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We first give the representation of the general solution of the following inverse quadratic eigenvalue
problem (IQEP): given Λ = diag{λ1, . . . , λp} ∈ Cp×p , X = [x1, . . . , xp] ∈ Cn×p, and both Λ and X are
closed under complex conjugation in the sense that λ2j = λ2j−1 ∈ C, x2j = x2j−1 ∈ Cn for j = 1, . . . , l,
and λk ∈ R, xk ∈ Rn for k = 2l + 1, . . . , p, find real-valued symmetric (2r + 1)-diagonal matrices
M, D and K such thatMXΛ2 +DXΛ +KX = 0. We then consider an optimal approximation prob-
lem: given real-valued symmetric (2r+1)-diagonal matricesMa,Da,Ka ∈ Rn×n, find (̂M, ̂D, ̂K) ∈ SE

such that ‖̂M −Ma‖
2
+‖ ̂D −Da‖

2
+‖ ̂K −Ka‖

2
= inf (M,D,K)∈SE(‖M −Ma‖2+‖D −Da‖2+‖K −Ka‖2),

where SE is the solution set of IQEP. We show that the optimal approximation solution (̂M, ̂D, ̂K) is
unique and derive an explicit formula for it.

Copyright q 2008 Yongxin Yuan. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Throughout this paper, we will adopt the following notation. Cm×n and Rm×n denote the set of
allm×n complex and real matrices, respectively. SRn×n denotes the set of all symmetricmatrices
inRn×n.AT andA+ stand for the transpose and theMoore-Penrose generalized inverse of a real
matrix A. In represents the identity matrix of size n; α denotes the conjugate of the complex
number α. For A,B ∈ Rm×n, an inner product in Rm×n is defined by (A,B) = trace(BTA), then
Rm×n is a Hilbert space. The matrix norm ‖ · ‖ induced by the inner product is the Frobenius
norm. Given two matrices A = [aij] ∈ Rm×n and B = [bij] ∈ Rp×q, the Kronecker product of
A and B is defined by A ⊗ B = [aijB] ∈ Rmp×nq, and the stretching function Vec(A) is defined
by Vec(A) = [aT

1 , a
T
2 , . . . , a

T
n]

T ∈ Rmn, where ai, i = 1, . . . , n, is the ith column vector of A.
Furthermore, for a matrix A ∈ Rm×n, let EA and FA stand for the two orthogonal projectors
EA = Im −AA+ and FA = In −A+A.
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Using finite element techniques, vibrating structures such as beams, buildings, bridges,
highways, and large space structures can be discretized to matrix second-order models (re-
ferred to as analytical models). A matrix second-order model of the free motion of a vibrating
system is a system of differential equations of the form

Maẍ(t) +Daẋ(t) +Kax(t) = 0, (1.1)

whereMa, Da, andKa are the n × n analytical mass, damping, and stiffness matrices. The sys-
tem represented by (1.1) is called damped structural system. It is well known that all solutions
of (1.1) can be obtained via the algebraic equation

(

λ2Ma + λDa +Ka

)

x = 0. (1.2)

Complex numbers λ and nonzero complex vectors x for which this relation holds are, respec-
tively, the eigenvalues and eigenvectors of the system. It is known that (1.2) has 2n finite eigen-
values over the complex field, provided that the leading matrix coefficientMa is nonsingular.

Due to the complexity of the structure, the finite element model is only an approximation
to the practical structure. On the other hand, a part of the natural frequencies (eigenvalues)
and corresponding mode shapes (eigenvectors) of the structure can be obtained experimen-
tally by performing vibration tests [1]. Generally speaking, very often natural frequencies and
mode shapes of an analytical model described by (1.2) do not match very well with experi-
mentally measured frequencies and mode shapes. Thus, engineers would like to improve the
analytical model of the structure such that the updated model predicts the observed dynamic
behavior. Then, the updated model may be considered to be a better dynamic representation of
the structure. This model can be used with greater confidence for the analysis of the structure
under different boundary conditions or with physical structural changes.

For undamped systems (i.e.,Da = 0), various techniques for updating mass and stiffness
matrices using measured response data have been discussed by Baruch [2], Baruch and Bar-
Itzhack [3], Berman [4], Berman and Nagy [5], and Wei [6, 7]. For damped structural systems,
the theory and computation were first proposed by Friswell et al. [8, 9]; they applied the ideas
in [2, 3] to minimize changes between the analytical and updated model subject to the spectral
constraints. Kuo et al. [10] have recently proposed a direct method to close the weaknesses in
[8]which seemsmore efficient and reliable. All these existingmethods can reproduce the given
set of measured data while updated matrices symmetry, but the connectivity of the original
finite elementmodel is not necessarily preserved, causing the addition of unwanted load paths.

The purpose of the work presented in this paper is to develop a new method for finite
element model updating problems which preserves the connectivity of the original model. As-
sume that Ma,Da, and Ka are real-valued symmetric (2r + 1)-diagonal matrices. Thus, the
problem of updating mass, damping, and stiffness matrices simultaneously can be mathemat-
ically formulated as follows.

Problem IQEP. Given matrices Λ = diag{λ1, . . . , λp} ∈ Cp×p, X = [x1, . . . , xp] ∈ Cn×p, and both Λ
and X are closed under complex conjugation in the sense that λ2j = λ2j−1 ∈ C, x2j = x2j−1 ∈ Cn

for j = 1, . . . , l, and λk ∈ R, xk ∈ Rn for k = 2l + 1, . . . , p, find real-valued symmetric (2r + 1)-
diagonal matrices M,D, and K such that

MXΛ2 +DXΛ +KX = 0. (1.3)
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Problem II. Let SE be the solution set of IQEP. Find (̂M, ̂D, ̂K) ∈ SE such that

∥

∥̂M −Ma

∥

∥

2 +
∥

∥ ̂D −Da

∥

∥

2 +
∥

∥ ̂K −Ka

∥

∥

2 = inf
(M,D,K)∈SE

(∥

∥M −Ma

∥

∥

2 +
∥

∥D −Da

∥

∥

2 +
∥

∥K −Ka

∥

∥

2)
.

(1.4)

The paper is organized as follows. In Section 2, using the Kronecker product and stretch-
ing function of matrices, we give an explicit representation of the solution set SE of Problem
IQEP. In Section 3, we show that there exists a unique solution in Problem II and present the
expression of the unique solution (̂M, ̂D, ̂K). Finally, in Section 4, a numerical algorithm to ac-
quire the optimal approximation solution under the Frobenius norm sense is described, and a
numerical example is provided.

2. The solution of Problem IQEP

To begin with, we introduce a lemma [11].

Lemma 2.1. If L ∈ Rm×q, b ∈ Rm, then Ly = b has a solution y ∈ Rq if and only if LL+b = b. In this
case, the general solution of the equation can be described as y = L+b + (Iq −L+L)z, where z ∈ Rq is an
arbitrary vector.

Let S0 be the set of all n × n real-valued symmetric (2r + 1)-diagonal matrices, then S0 is
a linear subspace of SRn×n, and the dimension of S0 is N = (1/2)(2n − r)(r + 1).

Define Yij as

Yij =

⎧

⎪

⎨

⎪

⎩

√
2
2
(

eie
T
j + eje

T
i

)

, i = 1, . . . , n − 1; j = i + 1, . . . , ti,

eie
T
i , i = j = 1, . . . , n,

(2.1)

where ti = min{i + r, n} and ei, i = 1, . . . , n, is the ith column vector of the identity matrix In. It
is easy to verify that {Yij} forms an orthonormal basis of the subspace S0, that is,

(

Yij , Ykl

)

=

⎧

⎨

⎩

0, i /= k or j /= l,

1, i = k and j = l.
(2.2)

Now, if M,D,K ∈ SRn×n are (2r + 1)-diagonal matrices, thenM, D, K can be expressed as

M =
∑

i,j

αijYij , D =
∑

i,j

βijYij , K =
∑

i,j

γijYij , (2.3)

where the real numbers αij , βij , γij , i = 1, . . . , n; j = i, . . . , ti, ti = min{i + r, n}, are yet to be
determined.

Define a matrix Tp as

Tp = diag

{

1√
2

[

1 −i
1 i

]

, . . . ,
1√
2

[

1 −i
1 i

]

, Ip−2l

}

∈ Cp×p, (2.4)
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where i =
√−1. It is easy to verify that Tp is a unitary matrix, that is, T

T

pTp = Ip. Using this
transformation matrix, we have

˜Λ = T
T

pΛTp = diag

{[

ζ1 η1

−η1 ζ1

]

, . . . ,

[

ζ2l−1 η2l−1
−η2l−1 ζ2l−1

]

, λ2l+1, . . . , λp

}

∈ Rp×p, (2.5)

˜X = XTp =
[
√
2y1,

√
2z1, . . . ,

√
2y2l−1,

√
2z2l−1, x2l+1, . . . , xp

] ∈ Rn×p, (2.6)

where ζj and ηj are, respectively, the real part and the imaginary part of the complex number
λj ; yj and zj , are, respectively, the real part and the imaginary part of the complex vector xj for
j = 1, 3, . . . , 2l − 1.

It follows from (2.5) and (2.6) that (1.3) can be equivalently written as

M ˜X ˜Λ2 +D ˜X ˜Λ +K ˜X = 0. (2.7)

Substituting (2.3) into (2.7), we have
∑

i,j

αijYij
˜X ˜Λ2 +

∑

i,j

βijYij
˜X ˜Λ +

∑

i,j

γijYij
˜X = 0. (2.8)

When setting

α =
[

α11, . . . , α1,r+1, . . . , αn−r,n−r , . . . , αn−r,n, . . . , αn−1,n−1, αn−1,n, αn,n

]T
,

β =
[

β11, . . . , β1,r+1, . . . , βn−r,n−r , . . . , βn−r,n, . . . , βn−1,n−1, βn−1,n, βn,n
]T
,

γ = [γ11, . . . , γ1,r+1, . . . , γn−r,n−r , . . . , γn−r,n, . . . , γn−1,n−1, γn−1,n, γn,n]
T ,

G =
[

Vec
(

Y11
)

, . . . ,Vec
(

Y1,r+1
)

, . . . ,Vec
(

Yn−r,n−r
)

, . . . ,

Vec
(

Yn−r,n
)

, . . . ,Vec
(

Yn−1,n−1
)

,Vec
(

Yn−1,n
)

,Vec
(

Yn,n

)] ∈ Rn2×N,

A =
((

˜Λ2
)T
˜XT ⊗ In

)

G, B =
(

˜ΛT
˜XT ⊗ In

)

G, C =
(

˜XT ⊗ In
)

G.

(2.9)

We see that (2.8) is equivalent to

Aα + Bβ + Cγ = 0. (2.10)

It follows from Lemma 2.1 that (2.10)with unknown vector α has a solution if and only if

EABβ = −EACγ. (2.11)

Using Lemma 2.1 again, we know that (2.11) with respect to β has a solution if and only if

EHEACγ = 0, (2.12)

where H = EAB. It follows from Lemma 2.1 that (2.12) with respect to γ is always solvable,
and the general solution to the equation is

γ = FWu, (2.13)
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where W = EHEAC, and u ∈ RN is an arbitrary vector. Substituting (2.13) into (2.11) and
applying Lemma 2.1, we obtain

β = −H+EACFWu + FHv, (2.14)

where v ∈ RN is an arbitrary vector. Inserting (2.14) and (2.13) into (2.10) yields

α = A+BH+EACFWu −A+BFHv −A+CFWu + FAq, (2.15)

where q ∈ RN is an arbitrary vector.
As a summary of the above discussion, we have proved the following result.

Theorem 2.2. Suppose that Λ = diag{λ1, . . . , λp} ∈ Cp×p, X = [x1, . . . , xp] ∈ Cn×p , and both Λ and
X are closed under complex conjugation. The real matrices ˜Λ and ˜X are given by (2.5) and (2.6). Let
{Yij}, G,A, B, C be given as in (2.1), (2.9). WriteN = (1/2)(2n−r)(r+1), H = EAB, W = EHEAC.
Then the solution set SE of problem IQEP can be expressed as

SE =
{

(M,D,K) ∈ SRn×n × SRn×n × SRn×n | M = S
(

α ⊗ In
)

, D = S
(

β ⊗ In
)

, K = S
(

γ ⊗ In
)}

,
(2.16)

where

S =
[

Y11, . . . , Y1,r+1, . . . , Yn−r,n−r , . . . , Yn−r,n, . . . , Yn−1,n−1, Yn−1,n, Yn,n

] ∈ Rn×nN, (2.17)

α, β, γ are, respectively, given by (2.15), (2.14), and (2.13) with u, v, q ∈ RN being arbitrary vectors.

3. The solution of Problem II

It follows from Theorem 2.2 that the set SE is always nonempty. It is easy to verify that SE is
a closed convex subset of SRn×n × SRn×n × SRn×n. From the best approximation theorem (see
[12]), we know there exists a unique solution (̂M, ̂D, ̂K) in SE such that (1.4) holds.

We now focus our attention on seeking the unique solution (̂M, ̂D, ̂K) in SE. For the real-
valued symmetric (2r + 1)-diagonal matricesMa,Da, andKa, it is easily seen thatMa,Da, and
Ka can be expressed as the linear combinations of the orthonormal basis {Yij}, that is,

Ma =
∑

i,j

δijYij , Da =
∑

i,j

ξijYij , Ka =
∑

i,j

ϕijYij , (3.1)

where δij , ξij , ϕij , i = 1, . . . , n; j = i, . . . , ti, ti = min{i + r, n}, are uniquely determined by the
elements ofMa,Da, and Ka. Let

δ =
[

δ11, . . . , δ1,r+1, . . . , δn−r,n−r , . . . , δn−r,n, . . . , δn−1,n−1, δn−1,n, δn,n
]T
,

ξ =
[

ξ11, . . . , ξ1,r+1, . . . , ξn−r,n−r , . . . , ξn−r,n, . . . , ξn−1,n−1, ξn−1,n, ξn,n
]T
,

ϕ =
[

ϕ11, . . . , ϕ1,r+1, . . . , ϕn−r,n−r , . . . , ϕn−r,n, . . . , ϕn−1,n−1, ϕn−1,n, ϕn,n

]T
.

(3.2)



6 Mathematical Problems in Engineering

Then, for any triple of matrices (M,D,K) ∈ SE in (2.16), by the relations of (2.2) and (3.1), we
see that

f =
∥

∥M −Ma

∥

∥

2 +
∥

∥D −Da

∥

∥

2 +
∥

∥K −Ka

∥

∥

2

=

∥

∥

∥

∥

∥

∑

i,j

(

αij − δij
)

Yij

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∑

i,j

(

βij − ξij
)

Yij

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∑

i,j

(

γij − ϕij

)

Yij

∥

∥

∥

∥

∥

2

=

(

∑

i,j

(

αij − δij
)

Yij ,
∑

i,j

(

αij − δij
)

Yij

)

+

(

∑

i,j

(βij − ξij
)

Yij ,
∑

i,j

(

βij − ξij
)

Yij

)

+

(

∑

i,j

(

γij − ϕij

)

Yij ,
∑

i,j

(

γij − ϕij

)

Yij

)

=
∑

i,j

(

αij − δij
)

(

Yij ,
∑

i,j

(

αij − δij
)

Yij

)

+
∑

i,j

(

βij − ξij
)

(

Yij ,
∑

i,j

(

βij − ξij
)

Yij

)

+
∑

i,j

(

γij − ϕij

)

(

Yij ,
∑

i,j

(

γij − ϕij

)

Yij

)

=
∑

i,j

(

αij − δij
)2 +

∑

i,j

(

βij − ξij
)2 +

∑

i,j

(

γij − ϕij

)2

= ‖α − δ‖2 + ‖β − ξ‖2 + ‖γ − ϕ‖2.

(3.3)

Substituting (2.13), (2.14), and (2.15) into the relation of f , we have

f =
∥

∥Ju −A+BFHv + FAq − δ
∥

∥

2 +
∥

∥ − Lu + FHv − ξ
∥

∥

2 +
∥

∥FWu − ϕ
∥

∥

2

= uTJTJu − 2uTJTA+BFHv − 2uTJTδ + vTFHBT(A+)TA+BFHv + 2vTFHBT(A+)Tδ

+ qTFAq − 2qTFAδ + δTδ + uTLTLu + 2uTLTξ + vTFHv − 2vTFHξ + ξTξ

+ uTFWu − 2uTFWϕ + ϕTϕ,

(3.4)

where L = H+EACFW, J = A+BL −A+CFW. Therefore,

∂f

∂u
= 2JTJu − 2JTA+BFHv − 2JTδ + 2LTLu + 2LTξ + 2FWu − 2FWϕ,

∂f

∂v
= −2FHBT(A+)TJu + 2FHBT(A+)TA+BFHv + 2FHBT(A+)Tδ + 2FHv − 2FHξ,

∂f

∂q
= 2FAq − 2FAδ.

(3.5)
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Clearly, f = ‖M −Ma‖2 + ‖D −Da‖2 + ‖K −Ka‖2 = min if and only if

∂f

∂u
= 0,

∂f

∂v
= 0,

∂f

∂q
= 0. (3.6)

Note that LFW = L, JFW = J. Therefore, ∂f/∂u = 0 implies that

FWu = P−1JTA+BFHv + P−1(JTδ − LTξ + FWϕ), (3.7)

where P = JTJ + LTL + IN. Substituting (3.7) into ∂f/∂v = 0 yields

FHv = Q+FHBT(A+)TJP−1(JTδ − LTξ + FWϕ
) −Q+(FHBT(A+)Tδ − FHξ

)

, (3.8)

where Q = IN + FHBT(A+)TA+BFH − FHBT(A+)TJP−1JTA+BFH.
Clearly, ∂f/∂q = 0 is equivalent to

FAq = FAδ. (3.9)

Upon substituting (3.7) and (3.9) into (2.13), (2.14), and (2.15), we obtain

α̂ =
(

JP−1JTA+B −A+B
)

FHv + JP−1(JTδ − LTξ + FWϕ
)

+ FAδ,

̂β =
(

IN − LP−1JTA+B
)

FHv − LP−1(JTδ − LTξ + FWϕ
)

,

γ̂ = P−1JTA+BFHv + P−1(JTδ − LTξ + FWϕ
)

,

(3.10)

where FHv is given by (3.8).
By now, we have proved the following result.

Theorem 3.1. Let the real-valued symmetric (2r + 1)-diagonal matrices Ma,Da, and Ka be given.
Then, Problem II has a unique solution, and the unique solution of Problem II can be expressed as

̂M = S
(

α̂ ⊗ In
)

, ̂D = S
(

̂β ⊗ In
)

, ̂K = S
(

γ̂ ⊗ In
)

, (3.11)

where α̂, ̂β, and γ̂ are given by (3.10).

4. A numerical example

Based on Theorems 2.2 and 3.1, we can describe an algorithm for solving problem IQEP and
Problem II as follows.

Example 4.1. Consider a five-DOF systemmodelled analytically with mass, damping, and stiff-
ness matrices given by

Ma =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, Da =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

11.0 −8.0 0 0 0
−8.0 14.0 −3.5 0 0
0 −3.5 13.0 −7.8 0
0 0 −7.8 13.5 −9.0
0 0 0 −9.0 15.4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, Ka =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

100 −20 0 0 0
−20 120 −35 0 0
0 −35 80 −12 0
0 0 −12 95 −40
0 0 0 −40 124

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(4.1)
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(1) InputMa, Da, Ka, Λ, X.

(2) Compute the unitary transformation matrix Tp by (2.4).

(3) Compute real matrices ˜Λ, ˜X by (2.5) and (2.6), respectively.
(4) Form the orthonormal basis {Yij} by (2.1).
(5) Compute G, A, B, C according to (2.9).
(6) Compute the matrix H = EAB, W = EHEAC.

(7) Compute L = H+EACFW, J = A+BL −A+CFW, P = JTJ + LTL + IN .

(8) Compute the matrix Q = IN + FHBT (A+)TA+BFH − FHBT (A+)TJP−1JTA+BFH .
(9) Form vectors δ, ξ, ϕ by (3.1) and (3.2).
(10) Compute FHv by (3.8).

(11) Compute S, α̂, ̂β, γ̂ by (2.17) and (3.10), respectively.

(12) Compute the unique solution (̂M, ̂D, ̂K) of Problem II by (3.11).

Algorithm 1

That is, Ma,Da,Ka are symmetric 3-diagonal matrices. The measured eigenvalue and eigen-
vector matrices Λ = diag{λ1, λ2, λ3, λ4} and X = [x1, x2, x3, x4] are given by

Λ = diag{−3.9525 + 6.8578i, − 3.9525 − 6.8578i, − 0.1622 + 3.3465i, − 0.1622 − 3.3465i},

X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.1099 + 0.4083i 0.1099 − 0.4083i −0.0283 + 0.1570i −0.0283 − 0.1570i

0.0684 − 0.1754i 0.0684 + 0.1754i 0.0525 + 0.3742i 0.0525 − 0.3742i

−0.1272 − 0.2703i −0.1272 + 0.2703i 0.0594 + 0.6146i 0.0594 − 0.6146i

0.3403 + 0.5185i 0.3403 − 0.5185i −0.1132 + 0.5663i −0.1132 − 0.5663i

−0.3783 − 0.4108i −0.3783 + 0.4108i −0.0862 + 0.3309i −0.0862 − 0.3309i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
(4.2)

Using Algorithm 1, we obtain the unique solution of Problem II as follows:

̂M =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1.6010 0.3152 0 0 0
0.3152 2.7909 1.5318 0 0

0 1.5318 2.9332 0.9771 0
0 0 0.9771 3.7779 1.2094
0 0 0 1.2094 3.6053

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

̂D =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

9.0659 −6.4506 0 0 0
−6.4506 −5.5001 7.3677 0 0

0 7.3677 4.1831 −6.4524 0
0 0 −6.4524 10.2736 −5.8430
0 0 0 −5.8430 10.3568

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

̂K =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

98.7229 −25.5781 0 0 0
−25.5781 124.0044 −32.9787 0 0

0 −32.9787 77.7282 −12.0909 0
0 0 −12.0909 99.5825 −32.9904
0 0 0 −32.9904 120.7917

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(4.3)
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We define the residual as

res
(

λi, xi

)

=
∥

∥

(

λ2i
̂M + λi ̂D + ̂K

)

xi

∥

∥, (4.4)

and the numerical results shown in the following table.

(λi, xi) (λ1, x1) (λ2, x2) (λ3, x3) (λ4, x4)
res(λi, xi) 1.9584e-013 1.9584e-013 9.0344e-014 9.0344e-014

Therefore, the prescribed eigenvalues (the diagonal elements of the matrixΛ) and eigen-
vectors (the column vectors of thematrixX) are embedded in the newmodel (λ2̂M+λ ̂D+ ̂K)x =
0 and the updatedmatrices ̂M, ̂D, ̂K are also symmetric 3-diagonalmatrices, which implies that
the structural connectivity information of the analytical model is preserved.
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