
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 230576, 11 pages
http://dx.doi.org/10.1155/2013/230576

Research Article
Robust Stability and𝐻

∞
Stabilization of Switched Systems with

Time-Varying Delays Using Delta Operator Approach

Chen Qin,1 Zhengrong Xiang,1 and Hamid Reza Karimi2

1 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
2Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Correspondence should be addressed to Zhengrong Xiang; xiangzr@mail.njust.edu.cn

Received 29 September 2013; Accepted 13 November 2013

Academic Editor: Hui Zhang

Copyright © 2013 Chen Qin et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper considers the problems of the robust stability and robust 𝐻
∞

controller design for time-varying delay switched
systems using delta operator approach. Based on the average dwell time approach and delta operator theory, a sufficient condition
of the robust exponential stability is presented by choosing an appropriate Lyapunov-Krasovskii functional candidate. Then, a
state feedback controller is designed such that the resulting closed-loop system is exponentially stable with a guaranteed 𝐻

∞

performance. The obtained results are formulated in the form of linear matrix inequalities (LMIs). Finally, a numerical example is
provided to explicitly illustrate the feasibility and effectiveness of the proposed method.

1. Introduction

Switched systems are a kind of hybrid systems consisting of
a set of discrete event dynamic subsystems or continuous
variable dynamic subsystems and a switching rule which
defines a particular subsystem working during a certain
interval of time. Switched systems have numerous applica-
tions in network control systems [1], robot control systems
[2], intelligent traffic control systems [3], chemical industry
control systems [4], and many other areas [5, 6]. Many
important achievements on stability and stabilization of
switched systems have been developed [7–10]. It was shown
in the literature that the average dwell time (ADT) method is
a powerful tool to deal with the stability of switched systems.

The delta operator which is a novel approach with good
finite word length performance under fast sampling rates has
been investigated by many researchers due to their extensive
applications [11–13], for instance, optimal filtering [14], signal
processing [15], robust control [16], system identification [17],
and so forth. As stated in [15], the standard shift operator was
mostly adopted in the study of control theories for discrete-
time systems. However, the dynamic response of a discrete
system does not converge smoothly to its continuous coun-
terpart when the sampling period tends to zero; namely,

data are taken at high sampling rates. The delta operator
method can solve the above problem. In addition, it was
shown in [15] that delta operator requires smaller word length
when implemented in fixed-point digital control processors
than shift operator does. So far, some useful results on delta
operator systems have been formulated in [18–21]. As is well
known, time delay phenomena which often cause instability
or undesirable performance in control systems are involved
in a variety of real systems, such as chaotic systems, and
hydraulic pressure systems [22]. In the past years, a mass of
results on delta operator systems with time delay have
appeared [23–27]. The delta operator is defined by

𝛿𝑥 (𝑡) =

{
{
{

{
{
{

{

𝑑𝑥 (𝑡)

𝑑𝑡

, 𝑇 = 0,

(𝑥 (𝑡 + 𝑇) − 𝑥 (𝑡))

𝑇

, 𝑇 ̸= 0,

(1)

where 𝑇 is a sampling period. When 𝑇 → 0, the delta oper-
ator model will approach the continuous system before dis-
cretization and reflect a quasicontinuous performance [28].

It should be noted that external disturbances are generally
inevitable, and the output will be subsequently affected by
disturbances in the system. Some results on𝐻

∞
control were
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developed by many researchers to restrain the external dis-
turbances [29–33]. The 𝐻

∞
control problem for a class of

discrete systems was solved by using delta operator approach
[34]. Low order sampled data 𝐻

∞
control using the delta

operator was reported in the literature [35]. Robust 𝐻
∞

control for a class of uncertain switched systems using delta
operator was investigated [36]. However, few results on the
issues of robust stability and 𝐻

∞
controller design for delta

operator switched systems with time-varying delay are pre-
sented, which motivates the present investigations.

In this paper, we concentrate our interest on investigating
the stability and 𝐻

∞
controller design problems for delta

operator switched systems with time-varying delay.Themain
contributions of this paper can be summarized as follows:
(1) by constructing a new Lyapunov-Krasovskii functional
candidate and using the average dwell time approach, an
exponential stability criterion for the considered system is
proposed and (2) a state feedback controller design scheme
is developed such that the corresponding closed-loop system
is exponentially stable with a guaranteed𝐻

∞
performance.

The remainder of the paper is organized as follows. The
formulation of the considered systems and some correspond-
ing definitions and lemmas is given in Section 2. In Section 3,
the exponential stability analysis and 𝐻

∞
control for the

underlying system are developed. A numerical example is
given to illustrate the feasibility and effectiveness of the
proposed method in Section 4. Finally, concluding remarks
are presented in Section 5.

Notations. ‖ ⋅ ‖
2
denotes the Euclidean norm. 𝜆min(⋅) and

𝜆max(⋅) denote the minimum and maximum eigenvalues of
a matrix, respectively; 𝐴𝑇 means the transpose of matrix 𝐴;
𝑅 denotes the set of all real numbers; 𝑅𝑛 represents the 𝑛-
dimensional real vector space; 𝑅𝑚×𝑛 is the set of all (𝑚 × 𝑛)-
dimensional real matrices. The notation 𝐴 > 0(≥ 0) means
that the matrix 𝐴 is positive (nonnegative) definite; diag{⋅ ⋅ ⋅ }
refers to the block-diagonal matrix; 𝐼 is the identity matrix
of appropriate dimension. 𝑙

2
[𝑘
0
,∞) stands for the space of

square summable functions on [𝑘
0
,∞).

2. Problem Formulation

Consider the following delta operator switched system with
time-varying delay:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)
𝑥 (𝑘) + 𝐴

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐷

𝜎(𝑘)
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)
𝑥 (𝑘) + 𝐺

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 = −𝜏, −𝜏 + 1, . . . , 0,

(2)

where 𝑥(𝑘) ∈ 𝑅
𝑛 is the state vector, 𝑧(𝑘) ∈ 𝑅

𝑙 denotes the
controlled output, and 𝑤(𝑘) ∈ 𝑅𝑤 represents the disturbance
input belonging to 𝑙

2
[𝑘
0
,∞). 𝑘 means the time 𝑡 = 𝑘𝑇 and

𝑇 > 0 is the sampling period; 𝑘
0
is the initial instant. 𝜎(𝑘) :

[𝑘
0
,∞) → 𝑁 = {1, 2, . . . , 𝑁} is the switching signal with

𝑁 being the number of subsystems. 𝜏(𝑘) is the time-varying
delay satisfying 0 ≤ 𝜏 ≤ 𝜏(𝑘) ≤ 𝜏 for known constants 𝜏

and 𝜏. 𝜙(𝜃) is the discrete vector-valued initial function. 𝐶
𝑖
,

𝐷
𝑖
, and 𝐺

𝑖
are constant matrices with proper dimensions. 𝐴

𝑖

and 𝐴
𝑑𝑖
are uncertain real-valued matrices with appropriate

dimensions and have the following form:

[𝐴
𝑖
𝐴
𝑑𝑖
] = [𝐴

𝑖
𝐴
𝑑𝑖
] + 𝐻

𝑖
𝐹
𝑖
(𝑘) [𝐸

𝑎𝑖
𝐸
𝑎𝑑𝑖
] , (3)

where 𝐴
𝑖
, 𝐴

𝑑𝑖
, 𝐻

𝑖
, 𝐸

𝑎𝑖
, and 𝐸

𝑎𝑑𝑖
are known real constant

matrices of suitable dimensions and 𝐹
𝑖
(𝑘) is an unknown

time-varying matrix which satisfies

𝐹
𝑇

𝑖
(𝑘) 𝐹

𝑖
(𝑘) ≤ 𝐼. (4)

To obtain the main results, we first give some definitions
and lemmas which will be essential in our later development.

Definition 1 (see [36]). Consider system (2) with 𝑤(𝑘) = 0.
It is said to be exponentially stable under a switching signal
𝜎(𝑘) if, for the initial condition 𝑥(𝑘

0
+𝜃) = 𝜙(𝜃), 𝜃 = −𝜏, −𝜏+

1, . . . , 0, there exist constants 𝛼 > 0 and 𝛽 > 0 such that the
solution 𝑥(𝑘) satisfies

‖𝑥 (𝑘)‖ ≤ 𝛼
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑘

0
)
󵄩
󵄩
󵄩
󵄩𝑐
𝑒
−𝛽(𝑘−𝑘0)

, ∀𝑘 ≥ 𝑘
0
, (5)

where ‖𝑥(𝑘
0
)‖
𝑐
= sup

−𝜏≤𝑘≤0
‖𝑥(𝑘

0
+ 𝜃)‖.

Definition 2. For given 0 < 𝛼 < 1/𝑇 and 𝛾 > 0, system (2)
is said to have an 𝐻

∞
performance level 𝛾 if there exists a

switching signal 𝜎(𝑘) such that the following conditions are
satisfied:

(1) system (2) is exponentially stable when 𝑤(𝑘) = 0;
(2) under the zero-initial condition, that is, 𝜙(𝜃) = 0, 𝜃 =

−𝜏, −𝜏 + 1, . . . , −1, 0, system (2) satisfies

∞

∑

𝑘=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑘0)

‖𝑧 (𝑘)‖
2

≤ 𝛾
2

∞

∑

𝑘=𝑘0

‖𝑤 (𝑘)‖
2

,

∀𝑤 (𝑘) ∈ 𝑙
2
[𝑘
0
,∞) .

(6)

Definition 3 (see [37]). For any switching signal 𝜎(𝑘) and any
𝑘
2
> 𝑘

1
≥ 0, let𝑁

𝜎(𝑘)
(𝑘
1
, 𝑘
2
) denote the number of switching

of 𝜎(𝑘) over the interval [𝑘
1
, 𝑘
2
). For given 𝜏

𝑎
> 0 and𝑁

0
≥ 0,

if the inequality

𝑁
𝜎(𝑘)

(𝑘
1
, 𝑘
2
) ≤ 𝑁

0
+

𝑘
2
− 𝑘

1

𝜏
𝑎

(7)

holds, then the positive constant 𝜏
𝑎
is called the average dwell

time and 𝑁
0
is called the chattering bound. As commonly

used in the literature, we choose𝑁
0
= 0 in this paper.

Lemma 4 (see [20]). For a given matrix 𝑆 = [ 𝑆11 𝑆12
𝑆
𝑇

12
𝑆22

], where
𝑆
11

and 𝑆
22

are square matrices, the following conditions are
equivalent:

(i) 𝑆 < 0;
(ii) 𝑆

11
< 0, 𝑆

22
− 𝑆

𝑇

12
𝑆
−1

11
𝑆
12
< 0;

(iii) 𝑆
22
< 0, 𝑆

11
− 𝑆

12
𝑆
−1

22
𝑆
𝑇

12
< 0.
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Lemma 5 (see [20]). Let 𝑈, 𝑉,𝑊, and 𝑋 be real matrices of
appropriate dimensions with𝑋 satisfying𝑋 = 𝑋

𝑇; then, for all
𝑉
𝑇

𝑉 ≤ 𝐼,

𝑋 + 𝑈𝑉𝑊 +𝑊
𝑇

𝑉
𝑇

𝑈
𝑇

< 0 (8)

if and only if there exists a scalar 𝜀 such that

𝑋 + 𝜀𝑈𝑈
𝑇

+ 𝜀
−1

𝑊
𝑇

𝑊 < 0. (9)

Lemma 6 (see [28]). For any time function 𝑥(𝑡) and 𝑦(𝑡), the
following equation holds:

𝛿 (𝑥 (𝑡) 𝑦 (𝑡)) = 𝛿 (𝑥 (𝑡)) 𝑦 (𝑡) + 𝑥 (𝑡) 𝛿 (𝑦 (𝑡))

+ 𝑇𝛿 (𝑥 (𝑡)) 𝛿 (𝑦 (𝑡)) ,

(10)

where 𝑇 is the sampling period.

Theobjectives of the paper are (1) to find a class of switch-
ing signal 𝜎(𝑘) such that system (2) is exponentially stable
with a guaranteed 𝐻

∞
performance and (2) to determine a

class of switching signal and design a state feedback controller
𝑢(𝑘) = 𝐾

𝜎(𝑘)
𝑥(𝑘) for the following delta operator switched

system with time-varying delay:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)
𝑥 (𝑘) + 𝐴

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝐵
𝜎(𝑘)
𝑢 (𝑘) + 𝐷

𝜎(𝑘)
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)
𝑥 (𝑘) + 𝐺

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 = −𝜏, −𝜏 + 1, . . . , 0

(11)

such that the corresponding closed-loop system is exponen-
tially stable with a guaranteed𝐻

∞
performance.

3. Main Results

3.1. Robust Stability Analysis. In this section, we will focus on
the stability of system (2) with 𝑤(𝑘) = 0.

Theorem 7. For a given positive constant 0 < 𝛼 < 1/𝑇, if there
exist scalars 𝜀

𝑖
and positive definite symmetric matrices𝑋

𝑖
and

𝑄
𝑖
, 𝑖 ∈ 𝑁, with appropriate dimensions, such that

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐸
𝑖

𝐴
𝑑𝑖
𝑋
𝑖

𝑇𝑋
𝑖
𝐴
𝑇

𝑖
𝜀
𝑖
𝐻
𝑖
𝑋
𝑖
𝐸
𝑇

𝑎𝑖

𝑋
𝑖
𝐴
𝑇

𝑑𝑖
−(1 − 𝑇𝛼)

(𝜏+1)

𝑄
𝑖
𝑇𝑋

𝑖
𝐴
𝑇

𝑑𝑖
0 𝑋

𝑖
𝐸
𝑇

𝑎𝑑𝑖

𝑇𝐴
𝑖
𝑋
𝑖

𝑇𝐴
𝑑𝑖
𝑋
𝑖

−𝑇𝑋
𝑖
𝜀
𝑖
𝑇𝐻

𝑖
0

𝜀
𝑖
𝐻
𝑇

𝑖
0 𝜀

𝑖
𝑇𝐻

𝑇

𝑖
−𝜀
𝑖
𝐼 0

𝐸
𝑎𝑖
𝑋
𝑖

𝐸
𝑎𝑑𝑖
𝑋
𝑖

0 0 −𝜀
𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(12)

where 𝐸
𝑖
= 𝐴

𝑖
𝑋
𝑖
+ 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝛼𝑋

𝑖
+ (1 − 𝑇𝛼)(𝜏 − 𝜏 + 1)𝑄

𝑖
,

then system (2) with 𝑤(𝑘) = 0 is exponentially stable for any
switching signal 𝜎(𝑘) with the following average dwell time
scheme:

𝜏
𝑎
> 𝜏

∗

𝑎
= −

ln 𝜇
ln (1 − 𝑇𝛼)

, (13)

where 𝜇 ≥ 1 satisfies

𝑋
𝑖
≤ 𝜇𝑋

𝑗
, 𝑄

𝑖
≤ 𝜇𝑄

𝑗
, ∀𝑖, 𝑗 ∈ 𝑁. (14)

Proof. Choose the following Lyapunov-Krasovskii functional
candidate for the 𝑖th subsystem

𝑉
𝑖
(𝑘) = 𝑉

𝑖1
(𝑘) + 𝑉

𝑖2
(𝑘) + 𝑉

𝑖3
(𝑘) , ∀𝑖 ∈ 𝑁, (15)

where

𝑉
𝑖1
(𝑘) = 𝑥

𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘) ,

𝑉
𝑖2
(𝑘) = 𝑇

𝑘−1

∑

𝑠=𝑘−𝜏(𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠) ,

𝑉
𝑖3
(𝑘) = 𝑇

−𝜏

∑

𝑙=−𝜏+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠) .

(16)

Taking the delta operator manipulations of Lyapunov
functional candidate 𝑉

𝑖
(𝑘) along the trajectory of system (2),

by Lemma 6, we have

𝛿𝑉
𝑖1
(𝑘)

= 𝛿 (𝑥
𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘))

= 𝛿 (𝑥
𝑇

(𝑘) 𝑃
𝑖
) 𝑥 (𝑘) + 𝑥

𝑇

(𝑘) 𝑃
𝑖
𝛿 (𝑥 (𝑘))

+ 𝑇𝛿 (𝑥
𝑇

(𝑘) 𝑃
𝑖
) 𝛿 (𝑥 (𝑘))

= (𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)))

𝑇

𝑃
𝑖
𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝑃
𝑖
(𝐴

𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)))

+ 𝑇(𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)))

𝑇

× 𝑃
𝑖
(𝐴

𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)))

= 𝑥
𝑇

(𝑘) 𝑃
𝑖
𝐴
𝑖
𝑥 (𝑘) + 𝑥

𝑇

(𝑘) 𝑃
𝑖
𝐴
𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝑥
𝑇

(𝑘) 𝐴
𝑇

𝑖
𝑃
𝑖
𝑥 (𝑘) + 𝑥

𝑇

(𝑘 − 𝜏 (𝑘)) 𝐴
𝑇

𝑑𝑖
𝑃
𝑖
𝑥 (𝑘)

+ 𝑇𝑥
𝑇

(𝑘) 𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
𝑥 (𝑘) + 𝑇𝑥

𝑇

(𝑘) 𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝑇𝑥
𝑇

(𝑘 − 𝜏 (𝑘)) 𝐴
𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑖
𝑥 (𝑘)

+ 𝑇𝑥
𝑇

(𝑘 − 𝜏 (𝑘)) 𝐴
𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘))

= [

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))
]

𝑇

× [

𝑃
𝑖
𝐴
𝑖
+ 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑇𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝑇𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑑𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖
+ 𝑇𝐴

𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑖

𝑇𝐴
𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑑𝑖

]

× [

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))
] ,

(17)
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𝛿𝑉
𝑖2
(𝑘)

=

1

𝑇

(𝑉
𝑖2
(𝑘 + 1) − 𝑉

𝑖2
(𝑘))

=

1

𝑇

(𝑇

𝑘+1−1

∑

𝑠=𝑘+1−𝜏(𝑘+1)

(1 − 𝑇𝛼)
(𝑘+1−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠)

− 𝑇

𝑘−1

∑

𝑠=𝑘−𝜏(𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠))

≤ −𝑇𝛼

𝑘−1

∑

𝑠=𝑘−𝜏(𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠)

+ (1 − 𝑇𝛼) 𝑥
𝑇

(𝑘) 𝑆
𝑖
𝑥 (𝑘)

− (1 − 𝑇𝛼)
(𝜏+1)

𝑥
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑆
𝑖
𝑥 (𝑘 − 𝜏 (𝑘))

+

𝑘−𝜏

∑

𝑠=𝑘+1−𝜏

(1 − 𝑇𝛼)
(𝑘+1−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠) ,

(18)

𝛿𝑉
𝑖3
(𝑘)

=

1

𝑇

(𝑉
𝑖3
(𝑘 + 1) − 𝑉

𝑖3
(𝑘))

=

1

𝑇

(𝑇

−𝜏

∑

𝑙=−𝜏+1

𝑘−1+1

∑

𝑠=𝑘+1+𝑙

(1 − 𝑇𝛼)
(𝑘+1−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠)

−𝑇

−𝜏

∑

𝑙=−𝜏+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 − 𝑇𝛼)
(𝑘−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠))

= −𝑇𝛼

−𝜏

∑

𝑙=−𝜏+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 − 𝑇𝛼)
(𝑘−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠)

+ (1 − 𝑇𝛼) (𝜏 − 𝜏) 𝑥
𝑇

(𝑘) 𝑆
𝑖
𝑥 (𝑘)

−

𝑘−𝜏

∑

𝑠=𝑘+1−𝜏

(1 − 𝑇𝛼)
(𝑘+1−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠) .

(19)

Combining (17)–(19), we have

𝛿𝑉
𝑖
(𝑘) + 𝛼𝑉

𝑖
(𝑘)

= [

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))
]

𝑇

× [

𝑃
𝑖
𝐴
𝑖
+ 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑇𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝑇𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑑𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖
+ 𝑇𝐴

𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑖

𝑇𝐴
𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑑𝑖

]

× [

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))
]

+ 𝛼𝑃
𝑖
+ (1 − 𝑇𝛼) (𝜏 − 𝜏 + 1) 𝑥

𝑇

(𝑘) 𝑆
𝑖
𝑥 (𝑘)

− (1 − 𝑇𝛼)
(𝜏+1)

𝑥
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑆
𝑖
𝑥 (𝑘 − 𝜏 (𝑘))

≤ [

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))
]

𝑇

Ω
𝑖
[

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))
] ,

(20)

where

Ω
𝑖
= [

𝑃
𝑖
𝐴
𝑖
+ 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝛼𝑃

𝑖
+ (1 − 𝑇𝛼) × (𝜏 − 𝜏 + 1) 𝑆

𝑖
+ 𝑇𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑖

𝑃
𝑖
𝐴
𝑑𝑖
+ 𝑇𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑑𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖
+ 𝑇𝐴

𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑖

𝑇𝐴
𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑑𝑖
− (1 − 𝑇𝛼)

(𝜏+1)

𝑆
𝑖

] . (21)

Applying Lemma 4, we can obtain that Ω
𝑖
< 0 is equivalent

to

[

[

[

[

[

[

𝑃
𝑖
𝐴
𝑖
+ 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝛼𝑃

𝑖
+ (1 − 𝑇𝛼) (𝜏 − 𝜏 + 1) 𝑆

𝑖
𝑃
𝑖
𝐴
𝑑𝑖

𝑇𝐴
𝑇

𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖

− (1 − 𝑇𝛼)
(𝜏+1)

𝑆
𝑖
𝑇𝐴

𝑇

𝑑𝑖

𝑇𝐴
𝑖

𝑇𝐴
𝑑𝑖

−𝑇𝑃
−1

𝑖

]

]

]

]

]

]

< 0. (22)

Using diag {𝑃−1
𝑖

𝑃
−1

𝑖
𝐼} to pre- and post-multiply both sides

of (22), respectively, we have

[

[

[

[

[

[

𝐸
𝑖

𝐴
𝑑𝑖
𝑃
−1

𝑖
𝑇𝑃

−1

𝑖
𝐴
𝑇

𝑖

𝑃
−1

𝑖
𝐴
𝑇

𝑑𝑖
− (1 − 𝑇𝛼)

(𝜏+1)

𝑃
−1

𝑖
𝑆𝑃
−1

𝑖
𝑇𝑃

−1

𝑖
𝐴
𝑇

𝑑𝑖

𝑇𝐴
𝑖
𝑃
−1

𝑖
𝑇𝐴

𝑑𝑖
𝑃
−1

𝑖
−𝑇𝑃

−1

𝑖

]

]

]

]

]

]

< 0, (23)

where𝐸
𝑖
= 𝐴

𝑖
𝑃
−1

𝑖
+𝑃

−1

𝑖
𝐴
𝑇

𝑖
+𝛼𝑃

−1

𝑖
+(1−𝑇𝛼)(𝜏−𝜏+1)𝑃

−1

𝑖
𝑆
𝑖
𝑃
−1

𝑖
.

Denote 𝑄
𝑖
= 𝑃

−1

𝑖
𝑆
𝑖
𝑃
−1

𝑖
and 𝑋

𝑖
= 𝑃

−1

𝑖
; then, substituting

(3) into (23) and applying Lemmas 4 and 5,we obtain that (23)
is equivalent to (12). Thus, from (12), we can easily obtain

𝛿𝑉
𝑖
(𝑘) + 𝛼𝑉

𝑖
(𝑘) ≤ 0. (24)
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It follows from (24) that

𝛿𝑉
𝑖
(𝑘) =

𝑉
𝑖
(𝑘 + 1) − 𝑉

𝑖
(𝑘)

𝑇

≤ −𝛼𝑉
𝑖
(𝑘) ,

𝑉
𝑖
(𝑘 + 1) − 𝑉

𝑖
(𝑘) ≤ −𝛼

𝑖
𝑇𝑉

𝑖
(𝑘) ,

𝑉
𝑖
(𝑘 + 1) ≤ (1 − 𝛼𝑇)𝑉

𝑖
(𝑘) .

(25)

Let 𝑘
1
< ⋅ ⋅ ⋅ < 𝑘

𝑞
denote the switching instants of 𝜎(𝑘)

over the interval [𝑘
0
, 𝑘). Consider the following piecewise

Lyapunov functional for system (2):

𝑉 (𝑘) = 𝑉
𝜎(𝑘)

(𝑘) = 𝑉
𝜎(𝑘𝑝)

(𝑘) ,

∀𝑘 ∈ [𝑘
𝑝
, 𝑘
𝑝
+ 1) , 𝑝 = 0, 1, . . . , 𝑞.

(26)

From (14), we obtain

𝑉
𝜎(𝑘𝑝)

(𝑘
𝑝
) ≤ 𝜇𝑉

𝜎(𝑘
−

𝑝
)
(𝑘
−

𝑝
) , 𝑝 = 0, 1, . . . , 𝑞. (27)

It can be obtained from (24), (27), and Definition 3 that

𝑉
𝜎(𝑘)

(𝑘) ≤ (1 − 𝑇𝛼)
(𝑘−𝑘𝑞)

𝑉
𝜎(𝑘𝑞)

(𝑘
𝑞
)

≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑞)

𝑉
𝜎(𝑘
−

𝑞
)
(𝑘
−

𝑞
)

≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑞−1)

𝑉
𝜎(𝑘𝑞−1)

(𝑘
𝑞−1
)

≤ 𝜇
2

(1 − 𝑇𝛼)
(𝑘−𝑘𝑞−1)

𝑉
𝜎(𝑘
−

𝑞−1
)
(𝑘
−

𝑞−1
)

≤ ⋅ ⋅ ⋅

≤ 𝜇
𝑁𝜎(𝑘)(𝑘0 ,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
)

≤ 𝜇
(𝑘−𝑘0)/𝜏𝑎

(1 − 𝑇𝛼)
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
)

= (𝜇
1/𝜏𝑎

(1 − 𝑇𝛼))

(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
) .

(28)

Considering the definition of 𝑉
𝜎(𝑘)
(𝑘), it yields that

𝑉
𝜎(𝑘)

(𝑘) ≥ 𝑎‖𝑥 (𝑘)‖
2

, (29)

𝑉
𝜎(𝑘)

(𝑘
0
) ≤ 𝑏

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑘

0
)
󵄩
󵄩
󵄩
󵄩

2

𝑐
, (30)

where

𝑎 = min
𝑖∈𝑁

𝜆min (𝑃𝑖) ,

𝑏 = max
𝑖∈𝑁

{𝜆max (𝑃𝑖) + 𝑇 (𝜏
2

− 𝜏𝜏 + 𝜏) 𝜆max (𝑆𝑖)} ,

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑘

0
)
󵄩
󵄩
󵄩
󵄩𝑐
= sup
−𝜏≤𝜃≤0

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑘

0
+ 𝜃)

󵄩
󵄩
󵄩
󵄩
.

(31)

Combining (29) and (30), we have

‖𝑥 (𝑘)‖
2

≤

𝑏

𝑎

(𝜇
1/𝜏𝑎

(1 − 𝑇𝛼))

(𝑘−𝑘0)󵄩
󵄩
󵄩
󵄩
𝑥 (𝑘

0
)
󵄩
󵄩
󵄩
󵄩

2

. (32)

Therefore, system (2) with 𝑤(𝑘) = 0 is exponentially stable
under the average dwell time scheme (13).

The proof is completed.

Remark 8. When 𝜇 = 1 in (14), which leads to𝑋
𝑖
= 𝑋

𝑗
, 𝑄

𝑖
=

𝑄
𝑗
, ∀𝑖, 𝑗 ∈ 𝑁, and 𝜏∗

𝑎
= 0 by (13), system (2) has a common

Lyapunov-Krasovskii functional and the switching signal can
be arbitrary.

When 𝜏(𝑘) = 0, system (2) with 𝑤(𝑘) = 0 becomes the
following system:

𝛿𝑥 (𝑘) = (𝐴
𝜎(𝑘)

+ 𝐴
𝑑𝜎(𝑘)

) 𝑥 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)
𝑥 (𝑘) .

(33)

Then we have the following corollary.

Corollary 9. For a given positive constant 0 < 𝛼 < 1/𝑇, if
there exist scalars 𝜀

𝑖
and positive definite symmetric matrices

𝑋
𝑖
, ∀𝑖 ∈ 𝑁, of appropriate dimensions, such that

[

[

[

[

[

[

[

(𝐴
𝑖
+ 𝐴

𝑑𝑖
)𝑋

𝑖
+ 𝑋

𝑖
(𝐴

𝑇

𝑖
+ 𝐴

𝑇

𝑑𝑖
) + 𝛼𝑋

𝑖
𝑇𝑋

𝑖
(𝐴

𝑇

𝑖
+ 𝐴

𝑇

𝑑𝑖
) 𝜀

𝑖
𝐻
𝑖
𝑋
𝑖
(𝐸
𝑇

𝑎𝑖
+ 𝐸

𝑇

𝑎𝑑𝑖
)

𝑇 (𝐴
𝑖
+ 𝐴

𝑑𝑖
)𝑋

𝑖
−𝑇𝑋

𝑖
𝜀
𝑖
𝑇𝐻

𝑖
0

𝜀
𝑖
𝐻
𝑇

𝑖
𝜀
𝑖
𝑇𝐻

𝑇

𝑖
−𝜀
𝑖
𝐼 0

(𝐸
𝑎𝑖
+ 𝐸

𝑎𝑑𝑖
)𝑋

𝑖
0 0 −𝜀

𝑖
𝐼

]

]

]

]

]

]

]

< 0, (34)

then system (33) is exponentially stable for any switching signal
𝜎(𝑘) with average dwell time scheme (13), where 𝜇 ≥ 1 satisfies

𝑋
𝑖
≤ 𝜇𝑋

𝑗
, ∀𝑖, 𝑗 ∈ 𝑁. (35)

3.2. 𝐻
∞

Performance Analysis. The following theorem gives
sufficient conditions for the existence of an𝐻

∞
performance

level for system (2).
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Theorem 10. For given positive constants 𝛾 and 0 < 𝛼 < 1/𝑇,
if there exist scalars 𝜀

𝑖
and positive definite symmetric matrices

𝑋
𝑖
and 𝑄

𝑖
, 𝑖 ∈ 𝑁, of appropriate dimensions, such that

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Δ
𝑖

𝐴
𝑑𝑖
𝑋
𝑖

𝐷
𝑖

𝑇𝑋
𝑖
𝐴
𝑇

𝑖
𝑋
𝑖
𝐶
𝑇

𝑖
𝜀
𝑖
𝐻
𝑖
𝑋
𝑖
𝐸
𝑇

𝑎𝑖

𝑋
𝑖
𝐴
𝑇

𝑑𝑖
−(1 − 𝑇𝛼)

𝜏+1

𝑄
𝑖

0 𝑇𝑋
𝑖
𝐴
𝑇

𝑑𝑖
0 0 𝑋

𝑖
𝐸
𝑇

𝑎𝑑𝑖

𝐷
𝑇

𝑖
0 −𝛾

2

𝐼 𝑇𝐷
𝑇

𝑖
𝐺
𝑇

𝑖
0 0

𝑇𝐴
𝑖
𝑋
𝑖

𝑇𝐴
𝑑𝑖
𝑋
𝑖

𝑇𝐷
𝑖

−𝑇𝑋
𝑖

0 𝜀
𝑖
𝑇𝐻

𝑖
0

𝐶
𝑖
𝑋
𝑖

0 𝐺
𝑖

0 −𝐼 0 0

𝜀
𝑖
𝐻
𝑇

𝑖
0 0 𝜀

𝑖
𝑇𝐻

𝑇

𝑖
0 −𝜀

𝑖
𝐼 0

𝐸
𝑎𝑖
𝑋
𝑖

𝐸
𝑎𝑑𝑖
𝑋
𝑖

0 0 0 0 −𝜀
𝑖
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(36)

where Δ
𝑖
= 𝐴

𝑖
𝑋
𝑖
+𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝛼𝑋

𝑖
+ (1 − 𝑇𝛼)(𝜏 − 𝜏 + 1)𝑄

𝑖
, then

system (2) is exponentially stable with an 𝐻
∞

performance
level 𝛾 for any switching signal 𝜎(𝑘) with average dwell time
scheme (13), where 𝜇 ≥ 1 satisfies (14).

Proof. Equation (12) in Theorem 7 can be directly derived
from (36). Thus, system (2) is exponentially stable. We are
now in a position to show the𝐻

∞
performance of system (2).

Choosing the Lyapunov-Krasovskii functional candidate
(15) and following the proof line of Theorem 7, we get

𝛿𝑉
𝑖1
(𝑘)

= 𝑥
𝑇

(𝑘) 𝑃
𝑖
𝛿𝑥 (𝑘) + (𝛿𝑥 (𝑘))

𝑇

𝑃
𝑖
𝑥 (𝑘)

+ 𝑇(𝛿𝑥 (𝑘))
𝑇

𝑃
𝑖
𝛿𝑥 (𝑘)

= 𝑥
𝑇

(𝑘) 𝑃
𝑖
(𝐴

𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐷

𝑖
𝑤 (𝑘))

+ (𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐷

𝑖
𝑤 (𝑘))

𝑇

𝑃
𝑖
𝑥 (𝑘)

+ 𝑇(𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐷

𝑖
𝑤 (𝑘))

𝑇

× 𝑃
𝑖
(𝐴

𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐷

𝑖
𝑤 (𝑘))

=
[

[

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))

𝑤 (𝑘)

]

]

𝑇

Θ̃
𝑖

[

[

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))

𝑤 (𝑘)

]

]

,

(37)

where

Θ̃
𝑖
=

[

[

[

[

𝑃
𝑖
̂
𝐴
𝑖
+
̂
𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑇
̂
𝐴
𝑇

𝑖
𝑃
𝑖
̂
𝐴
𝑖
𝑃
𝑖
̂
𝐴
𝑑𝑖
+ 𝑇
̂
𝐴
𝑇

𝑖
𝑃
𝑖
̂
𝐴
𝑑𝑖
𝑃
𝑖
𝐷
𝑖
+ 𝑇
̂
𝐴
𝑇

𝑖
𝑃
𝑖
𝐷
𝑖

̂
𝐴
𝑇

𝑑𝑖
𝑃
𝑖
+ 𝑇
̂
𝐴
𝑇

𝑑𝑖
𝑃
𝑖
̂
𝐴
𝑖

𝑇
̂
𝐴
𝑇

𝑑𝑖
𝑃
𝑖
̂
𝐴
𝑑𝑖

𝑇
̂
𝐴
𝑇

𝑑𝑖
𝑃
𝑖
𝐷
𝑖

𝐷
𝑇

𝑖
𝑃
𝑖
+ 𝑇𝐷
𝑇

𝑖
𝑃
𝑖
̂
𝐴
𝑖

𝑇𝐷
𝑇

𝑖
𝑃
𝑖
̂
𝐴
𝑑𝑖

𝑇𝐷
𝑇

𝑖
𝑃
𝑖
𝐷
𝑖

]

]

]

]

,

𝛿𝑉
𝑖2
(𝑘) ≤ −𝑇𝛼

𝑘−1

∑

𝑠=𝑘−𝜏(𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠)

+ (1 − 𝑇𝛼) 𝑥
𝑇

(𝑘) 𝑆
𝑖
𝑥 (𝑘)

− (1 − 𝛼𝑇)
(𝜏+1)

𝑥
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑆
𝑖
𝑥 (𝑘 − 𝜏 (𝑘))

+

𝑘−𝜏

∑

𝑠=𝑘+1−𝜏

(1 − 𝑇𝛼)
(𝑘+1−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠) ,

𝛿𝑉
𝑖3
(𝑘) = −𝑇𝛼

−𝜏

∑

𝑙=−𝜏+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 − 𝑇𝛼)
(𝑘−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠)

+ (1 − 𝑇𝛼) (𝜏 − 𝜏) 𝑥
𝑇

(𝑘) 𝑆
𝑖
𝑥 (𝑘)

−

𝑘−𝜏

∑

𝑠=𝑘+1−𝜏

(1 − 𝑇𝛼)
(𝑘+1−𝑠)

𝑥
𝑇

(𝑠) 𝑆
𝑖
𝑥 (𝑠) .

(38)

It follows from (37)-(38) that

𝛿𝑉
𝑖
(𝑘) + 𝛼𝑉

𝑖
(𝑘) + 𝑧

𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

= 𝛿𝑉
𝑖
(𝑘) + 𝛼𝑉

𝑖
(𝑘)

+ (𝐶𝑥 (𝑘) + 𝐺𝑤 (𝑘))
𝑇

(𝐶𝑥 (𝑘) + 𝐺𝑤 (𝑘))

− 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

=
[

[

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))

𝑤 (𝑘)

]

]

𝑇

Θ
𝑖

[

[

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))

𝑤 (𝑘)

]

]

,

(39)

where

Θ
𝑖
=

[

[

[

[

[

[

[

Π
𝑖

𝑃
𝑖
𝐴
𝑑𝑖
+ 𝑇𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑑𝑖

𝑃
𝑖
𝐷
𝑖
+ 𝑇𝐴

𝑇

𝑖
𝑃
𝑖
𝐷
𝑖
+ 𝐶

𝑇

𝑖
𝐺
𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖
+ 𝑇𝐴

𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑖

𝑇𝐴
𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑑𝑖
− (1 − 𝑇𝛼)

𝜏+1

𝑆
𝑖

𝑇𝐴
𝑇

𝑑𝑖
𝑃
𝑖
𝐷
𝑖

𝐷
𝑇

𝑖
𝑃
𝑖
+ 𝑇𝐷

𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
+ 𝐺

𝑇

𝑖
𝐶
𝑖

𝑇𝐷
𝑇

𝑖
𝑃
𝑖
𝐴
𝑑𝑖

𝑇𝐷
𝑇

𝑖
𝑃
𝑖
𝐷
𝑖
+ 𝐺

𝑇

𝑖
𝐺
𝑖
− 𝛾

2

𝐼

]

]

]

]

]

]

]

,

Π
𝑖
= 𝑃

𝑖
𝐴
𝑖
+ 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑇𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
+ 𝛼𝑃

𝑖
+ (1 − 𝑇𝛼) (𝜏 − 𝜏 + 1) 𝑆

𝑖
+ 𝐶

𝑇

𝑖
𝐶
𝑖
.

(40)
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Applying Lemma 4, we can obtain that Θ
𝑖
< 0 is equivalent

to the following inequality:

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑃
𝑖
𝐴
𝑖
+ 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝛼𝑃

𝑖
+ (1 − 𝑇𝛼) (𝜏 − 𝜏 + 1) 𝑆

𝑖
𝑃
𝑖
𝐴
𝑑𝑖

𝑃
𝑖
𝐷
𝑖
𝑇𝐴

𝑇

𝑖
𝐶
𝑇

𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖

−(1 − 𝑇𝛼)
𝜏+1

𝑆
𝑖

0 𝑇𝐴
𝑇

𝑑𝑖
0

𝐷
𝑇

𝑖
𝑃
𝑖

0 −𝛾
2

𝐼 𝑇𝐷
𝑇

𝑖
𝐺
𝑇

𝑖

𝑇𝐴
𝑖

𝑇𝐴
𝑑𝑖

𝑇𝐷
𝑖
−𝑇𝑃

−1

𝑖
0

𝐶
𝑖

0 𝐺
𝑖

0 −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

<0. (41)

Using diag {𝑃−1
𝑖

𝑃
−1

𝑖
𝐼 𝐼 𝐼} to pre- and post-multiply both

sides of (41), respectively, we have

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑀
𝑖

̂
𝐴
𝑑𝑖
𝑃
−1

𝑖
𝐷
𝑖

𝑇𝑃
−1

𝑖

̂
𝐴
𝑇

𝑖
𝑃
−1

𝑖
𝐶
𝑇

𝑖

𝑃
−1

𝑖

̂𝐴
𝑇

𝑑𝑖
−(1 − 𝑇𝛼)

𝜏+1

𝑃
−1

𝑖
𝑆
𝑖
𝑃
−1

𝑖
0 𝑇𝑃

−1

𝑖

̂𝐴
𝑇

𝑑𝑖
0

𝐷
𝑇

𝑖
0 −𝛾

2

𝐼 𝑇𝐷
𝑇

𝑖
𝐺
𝑇

𝑖

𝑇
̂
𝐴
𝑖
𝑃
−1

𝑖
𝑇
̂
𝐴
𝑑𝑖
𝑃
−1

𝑖
𝑇𝐷

𝑖
−𝑇𝑃

−1

𝑖
0

𝐶
𝑖
𝑃
−1

𝑖
0 𝐺

𝑖
0 −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(42)

where𝑀
𝑖
= 𝐴

𝑖
𝑃
−1

𝑖
+𝑃

−1

𝑖
𝐴
𝑇

𝑖
+𝛼𝑃

−1

𝑖
+(1−𝑇𝛼)(𝜏−𝜏+1)𝑃

−1

𝑖
𝑆
𝑖
𝑃
−1

𝑖
.

Set 𝑄
𝑖
= 𝑃

−1

𝑖
𝑆
𝑖
𝑃
−1

𝑖
and 𝑋

𝑖
= 𝑃

−1

𝑖
; then, substituting (3)

into (42) and applying Lemmas 4 and 5, we can obtain that
(42) is equivalent to (36).

Therefore, one has, for 𝑘 ∈ [𝑘
𝑝
, 𝑘
𝑝+1
),

𝑉 (𝑘) ≤ (1 − 𝑇𝛼)
(𝑘−𝑘𝑝)

𝑉
𝜎(𝑘𝑝)

(𝑘
𝑝
) −

𝑘−1

∑

𝑠=𝑘𝑝

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠) ,

(43)

where Λ(𝑠) = 𝑇‖𝑧(𝑠)‖2 − 𝛾2𝑇‖𝑤(𝑠)‖2.
Following the proof line of (28), we obtain

𝑉
𝜎(𝑘)

(𝑘)

≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑞)

𝑉
𝜎(𝑘
−

𝑞
)
(𝑘
−

𝑞
)

−

𝑘−1

∑

𝑠=𝑘𝑞

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠)

≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑞−1)

𝑉
𝜎(𝑘𝑞−1)

(𝑘
𝑞−1
)

− 𝜇

𝑘𝑞−1

∑

𝑠=𝑘𝑞−1

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠)

−

𝑘−1

∑

𝑠=𝑘𝑞

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠)

= 𝜇
𝑁𝜎(𝑘)(𝑘𝑞−1 ,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑘𝑞−1)

𝑉
𝜎(𝑘𝑞−1)

(𝑘
𝑞−1
)

− 𝜇
𝑁𝜎(𝑘)(𝑘𝑞−1 ,𝑘)

𝑘𝑞−1

∑

𝑠=𝑘𝑞−1

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠)

−

𝑘−1

∑

𝑠=𝑘𝑞

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠)

≤ ⋅ ⋅ ⋅

≤ 𝜇
𝑁𝜎(𝑘)(𝑘0 ,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
)

− 𝜇
𝑁𝜎(𝑘)(𝑘0 ,𝑘)

𝑘1−1

∑

𝑠=𝑘0

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠)

− 𝜇
𝑁𝜎(𝑘)(𝑘1 ,𝑘)

𝑘2−1

∑

𝑠=𝑘1

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠)

− ⋅ ⋅ ⋅ −

𝑘−1

∑

𝑠=𝑘𝑞

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠)

= 𝜇
𝑁𝜎(𝑘)(𝑘0 ,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
)

−

𝑘−1

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑘)(𝑠,𝑘)

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠) .

(44)

Under the zero initial condition, we get

0 ≤ −

𝑘−1

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑘)(𝑠,𝑘)

(1 − 𝑇𝛼)
(𝑘−1−𝑠)

Λ (𝑠) . (45)
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Namely,

𝑘−1

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑘)(𝑠,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑧 (𝑠)‖
2

≤ 𝛾
2

𝑘−1

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑘)(𝑠,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑤 (𝑠)‖
2

.

(46)

Multiplying both sides of (46) by 𝜇−𝑁𝜎(𝑘)(𝑘0 ,𝑘) leads to

𝑘−1

∑

𝑠=𝑘0

𝜇
−𝑁𝜎(𝑘)(𝑘0 ,𝑠)

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑧 (𝑠)‖
2

≤ 𝛾
2

𝑘−1

∑

𝑠=𝑘0

𝜇
−𝑁𝜎(𝑘)(𝑘0 ,𝑠)

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑤 (𝑠)‖
2

.

(47)

From Definition 3 and (13), we have

𝜇
−𝑁𝜎(𝑘)(𝑘0 ,𝑠)

≤ (1 − 𝑇𝛼)
𝑠−𝑘0

. (48)

Combining (47) and (48) leads to

𝑘−1

∑

𝑠=𝑘0

(1 − 𝑇𝛼)
(𝑠−𝑘0)

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑧 (𝑠)‖
2

≤ 𝛾
2

𝑘−1

∑

𝑠=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑤 (𝑠)‖
2

.

(49)

Then, summing both sides of (49) from 𝑘
0
to∞ leads to

∞

∑

𝑘=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑘0)

‖𝑧 (𝑘)‖
2

≤ 𝛾
2

∞

∑

𝑘=𝑘0

‖𝑤 (𝑘)‖
2

. (50)

According to Definition 2, we can conclude that the theorem
is true.

The proof is completed.

3.3. 𝐻
∞

Controller Design. In this section, a state feedback
controller 𝑢(𝑘) = 𝐾

𝜎(𝑘)
𝑥(𝑘) will be designed for system

(11) such that the corresponding closed-loop system (51)
is exponentially stable and satisfies an 𝐻

∞
performance.

Consider

𝛿𝑥 (𝑘) = (𝐴
𝜎(𝑘)

+ 𝐵
𝜎(𝑘)
𝐾
𝜎(𝑘)
) 𝑥 (𝑘)

+ 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐷
𝜎(𝑘)
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)
𝑥 (𝑘) + 𝐸

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝜏, −𝜏 + 1, . . . , −1, 0,

(51)

where𝐾
𝑖
, 𝑖 ∈ 𝑁, are the controller gains to be determined. 𝐵

𝑖

are uncertain real-valued matrices with appropriate dimen-
sions and have the following form

𝐵
𝑖
= 𝐵

𝑖
+ 𝐻

𝑖
𝐹
𝑖
(𝑘) 𝐸

𝑏𝑖
. (52)

Theorem 11. Consider system (11). For given positive constants
𝛾 and 0 < 𝛼 < 1/𝑇, if there exist scalars 𝜀

𝑖
, positive definite

symmetric matrices 𝑄
𝑖
and 𝑋

𝑖
, and any matrices𝑊

𝑖
, 𝑖 ∈ 𝑁, of

appropriate dimensions, such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Υ
𝑖

𝐴
𝑑𝑖
𝑋
𝑖

𝐷
𝑖
𝑇(𝐴

𝑖
𝑋
𝑖
+ 𝐵

𝑖
𝑊
𝑖
)
𝑇

𝑋
𝑖
𝐶
𝑇

𝑖
𝜀
𝑖
𝐻
𝑖
(𝐸
𝑎𝑖
𝑋
𝑖
+ 𝐸

𝑏𝑖
𝑊
𝑖
)
𝑇

𝑋
𝑖
𝐴
𝑇

𝑑𝑖
− (1 − 𝑇𝛼)

𝜏+1

𝑄
𝑖

0 𝑇𝑋
𝑖
𝐴
𝑇

𝑑𝑖
0 0 𝑋

𝑖
𝐸
𝑇

𝑎𝑑𝑖

𝐷
𝑇

𝑖
0 −𝛾

2

𝐼 𝑇𝐷
𝑇

𝑖
𝐺
𝑇

𝑖
0 0

𝑇 (𝐴
𝑖
𝑋
𝑖
+ 𝐵

𝑖
𝑊
𝑖
) 𝑇𝐴

𝑑𝑖
𝑋
𝑖

𝑇𝐷
𝑖

−𝑇𝑋
𝑖

0 𝜀
𝑖
𝑇𝐻

𝑖
0

𝐶
𝑖
𝑋
𝑖

0 𝐺
𝑖

0 −𝐼 0 0

𝜀
𝑖
𝐻
𝑇

𝑖
0 0 𝜀

𝑖
𝑇𝐻

𝑇

𝑖
0 −𝜀

𝑖
𝐼 0

(𝐸
𝑎𝑖
𝑋
𝑖
+ 𝐸

𝑏𝑖
𝑊
𝑖
) 𝐸

𝑎𝑑𝑖
𝑋
𝑖

0 0 0 0 −𝜀
𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (53)

where Υ
𝑖
= (𝐴

𝑖
𝑋
𝑖
+ 𝐵

𝑖
𝑊
𝑖
) + (𝐴

𝑖
𝑋
𝑖
+ 𝐵

𝑖
𝑊
𝑖
)
𝑇

+ 𝛼𝑋
𝑖
+

(1 − 𝑇𝛼)(𝜏 − 𝜏 + 1)𝑄
𝑖
, then under the state feedback

controller

𝑢 (𝑘) = 𝐾
𝜎(𝑘)
𝑥 (𝑘) , 𝐾

𝑖
= 𝑊

𝑖
𝑋
−1

𝑖
(54)

and the average dwell time scheme (13), the closed-loop system
(51) is exponentially stable with a prescribed𝐻

∞
performance

level 𝛾, where 𝜇 ≥ 1 satisfies (14).

Proof. Replacing 𝐴
𝑖
in (36) with 𝐴

𝑖
+ 𝐵

𝑖
𝐾
𝑖
, we get
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Θ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜑
𝑖

𝐴
𝑑𝑖
𝑋
𝑖

𝐷
𝑖
𝑇𝑋

𝑖
(𝐴

𝑖
+ 𝐵

𝑖
𝐾
𝑖
)
𝑇

𝑋
𝑖
𝐶
𝑇

𝑖
𝜀
𝑖
𝐻
𝑖
𝑋
𝑖
(𝐸
𝑎𝑖
+ 𝐸

𝑏𝑖
𝐾
𝑖
)
𝑇

𝑋
𝑖
𝐴
𝑇

𝑑𝑖
− (1 − 𝑇𝛼)

𝜏+1

𝑄
𝑖

0 𝑇𝑋
𝑖
𝐴
𝑇

𝑑𝑖
0 0 𝑋

𝑖
𝐸
𝑇

𝑎𝑑𝑖

𝐷
𝑇

𝑖
0 −𝛾

2

𝐼 𝑇𝐷
𝑇

𝑖
𝐺
𝑇

𝑖
0 0

𝑇 (𝐴
𝑖
+ 𝐵

𝑖
𝐾
𝑖
)𝑋

𝑖
𝑇𝐴

𝑑𝑖
𝑋
𝑖

𝑇𝐷
𝑖

−𝑇𝑋
𝑖

0 𝜀
𝑖
𝑇𝐻

𝑖
0

𝐶
𝑖
𝑋
𝑖

0 𝐺
𝑖

0 −𝐼 0 0

𝜀
𝑖
𝐻
𝑇

𝑖
0 0 𝜀

𝑖
𝑇𝐻

𝑇

𝑖
0 −𝜀

𝑖
𝐼 0

(𝐸
𝑎𝑖
+ 𝐸

𝑏𝑖
𝐾
𝑖
)𝑋

𝑖
𝐸
𝑎𝑑𝑖
𝑋
𝑖

0 0 0 0 −𝜀
𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (55)

where 𝜑
𝑖
= (𝐴

𝑖
+𝐵

𝑖
𝐾
𝑖
)𝑋
𝑖
+𝑋

𝑖
(𝐴
𝑖
+𝐵

𝑖
𝐾
𝑖
)
𝑇

+𝛼𝑋
𝑖
+(1−𝑇𝛼)(𝜏−

𝜏 + 1)𝑄
𝑖
.

Denoting𝑊
𝑖
= 𝐾

𝑖
𝑋
𝑖
, (53) is directly obtained.

The proof is completed.

We are now in a position to give an algorithm for deter-
mining𝐾

𝑖
and 𝜏∗

𝑎
.

Algorithm 12. Step 1. Input the system matrices.

Step 2. Choose the parameters 0 < 𝛼 < 1/𝑇 and 𝛾 > 0. By
solving (53), one can obtain the solutions of 𝜀

𝑖
,𝑊

𝑖
,𝑋

𝑖
, and𝑄

𝑖
.

Step 3.By (54), with the obtained𝑊
𝑖
and𝑋

𝑖
, one can compute

the gain matrices𝐾
𝑖
.

Step 4. Compute 𝜇 and 𝜏∗
𝑎
by (13)-(14).

4. Numerical Example

Consider system (11) with parameters as follows:

𝐴
1
= [

0.5 −0.7

0 0.4
] , 𝐴

𝑑1
= [

0.2 0

0 −0.4
] ,

𝐵
1
= [

0.12 0

0.4 −1
] , 𝐶

1
= [0.2 −0.18] ,

𝐷
1
= [

0.01

0
] , 𝐺

1
= 0.01,

𝐻
1
= [

0.05

−0.05
] , 𝐸

𝑎1
= [

−0.11

0.03
]

𝑇

,

𝐸
𝑎𝑑1

= [

0.03

−0.1
]

𝑇

, 𝐸
𝑏1
= [

0.02

−0.01
]

𝑇

,

𝐴
2
= [

1.2 −1.3

1.2 −0.8
] , 𝐴

𝑑2
= [

0 0.3

0.1 0
] ,

𝐵
2
= [

−0.1 0

0 0.3
] , 𝐶

2
= [0.1 −0.18] ,

𝐷
2
= [

0.02

−0.01
] , 𝐺

2
= 0.05,

𝐻
2
= [

0.07

−0.1
] , 𝐸

𝑎2
= [

0.06

−0.13
]

𝑇

,

𝐸
𝑎𝑑2

= [

0.01

−0.03
]

𝑇

, 𝐸
𝑏2
= [

−0.24

0.01
]

𝑇

,

𝐹
1
(𝑘) = 𝐹

2
(𝑘) = sin (𝑘) .

(56)

Choosing 𝜏 = 1, 𝜏 = 0, 𝛼 = 0.9, 𝛾 = 2, and 𝑇 = 0.25 and
solving (53) inTheorem 11, we obtain

𝑋
1
= [

48.9936 28.9063

28.9063 57.2489
] ,

𝑄
1
= [

28.3482 16.5940

16.5940 39.3879
] ,

𝑋
2
= [

7.7646 12.2103

12.2103 35.4768
] ,

𝑄
2
= [

4.3523 9.9187

9.9187 35.9927
] ,

(57)

and the state feedback gain matrices are as follows:

𝐾
1
= [

−25.2606 14.3786

−11.3117 7.9375
] ,

𝐾
2
= [

24.9665 −8.2606

16.0614 −12.3235
] .

(58)

According to (14), we have 𝜇 = 6.5134. Then, from (13),
we get 𝜏

𝑎
> 𝜏

∗

𝑎
= 7.3516. Choosing 𝜏

𝑎
= 7.5, the simulation

results are shown in Figures 1 and 2, where the initial con-
ditions are 𝑥(0) = [−1 1]

𝑇, 𝑥(𝑘) = [0 0]

𝑇, and 𝑘 ∈ [−1, 0)
and the exogenous disturbance input is𝑤(𝑘) = 0.05𝑒−0.5𝑘.The
switching signal with average dwell time 𝜏

𝑎
= 7.5 is shown in
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Figure 1: Switching signal.
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Figure 2: State responses of the closed-loop system.

Figure 1 and the state responses of the corresponding closed-
loop system are given in Figure 2.

From Figures 1 and 2, it is easy to see that the designed
controller can guarantee that the resulting closed-loop system
is exponentially stable. This demonstrates the effectiveness of
the proposed method.

5. Conclusions

In this paper, the robust stability and 𝐻
∞

controller design
problems for time-varying delay switched system using delta
operator approach have been investigated. By using the
average dwell time approach and constructing a Lyapunov-
Krasovskii functional candidate, sufficient conditions for the
existence of a state feedback 𝐻

∞
controller are presented.

Finally, a numerical example is given to illustrate the feasi-
bility of the proposed approach. In our future work, we will
study the problem of robust 𝐻

∞
filtering for delta operator

switched systems with uncertainties and time-varying delays.
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