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Reciprocity by Image Scoring

Ulrich Berger∗ Ansgar Grüne†

February 18, 2014

Abstract: Indirect reciprocity describes a class of reputation-based mechanisms which
may explain the prevalence of cooperation in groups where partners meet only once.
The first model for which this has analytically been shown was the binary image scoring
mechanism, where one’s reputation is only based on one’s last action. But this mecha-
nism is known to fail if errors in implementation occur. It has thus been claimed that for
indirect reciprocity to stabilize cooperation, reputation assessments must be of higher
order, i.e. contingent not only on past actions, but also on the reputations of the targets
of these actions. We show here that this need not be the case. A simple image scoring
mechanism where more than just one past action is observed provides ample possibilities
for stable cooperation to emerge even under substantial rates of implementation errors.

Key words: cooperation; prisoner’s dilemma; donation game; indirect reciprocity; image
scoring; first-order assessment; evolutionary stability; altruism
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1 Introduction

1.1 Indirect reciprocity

Cooperating by acting altruistically and helping others reduces the actor’s material pay-
off and increases the recipient’s material payoff. If the sum of the payoffs increases,
cooperation enhances welfare and is socially beneficial. But actions which reduce own
payoff are hard to reconcile with individual rationality, so why do we see so much co-
operation in economic life? Questions such as this one have traditionally been studied
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†Ansgar Grüne, Beethovenstr. 55, 53115 Bonn, Germany, ansgar.gruene@gmail.com

1



using the framework of the Prisoner’s Dilemma game, often in the special case of the
donation game. In these games defection is the inevitable outcome unless cooperation
can be induced by some supporting mechanism. Such mechanisms solve the paradox of
cooperation by placing the Prisoner’s Dilemma into an environment where short-run al-
truism is rewarded in the long run and can thus become established in a society. Nowak
(2006) surveys the most important such mechanisms from the biologist’s point of view.
For economists, the reputation-based mechanism of indirect reciprocity (Trivers, 1971,
Sugden, 1986, Alexander, 1987) is of primary interest.

Under indirect reciprocity, helping others enhances one’s reputation, and help is primar-
ily directed towards those with a high reputation. The costs of helping are more than
offset by the benefits of being helped when in need, which aligns individual and social
rationality of cooperation. Under strict rationality assumptions in a repeated-games
framework with random matching this principle works via a process of community en-
forcement (Kandori, 1992). In a bounded-rationality framework, learning and evolution-
ary approaches have shown that a population of discriminators who base their decisions
on their partner’s reputation may successfully resist invasion attempts of defectors and
unconditional cooperators. The first such approach to be formalized was Nowak and
Sigmund’s (1998a, 1998b) model of image scoring.

1.2 Image scoring

Under image scoring, every individual carries an observable numerical score measuring its
past cooperativeness by counting how often it helped on its past interactions. If only the
last interaction of an individual is observed, the score becomes binary and discriminators
assess other individuals as either Good or Bad, depending on whether or not they helped
on their last interaction. In any interaction, discriminators then help those and only
those which are assessed as Good. In updating an individual’s reputation, the scoring
rule relies only on the individual’s behavior towards its last interaction partner, but
neither on this partner’s reputation nor on the individual’s previous reputation. Such
an assessment rule is called a first-order assessment rule.

Image scoring seemed to work well in Nowak and Sigmund’s (1998a) numerical simula-
tions, but analytical results for the binary version of image scoring show that discrimi-
nators are only neutrally, but not evolutionarily stable (Nowak and Sigmund, 1998a,b).
Indeed, Panchanathan and Boyd (2004) pointed out that if errors in the implementation
of strategies are added to the binary scoring model, cooperation becomes unstable and
defection prevails in the long run. The reason for this is the paradoxical nature of image
scoring: an individual which refuses to help a “bad” opponent becomes “bad” itself.
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1.3 Higher-order assessment rules

Panchanathan and Boyd (2004) also showed that Sugden’s (1986) standing rule can be
an evolutionarily stable strategy (ESS) in this model, as had previously been suggested
by Leimar and Hammerstein (2001). Standing, unlike image scoring, is a second-order
assessment rule, since in updating an individual’s reputation after observing its action
it takes into account the reputation of the individual’s opponent. This allows it to
distinguish “justified” and “unjustified” defections. Standing and a range of other so-
phisticated higher-order assessment rules can successfully stabilize cooperation based
on indirect reciprocity, as has later been shown by Ohtsuki (2004), Ohtsuki and Iwasa
(2004, 2006), and Brandt and Sigmund (2004). This literature is reviewed in Nowak and
Sigmund (2005). Later literature has largely focused on higher-order assessment rules,
see the recent survey of Sigmund (2012).

In the last decade the overall picture has emerged that evolutionary stability of indi-
rect reciprocity can only be established under higher-order assessment rules.1 However,
almost all of these higher-order assessment rules rely on the reputations of individuals
being built and truthfully spread by word-of-mouth. If building or spreading a repu-
tation is only slightly costly, then this results in another social dilemma and renders
cooperation impossible, as shown by Suzuki and Kimura (2013).

All in all, the situation seems puzzling: Higher-order assessment rules are cognitively
highly demanding and rely on costless and truthful reputation building, which makes it
difficult for them to explain indirect reciprocity. The first-order assessment rule of image
scoring, on the other hand, is theoretically unstable in general models. But indirectly
reciprocal behavior in humans is strongly supported by experimental research (Wedekind
and Milinski, 2000, Milinski et al, 2001, Bolton et al, 2005, Seinen and Schram, 2006,
Engelmann and Fischbacher, 2009). How can the prevalence of indirect reciprocity be
reconciled with the fragility of its theoretical foundations?

1.4 From binary to multi-valued scores

Our answer in this paper is that the alleged instability of cooperation under image scoring
is an artefact of the assumption of binary scores in the received analytical approaches
to image scoring. We show that in an image scoring model with multi-valued scores,
cooperation is indeed evolutionarily stable under a wide range of parameter values.

The dynamics of cooperation under image scoring have previously been studied by Berger
(2011) for the special case of two observations of opponents’ past actions and a low error

1There are exceptions, but these are based on rather special assumptions like a fixed or Poisson-
distributed number of perfectly synchronized rounds of interaction (Fishman, 2003, Brandt and
Sigmund, 2004), growing social networks (Brandt and Sigmund, 2005), interactions in larger groups
(Suzuki and Akiyama, 2007, 2008), or trinary reputation values (Tanabe et al., 2013).
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rate. However, this analysis was restricted to a three-strategy setting where the most
tolerant of the discriminating strategies competed with unconditional cooperators and
defectors only. Since the question of evolutionary stability heavily depends on the set
of feasible strategies, a convincing analysis requires inclusion of all threshold strategies,
i.e. strategies which cooperate if and only if the number of the opponent’s defections in
a sample of n of his past actions does not exceed a certain threshold i. These threshold
strategies include unconditional defectors (for i = −1) and cooperators (for i = n).
This was also the universe of strategies studied in the original image scoring model of
Nowak and Sigmund (1998a). Here we study evolutionary stability in settings with fixed
but arbitrary observation sample size n ≥ 1, including all n + 2 associated threshold
strategies and also allowing for implementation errors.

2 Model

2.1 The donation game, errors, and threshold strategies

Consider a large population of individuals. Time t is continuous and individuals are
repeatedly and randomly matched in pairs to interact in the donation game. During
each interaction, one individual is randomly chosen to be the donor and the other to be
the receiver. Donors can either give help (cooperate, C) or not (defect, D) to the receiver.
Helping decreases the donor’s payoff by an amount c and increases the receiver’s payoff
by b, where b > c > 0. For convenience we will make the usual assumption that actually
each individual plays in both roles at the same time during an interaction.2 With a small
probability α > 0 a donor who intends to cooperate is not able to do so (e.g. due to
lack of resources) and instead defects. No implementation errors are assumed if a donor
intends to defect.

Before a donor implements his action, he is informed of his partner’s choices in a random
sample3 of n ≥ 1 past interactions where this partner was in the donor-role. The donor’s
action then depends on the donor’s strategy and on the number of defections (D’s) in
the drawn sample. A donor with a threshold-i strategy intends to cooperate if and only
if his partner defected at most i times in the sample. An individual playing this strategy
is called an i-discriminator. We let −1 ≤ i ≤ n to include the unconditional strategies
ALLC (i = n) and ALLD (i = −1).

2This means that on each interaction, individuals play a Prisoner’s Dilemma game with “equal gains
from switching”.

3For technical simplicity we assume sampling with replacement. While this makes it possible that some
past action is sampled two or more times, it doesn’t change the results.
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2.2 Cooperation functions

Assume that an i-discriminator meets an individual with a past frequency of cooperation
given by p. Then the probability that the i-discriminator helps this individual is a
function of p only. We call this the cooperation function of the i-discriminator and
denote it by fi(p). From our assumptions it follows that

f−1(p) ≡ 0,(1)

fi(p) = (1− α)F (i;n, 1− p) for i ∈ {0, . . . , n}

Here, F (i;n, 1 − p) denotes the cumulative distribution function of the binomial dis-
tribution, i.e., the probability that in an n-times repeated Bernoulli experiment with
probability 1− p of outcome D in one experiment, the D appears at most i times. The
case n = 5 and α = 0.1 is displayed in Figure 1.

f−1 ≡ 0

1

1
p

fi(p)

1 − α

g(p) = p

f0

fn

fn−1

p̃1

p̃2p̃3

stable fixed point pfix
2 of f2

f3 f2

f1

unstable fixed point p∗2 of f2

stable fixed point 0 of f2

p∗3

Figure 1: Cooperation functions fi(p) for n = 5 and α = 0.1.

For the special cases i = −1 and i = n we have the constant cooperation functions

(2) f−1(p) ≡ 0 (ALLD) and fn(p) ≡ 1− α (ALLC).

From now on, in this subsection, we restrict our attention to the cooperation functions
of proper discriminators, i.e. 0 ≤ i ≤ n− 1. Writing the binomial distribution function
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as a regularized beta function we obtain

fi(p) = (1− α)
i∑

k=0

(
n

k

)
pn−k(1− p)k(3)

= (1− α)(n− i)
(
n

i

)∫ p

0
tn−i−1(1− t)i dt

The cooperation functions of proper discriminators are strictly increasing from fi(0) = 0
to fi(1) = 1− α.

Two important special cases are

(4) f0(p) = (1− α)pn and fn−1(p) = (1− α)(1− (1− p)n).

Using the identity provided by the beta function we can calculate the derivatives

(5) f ′i(p) = (1− α)(n− i)
(
n

i

)
pn−i−1(1− p)i

These are non-negative and vanish at p = 0 (except for i = n− 1) and at p = 1 (except
for i = 0).

The second derivatives for i ∈ {0, . . . , n− 1} are given by

(6) f ′′i (p) = (1− α)(n− i)
(
n

i

)
pn−i−2(1− p)i−1(n− i− 1− (n− 1)p).

In particular,

f ′′0 (p) = (1− α)n(n− 1)pn−2,

f ′′n−1(p) = −(1− α)n(n− 1)(1− p)n−2.

For n = 1 we have f0(p) = (1−α)p, f ′0(p) ≡ 1−α, and f ′′0 (p) ≡ 0. For n ≥ 2 we can see
that for every i ∈ {0, . . . , n − 1}, f ′i(.) strictly increases from p = 0 up to the inflection
point

(7) p̃i =
n− i− 1

n− 1

and then strictly decreases until p = 1. In other words, fi(.) is strictly convex on [0, p̃i]
and strictly concave on [p̃i, 1]. Note that for the special case i = 0, we have p̃0 = 1, so
f0(.) is strictly convex on [0, 1]. Analogously, p̃n−1 = 0 and fn−1(.) is strictly concave
on [0, 1].
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2.3 Fixed points

Consider now, for i ∈ {0, . . . , n − 1}, a homogeneous population of i-discriminators.
Assume that at time t the past cooperation rate in the population is p(t). As long
as fi(p(t)) < p(t), this cooperation rate will decrease, and as long as fi(p(t)) > p(t),
the cooperation rate will increase. Thus the overall cooperation rate will monotonically
converge to a fixed point of the cooperation function fi.

The special case n = 1, where only a single past action is observed, leads to the binary
scoring model. Note that since f0(p) = (1−α)p < p, convergence of cooperation rates to
0 is inevitable. Discrimination based on single observations does not work. For n = 1,
a homogeneous population of discriminators always ends up with pure defection in the
long run. However, as we demonstrate below, this result does not extend to the general
case of n ≥ 1.

In Figure 1 the fixed points of the cooperation function fi are the intersections of fi with
the diagonal. For small i, p = 0 is the unique fixed point and the population ends up
with all-out defection. This is always the case for i = −1 and i = 0, but it might also
hold for larger values of i, if the error rate α is large enough. But if α is small enough,
then for some minimal i-value another stable fixed point p̃i < pfix

i ≤ 1−α appears on the
concave part of the i-discriminator’s cooperation function, accompanied by an unstable
fixed point 0 ≤ p∗i < pfix

i . This is the case whenever the cooperation function fi crosses
the diagonal from above.

So, generically, for given α, n ≥ 2, and −1 ≤ i ≤ n, we either have a unique and
globally attracting fixed point at 0 (all-out defection), a bistable situation with either
all-out defection or a high cooperation rate in the long run, or—for i = n − 1, where
0 is an unstable fixed point, and for the unconditional cooperators i = n—a highly
cooperative population in the long run. The latter two cases are those where a homo-
geneous population of i-discriminators is able to maintain a high rate of cooperation.4

We then say that the i-discriminators are self-cooperative. Technically, i-discriminators
are self-cooperative if and only if their cooperation function fi crosses the diagonal from
above.

If α is small enough, self-cooperation is always obtained for the cases i = n (an ALLC-
population) and i = n−1. However, for i ≤ n−2 self-cooperation is only possible in the
bistable case. The dynamics of cooperation rates then allow for a cooperative as well as
for a defective regime, depending on initial conditions. Hence, to uniquely determine the
final cooperation rate of the population we have to make an assumption on those initial
conditions. We assume here that newly born individuals, who lack a record of past play,
are given the benefit of doubt, i.e. they are treated by discriminators as if they had a
clean record of all-out cooperation. It then follows that self-cooperative discriminators

4Note that “high” is to be understood here as relative to the maximum possible cooperation rate of
1− α.
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always end up with a cooperation rate at the high-cooperation fixed point pfix
i .

2.4 Payoffs

Let us now investigate whether a small fraction of mutant m-discriminators can survive
or even spread in an otherwise homogeneous incumbent population of self-cooperative i-
discriminators. In any such investigation we will assume that prior to the mutant’s entry
the incumbent’s cooperation rate has already stabilized at pfix

i .5 We denote the payoff
of a single j-discriminator in an otherwise homogeneous population of i-discriminators
by π̂(j|i). It is useful to work with normalized payoffs, measuring original payoffs in
multiples of the benefit b, so let π(j|i) := b−1π̂(j|i).6

When a mutant m-discriminator enters an incumbent population of i-discriminators, the
incumbents’ overall cooperation rate remains at pfix

i , which implies a mutant’s cooper-
ation rate of fm(pfix

i ). Hence, upon meeting the mutant, an incumbent will cooperate
with probability fi(fm(pfix

i )).

For the mutant’s payoff we thus get π̂(m|i) = bfi(fm(pfix
i ))− cfm(pfix

i ), or

(8) π(m|i) = fi(fm(pfix
i ))− rfm(pfix

i ),

where r := c/b denotes the cost-benefit ratio of the donation.

For an incumbent, the probability of meeting the mutant is negligible, so the incumbents’
average payoff will be π(i|i) = (1− r)pfix

i .

2.5 Evolutionary stability of discrimination

A sufficient condition for the incumbent population to be evolutionarily stable in the
sense of Maynard Smith and Price (1973) is that the incumbent’s payoff is strictly larger
than any mutant’s payoff, i.e. that π(i|i) > π(m|i), or

(9) (1− r)pfix
i > fi(fm(pfix

i ))− rfm(pfix
i )

for all m 6= i.

It is easy to see that for any n, unconditional cooperators, i.e. n-discriminators, can
always be invaded by unconditional defectors. Strictly speaking, defectors themselves
are not evolutionarily stable, because mutant discriminators do not cooperate with them,
earn 0 payoff as well and can grow by neutral drift. However, these mutants never manage

5This basically means that interactions take place on a much faster time scale than strategy adjustments.
6The ESS concept is immune to rescaling of payoffs, so normalizing payoffs is without loss of generality

here (Berger, 2009).
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to cooperate with each other, since their cooperation rate, having started at pi = 0, never
reaches the basin of attraction pi > p∗i of the cooperative regime. So even if ALLD is
not evolutionarily stable, defection can not be overcome.7 Essentially the same is true
for the 0-discriminator, which is never self-cooperative. Hence ESS candidates exist only
for n ≥ 2 and 1 ≤ i ≤ n− 1.

So let us assume that n ≥ 2 and α and 1 ≤ i ≤ n− 1 are such that the i-discriminator is
self-cooperative with cooperation rate pfix

i . Self-cooperativeness implies that at pfix
i the

cooperation function fi crosses the diagonal from above, i.e. f ′i(p
fix
i ) < 1. Moreover, the

graph of fi is below the diagonal between 0 and p∗i , has slope greater than 1 between
p∗i and p̃i, and is strictly concave between p̃i and 1. This implies that the graph of fi
is completely below the tangent to fi at pfix

i . Applying this at the point p = fm(pfix
i )

we get the inequality fi(fm(pfix
i )) < pfix

i − f ′i(pfix
i )[pfix

i − fm(pfix
i )]. Assume now that the

cost-benefit ratio r happens to be exactly equal to r = f ′i(p
fix
i ), then the inequality can

be written as fi(fm(pfix
i )) < (1 − r)pfix

i + rfm(pfix
i ). Comparing this to inequality (9)

shows that this means π(i|i) > π(m|i), implying evolutionary stability of the incumbent
i-discriminator. By continuity of both sides of the inequality in r, evolutionary stability
continues to hold for nearby cost-benefit ratios. This proves:

Theorem 1 (Existence of ESS-discriminators). Fix α > 0 and n ≥ 2. Choose 1 ≤ i ≤
n−1 such that the i-discriminator is self-cooperative. Then there exists an open interval
of cost-benefit ratios r such that the i-discriminator is evolutionarily stable.

If the i-discriminator is evolutionarily stable, a homogeneous population of i-discri-
minators cooperates at a high rate and resists invasion attempts of all mutant m-
discriminators, including ALLC and ALLD. If the error rate α is small enough, all
i-discriminators with 1 ≤ i ≤ n − 1 are self-cooperative and hence each i-discriminator
is an ESS for some open set of cost-benefit ratios. The only case where no such ESS
exists is the binary image scoring case, i.e. n = 1, where the only proper discriminator,
i = 0, is not self-cooperative for any α > 0.

3 ESS Regions

3.1 Overview

The exact shape of the ESS-regions Ri in the interior of the α-r-square where an i-
discriminator is an ESS, can be determined numerically from inequality (9). It turns
out that for small α the open intervals of r-values guaranteeing the ESS-property for the
i-discriminators can be extremely small. However, a sizable fraction of the α-r-square

7Taking into account our assumption that proper discriminators cooperate with newborn defectors,
defectors even have a slight advantage, making ALLD evolutionarily stable. However, this assumption
is extraneous to the model.
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consists of parameter combinations where some discriminator is an ESS. For n = 5 these
ESS regions are depicted in Figure 2 as the green “leaves” originating from (0, 0).

Note that relatively large values of α < 1 can not readily be interpreted as probabilities
of implementation errors of intended donations. Rather, high values of α indicate that
individuals intending to help often simply lack the resources to do so. This suggests an
interpretation of such a high-α population as a poor society. For very large values of α,
not even the most tolerant discriminator i = n − 1 is self-cooperative, and cooperation
is doomed to fail. However, as can be seen from region R4 in Figure 2, for medium
to high cost-benefit ratios the most tolerant discriminator remains an ESS even for α-
values arbitrarily close to 0.8 (this is proved rigorously below). Clearly, however, the
cooperation rate in this “cooperative” regime is actually rather low, being bounded from
above by the corresponding (1− α)-values close to 0.2.

α

r = c
b

1

10

0

R4

R3R2
R1

0.5

0.5

αmax
4 = 0.8

Figure 2: ESS regions R1, . . . , R4 for n = 5.

3.2 Properties of ESS regions

The numerical calculations behind Figure 2 suggest that for every i-discriminator with
1 ≤ i ≤ n − 1 there exists a certain αmax

i such that the discriminator can be an ESS
for all 0 < α < αmax

i but is never an ESS for α > αmax
i . This is indeed the case. The

proof of the existence of ESS discriminators above is valid as long as the discriminator in
question is self-cooperative. For 1 ≤ i ≤ n−1 this is the case whenever α is small enough.
Increasing α scales down the cooperation functions in Figure 1 until the unstable fixed
point p∗i and the stable fixed point pfix

i coincide and the diagonal is tangential to the
cooperation function at this value. The value of α where this happens is αmax

i . From

10



Figure 1 it is also immediate that αmax
i is increasing in i.

A special case is αmax
n−1, where self-cooperativeness of the most tolerant proper discrimi-

nator breaks down. Since fn−1 is strictly concave, a stable fixed point pfix
n−1 > 0 exists

if and only if f ′n−1(0) > 1. From equation (5) we have f ′n−1(p) = (1 − α)n(1 − p)n−1,
hence f ′n−1(0) = (1− α)n, implying αmax

n−1 = 1− 1
n .

We have shown that in the case of self-cooperation, i.e. for α < αmax
i , there exists an

open interval of cost-benefit ratios r such that the i-discriminator is evolutionarily stable.
By construction, this interval contains the ratio r = f ′i(p

fix
i ). Maximally extending the

boundaries of the interval leads to the largest such interval rmin
i < r < rmax

i . Note
that the boundary values depend on α. Given any cooperation function f , let us now
denote the slope of the line between the two points (p1, f(p1)) and (p2, f(p2)) on the

graph of f by slf (p1, p2) := f(p2)−f(p1)
p2−p1

. We can then show that rmin
i = slfi(p

fix
i , fi+1(p

fix
i ))

and rmax
i = min (1, slfi(fi−1(p

fix
i ), pfix

i )). Moreover, if the cost-benefit ratio is outside the
closure of this interval, the i-discriminator can be invaded by a mutant strategy and is
never an ESS. The proof of this is relegated to the Appendix.

Figure 2 also strongly suggests that the ESS regions of different i-discriminators do not
overlap. The ESS regions of more tolerant discriminators seem to lie to the right and
below the ones of stricter discriminators. Indeed, this is the case. Again the proof can
be found in the Appendix.

3.3 Evolutionary stable mixtures of neighboring discriminators

Figure 2 raises one more question. What happens in the regions where no i-discriminator
is an ESS? We try to answer this question in this section.

First we focus on points in parameter space which lie vertically between the ESS regions
of an i-discriminator and the (i + 1)-discriminator. These are points (α, r) such that
there exists an i ∈ {1, . . . , n − 1} with α < αmax

i and rmax
i+1 < r < rmin

i . We show that
in any such case there exists a mixture of i- and (i+ 1)-discriminators which cannot be
invaded by any mutant strategy and thus is an evolutionary stable state.

If i- and (i+1)-discriminators are present in fixed proportions in a well-mixed population,
the dynamics of their respective cooperation rates (pi, pi+1)(t) are described by a smooth
two-dimensional dynamical system. It is easy to see that if the initial cooperation rates
of both groups are close to zero, they both vanish in the limit. However, we show now
that there is always a second asymptotically stable fixed point with high cooperation
rates. As in the case of a single type of discriminators, we will assume that initial
cooperation rates are high, which allows us to treat them as fixed at their respective
equilibrium values with high cooperation when looking for evolutionary stable mixtures
of i- and (i+ 1)-discriminators.
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3.3.1 Limit cooperation rates in mixtures of two discriminators

Assume the population is composed of a fraction q of i-discriminators and a fraction
1 − q of (i + 1)-discriminators. Let the initial cooperation rates in the two groups be
pi and pi+1. On his next interaction, an i-discriminator meets another i-discriminator
with probability q and an (i + 1)-discriminator with probability 1 − q, in the first case
cooperating with probability fi(pi) and in the second case cooperating with probability
fi(pi+1), so in his next interaction his cooperation probability will be qfi(pi) + (1 −
q)fi(pi+1). The overall cooperation rate of the i-discriminators will thus be moved into
this direction. The analogous applies to the (i+ 1)-discriminator. In a large population
this movement of cooperation rates can be approximated by

ṗi = qfi(pi) + (1− q)fi(pi+1)− pi
(10)

ṗi+1 = qfi+1(pi) + (1− q)fi+1(pi+1)− pi+1

Consider now the case where pi = pfix
i and pi+1 > pi. Since fi is strictly increasing,

fi(pi+1) > fi(pi) = pi and the first equation in (10) implies that ṗi > 0. Analogously,
pi+1 = pfix

i+1 and pi+1 > pi imply ṗi+1 < 0. On the other hand, since fi+1 is strictly
greater than fi on the interior of the unit interval, subtracting the first from the second
equation of (10) implies d

dt(pi+1 − pi) > −(pi+1 − pi), so pi+1 − pi strictly increases at
interior points of the diagonal {pi = pi+1}. Hence, the triangle {pfix

i+1 ≥ pi+1 ≥ pi ≥ pfix
i }

in phase space is forward invariant.

Consider next the isocline ṗi = 0 in this triangle. We have ṗi = 0 at the lower left
corner (pfix

i , p
fix
i ), ṗi > 0 at the upper left corner (pfix

i , p
fix
i+1), and ṗi < 0 at the upper right

corner (pfix
i+1, p

fix
i+1), so the isocline runs from the lower left corner to the upper edge of

the triangle. Since ∂
∂pi+1

[qfi(pi) + (1− q)fi(pi+1)− pi] = (1− q)f ′i(pi+1) > 0, the implicit

function theorem tells us that the isocline ṗi = 0 can be written as a function pi+1(pi)

with p′i+1(pi) = − qf ′i(pi)−1
(1−q)f ′i(pi+1)

. Since f ′i(pi) < 1, we have p′i+1(pi) > 0. From this we get

p′′i+1(pi) = − qf ′′i (pi)(1−q)f ′i(pi+1)−(qf ′i(pi)−1)(1−q)f ′′i (pi+1)p
′
i+1(pi)

[(1−q)f ′i(pi+1)]2
> 0. So the isocline ṗi = 0

can be written as an increasing and convex function running from the lower left corner to
the upper edge of the triangle. The analogous arguments for pi+1 show that the isocline
ṗi+1 = 0 can be written as an increasing and convex function running from the left edge
to the upper right corner of the triangle. By continuity of these functions they intersect
in a unique fixed point in the interior of the triangle, which we denote by (pfix

i,i+1, p
fix
i+1,i).

This fixed point has pfix
i < pfix

i,i+1 < pfix
i+1,i < pfix

i+1 and is asymptotically stable. 8

8Indeed it can be shown that this fixed point attracts all solutions of (10) with initial cooperation rates
exceeding p∗i .
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3.3.2 Evolutionary stability of mixtures of two discriminators

Let q ∈ [0, 1] be fixed. Consider again the population mixture of a fraction q of i-
discriminators and a fraction 1 − q of (i + 1)-discriminators. As shown above, the
cooperation rates of the two groups will then equilibrate at pfix

i,i+1 and pfix
i+1,i, respectively.

Therefore, the payoffs of an i-discriminator and an (i+ 1)-discriminator are given by

πi = qfi(p
fix
i,i+1) + (1− q)fi+1(p

fix
i,i+1)− rpfix

i,i+1,

(11)

πi+1 = qfi(p
fix
i+1,i) + (1− q)fi+1(p

fix
i+1,i)− rpfix

i+1,i,

respectively. We now define a new function, which is just a weighted average of fi and
fi+1, viz.

f qi,i+1(p) := qfi(p) + (1− q)fi+1(p)

The two payoffs can then be written as πi = f qi,i+1(p
fix
i,i+1)−rpfix

i,i+1 and πi+1 = f qi,i+1(p
fix
i+1,i)−

rpfix
i+1,i. Division by pfix

i+1,i−pfix
i,i+1 shows that the payoff difference πi−πi+1 has the same

sign as the difference between the cost-benefit ratio r and the slope of the line con-
necting the two points (pfix

i+1,i, f
q
i,i+1(p

fix
i+1,i)) and (pfix

i,i+1, f
q
i,i+1(p

fix
i,i+1)), i.e. the difference

r−slfq
i,i+1

(pfix
i,i+1, p

fix
i+1,i). In particular, equality of payoffs implies slfq

i,i+1
(pfix

i,i+1, p
fix
i+1,i) = r.

Note that q = 0 is just the situation of a homogeneous population of (i+1)-discriminators,
and slfq

i,i+1
(pfix

i,i+1, p
fix
i+1,i) = slfi+1

(fi(p
fix
i+1), p

fix
i+1) = rmax

i+1 . By our assumption of rmax
i+1 <

r < rmin
i we have πi − πi+1 > 0, so this population can be invaded by i-discriminators.

Vice versa, for q = 1 we get a homogeneous population of i-discriminators, which can
be invaded by (i+ 1)-discriminators. By continuity of the payoffs in q, there must exist
a 0 < q < 1 such that in the resulting mixture of i- and (i + 1)-discriminators, both
groups have equal payoffs. This mixture can neither be invaded by i- nor by (i + 1)-
discriminators. It remains to be shown that also no other mutant m-discriminator can
invade.

Theorem 2 (Stable mix of two discriminators). Let i ∈ {1, . . . , n− 1}, 0 < α < αmax
i ,

and rmax
i+1 < r < rmin

i . Then there exists a unique mixture of i- and (i+1)-discriminators
which is an ESS.

The proof of Theorem 2 can be found in the Appendix. Figure 3 shows the ESS-regions of
mixtures of neighboring discriminators added to the ESS-regions of single discriminators
in the α-r-square.
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Figure 3: ESS regions of single discriminating strategies and mixtures of two discrimi-
nating strategies for n = 5. On the right side a zoom of the area close to the
origin.

3.4 The chances for evolutionary stability

Given randomly selected values for α and r in the unit interval, what is the probability
that a high rate of cooperation can be achieved in an ESS? We can’t answer this question
exactly, since we have only proved existence of two special types of ESS here, single
discriminator ESS and ESS of mixtures of two neighboring discriminators. It is in
principle possible that some fraction of the white region in Figure 3 could admit similar
or other types of ESS. However, by measuring the coloured area in this Figure we
can at least calculate a lower bound for the chances that a cooperative ESS exists.
Table 1 provides these values for realistically low as well as for intermediate and very high
values of n. Note that while the percentage of points admitting a single discriminator
ESS eventually decreases, the corresponding area where a mixture ESS exists seems
to increase monotonically. In particular, this suggests that if the costs are less than
half the benefits, our two ESS types cover the complete area in the limit as n grows
large. However, even low values of n provide substantial chances for cooperation to be
evolutionary stable.

4 Conclusions

While image scoring was the very first explicit model of indirect reciprocity, the general
version had hitherto only been studied numerically. Analytical results were available
only for the binary version, which, however, is rather restricted. Discrimination always
fails to sustain cooperation in the binary image scoring model with implementation er-
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Table 1: Percentage of points (α, r) with existence of a single discriminator ESS or an
ESS mixture of two neighboring discriminators (first column: single, second
column: single or mixture)

rors. However, as we have shown in a simple model of the general version of image
scoring, under small error rates every proper discriminating strategy except the most
intolerant one is evolutionarily stable for some interval of cost-benefit ratios. Interest-
ingly, cooperation can even be upheld by very tolerant discriminators in poor societies,
i.e. under substantial rates of failed intended donations. A limit of the present analysis
is that it is a static one. The ESS property of a discriminator tells us nothing about the
size of its basin of attraction under a learning or evolutionary dynamics. For the same
reason we have to leave open the question what exactly happens when parameters are
in a region where neither a homogeneous discriminator population nor a mixture of two
neighboring discriminators are evolutionarily stable. Numerical simulations might shed
further light on these questions.
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Appendix

Lemma 3 (Interval of cost-benefit ratios). Let rmin
i = slfi(p

fix
i , fi+1(p

fix
i )) and rmax

i =
min (1, slfi(fi−1(p

fix
i ), pfix

i )). Then

(12) rmin
i < r < rmax

i =⇒ i-discr. is ESS =⇒ rmin
i ≤ r ≤ rmax

i .

Proof. First we observe

π(m|i)− π(i|i) (8)
= fi(fm(pfix

i ))− rfm(pfix
i )− fi(fi(pfix

i )) + rfi(p
fix
i )

= fi(fm(pfix
i ))− fi(pfix

i ) − r (fm(pfix
i )− pfix

i ) .
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Hence,

π(m|i) ≤ π(i|i) ⇔ fi(fm(pfix
i ))− fi(pfix

i ) ≤ r (fm(pfix
i )− pfix

i )

⇔

 for m > i : r ≥ fi(fm(pfix
i ))−fi(pfix

i )

fm(pfix
i )−pfix

i

= slfi(p
fix
i , fm(pfix

i ))

for m < i : r ≤ pfix
i −fi(fm(pfix

i ))

pfix
i −fm(pfix

i )
= slfi(fm(pfix

i ), pfix
i )

and the analogous equivalence holds for the strict inequality. This proves

r̃min
i < r < r̃max

i =⇒ i-discr. is ESS =⇒ r̃min
i ≤ r ≤ r̃max

i ,

where
r̃min
i := max

m>i
slfi(p

fix
i , fm(pfix

i )) and r̃max
i := min

m<i
slfi(fm(pfix

i ), pfix
i ).

It remains to be shown that rmin
i = r̃min

i and rmax
i = r̃max

i .

For the first equality, rmin
i = r̃min

i , we show that the slope slfi(p
fix
i , fm(pfix

i )) is decreasing
in m for m > i. However, this follows from the observations in Section 2.2. Since at the
stable fixed point pfix

i the function fi(.) intersects the diagonal g(p) = p from above and
fi(0) = 0, pfix

i must be in the concave part of fi(.), i.e.

(13) pfix
i ≥ p̃i.

Hence, f ′i(p) is non-increasing on the whole interval [pfix
i , 1]. This implies that the

slope slfi(p
fix
i , p) is also non-increasing in p on [pfix

i , 1] because it is the average of f ′(.)
on [pfix

i , p]. The maximum slope is attained by the smallest p. This concludes the proof
of this step because fm(pfix

i ) is by definition increasing in m.

For the second equality, rmax
i = r̃max

i , we consider the function h(p) := slfi(p, p
fix
i ). First,

we prove analogously to above that h(p) is non-increasing on [p̃i, p
fix
i ] because f ′i(.) is

non-increasing on this interval.

h′(p) =
−f ′i(p)(pfix

i − p) +
∫ pfix

i
p f ′i(t) dt

(pfix
i − p)2

≤
−f ′i(p)(pfix

i − p) +
∫ pfix

i
p f ′i(p) dt

(pfix
i − p)2

= 0

Let p∗i be the intersection point of fi and g(p) = p such that for all p with p∗i < p < pfix
i

we have fi(p) > p. We want to prove that h(p) is non-increasing on [p∗i , p
fix
i ]. If p∗i > p̃i,

we are done. Otherwise, we still have to prove the statement for the interval [p∗i , p̃i].
Note that we have f ′i(p

∗
i ) ≥ 1 because fi(p

∗
i ) = p∗i and fi(p

∗
i +ε) > p∗i +ε for small ε > 0.

Because we are in the convex part of fi, f
′
i is increasing. Hence, f ′(p) ≥ 1 for every p ∈

[p∗i , p̃i]. This implies

h′(p) =
−f ′i(p)(pfix

i − p) + pfix
i − fi(p)

(pfix
i − p)2

fi(p)≥p
≤ −f ′i(p)(pfix

i − p) + pfix
i − p

(pfix
i − p)2

=
1− f ′i(p)
pfix
i − p

f ′i(p)≥1≤ 0.
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We have proved that h(p) is non-increasing on [p∗i , p
fix
i ].

If p∗i > 0, then fi(p) ≤ p on [0, p∗i ] because fi intersects g(p) = p from below in p∗i and
fi is first convex on [0, p∗i ], then possibly followed by a concave part. Hence,

min
m<i,fm(pfix

i )≤p∗i
slfi(fm(pfix

i ), pfix
i ) ≥ 1.

Because f−1(p
fix
i ) = 0, we even have the equality minm<i,fm(pfix

i )≤p∗i
slfi(fm(pfix

i ), pfix
i ) = 1

and it holds also for p∗i = 0. We can conclude

r̃max
i = min

m<i
slfi(fm(pfix

i ), pfix
i ) = min

(
1, min

m<i,fm(pfix
i )≥p∗i

slfi(fm(pfix
i ), pfix

i )

)
= min (1, slfi(fi−1(p

fix
i ), pfix

i )) = rmax
i

Note that the last equality holds also if fi−1(p
fix
i ) < p∗i where the minimum equals 1.

This concludes the proof.

Lemma 4 (Non-overlapping ESS-regions). For i, j ∈ {1, . . . , n− 1} and i 6= j, we have
Ri ∩Rj = ∅. More precisely, i < j and 0 < α < αmax

i imply rmax
j < rmin

i .

Proof. The proof uses the following observation about the fixed point pfix
i and the inflec-

tion point p̃i = n−i−1
n−1 as described around (7):

Lemma 5. For 1 ≤ i ≤ n− 1, p ∈ [p̃i, 1) or p ∈ [pfix
i , 1) implies f ′i+1(p) < f ′i(p).

Proof of Lemma 5. For i = n−1 we have f ′i+1(p) = f ′n(p) = 0 < fi(p). Now, assume 1 ≤
i ≤ n− 2.

f ′i(p)− f ′i+1(p)
(5)
= (1− α)(n− i) n!

i!(n− i)!p
n−i−1(1− p)i

− (1− α)(n− i− 1)
n!

(i+ 1)!(n− i− 1)!
pn−i−2(1− p)i+1

= (1− α)
n!

i!(n− i− 2)!
pn−i−2(1− p)i

(
1

n− i− 1
p− 1

i+ 1
(1− p)

)
This shows

f ′i(p)− f ′i+1(p) > 0 ⇔ 1

n− i− 1
p− 1

i+ 1
(1− p) > 0

⇔ p

(
1

n− i− 1
+

1

i+ 1

)
>

1

i+ 1
⇔ p

(
i+ 1

n− i− 1
+ 1

)
> 1

⇔ p >
n− i− 1

n
⇐ p ≥ p̃i

(7)
=
n− i− 1

n− 1
.

Within the proof of Lemma 3 we showed in (13) that pfix
i > p̃i. This proves that the

implication holds for the precondition p ≥ pfix
i , too.
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To prove Lemma 4 it now suffices to prove the statement for j = i+1. Let 0 < α < αmax
i .

The inequality fi+1(p) > fi(p) for 0 < p < 1, the monotonicity of both, fi and fi+1,
pfix
i < pfix

i+1, and the fixed point properties of pfix
i and pfix

i+1 imply

pfix
i = fi(p

fix
i ) ≤ fi+1(p

fix
i ) ≤ fi+1(p

fix
i+1) = pfix

i+1(14)

and pfix
i = fi(p

fix
i ) ≤ fi(p

fix
i+1) ≤ fi+1(p

fix
i+1) = pfix

i+1.

Because of

pfix
i

(13)
> p̃i

(7)
=
n− i− 1

n− 1
>
n− i− 2

n− 1

(7)
= p̃i+1

both cooperation functions fi and fi+1 are concave on [pfix
i , 1]. We have

rmin
i

Lemma 3
= slfi(p

fix
i , fi+1(p

fix
i ))

(14), fi concave

≥ slfi(p
fix
i , p

fix
i+1)

Lemma 5
> slfi+1

(pfix
i , p

fix
i+1)

(14), fi+1 concave

≥ slfi+1
(fi(p

fix
i+1), p

fix
i+1)

≥ min
(
1, slfi+1

(fi(p
fix
i+1), p

fix
i+1)

) Lemma 3
= rmax

i+1

Proof of Theorem 2

Proof. Let q be the ratio of i-discriminators in population equilibrium. To simplify
notation, we now denote the cooperation rates of the two discriminators in the steady
state again by pi and pi+1 instead of by pfix

i,i+1 and pfix
i+1,i. Moreover, we define

(15) f̃j(pi, pi+1) := qfj(pi) + (1− q)fj(pi+1)

for any j ∈ {−1, . . . , n}.

In the steady state of cooperation rates, the right-hand sides of (10) must be zero, which
is equivalent to

(16) f̃i(pi, pi+1) = pi and f̃i+1(pi, pi+1) = pi+1.

It will be useful to define the combined cooperation function of the whole population by

(17) fi,i+1(p) := qfi(p) + (1− q)fi+1(p).

In a mixed population equilibrium, the payoffs of both types of discriminators must
be equal, since otherwise the discriminator with the higher payoff would increase in
frequency. The payoff relation, again, has a useful slope formulation.

π(i+ 1|i, i+ 1) = π(i|i, i+ 1)(18)

⇔ qfi(pi+1) + (1− q)fi+1(pi+1)− rpi+1 = qfi(pi) + (1− q)fi+1(pi)− rpi
(17)⇔ fi,i+1(pi+1)− rpi+1 = fi,i+1(pi)− rpi
⇔ fi,i+1(pi+1)− fi,i+1(pi) = r(pi+1 − pi)
⇔ slfi,i+1

(pi, pi+1) = r.
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Note that the same equivalences hold, if we replace ”=” by ”<” or ”>”,

(19) π(i+ 1|i, i+ 1) ≷ π(i|i, i+ 1) ⇔ slfi,i+1
(pi, pi+1) ≷ r.

If the slope exceeds r, the (i+ 1)-discriminator has a payoff advantage and q decreases.
This in turn increases both steady state cooperation rates pi and pi+1, since the right-
hand sides of (10) are decreasing in q. As a consequence, the slope-term decreases,
since the cooperation rates are in the concave part of fi and fi+1, and hence of fi,i+1.
Analogous arguments show that the slope-term is increased, if it is below r. These
arguments show that the mixed equilibrium population ratio q is unique.

The rest of the proof is very similar to the proof of Lemma 3. We want to prove the
following equivalent statements9 for m 6= i:

π(m|i, i+ 1) < π(i|i, i+ 1) = π(i+ 1|i, i+ 1)(20)

⇔ fi,i+1(f̃m(pi, pi+1))− rf̃m(pi, pi+1) < fi,i+1(pi)− rpi
⇔ fi,i+1(f̃m(pi, pi+1))− fi,i+1(pi) < r(f̃m(pi, pi+1)− pi)

⇔
{

slfi,i+1
(pi, f̃m(pi, pi+1)) < r for f̃m(pi, pi+1) > pi

slfi,i+1
(f̃m(pi, pi+1), pi) > r for f̃m(pi, pi+1) < pi

⇔
{

slfi,i+1
(pi, f̃m(pi, pi+1)) < r for m > i+ 1

slfi,i+1
(f̃m(pi, pi+1), pi) > r for m < i

The last equivalence follows from the monotonicity of fj(p) in j and (16).

It is simple to prove that the statements in (20) hold for m > i + 1. In the proof of
Lemma 3 we have already used the inequality pfix

i > p̃i from (13), which means that fi(.)
is concave on the whole interval [pfix

i , 1]. Since p̃i+1 < p̃i, also fi+1(.) is concave on that
interval10. Hence, fi,i+1(.) is concave, too. From f̃m(pi, pi+1) > f̃i+1(pi, pi+1) = pi+1, we
get

slfi,i+1
(pi, f̃m(pi, pi+1)) < slfi,i+1

(pi, pi+1)
(18)
= r.

For the case m < i, let us first exclude the special case i = n−1. Hence, since 0 ≤ m < i
we now consider 1 ≤ i ≤ n−2. We can use the very same argumentation for fi,i+1 which
was used in the proof of Lemma 3 for fi. In order to do so, we have to show that fi,i+1

has the same crucial properties as fi:

1. fi,i+1 is strictly increasing from fi,i+1(0) = 0 to fi,i+1(1) = 1− α.

2. fi,i+1 cuts the line g(p) = p from above at a point pfix
i,i+1.

9Here, π(j|i, i+ 1) denotes the payoff of a single j-discriminator in the equilibrium population mixture
of i- and (i+ 1)-discriminators.

10Note that since m > i+ 1 we know that i+ 1 < n.
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3. There exists a fixed point of fi,i+1 smaller than pfix
i,i+1. Let p∗i,i+1 be the largest

such fixed point.

4. fi,i+1 is convex up to a value p̃i,i+1 ∈ [0, 1] and then concave.

1. holds because fi,i+1 is a mixture of two functions which have this property. 2. holds
for a value pfix

i,i+1 ∈ [pfix
i , p

fix
i+1] because at pfix

i we have fi(p
fix
i ) = pfix

i and fi+1(p
fix
i ) > pfix

i ,
hence fi,i+1(p

fix
i ) > pfix

i . Analogously, one can show that fi,i+1(p
fix
i+1) < pfix

i+1. Hence, the
fixed point pfix

i,i+1 exists due to continuity of fi,i+1. Furthermore, 4. will show that this
fixed point is unique. 3. holds because at least p = 0 satisfies all conditions.

To prove 4., note that for p < p̃i+1 < p̃i we know that f ′′i+1(p) > 0 and f ′′i (p) > 0, and
hence f ′′i,i+1(p) > 0. Actually, since q > 0 we even know f ′′i,i+1(p̃i+1) > 0. Analogously,
one can prove f ′′i,i+1(p) < 0 for p ∈ [p̃i, 1]. What happens between p̃i+1 and p̃i? One can
use (6) to show that the sign of f ′′i,i+1(.) on (0, 1) depends only on a function which is a
quadratic polynomial in p. Hence, it can have at most two roots in [p̃i+1, p̃i]. However,
the change of sign between f ′′i,i+1(p̃i+1) and f ′′i,i+1(p̃i) shows that the number of roots
must be odd. Hence, we have exactly one root in that interval which completes the proof
of the 4th property.

Now, applying the analogous arguments as in the proof of Lemma 3, shows that each p ≤
p∗i,i+1 satisfies slfi,i+1

(p, pi) ≥ 1 > r, and each p ∈ [p∗i,i+1, pi) satisfies slfi,i+1
(p, pi) >

slfi,i+1
(pi, pi+1) = r. In particular, this holds for p := f̃m(pi, pi+1) < f̃i(pi, pi+1) = pi.

We still have to deal with the special case i = n− 1. Here, fi,i+1=fn−1,n is a mixture of
fn−1(p) = (1−α)(1−(1−p)n) which is concave everywhere and fn(p) = (1−α). Since q >
0, the function fi,i+1 is strictly increasing and concave on the whole interval [0, 1]. This
proves that for every p < pi we have slfi,i+1

(p, pi+1) > slfi,i+1
(pi, pi+1) = r, in particular

for p := f̃m(pi, pi+1) < pi like above.
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