periodic cell is a disk or a symmetric polygonal region. Obvi-
ously, for a 3-dimensional piecewise isometry with polygonal
partition, a periodic cell must not be a sphere. In Section 3.5,
we will show that a periodic cell of the product Goetz map,
which is a 4-dimensional PWI, may be represented as 𝐶(𝜔) ×
𝐶(𝜛), where 𝜔, 𝜛 are two admissible periodic codings under
the Goetz map. For higher-dimensional PWIs, the structure
of a periodic cell is more complicated. In the following, we
further investigate the periodic cells.

At the same time, for higher-dimensional PWIs, their
periodic cells have some similar properties as the ones of
planar PWIs.

Proposition 6. For a piecewise isometry 𝑇 ∈ SE(M), if 𝐶(𝜔)
and 𝐶(𝜛) are two different periodic cells, then there must exist
a natural number 𝑘 such that 𝑇𝑘(𝐶(𝜔)) and 𝑇𝑘(𝐶(𝜛)) are
contained in different partition atoms𝑀

𝑖
and𝑀

𝑗
, respectively;

that is, they will be separated by an (𝑛 − 1)-dimensional
boundary 𝐿 ⊂ D.

Wemust point out that two periodic cells are separated by
an (𝑛 − 1)-dimensional boundary 𝐿 ⊂ D as above means that
(n ⋅ 𝑥⋆ −𝑐) ⋅ (n ⋅ 𝑥⋆⋆ −𝑐) < 0, where 𝑥⋆ and 𝑥⋆⋆ are the centers
of two periodic cells, respectively, and n ⋅𝑥 = 𝑐 is the equation
of hyperplane 𝐿. Note that Proposition 6 is a generalization of

Lemma 1 in [17], and the proof is similar. More importantly,
for an invertible piecewise isometry, we have another similar
property stated as follows.

Proposition 7. For a piecewise isometry 𝑇 ∈ SE(M), if 𝐶(𝜔)
and 𝐶(𝜛) are two different periodic cells, then there must exist
a natural number 𝑘 such that 𝑇−𝑘(𝐶(𝜔)) and 𝑇−𝑘(𝐶(𝜛)) are
separated by an (𝑛−1)-dimensional polyhedral region 𝐿 ⊂ D.

Proof. Assume that the periodic codings 𝜔 and 𝜛 have
periods of 𝑁

0
and 𝑁

1
, respectively, and further assume,

without loss of generality, that 𝑁
1
≥ 𝑁
0
. Consider the

preimages of the pair of periodic cells 𝐶(𝜔) and 𝐶(𝜛), if
𝑇
−𝑘−1

(𝐶(𝜔)) and 𝑇−𝑘−1(𝐶(𝜔)) locate in different atoms, then
𝑇
−𝑘

(𝐶(𝜔)) and 𝑇
−𝑘

(𝐶(𝜔)) are separated by a hyperplane
𝐿


⊂ D. In fact, it can be verified that such 𝑘 (less than
[𝑁
0
, 𝑁
1
], the least common multiple of 𝑁

0
and 𝑁

1
) exists

since 𝜔 ̸=𝜛.

3.2. Tangencies between Periodic Cells. Similar to the planar
cases [17, 20, 21], for a 𝑛-dimensional PWI (𝑛 ≥ 4 is even),
we say that the set 𝑋 = ⋃𝐶(𝜔), the union of all periodic
cells, is a periodic cell packing of the phase space𝑀 by the 𝑑-
dimensional PWI.We consider similarly the tangent property
between any two periodic cells. Assume that the boundaries
of the periodic cells 𝐶

1
and 𝐶

2
are smooth at the intersection

point 𝑥, and we say the two periodic cells 𝐶
1
and 𝐶

2
are

tangent to each other at the point 𝑥 if

(1) int(𝐶
1
) ∩ int(𝐶

2
) = 0;

(2) 𝑥 ∈ 𝜕𝐶
1
∩ 𝜕𝐶
2
;

(3) n
1
(𝑥) = ±n

2
(𝑥), where n

𝑖
(𝑥) (𝑖 = 1, 2) represent the

unit normal vectors of surface 𝜕𝐶
𝑖
at the point 𝑥.

The above three conditions are obvious; the fact that any two
different periodic cells do not overlap implies Condition (1);
and Conditions (2) and (3) guarantee they are tangent at 𝑥.
Let

T (𝐶
1
, 𝐶
2
) = {𝑥 | 𝑥 is atangent point of 𝐶

1
and 𝐶

2
}

(12)

be the mutually tangent set. We say the periodic cells 𝐶
1
and

𝐶
2
are tangent, ifT(𝐶

1
, 𝐶
2
) is nonempty. We say the packing

is tangent-free, if any two periodic cells are not tangent.
In fact, the mutually tangent set T(𝐶

1
, 𝐶
2
) may be a

single point or an open straight line segment for a planar
piecewise isometry, and it may be a 𝑘-dimensional (𝑘 =

0, 1, . . . , 𝑛 − 1) hyperplane for a general piecewise isometry of
𝑛-dimensional Euclidean space R𝑛. In the following, we give
another main result, which will be proven later in Section 3.2
after preparing some propositions.

Theorem 8. Suppose 𝑛 is even, 𝑇 ∈ SE(M) is invertible
and incommensurate. If for any admissible finite coding 𝜔 =

𝜔
0
𝜔
1
⋅ ⋅ ⋅ 𝜔
𝑘
and any n, n of N(D), one has 𝐴

𝜔
⋅ n ̸=n, then

there are no tangencies between periodic cells in the periodic
cells packing induced by 𝑇.
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For a class of PWIs, the backward discontinuity set
consists of one hyperplane or finitely many parallel hyper-
planes. Namely, N(D) consists of only one element without
considering the sign. Then we get the following corollary.

Corollary 9. Suppose 𝑛 is even, 𝑇 ∈ SE(M) is invertible and
incommensurate. If N(D) consists of only one element, then
there are no tangencies between periodic cells in the periodic
cells packing induced by 𝑇.

For convenience of expression, we give some notations
introduced in [19]. Two admissible 𝑛-periodic codings 𝜔 and
𝜛 are said to be equivalent, denoted by 𝜔 ∼ 𝜛, if there exists
a natural number 𝑖 (0 ≤ 𝑖 ≤ 𝑛) such that 𝜎𝑖(𝜔) = 𝜛, where 𝜎
is the shift map. Two points of 𝑀 are said to be equivalent,
if their corresponding symbolic sequences are equivalent.
Similarly, we can define the equivalence of two cells 𝐶(𝜔)
and 𝐶(𝜛). We denote by GO(𝐶(𝜔)) the set of all the cells
which are equivalent to 𝐶(𝜔) under the above equivalence
relation and call GO(𝐶(𝜔)) the great orbit of𝐶(𝜔). According
to Propositions 6 and 7, we have the following result.

Proposition 10. Suppose 𝑛 is even,𝑇 ∈ SE(M) is invertible, if
two different periodic cells 𝐶(𝜔) and 𝐶(𝜛) are tangent to each
other, then there exist two hyperplanes 𝐿

1
⊂ D, 𝐿

2
⊂ D and

periodic cells 𝐶
1
, 𝐶
2
∈ GO(𝐶(𝜔)), 𝐶

1
, 𝐶


2
∈ GO(𝐶(𝜛)) such

that 𝐶
𝑖
and 𝐶

𝑖
(𝑖 = 1, 2) are tangent to each other, and the

mutually tangent set T(𝐶
𝑖
, 𝐶


𝑖
) is contained in 𝐿

𝑖
for 𝑖 = 1, 2,

respectively.

From the above result, we further have the following.

Proposition 11. Suppose 𝑛 is even, 𝑇 ∈ SE(M) is invertible, if
two different periodic cells 𝐶(𝜔) and 𝐶(𝜛) are tangent to each
other, then there exist two vectors n

1
and n

2
of N(M) and an

admissible coding 𝛼 = 𝛼
0
⋅ ⋅ ⋅ 𝛼
𝑘−1

with length 𝑘 such that 𝐴
𝛼
⋅

n
1
= n
2
.

Proof. Without loss of generality, we assume that themutually
tangent set is contained in the hyperplane 𝐿 ⊂ D (i.e.,
T(𝐶(𝜔), 𝐶(𝜛)) ⊂ 𝐿) with unit normal vectorn

1
according to

Proposition 10.Then, there is a hyperplane 𝐿
1
⊂𝜕Mwith unit

normal vector n
1
such that𝐴

𝛼0
⋅n
1
=n
1
. From Proposition 6,

there exists a natural number 𝑘 such that the periodic cells
𝑇
𝑘−1

(𝐶(𝜔)) and 𝑇
𝑘−1

(𝐶(𝜛)) are in the different partition
atoms 𝑀

𝑖
and 𝑀

𝑗
, respectively, and 𝑇𝑘−1(T(𝐶(𝜔), 𝐶(𝜛))) ⊂

𝐿⊂D, where 𝐿 = 𝑀
𝑖
∩𝑀
𝑗
. Let n

2
be the unit normal vector of

the hyperplane 𝐿, then there exists a finite admissible coding
𝛼
1
𝛼
2
⋅ ⋅ ⋅ 𝛼
𝑘−1

such that 𝐴
𝛼𝑘−1

⋅ ⋅ ⋅ 𝐴
𝛼1
⋅ n
1
=n
2
. Consequently,

𝐴
𝛼
⋅ n
1
= 𝐴
𝛼𝑘−1

⋅ ⋅ ⋅ 𝐴
𝛼1
𝐴
𝛼0
⋅ n
1
= n
2
. (13)

The proof is therefore complete.

We are now ready to give the proof of Theorem 8.

Proof of Theorem 8. Firstly, we will reveal that there exists a
natural number 𝑘

0
such that for any n of N(M), there exists

an admissible finite coding 𝛼 = 𝛼
0
⋅ ⋅ ⋅ 𝛼
𝑘−1

with length 𝑘 ≤ 𝑘
0

such that 𝐴
𝛼
⋅ n ∈ N(D). Since every partition atom is

surrounded by finite (𝑛 − 1)-dimensional hyperplanes, then
N(M) consists of finite elements, and let 𝑘

0
= ♯N(M) be

the cardinal number. Because the isometry is invertible, for
any (𝑛 − 1)-dimensional hyperplanes 𝐿 ⊂ 𝜕M, we can get
𝑇(𝐿) ⊂ 𝜕M ∪D. If there exists an admissible finite coding
𝛼 = 𝛼

0
⋅ ⋅ ⋅ 𝛼
𝑘−1

with length 𝑘 > 𝑘
0
such that 𝑇𝑖(𝐿) ⊂ 𝜕M for

all 𝑖 = 0, . . . , 𝑘−1, then𝐴(𝑖) ⋅n ∈ N(M) for all 𝑖 = 0, . . . , 𝑘−1,
where 𝐴(𝑖) = 𝐴

𝛼0
⋅ ⋅ ⋅ 𝐴
𝛼𝑖−1

. Since the piecewise isometry is
incommensurate, all 𝐴(𝑖) ⋅ n are different from each other.
This implies that ♯N(M) ≥ 𝑘 > 𝑘

0
, a contradiction.

Suppose that there exist two periodic cells 𝐶
1
and

𝐶
2
which are tangent to each other, then, in view of

Proposition 11, there is two unit normal vectors n
1
of a

hyperplane 𝐿 ⊂ D and n of a hyperplane 𝐿 ⊂ D, and an
admissible finite coding 𝛽 = 𝛽

0
𝛽
1
⋅ ⋅ ⋅ 𝛽
𝑘−1

, such that

𝐴
𝛽
⋅ n
1
= n. (14)

Via the typical invertibility condition, we can obtain that
there exists an admissible finite coding 𝛼 = 𝛼

0
𝛼
1
⋅ ⋅ ⋅ 𝛼
𝑙−1

and
a unit normal vector n

2
∈ N(D) such that

𝐴
𝛼
⋅ n = n

2
. (15)

According to (14) and (15), we have

𝐴
𝛽
⋅ 𝐴
𝛼
⋅ n
1
= n
2
. (16)

Let𝜔=𝛼𝛽 = 𝛼
0
⋅ ⋅ ⋅ 𝛼
𝑙−1
𝛽
0
⋅ ⋅ ⋅ 𝛽
𝑘−1

with length 𝑘+𝑙, thenwe get
𝐴
𝜔
⋅n
1
= n
2
for two elements ofN(D), which contradicts the

results as above. Therefore, there are no tangencies between
periodic cells.

3.3. Applications to Planar PWIs. For planar piecewise rota-
tions, the corresponding results are very explicit. Let 𝜌

𝑗
=

𝑒
𝑖⋅𝜃𝑗 (𝑗 = 0, 1, . . . , 𝑟 − 1) be the linear part of the map 𝑇|

𝑀𝑗
,

then we have the following corollary.

Corollary 12. Suppose M ⊂ R2, 𝑇 ∈ SE(M) is invertible,
if 𝜌𝑘0
0
𝜌
𝑘1

1
⋅ ⋅ ⋅ 𝜌
𝑘𝑟−1

𝑟−1
= 1 with 𝑘

𝑖
≥ 0 (0 ≤ 𝑖 ≤ 𝑟 − 1) implies

that 𝑘
𝑖
= 0, and ifN(D) consists of only one element, then the

invariant disk packing is tangent-free.

We note that the above corollary is just a simple case of
Corollary 9.

In particular, if an invertible planar piecewise rotation
has the common irrational rotation angle 𝜃, that is, any
restricted map 𝑇|

𝑀𝑗
has the same linear part 𝜌 = 𝑒𝑖⋅𝜃, then we

have the following corollary, which strengthens the results in
[17, 20, 21].

Corollary 13. If an invertible planar piecewise rotation has the
common irrational rotation angle 𝜃 (𝜃/𝜋 ∈ Q𝐶) and N(D)
consists of only one element, then the invariant disk packing
induced by the map is tangent-free.
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𝐴

𝐵

𝐸

𝐷

𝐸

𝐵

𝐷

𝐶

𝐹

𝐶

𝐴

𝑇

𝑀1

𝑀2

𝑇(𝑀1)

𝑇(𝑀2)

Figure 2:The piecewise isometric map (17) has two partition atoms
𝑀
1
and 𝑀

2
, and the linear parts of the restricted maps are 𝜌

1
=

𝑒
2(𝜋−𝜃)𝑖 and 𝜌

2
= 𝑒
(𝜋−𝜃)𝑖. At the same time, the map is invertible, that

is, 𝑇(𝑀
1
) ∪ 𝑇(𝑀

2
) = 𝑀.

3.4. GoetzMap. Nowwe consider amap called the (bounded)
Goetz map 𝑇

𝜃
: 𝑀 → 𝑀 with parameter 𝜃 ∈ (𝜋/2, 2𝜋/3) as

follows:

𝑇
𝜃
(𝑧) = {

𝑒
2(𝜋−𝜃)𝑖

⋅ 𝑧 + 𝑐
1

if 𝑧 ∈ 𝑀
1
;

𝑒
(𝜋−𝜃)𝑖

⋅ 𝑧 + 𝑐
2

if 𝑧 ∈ 𝑀
2
.

(17)

Here, 𝑐
1
= 1/ sin 𝜃, 𝑐

2
= ((1 + 2 cos 𝜃)/ sin 𝜃)𝑒−𝜃𝑖, and the

partition atoms 𝑀
1
and 𝑀

2
can be written as follows (see

Figure 2):

𝑀
1
= [𝐴, 𝐵, 𝐶] = [−2cot 𝜃 ⋅ 𝑒(𝜋−𝜃)𝑖, 0, 1

sin 𝜃
] , (18)

𝑀
2
= [𝐵, 𝐶,𝐷, 𝐸]

= [0,
1

sin 𝜃
,
1

sin 𝜃
⋅ (1 + 𝑒

−3𝜃

𝑖) ,
1 + 2 cos 𝜃

sin 𝜃
⋅ 𝑒
−𝜃𝑖

] .

(19)

The piecewise isometric map is invertible, and the back-
ward discontinuity set D consists of only the line segment
𝐴𝐹; furthermore, all of the boundary line segments of the
partition atoms𝑀

1
and𝑀

2
will turn on to the line segment

𝐴𝐹 under finite iterations of the map 𝑇; that is, the isometric
map𝑇 satisfies the typical invertibility condition. At the same
time, the linear parts of the restricted maps are 𝜌

1
= 𝑒
2(𝜋−𝜃)𝑖

and 𝜌
2
= 𝑒
(𝜋−𝜃)𝑖, and obviously, when 𝜃/𝜋 is irrational, the

equality

𝜌
𝑘1

1
𝜌
𝑘2

2
= 1, 𝑘

1
≥ 0, 𝑘

2
≥ 0 (20)

holds if and only if 𝑘
1
= 𝑘
2
= 0. Then, from Corollary 12, we

have the following.

Proposition 14. For the piecewise isometry defined by (17), if
the parameter 𝜃 is incommensurable with 𝜋, then the invariant
disk packing is tangent-free. (See Figure 3).

3.5. The Product Goetz Map. Now we investigate the so-
called product Goetz map 𝐹

𝜃
= 𝑇
𝜃
× 𝑇
𝜃
: 𝑀 × 𝑀 →

𝑀 × 𝑀 which is a 4-dimensional PWI with partition

Figure 3: The illustration to invariant disk packing induced by the
map (17), where the parameter 𝜃 = 1.78. We can observe that all the
periodic disks are tangent-free.

M ×M = {𝑀
𝑖
×𝑀
𝑗
, 𝑖 = 1, 2}. The partition atom 𝑀

𝑖
× 𝑀
𝑗

is surrounded by 𝑛
𝑖
+ 𝑛
𝑗
3-dimensional hyperplanes in C2,

where 𝑛
𝑖
(𝑛
𝑗
) represents the number of hyperplanes which

surround𝑀
𝑖
(𝑀
𝑗
). The boundary of partition atom𝑀

𝑖
×𝑀
𝑗

may be represented as (𝜕𝑀
𝑖
× 𝑀
𝑗
) ∪ (𝑀

𝑖
× 𝜕𝑀

𝑗
), so a point

𝑧 = (𝑧
1
, 𝑧
2
) ∈ 𝜕(𝑀

𝑖
×𝑀
𝑗
) if and only if 𝑧

1
∈ 𝜕𝑀
𝑖
, 𝑧
2
∈ 𝑀
𝑗
or

𝑧
1
∈ 𝑀
𝑖
, 𝑧
2
∈ 𝜕𝑀
𝑗
.

Let 𝜒 : 𝑀 → 𝑀 be the coding map of the Goetz map
taking the form

[𝜒 (𝑧)]
𝑖
= 𝜔
𝑖
∈ {1, 2} iff 𝑇𝑖

𝜃
(𝑧) ∈ 𝑀

𝜔𝑖
for 𝑖 = 0, 1, . . . .

(21)

Asmentioned in Section 2, we denote the coding of any point
𝑧 of the phase space𝑀×𝑀 by 𝜄(𝑧)with [𝜄(𝑧)]

𝑖
= 𝜅
𝑖
= (𝜔
𝑖
, 𝜛
𝑖
)

if 𝐹𝑖
𝜃
(𝑧) ∈ 𝑀

𝜔𝑖
×𝑀
𝜛𝑖
, where 𝜔

𝑖
, 𝜛
𝑖
= 1, 2 for all 𝑖 ∈ N ∪ {0}.

Proposition 15. Let Ω be the set of all admissible codings of
the Goetz map 𝑇

𝜃
, then a 2-dimensional coding 𝜅 is admissible

under the product Goetz map if and only if 𝜅 = 𝜔 × 𝜛, where
𝜔, 𝜛 ∈ Ω and [𝜔 × 𝜛]

𝑖
= (𝜔
𝑖
, 𝜛
𝑖
). Moreover, if the rotation

parameter 𝜃 is incommensurable with 𝜋 and an admissible
coding 𝜅 = 𝜔 × 𝜛 is periodic, then 𝑝(𝜅) = [𝑝(𝜔), 𝑝(𝜛)], the
least common multiple of 𝑝(𝜔) and 𝑝(𝜛), and the periodic cell
𝐶(𝜅) of the product Goetz map may be represented as 𝐶(𝜅) =
𝐶(𝜔) × 𝐶(𝜛), where 𝑝(⋅) represents the period of a periodic
coding.

Proof. Obviously, if a 2-dimensional coding 𝜅 = (𝜔
0
,

𝜛
0
)(𝜔
1
, 𝜛
1
) . . . is admissible, then there exists 𝑧 = (𝑧

1
, 𝑧
2
)

such that 𝜄(𝑧) = 𝜅. Consequently, 𝑇𝑖
𝜃
(𝑧
1
) ∈ 𝑀

𝜔𝑖
and 𝑇𝑖

𝜃
(𝑧
2
) ∈

𝑀
𝜛𝑖
for all 𝑖 = 0, 1, . . .. This implies that the codings 𝜔, 𝜛 are

admissible under the map 𝑇
𝜃
, that is, 𝜔, 𝜛 ∈ Ω. At the same

time, let 𝜔, 𝜛 ∈ Ω be two admissible codings, then there exist
two points 𝑧

1
, 𝑧
2
such that 𝜒(𝑧

1
) = 𝜔 and 𝜒(𝑧

2
) = 𝜛. Let

𝑧 = (𝑧
1
, 𝑧
2
) be a point of the partition atom𝑀

𝜔0
×𝑀
𝜛0
, then

𝐹
𝑖

𝜃
(𝑧) = (𝑇

𝑖

𝜃
(𝑧
1
), 𝑇
𝑖

𝜃
(𝑧
2
)) ∈ 𝑀

𝜔𝑖
× 𝑀
𝜛𝑖
; that is, 𝜅 = 𝜔 × 𝜛 is

admissible under the map 𝐹
𝜃
.



8 Discrete Dynamics in Nature and Society

It is obvious that 𝑝(𝜅) = [𝑝(𝜔), 𝑝(𝜛)]. Now we check
𝐶(𝜅) = 𝐶(𝜔) × 𝐶(𝜛). For convenience, we only consider
the case for 𝜔 = 𝜛 = 1

∞ (the other cases can be verified
similarly). Let 𝑧⋆ be the center, and 𝑟 the radius of the periodic
disk 𝐶(𝜔)(𝐶(𝜛)). On one hand, for every point 𝑧 = (𝑧

1
, 𝑧
2
)

with ‖𝑧
𝑖
− 𝑧
⋆

‖ < 𝑟, 𝑖 = 1, 2, we have 𝑇𝑛
𝜃
(𝑧
𝑖
) ∈ 𝑀

1
for

𝑖 = 1, 2, 𝑛 ∈ N∪{0} since 𝑧
𝑖
∈ 𝐶(𝜔) = 𝐶(𝜛), then𝐹𝑛

𝜃
(𝑧) ∈ 𝐶(𝜅)

for all 𝑛 ∈ N ∪ {0}. Thus, 𝑧 ∈ 𝐶(𝜔) × 𝐶(𝜛). On the other
hand, for every point 𝑧 = (𝑧

1
, 𝑧
2
) with ‖𝑧

1
− 𝑧
⋆

‖ > 𝑟 or
‖𝑧
2
− 𝑧
⋆

‖ > 𝑟, we will show that 𝑧 ∉ 𝐶(𝜅). Without loss of
generality, we suppose that ‖z

1
− 𝑧
⋆

‖ > 𝑟, then there exists a
natural number 𝑛

0
such that 𝑇𝑛0

𝜃
(𝑧
1
) ∉ 𝑀

1
; this implies that

𝐹
𝑛0

𝜃
(𝑧) = {𝑇

𝑛0

𝜃
(𝑧
1
), 𝑇
𝑛0

𝜃
(𝑧
2
)} ∉ 𝐶(𝜅).

In fact, we can find that 𝐷
1
⊂ 𝐶(𝜅) ⊂ 𝐷

2
for 𝜅 = (1, 1)∞,

where

𝐷
1
= {(𝑧
1
, 𝑧
2
) |
𝑧1 − 𝑧

⋆ +
𝑧1 − 𝑧

⋆ < 𝑟} ,

𝐷
2
= {(𝑧

1
, 𝑧
2
) |
𝑧1 − 𝑧

⋆ +
𝑧1 − 𝑧

⋆ <
√2

2
𝑟} .

(22)

More precisely, the boundary 𝜕𝐶(𝜅) of the periodic cell 𝐶(𝜅)
consists of 𝐶(𝜔) × 𝜕𝐶(𝜛) and 𝜕𝐶(𝜔) × 𝐶(𝜛); however, the
2-dimensional torus 𝜕𝐶(𝜔) × 𝜕𝐶(𝜛) is merely a fraction of
𝜕𝐶(𝜅).

We consider below the tangent-free property between
any two periodic cells. Obviously, for any 3-dimensional
boundary 𝐿 ⊂ 𝜕(M × M), the unit normal vector may
be represented as n(𝐿) = (− sin𝛼, cos𝛼, 0, 0) or n(𝐿) =

(0, 0, − sin𝛼, cos𝛼), where tan𝛼 is a slope of a line segment
of 𝜕M. Moreover, the backward discontinuity setD consists
of two 3-dimensional polyhedral regions 𝐿

1
= 𝐴𝐹 × 𝑀

and 𝐿
2
= 𝑀 × 𝐴𝐹, with n(𝐿

1
) = (− sin𝛽, cos𝛽, 0, 0),

n(𝐿
2
) = (0, 0, − sin𝛽, cos𝛽), where tan𝛽 is the slope of the

line segment𝐴𝐹. By the analysis in Section 3.4, we can obtain
that there exists a natural number 𝑘

0
such that for every point

𝑧 ∈ 𝜕(M ×M), 𝐹𝑘
𝜃
(𝑧) ∈ 𝐿

1
∪ 𝐿
2
for some 𝑘 ≤ 𝑘

0
. Let

𝐴
(𝑖,𝑗)

= (

cos𝛼
𝑖
− sin𝛼

𝑖
0 0

sin𝛼
𝑖

cos𝛼
𝑖

0 0

0 0 cos𝛼
𝑗
− sin𝛼

𝑗

0 0 sin𝛼
𝑗

cos𝛼
𝑗

) (23)

for 𝑖, 𝑗 = 1, 2, where 𝛼
1
= 2𝜋 − 𝜃, 𝛼

2
= 𝜋 − 𝜃, then

𝐴
(𝑖,𝑗)

is the linear part of the restricted map 𝐹
𝜃
|
𝑀𝑖×𝑀𝑗

. If
the rotation parameter 𝜃 is incommensurable with 𝜋, then
for any admissible coding 𝜅 = (𝜔

0
, 𝜛
0
)(𝜔
1
, 𝜛
1
) . . . we have

𝐴
𝜅
⋅n(𝐿
𝑖
) ̸=n(𝐿

𝑗
) for all 𝑘 ∈ N and 𝑖, 𝑗 = 1, 2.Therefore, from

Theorem 8, we have the following proposition.

Proposition 16. If 𝜃 is incommensurable with 𝜋, then the
periodic cell packing induced by the product Goetz map 𝐹

𝜃
is

tangent-free.

4. Discussions

As we know, for planar irrational piecewise rotations, a
periodic cell is a disk except from possible countable points

on the boundary, while for higher-dimensional PWIs, we do
not think that a periodic cell is a sphere. In fact, it is easy to
see that, for odd dimensional PWIs with polygonal partition,
a periodic cell is not a sphere. By the same way as the product
Goetz map, we have the following results.

Proposition 17. Let𝑇 ∈ SE(M) and𝐹 ∈ SE(X) be twoPWIs
and𝐻 = 𝑇 × 𝐹 : 𝑀 × 𝑋 → 𝑀 × 𝑋, every periodic cell 𝐶(𝜅)
of 𝐻 can be written as 𝐶(𝜔) × 𝐶(𝜛), where 𝜔 and 𝜛 are two
admissible periodic codings of 𝑇 and 𝐹, respectively.

Proposition 18. Let𝑇𝑖 ∈ SE(M𝑖) (𝑖 = 1, 2, . . . , 𝑘) be 𝑘 planar
PWIs and 𝐻 = 𝑇

1

× 𝑇
2

× ⋅ ⋅ ⋅ × 𝑇
𝑘, if each of them is an

irrational rotation, then every periodic cell 𝐶 of the map𝐻 can
be represented as 𝐶 = 𝐶

1
×𝐶
2
× ⋅ ⋅ ⋅ ×𝐶

𝑘
, where 𝐶

𝑖
is a periodic

disk of the map 𝑇𝑖 for all 𝑖 = 1, 2, . . . , 𝑘. Moreover, the periodic
cell packing induced by the PWI𝐻 is tangent-free.

Generally, for a PWI of even-dimensional Euclidean
space, we guess that every periodic cell may be written as the
topological product space of 𝑛/2 disks under a continuous
translation. To confirm this, further research is needed.

As mentioned in Section 1, we can confirm here that the
disk packing induced by the Sigma-Delta map [20, 26] and
the overflow map [17] are tangent-free for all the parameters
𝜃which are incommensurable with𝜋. In fact, it is now easy to
check that the two piecewise isometries satisfy the conditions
of Corollary 13. So we just state the results as follows.

Proposition 19. For the Sigma-Delta map and the Overflow
mapwith 𝜃/𝜋 irrational, the induced disk packings are tangent-
free.
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