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Abstract
Attempts have been made to understand driver development
in terms of code clones. In this paper, we propose an alter-
nate view, based on the metaphor of a gene. Guided by this
metaphor, we study the structure of Linux 3.10 ethernet plat-
form driver probe functions.

1. Introduction
Over the past 15 years, substantial attention has been paid
in the operating system (OS) community to the problem
of developing reliable device drivers. Proposed approaches
range from the use of domain-specific languages [12], to the
use of templates [2], to the generation of provably correct
drivers from specifications [15]. Nevertheless, Kadav and
Swift have pointed out that many of these approaches rely
on assumptions that are not true for many classes of drivers,
and thus do not scale up to the complete range of devices
[6]. There is thus a need for a better understanding of the
structure of device drivers, and of the specific issues and
design decisions that go into their creation.

A common view of device driver development is that
drivers are implemented by copy-paste programming. In this
form of programming, a driver developer starts with driver
code for a related device, makes a copy, and then adjusts the
copy according to device-specific information. In order to
understand this phenomenon, a number of studies have ap-
plied code clone detectors to Linux code [6, 10, 18]. How-
ever, knowing the amount of duplicated code, as often re-
ported in research papers, or the set of fragments of dupli-
cated code, as reported by code clone detection tools, is not
very helpful in understanding how to create a driver. Instead,
what is needed is a way to justify which fragments of an ex-
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isting driver should be selected, to achieve what functional-
ity.

Our thesis is that the set of code fragments included in a
device driver is determined by the set of features provided by
the device and the target machine, and by developer choices
in terms of the use of OS and support libraries. Furthermore,
we posit that these features are reflected by the data struc-
tures manipulated by the driver. Put another way, we view
the code fragments that make up a driver as being drawn
from a set of genes that support the various possible fea-
tures of a device. A gene is a sequence of related, possibly
noncontiguous code fragments that realize the functionality
relevant to a feature. We view the construction of a driver
as the process of selecting, adapting, and, if needed, inter-
leaving these genes to achieve a desired effect. Thus, when
a driver developer copies some existing code, he replicates
some genes and deletes others, that do not correspond to the
features of the target device.

In this paper, we perform a preliminary investigation of
this thesis. For this, we manually identify a part of the driver
genome, and then study the dispersal of these genes within
a driver population. In the context of this preliminary work,
our experiments focus on the probe functions of Linux eth-
ernet platform drivers from Linux 3.10, released in June
2013. These functions are concerned with driver initializa-
tion. They are interesting for this work because they are
affected by a wide range of device and machine features
and because they involve OS and support libraries that have
evolved over time. Our study reveals the following:

• The ethernet probe entry points use common sequences
of operations that can be viewed as genes.

• A single gene may involve functions defined at multiple
levels of the OS, ranging from the core to various support
libraries.

• New gene variants have appeared over time, resulting
multiple coexisting ways to express the same behavior.

• There is some correspondence between the choice of
genes and the data structures manipulated by probe entry
points, but this view needs some refinement to account
for derived values.



The rest of this paper is organized as follows. Section 2
illustrates a typical probe function. Section 3 presents the
design of our experiments, and the variant of an existing
clone detection tool that we have developed to help identify
genes in Linux device driver code. Section 4 presents the
results of our experiments. Section 5 describes related work
and Section 6 concludes.

2. Linux Platform Driver Probe Functions
To limit the amount of code to study in this preliminary
work, we consider only the probe function entry points of
Linux ethernet platform drivers, i.e., the functions mentioned
in the probe field of a platform driver structure of an
ethernet driver found in the Linux kernel directory dri-

vers/net/ethernet. A platform driver is a driver for a
device that offers direct addressing from the CPU, instead of
being attached to a bus such as PCI or USB. In Linux 3.10,
over 1300 Linux driver files for all types of services imple-
ment the platform driver interface. Of these, 65, amount-
ing to 77,171 lines of code,1 are ethernet drivers found in
the directory drivers/net/ethernet.2 The probe entry
point is invoked when the device is initialized, to perform
any device-specific initializations. The considered Linux
3.10 ethernet probe entry points amount to 5,838 lines of
code. Roughly a third of these probe functions (20) are from
drivers for the Arm architecture, and about a sixth (12) are
for PowerPC.

Figure 1 shows a typical probe entry point. This func-
tion performs three basic operations, which we recognize as
genes: 1) initializing memory mapped I/O (in red, lines 6-
7, 13-16, 25, 27), 2) initializing interrupts (in blue, lines 8-9,
17), 3) connecting the device to the net device support library
(in green, lines 10-11, 19-20, 31). Note that the code for ini-
tializing memory mapped I/O contains a bug; line 27 should
call release mem region rather than release resource.
Indeed, the possibility of bugs in the code increases the dif-
ficulty of identifying genes automatically, and is one reason
why clone detection is not sufficient.

In general, a probe entry point may call other functions
that typically perform device-specific initializations. For
simplicity, in this preliminary work, we do not take these
functions into account.

3. Studying the Driver Genome
To evaluate our thesis, we carry out a study in two parts.
First, to find genes, we pass over the set of probe entry point
functions, to identify common sequences of possibly disjoint
code fragments, which we abstract into genes. Then, to study
gene dispersal, we pass over these functions again, now with
the gene definitions, and count the number of occurrences

1 Lines of code were calculated using SLOCCount.
2 We observe that the Linux directory drivers/net/ethernet contains
drivers that are not ethernet drivers, but are drivers for related services, such
as the MDIO bus. We have not included these drivers in our study.

1 static int ftmac100 probe(struct platform device *pdev) {
2 struct resource *res; int irq, err;
3 struct net device *netdev; struct ftmac100 *priv;
4
5 if (!pdev) return −ENODEV;
6 res = platform get resource(pdev, IORESOURCE MEM, 0);

7 if (!res) return −ENXIO;
8 irq = platform get irq(pdev, 0);

9 if (irq < 0) return irq;
10 netdev = alloc etherdev(sizeof(*priv));
11 if (!netdev) { . . . goto err alloc etherdev; }
12 . . .

13 priv−>res = request mem region(res−>start, resource size(res), . . .);

14 if (!priv−>res) { . . . goto err req mem; }
15 priv−>base = ioremap(res−>start, resource size(res));
16 if (!priv−>base) { . . . goto err ioremap; }
17 priv−>irq = irq;
18 . . .

19 err = register netdev(netdev);
20 if (err) { . . . goto err register netdev; }
21 . . .

22 return 0;

23
24 err register netdev:
25 iounmap(priv−>base);
26 err ioremap:
27 release resource(priv−>res);
28 err req mem:
29 netif napi del(&priv−>napi);
30 platform set drvdata(pdev, NULL);
31 free netdev(netdev);
32 err alloc etherdev:
33 return err;
34 }

Figure 1. faraday/ftmac100.c probe entry point
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Figure 2. Methodology: solid lines represent automatic
tools, while dotted lines represent manual analysis

of each gene. These steps are summarized in Figure 2. Cur-
rently, our methodology is primarily manual, represented by
dotted lines in Figure 2, with some preliminary tool support.

The steps in our methodology are as follows, starting
from a set of Linux source code files. In Figure 2, the result
of step n is labeled n.

Part 1: Gene identification

1. Identify and extract the probe entry points. For this, we
use Coccinelle [14], to find declarations of platform -

driver structures, and extract the definition of the func-
tion stored in the structure’s probe field.

2. Identify clones in the probe entry point code. Our as-
sumption is that genes contain code that is common to



a number of drivers. We thus use clone detection to high-
light likely relevant code, to ease the identification of
genes. For clone detection, we use Deckard3 [5], which
can find clones at any degree of granularity. We put no
minimum on the clone size and require clones to be exact
matches. Nevertheless, we have substantially changed the
strategy of Deckard for abstracting over subterms, miti-
gating the effect of requiring exact matches. In particular,
we have modified Deckard to distinguish function names,
structure field names, and case labels, which appears to
be essential for accurately treating systems code (cf. [6]).
On the other hand, we abstract over debugging code and
error-handling code, which tend to be driver-specific.

3. Subdivide clones, as needed, according to their function-
ality. Clone detectors report maximal recurring code pat-
terns, regardless of their semantics. Thus, different parts
of a clone may relate to different genes.

4. Manually collect the identified code fragments that real-
ize a given functionality into genes. We typically identify
a gene as a sequence of code fragments involving com-
mon variables, but ad hoc knowledge of the semantics of
the OS and OS support functions is also required.

Part 2: Gene dispersal evaluation

5. Create Coccinelle semantic patches (pattern matching
specifications) that detect occurrences of the identified
genes. These semantic patches are designed to identify
exact occurrences of the genes, as well as fragments of
code that may relate to a gene, but do not match the
gene exactly. This helps address the issue of bugs in gene
instances, as highlighted in Section 2.

6. Apply the semantic patches to the probe functions.

7. Manually check and count gene instances among the
matched code fragments.

4. Evaluation
We have focused our evaluation on the genes illustrated by
our example in Figure 1. These are related to 1) allocation
of addresses for use with memory mapped I/O, 2) allocation
of interrupts, and 3) driver registration. Other genes that we
have identified, but have not yet studied in detail, relate to
DMA, clocks, MAC addresses, locks, timers and delays.

4.1 Memory mapped I/O
The genes for initializing memory mapped I/O each: 1) ob-
tain the physical addresses associated with the device, 2) re-
serve these addresses, and 3) map these addresses into vir-
tual ones. There are two families of these genes, depending
on how the physical address information is obtained.

Memory mapped I/O based on platform get resource.
One family of genes, illustrated by the paths in the directed

3 https://github.com/skyhover/Deckard
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Figure 3. Evolution in the genome for mapping virtual
memory

graphs shown in Figure 3, obtains the range of physical ad-
dresses using the function platform get resource with
the flag IORESOURCE MEM as an argument. For conciseness,
the graphs in Figure 3 describe the genes in terms of only
the names of the principal functions called, and not any pos-
sible assignments, tests, and error-handling code. Cleanup
code, to be performed only in case an error is detected in the
overall probe process is shown in brackets. The variant con-
sisting of the left most path in the leftmost graph is the one
found in our example in Figure 1.

The upper leftmost graph in Figure 3 represents the origi-
nal genome. The developer can choose between platform -

get resource and platform get resource byname de-
pending on the kind of key to use to find the device in-
formation, and between ioremap and ioremap nocache

depending on whether caching and buffering should be used
for I/O with the device. Finally, request mem region is
not always present. If it is omitted, the developer must have
confidence that the OS will not use the region of physical
memory for another purpose, and so it is not necessary to use
request mem region to reserve it. The remaining graphs
show subsequent extensions to the genome. These exten-
sions have been driven by the goal of simplifying driver
code and reducing the likelihood of errors.

Figure 4 summarizes the number of probe entry points
that use at least one instance of each of these genes. In a
few cases, a driver tries both platform get resource and
platform get resource byname, but the rest of the code
is shared; we count these as two separate gene occurrences.
Overall, the gene for memory mapped I/O that is used in
Figure 1 is the most common, appearing in 15 files. Most
of the other genes only appear in at most one or two probe
entry points. Clone detection using any kind of minimum
threshold on the number of occurrences of a clone would



Generation 1:
request only request only
ioremap ioremap ioremap nocache ioremap nocache

pgr 15 4 2 2
pgr byname 1 0 1 1

Generation 2:
request only request only
ioremap ioremap ioremap nocache ioremap nocache

pgr 2 1 2 0
pgr byname 0 0 0 0

Generations 3 and 4:
devm request and ioremap devm ioremap resource

pgr 2 2
pgr byname 0 0

Figure 4. Number of probe entry points containing the
platform get resource-based genes for initializing memory-
mapped I/O. “pgr” abbreviates “platform get resource”.

thus likely not be sufficient to find the relationship between
these drivers.

Five probe entry points use platform get resource or
platform get resource byname, but do not match any of
our genes. In two cases, the rest of the gene is found in a
helper function, which is out of scope of our current study.
In one case, the obtained address is only used in a debugging
message. In the remaining cases, it may be that the missing
ioremap is known not to be needed.

Finally, we observe that these genes cross kernel li-
braries. platform get resource and platform get -

resource byname are specific to platform drivers. re-

quest mem region, ioremap, and ioremap nocache are
generic I/O operations. Finally, the “devm” variants are part
of the devres library.

Memory mapped I/O based on of address to resource.
A few drivers, targeting the PowerPC architecture, obtain the
physical address range using the function of address to -

resource. These may then use e.g., request mem region

and ioremap, as in the platform get resource case, or
they may use only the function of iomap, which encapsu-
lates both a call to of address to resource and a call
to ioremap (the physical address range is not reserved in
these cases). A final variant is of ioremap, which is not
used with of address to resource, and which either pro-
vides a SPARC-specific definition of ioremap or is a wrap-
per for request mem region, for a 32 or 64-bit architec-
ture, respectively. Three probe entry points explicitly use
of address to resource and ioremap, of which two also
use request mem region. Three probe entry points use
of iomap alone, while two use of ioremap.

Connection with data structures. Part of our thesis is that
the gene instances found in a driver are determined in part
by the data structures manipulated by the driver. In the case
of memory mapped I/O, the location that receives the start-
ing virtual memory address has type void *, which is not
specific to this kind of gene. Nevertheless, out of the 53 ini-
tializations of memory mapped I/O found in our probe entry

pgr pgr byname pgi pgi byname
alone 15 0 20 9

with request irq 2 0 8 0

Figure 5. Number of probe entry points containing the
platform get resource-based genes for obtaining IRQs.
“pg{r,i}” abbreviates “platform get {resource,irq}”.

points, 89% (47) are stored in a field of the driver’s private
structure that is annotated with __iomem. Of the remainder,
4 are stored in a field that is not annotated, 1 is only via a
local __iomem variable within the probe entry point, and 1
is used via a global __iomem variable.

On the other hand, not every field annotated with __iomem
implies a separate instance of one of our genes. In some
cases, multiple __iomem fields do imply multiple gene in-
stances. In other cases, however, these fields are used to
store addresses at an offset from a value computed using a
gene instance. We leave further investigation of these cases
to future work.

4.2 Interrupts
As for physical address ranges, to be used for memory
mapped I/O, interrupt numbers may be obtained using
platform get resource or platform get resource -

byname, this time with the flag IORESOURCE IRQ. The
driver then dereferences the returned resource’s start and
end fields to obtain the range of interrupts. A simplified
form exists as well; the functions platform get irq and
platform get irq byname both obtain the resource struc-
ture and return the value in the start field, and are use-
ful when only the first interrupt number within the range is
needed.

Obtaining the interrupt number, however, is not sufficient
to initiate interrupt handling. It is also necessary to invoke
the function request irq. Typically, this is done in another
driver entry point, but some drivers call this function in
the probe function. We thus find that a single gene can
affect multiple entry points, and the effect of a gene can be
distributed across the diverse entry points in different ways.

Figure 5 shows the number of probe entry points us-
ing the various genes. We see that the use of the two
variants platform get resource and platform get -

irq is roughly even, while the “byname” variants are used
rarely. Furthermore, there are few probe entry points that
call request irq.

4.3 Registering a network device
In order to register a network device with the kernel, a
network driver creates a net device structure, initializes
its fields, and passes the resulting structure to the func-
tion register netdev. In the case of an ethernet driver,
three functions are available to allocate a net device struc-
ture: alloc etherdev, alloc etherdev mq, and alloc -

etherdev mqs differing only in the number of transmit and



receive queues that are allocated. This leads to three ba-
sic genes. 76% (50) of our probe entry points use alloc -

etherdev, 4% (3) use alloc netdev mq, and 1% (1) use
alloc netdev mqs. An additional 16% (11) invoke one of
these functions via a help function.

The three basic genes come in a number of variants, de-
pending on which fields of the net device structure are ad-
ditionally initialized. In this case, we consider the initializa-
tion to be part of the device registration gene, but the compu-
tation of these values to be separate, whether part of another
gene or device-specific code. Fields that can be initialized
include the field base addr (19 files), to be initialized to
the physical address to be used for I/O (cf., Section 4.1), and
the field irq (33 files) to be initialized with the device IRQ
number (cf., Section 4.2).

Unlike the other considered genes, the main goal of the
device registration gene is not to initialize a field of the
device’s private structure. Nevertheless, we can view the
inclusion of the device registration gene as being motivated
by the presence of a local variable of type net device in
the definition of the probe entry point.

5. Related Work
Clones. Wang and Godfrey investigate clones in Linux
SCSI drivers. On Linux 2.6.32.15, they find clone rates of
10-18% depending on the kind of code considered. They fur-
thermore show that a high rate of clones between two drivers
implies that the drivers support the same set of busses, with
a success rate of over 80%. This result is consistent with our
thesis that driver code is determined by device features.

Antoniol et al. [1] studied clones in various Linux 2.4 ver-
sions. They found few clones across different subsystems,
e.g., arch vs. drivers, but they found clone rates of up to
22.61% between different architectures. The case of differ-
ent architectures, may be considered to be analogous to the
case of different devices, where the code to address specific
features may be in common.

Several clone detection tools have been specifically de-
signed to address the properties of systems code. CP-
Miner [10], based on the identification of common subse-
quences within basic blocks, finds that over 21% of Linux
2.6.6 driver code is covered by clones. DrComp [6] works at
the function level, and finds similarities within 8% of driver
code, in Linux 2.6.37.6. These tools identify the presence of
clones, but do not explain how this cloned code contributes
to the driver structure.

In practice, we have found that the code fragments that
make up a single gene can be widely separated within a
driver. A number of works provide mechanisms to iden-
tify so-called API usage protocols, which are commonly oc-
curring not-necessarily-contiguous sequences of operations
[4, 8, 9, 11, 13]. The identified protocols have then been used
to construct fault finding rules. These approaches, however,
have do not try to exhaustively infer the protocols relevant to

a code base nor do they consider compositions of protocols
as a means of describing code structure.

Driver structure. Spear et al. [17] propose a notation for
declaring the resource requirements of a device driver, in the
context of the OS Singularity. Their declarations are primar-
ily intended for verification, but also trigger the generation
of boilerplate code targeting a high-level resource acquisi-
tion interface. While this work shares with our work a focus
on resources, it does not target legacy interfaces, provide an
explanation of legacy code, or address the interleaving of re-
source acquisitions and device-specific operations.

Termite proposes the derivation of a driver implementa-
tion from specifications of the OS, the device, and the device
class [15]. Termite specifications are concerned with input-
output behavior, e.g., the list of OS entry points called by
the OS and the types of results they are supposed to pro-
duce, and does not address the kinds of code that are com-
mon across driver implementations. RevNic proposes to port
drivers based on templates and device-specific values ob-
tained from executing a driver for the same device but a dif-
ferent OS [2]. Templates must be written manually. The fact
that we find that some genes, e.g. for initializing memory
mapped I/O, occur different numbers of times depending on
device needs suggests that a single fixed template may be
insufficient.

Feature-oriented programming is a programming para-
digm in which a complete software product line is described
at once, and specific programs are generated by selecting an
appropriate set of features from a formally defined feature
model. Beuche et al. organize an OS as a product line in
order to be able to generate minimal, application-specific in-
stances. Later work has focused on configuration. She et al.
transform a set of unstructured configuration options into a
feature model [16]. Dietrich et al. take makefile information
into account [3]. These approaches organize existing feature
decompositions, rather than identifying features in the code.
Kästner et al. mine feature implementations in existing Java
code, based on a preliminary manual identification of fea-
tures and some relevant code fragments [7]. This work could
be useful to us in the future, for identifying gene implemen-
tations automatically. Our current focus is on understanding
what features and feature implementations make up device
driver code.

6. Conclusion
In this paper, we have identified a new way of understanding
device driver structure, in terms of the genes that are used
in their construction, and identified the connection between
the presence of these genes and the set of data structures
manipulated by the driver. In this preliminary work, we have
focused on the portions of these genes found within Linux
ethernet platform driver probe functions. In the more general
case, a gene covers all operations related to a given feature,
e.g. interrupt management, and can have an impact on any



of the operations performed by a driver. In the future, we
will expand the genome, increase the degree of automation
of our methodology, consider how to identify and specify
dependencies between genes, and, ideally, propose a means
of automatically generating a device-specific skeleton of a
driver implementation from minimal information about the
features and requirements of the device.
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