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Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the
evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually
used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of
PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of
PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO
variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness
of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed.
And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for

further discussion and research.

1. Introduction

Particle swarm optimization (briefed as PSO) is a kind of
bionic evolutionary algorithm which rooted in imitation of
behavioral mechanisms in populations such as birds and
fish stocks and has been widely used in engineering field as
optimization method [1-3].

In the PSO algorithms, the particles evolve according to
their own experience and the experience of the neighborhood
particles. During the evolutionary process, particles identify
their own neighborhood according to the population topol-
ogy and then learn from each other and update the positions
of the particles. Therefore, population topology determines
the form of information sharing among particles and thus
has a very important impact on the solving performance of
PSO algorithms. Therefore, it is important to explore the
population topologies of PSO algorithms. This will produce
a deep understanding of the working mechanism of PSO
algorithms and thus improve the solving performance.

In the PSO algorithms, the most common used static pop-
ulation topologies are the fully connected topology (Gbest

model) and the ring topology (Ibest model) which are also
first proposed [4]. Since then, researchers have proposed dif-
ferent population topologies in succession. Kennedy carried
out a preliminary analysis of four static population topolo-
gies [5]. Suganthan adjusted the neighborhood structure of
particles through calculating distances between particles in
the evolutionary process [6]. Mendes et al. detailly analyzed
the relationship between the population topology and a class
of PSO variant [7-9]. Clerc initially attempted to adopt the
random topology [10]. However, these studies concerned
population topologies paid more attention to the static classic
population topology, and research of random population
topologies is relatively small. As the population topology
directly affect the exchange of information between the
particles, it is necessary to design the suitable population
topology according to the characteristics of different types of
applications. Therefore, it is necessary to explore the popula-
tion topologies in depth from a theoretical and experimental
point of view.

In this paper, in a relatively new PSO variant which
named logistic dynamic particle optimization, we analyze the



linkages between population topologies and the performance
of PSO algorithms from graph theory and experimental point
of view. The rest of the paper is organized as follows. In
Section 2, we describes the PSO variant which are used in the
paper. Section 3 describes the classic population topologies
and introduces the proposed random population topologies.
In Section 4, we have presented the experimental analysis
and comparative performance between the classic and the
proposed random population topologies. Section 5 concludes
the paper.

2. The PSO Variants

PSO is a population-based method which is similar to other
evolutionary computation methods. The individual in the
PSO population is called the particle, and particles generally
have the speed and position in most PSO variants.

2.1. The Canonical PSO. Based on the earlier version of
PSO, Clerc developed the PSO with the compression factor
[11]. This PSO variants have been widely used in practical
applications, and the velocity and position update of particles
in this variant are as follows:

Via = X * [Vid +¢ xrand () * (pig — %)

¢))
+¢ #Rand () * (pgg — x4)]
2
] @
Xig = Xig + Vig- (3)

In (1), v;; is the dth dimensional component of particle
is velocity attribute, ¢; and ¢, are two positive acceleration
factors, rand() and Rand() are random number generating
functions between 0 and 1, x;; is the dth dimensional
component of the particle is position property, p;; is the dth
dimensional component of the best position that particle i
obtained, and p,; is the dth dimensional component of the
best position that the whole population obtained. In actual
use, usually x in (2) is set to 0.729, and ¢ is often set to 4.1.

The right part of the equationl can be understood as
particles memory, cognitive and social cognition. Velocity
of particles is precisely through this three-part interaction
effects thereby, position of particles is updated.

2.2. The Dynamic Probabilistic Particle Swarm Optimization.
In the previous PSO variants, particles usually have both
velocity attribute and position attribute. Kennedy first pro-
posed a new PSO variant without velocity attribute, which
named Gaussian dynamic particle swarm optimization [12].
Ni and Deng carried out a further study on the PSO variants
without velocity [13]. This type of algorithm variants can
be called dynamic probabilistic particle swarm optimization
(briefed as DPPSO). In the DPPSO algorithms, particles have
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no velocity attributes, and the update of particles’ positions is
reorganized as follows:

X, t+1)=X;(t)+a=(X;(t)- X;(t-1))

(4)
+B* CT;(t) +y * Gen( ) * OT,; (t),
CT,, () = ii, (5)
@)= LX)
K |p _
OT,, (t) = Zw. (6)
k=1

In (4), (5), and (6), t represents the current evolution
generation of particle, i is the index number of particle,
k is the index number of particle’s neighborhood, K rep-
resents the number of particles neighborhood particles,
P, is the optimum position of the particle’s neighborhood
that numbered k, and d is the number of the particles is
dimension. CT;(t) is an abbreviation of centralized tendency;,
which is a D-dimensional vector and is determined by
the particle’s current location and neighborhood particles’
optimal positions. OT;(¢) is an abbreviation of outlier trend,
which is also a D-dimensional vector and is determined
by the particle’s current location and neighborhood par-
ticles optimal positions. In (4), «, 8, and y are gener-
ally preferable to positive constants. Gen() is a dynamic
probabilistic evolutionary operator which is the random
number generator function which satisfies a specific dis-
tribution, and this particular distribution may be provided
by a Gaussian distribution or a logistic distribution and so
forth.

In (4), the calculation of particle’s position in new gener-
ation is decided jointly by the right four parts. The first part is
the memory of particles on the self-position. The second part
is the trend of the particles along the previous direction of
movement of the “flying” The third part means the influence
of neighborhood particles’ experience to the new generation
position, this part of the calculations needs neighborhood
particles’ experience, and this part determines the degree of
influence of the neighborhood particles” experience. The part
IV reflects the impact of differences in best position between
particles on the next generation position.

The performance of DPPSO variants is different when
using different dynamic probabilistic evolutionary opera-
tor Gen() [13]. DPPSO-Gaussian (briefed as GDPS) has
faster convergence speed in the early evolution. DPPSO-
Cauchy may get better solutions on certain issues, but the
performance is unstable. DPPSO-Logistic (logistic dynamic
particle swarm optimization, briefed as LDPSO) still shows
good exploration ability in the later evolution. For DPPSO
variants, the calculation of CT;(t) and OT;(t) will use
the experience of each neighborhood particles which can
also be seen from (5) and (6). The optimal information
of neighborhood particles could be fully utilized, so the
research of population topology in DPPSO variants is more
important.
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FIGURE 1: (a) Fully connected topology; (b) ring topology; (c) star topology.

3. Population Topologies

3.1. The Classic Population Topologies. Figure 1 shows the
fully connected topology, ring topology, and star topology.
Fully connected topology and ring topology are two com-
monly used topologies which are also called Gbest model
and Lbest model. In the fully connected topology, particle’s
neighborhood contains all particles in the population. And
in the evolutionary process, only the particle that obtains the
optimal position is considered in the entire population. PSO
algorithms with this topology converge very fast but easy to
fall into local optimum.

For a ring topology, typically particle’s neighborhood
includes the particles on both sides of one or a few particles.
In this topology, the exchange of information is relatively
slow within the population, but once a particle searched for
an optimal location, the information eventually will slowly
spread to the entire population.

For a star topology, one particle is connected with all
the other particles, and other particles only connect with the
particle. In addition to a central particle, other particles are
independent of each other, the dissemination of information
must be passed through the central particle.

However, the information dissemination mechanism of
the social groups is not static throughout the whole evo-
lutionary process, and tends to have a certain degree of
randomness and dynamic characteristics. Mendes studied
random population topology and confirmed that population
topology directly affects the execution performance of PSO
algorithms [9].

3.2. Graph Theory Characteristics of Population Topology. The
population topology of the PSO algorithm can be abstracted
into a connected undirected graph, represented by the symbol
G(V, E), where V is the set of vertices, E is the set of edges, and
the number of vertices is denoted by n. For any two points u
and v in G, d(u, v) denotes the distance from u to v, that is,
the length of the shortest path between two points.

Definition I (average degree). The degree of the vertex v is the
number of its adjacent vertices, denoted by k,.. Average degree
k of undirected connected graph is calculated by

K:Z&.

veV n

7)

Definition 2 (average clustering coefficient). The local clus-
tering coefficient c(v) of vertex v, equals to the number of
edges which can be connected between vertices associated
with vertex v, divided by the maximum number of edges
between these vertices. The average clustering coefficient ¢
of a graph is the arithmetic mean of the local clustering
coeflicient of all vertices, which can be calculated by

y W

veV n

(8)

The average degree of population topology means the
average number of particles’ neighborhood particles; it rep-
resents the degree of socialization of population. A small
number of neighborhood particles means that the particle
is both difficult to obtain information from the population
and difficult to influence other particles. On the contrary, a
particle which have large number of neighborhood particles
can get a lot of information available in the population, and
such a particle has a greater influence in the population.
In the common used population topologies, fully connected
topology has the largest average degree which is equal to the
population size minus 1. The ring topology has the minimum
average degree; the average degree of a ring topology such
as in Figure 1 is equal to 2. The local clustering coefficient
is the ratio of the number of connections between the
actual existence and the possible existence, and the average
clustering coefficient represents the degree of aggregation
of the vertices in a graph which is the average of the local
clustering coefficient of all vertices. In this paper, we will
analyze the role of the population topology based on the
previous graph theory characteristics.

3.3. Random Population Topologies. Clerc initially attempted
to proposed a method of random population topology [10].
The basic idea is to generate a random topology by selecting
the neighborhood particles randomly for each particle. The
concrete steps could be described as Algorithm 1.

In the resulting matrix L of Algorithm 1, L(u,v) = 1
means that the particles # and v are connected. By this



The Scientific World Journal

(1) For the population that the size is S, build a S * S matrix, and let L (i,1) = 1;
(2) Select a K value, for each row i of the matrix L, generate a uniformly distributed random number

m from {1, ..

.,m} (m may be selected repeatedly), let L (i,m) = 1;

(3) For the matrix L, If L(i,m) = 1, then let L (m, i) = 1;

AvrGoriTHM I: Clerc’s generating method of random population topology.

m (m#1i) from {1,...

(5) Scan the matrix D;
(6) IF two particles u and v are not connected;
(7) Let L (u,v) = 1;

(1) For the population that the size is S, build a S * S matrix, and let L (3,7) = 1;

(2) Select a K value, for each row 7 of the matrix L, generate a uniformly distributed random number

,m} (m may be selected repeatedly), let L (i, m) = L (m,i) = 1;

(3) Use the Dijkstra algorithm to calculate the distance between the particles and stored in the S * § matrix D;
(4) While The graph corresponding to the generating random topology is not connected do

ALGORITHM 2: The proposed generating method of random population topology.

method, a random topology could be generated with an
average degree slightly larger than K. In the random topology
by this method, the distribution of degree is the sum of § — 1
independent Bernoulli random variables which is described
in [10]

prob (Y =n) = ng<§>n-l<l - %)S_n. 9)

In this paper, in order to ensure the connectivity of
undirected graph which is corresponding to the generating
random topology, we proposed a new generating method of
random topology based on Clerc’s method. The basic idea is:
in selecting the neighborhood particles for each particle if the
selection is itself, reselect in order to reduce the probability of
particles isolated; after the random population is generated,
use the Dijkstra algorithm to compute the distance between
the particles if there exist the unconnected particles in
the generated topology, then add an edge between these
unconnected particles, and retest. The improved random
population topology generating method is as Algorithm 2.

4. Experiment and Analysis

4.1. Experiment Setting. Two sets of experiments were con-
ducted which used the canonical PSO (briefed as CPSO)
and the DPPSO-Logistic, respectively, that are described in
Section 2. For CPSO, set ¢; = ¢, = 2.05, y = 0.7298. For
DPPSO-Logistic, set o = 0.729, § = 2.187,and y = 0.5.

The algorithms were used to solve five benchmark func-
tions, which is defined in Table 1. These functions consist of
Ackley, Schwefel, Schaffer’s F6, Rastrigin, and Sphere. Table 2
shows the settings of these functions.

In the experiment, the population size is set to 20, in
addition to the the Schaffer’s F6 function of the dimension
2, the remaining functions are carried out in the case of 30-
dimensional test, and the frequency of repeated experiments
is 50.

The performance of the algorithms will be evaluated by
the following aspects:

(i) in the case of a certain number of iterations, compare
the accuracy (briefed as Perform.) of the optimal
fitness value in each case. These values reflect the
quality of the optimal solution obtained in the last;

(ii) in the case of a certain number of iterations, compare
the success rates (briefed as Prop.) which means that
the algorithms achieve the accuracy (accepted error)
that is defined in Table 2. These data reflect the
stability of the algorithms;

(iii) in the case of a certain number of iterations, compare
the evolutionary trends of various algorithms, these
figures reflect the evolution of the optimal solution in
the evolutionary process.

4.2. Comparison between Random Topologies and Different
Average Degrees. For the random topology, the first set of
experiments used the canonical PSO algorithm to solve the
five benchmark functions. By changing the K value, we
generated random topologies with different average degrees
for comparison and evaluation. Experimental results are
shown in Table 3.

As can be seen from Table 3, with the increase in the value
of K, the indicators of Perform. and Prop. have improved.
For multimodal functions such as Schwefel, Schaffer’s F6,
Rastrigin, and Ackley function, with the increase in the value
of K, when the K value is from 3 to 4 (i.e., the average degree
of the random topology is between 5 and 7, substantially in
about 6), the PSO algorithm could get better performance.
And when the K value is larger, the performance is usually
poor. For multimodal functions, when a particle has found a
local optimal solution, if the interaction between particles is
more, the dissemination of information will be very quickly,
and the entire population is susceptible to rapid convergence
to the local optimal solution. Therefore, too large average



The Scientific World Journal

TABLE 1: Definition of benchmark functions.

Benchmark function

Formula

Sphere

Schaffer’s F6
Rastrigin
Schwefel

Ackley

. 1 & 1
F() =-20- 024~ Y x| - -
(%) exp < \j w2 X; > exp ( .

F(®) = Z x
i=1

(sinzﬂx2 + yz) -05

(1.0+0.001 (x* + 32))

F(&) =05+

F(X)=10%n+ Z(xi2 - 10 cos(27x;))

i=1

F(X) = 418.9829 » n+ ) x;sin(y/|x;])
i=1

R

cos (2nxi)> +20 + exp(1)
1

i i=1

TABLE 2: Settings of benchmark functions.

Benchmark function Dimension Optimal value Optimal solution Range Accepted error
Sphere 30 0 (0,0,0,...,0) (-100, 100) 0.01
Schaffer’s F6 2 0 (0,0) (-100, 100) 0.00001
Rastrigin 30 0 0,0,0,...,0) (-5.12,5.12) 100
Schwefel 30 0 (0,0,0,...,0) (=500, 500) 6000
Ackley 30 0 (0,0,0,...,0) (~30, 30) 5

degree of population topology is not conducive to find the
global optimal solution for a multimodal function.

Taking these factors together, when the value of K is
at about 4, the PSO algorithm has a more satisfactory
performance for most benchmark functions. Accordingly,
the following experiments will generate random topologies
which the K value is 4, and compare these topologies with
other classic static population topologies.

4.3. Comparison between Random Topologies and Classic
Topologies. The second set of experiments used the DPPSO-
Logistic algorithm to solve the five benchmark functions on
the fully connected topology, ring topology, star topology,
and random topology, wherein K value is set to 4 to
generate random topologies. Comparison and evaluation are
conducted by the evolutionary trends of algorithms with
various population topologies. In the figures of evolution-
ary trends, different line types expressed different DPPSO-
Logistic algorithms with various population topologies.

For Sphere function (Figure 2), the performance of ring
topology and star topology is poor, and the fully connected
topology and random topology show better search ability.
For Schaffer’s F6 function (Figure 2), random topology
is significantly better than the three classic neighborhood
topologies.

For Rastrigin function (Figure 3), random topology is
superior to the three classic population topologies; in the
early stages of evolution, the convergence speed of the
random topology is almost the same as the fully connected
topology; however, in the later stage of evolution, random
topology shows a larger advantage, and the end result is better
than the fully connected topology.

For Schwefel function (Figure 3), the performance of
the ring topology is poor; the fully connected topology
convergence fast in the early stage of evolution, but the end
result is poor; the star topology has achieved good results; the
convergence speed of random topology is second only to the
fully connected topology in the early evolution stage, and the
final result of random topology is better than the other classic
topologies.

For Ackley function (Figure 4), the fully connected
topology and the star topology show poor performance; the
ring topology performs better; the random topology shows
obvious advantage in both the convergence speed and the
final result.

Opverall, according to the convergence speed, random
topology is relatively stable in the early stages of evolution,
faster in the midstages of evolution, and shows a distinct
advantage in the late stages of evolution. From the view
of final result, the PSO algorithms using random topology
demonstrate remarkable performance.

For unimodal function (such as Sphere function),
because there is no problem of falling into a local optimum,
the close ties between particles can make faster convergence
and achieve better results. Therefore, the performance of
the fully connected topology and random topology with a
relatively high average degree is ideal. In the case of random
topology for unimodal function, the convergence speed and
the solution will be better with the greater average degree of
population topology.

For multimodal function, it can be seen that the con-
vergence speed will be faster when the average degree of
population topology is increasing. If the average degree of
population topology is too high, it is easy to fall into local
optimum. On the average degree after 6, the optimal solution
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TaBLE 3: Comparison between random topologies with different average degrees.

oo T X Py ooty Perform. Prop.
1 1.958 0.753 1.38E - 15 0.768507
2 3.700 0.541 1.53E - 30 0.817693
3 5.044 0.498 3.70E — 32 0.82624
4 6.640 0.510 5.92F — 33 0.833993
Sphere 5 7928 0.534 4.15E - 33 0.836973
6 9.040 0.568 8.09E — 34 0.84178
7 10.116 0.606 1.00E - 33 0.84702
8 11.092 0.641 1.68E — 34 0.84278
9 11.814 0.671 9.18E — 34 0.84446
1 1.942 0.753 0.002915 0.497393
2 3.700 0.545 0.001757 0.63916
3 5.228 0.497 0.001749 0.681847
4 6.626 0.508 0.00136 0.716053
Schaffer’s F6 5 7926 0.530 0.001943 0.6303
6 8.998 0.563 0.003303 0.558613
7 10.070 0.602 0.00272 0.59538
8 11.078 0.643 0.003313 0.542707
9 11.854 0.673 0.002915 0.558667
1 1.956 0.751 63.65224 0.868587
2 3.688 0.546 58.10571 0.923933
3 5.198 0.500 58.64275 0.915993
4 6.694 0.507 62.68228 0.934207
Rastrigin 5 7.940 0532 58.80197 0.94144
6 9.018 0.565 62.54299 0.93782
7 10.118 0.608 59.10044 0.944673
8 10.982 0.638 61.90622 0.908687
9 11.916 0.674 63.51805 0.925493
1 1.956 0.752 4773.649 0.91388
2 3.694 0.548 4366.848 0.942427
3 5234 0.500 4388.532 0.9436
4 6.616 0.502 4399.952 0.943533
Schwefel 5 7922 0532 4286.961 0.950633
6 9.046 0.571 4397.724 0.950987
7 10.074 0.602 4412291 0.932327
8 11.016 0.641 4420.19 0.951007
9 11.734 0.667 4397.566 0.933313
1 1.948 0.751 1.224299 0.960753
2 3.690 0.549 1.030908 0.969733
3 5.282 0.493 0.985613 0.972333
4 6.672 0.507 1.256866 0.97304
Acldey 5 7872 0.539 1238158 0.973947
6 9.028 0.568 1.593962 0.974087
7 10.134 0.611 1.755415 0.97432
8 10.922 0.640 1.919407 0.974847
9 11.876 0.671 1.962931 0.97564




The Scientific World Journal

Sphere

15

Log10(fitness)

Schaffer’s F6

Logl0(fitness)

-30 L L L L L J
0 500 1000 1500 2000 2500 3000
Iteration
~~~~~~ Fully connected -—-— Star
--- Ring —— Random

(®)

FIGURE 2: Comparison of evolutionary trend between four topologies (Sphere and Schaffer’s F6).
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FIGURE 3: Comparison of evolutionary trend between four topologies (Rastrigin and Schwefel).

quality of most algorithms begins to decrease. When the
average degree is between 5 and 7 (K is set to 4), the
performance of algorithms is usually ideal.

5. Conclusion

In this paper, we propose an improved method of generating
random topology based on previous research. And we carry
out in-depth research of the performance of the algorithms
using random topology based on the canonical PSO and
DPPSO-Logistic, respectively. Combined with experimental

results, we conduct the analysis and interpretation of the
performance of the algorithms from the perspective of graph
theory. And empirical laws in generating random topologies
are given according to our experimental results and theoreti-
cal analysis.

On the whole, relative to the three classic population
topologies (fully connected topology, ring topology, and
star topology), the algorithm has obvious advantages which
is using the proposed random topology. Further work
will include the theoretical analysis of different population
topologies, as well as dynamic population topology strategy
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which is designed in accordance with the conclusions of this
paper.
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