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The PARMACS message passing interface has been in
widespread use by application projects, especially in Eu-
rope. With the new MPI standard for message passing, many
projects face the problem of replacing PARMACS with MPI.
An automatic translation tool has been developed which re-
places all PARMACS 6.0 calls in an application program
with their corresponding MPI calls. In this paper we describe
the mapping of the PARMACS programming model onto
MPI. We then present some implementation details of the
converter tool.

1. Introduction

During the last decade a number of portable mes-
sage passing interfaces have been developed [9]. They
enable an application program to be written at an ab-
stract level without explicit use of machine-specific
functions. One such interface, called PARMACS [2,
10], has been a commercial product for several years,
and was chosen as the programming environment by
many projects, most of them in Europe. Whereas
PARMACS-based application codes are portable among
different hardware platforms, they are not compatible
with codes or libraries which use other message pass-
ing interfaces, like PVM or P4. Therefore, a standard
for message passing is highly desirable.

Such a standard has been defined by the Message
Passing Interface Forum. Representatives from virtu-
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ally all major hardware vendors, national laborato-
ries, universities, and other interested institutions have
agreed on this MPI standard, which was published in
its final version 1.1 in May, 1995 [3,4,12]. Meanwhile,
public domain implementations are available for virtu-
ally every parallel platform, and some hardware ven-
dors have produced highly optimized versions for their
machines.

For an applications programmer, therefore, the ques-
tion arises of how PARMACS code can be translated
into MPI. For large program packages it would be
very desirable if there were an automatic, or at least
a semi-automatic migration tool. At GMD two tech-
niques have been used to solve this problem:

– A PARMACS implementation has been written in
terms of MPI. If this library is bound to a PAR-
MACS application, the program can run on any
machine where MPI is available, without the ne-
cessity of a machine–specific PARMACS imple-
mentation. Whereas this approach guarantees the
future usability of old codes, the application pro-
grammer continues to use PARMACS for mes-
sage passing and does not switch to MPI for fu-
ture code modifications.
Note that this does not provide an easy route to
a mixed use of PARMACS and MPI in the ap-
plication program. For this, the application pro-
grammer requires deep (and implementation de-
pendent) knowledge of the naming and mapping
of processes, internal communicators, etc.

– In the long run, another approach is more sat-
isfying: an automatic tool parses the application
source code and identifies all PARMACS calls.
It then replaces each subroutine reference with
some MPI code sequence, thus creating a version
of the application program which uses MPI in-
stead of PARMACS.

The second approach is quite ambitious, especially if
the efficiency of the resulting code is important. Al-
though MPI covers the general functionality of PAR-
MACS, the semantics differ considerably. MPI con-
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tains many features for writing very efficient code. Ex-
amples are the derived data-types by which extra copy
operations before and after the message transfer can
be avoided, and the low-level communication primi-
tives which implement a channel-like protocol for fre-
quent message transfers between the same processes.
Whether or not the use of those features speeds up the
code depends on the program context, which is very
difficult to analyze automatically. A straightforward re-
placement of PARMACS calls by their MPI counter-
parts could, therefore, not employ these advanced fea-
tures. Optimizations must be done by the applications
programmer.

On the other hand, the automatic PARMACS-to-
MPI transformation tool produces a working MPI ver-
sion of the application program, thus taking away from
the programmer the burden of rewriting the code man-
ually. An attempt has been made to use as efficient
MPI mechanisms as possible. If the resulting code is
to be used in a homogeneous environment where the
full generality of the message passing protocol is not
required, the user can select code generation for this
special case which leads to much less inserted text and
thus to increased readability of the resulting MPI pro-
gram.

The transformation tool is based on the following
specifications, the detailed documentation of which
can be found in [11]:

(1) A set of transformation rules giving for each
PARMACS call the corresponding MPI code se-
quence.

(2) Include files containing data structures used by
the inserted MPI code.

(3) A generic main program binding the PARMACS
host and node program together into an SPMD
program for MPI.

This paper concentrates on Fortran 77, although
PARMACS and MPI are also available as C versions.
The main reasons are that the vast majority of existing
PARMACS applications use Fortran 77, and the trans-
formation of C code will look very similar to the rules
presented here.

In the following section we discuss the main differ-
ences between the programming models of PARMACS
and MPI.

2. Comparison of programming models

The programming models of PARMACS and MPI
do not match completely. As a consequence, in porting

a PARMACS application to MPI some general difficul-
ties and restrictions are encountered, the most impor-
tant of which are described in this section.

PARMACS follows an MIMD programming model,
with one host process and a number of node pro-
cesses. A PARMACS application is transformed into
a single program, which begins with a generic main
program. This program initializes the MPI environ-
ment and analyses the homogeneity/heterogeneity of
the data representations in the parallel MPI processes.
This is done by performing collective MPI operations
on some test data. As a result, every process holds a ta-
ble which for every other process contains information
on representation match/mismatch. Depending on the
process identifier, the generic main program then calls
either a host or a node subroutine which replaces the
corresponding PARMACS program.

An important feature of PARMACS is the trans-
parent handling of process topologies. The application
programmer describes this topology on a purely logi-
cal level, without reference to the hardware structure
on which the program is to be mapped. This mapping
is done automatically by the PARMACS runtime sys-
tem. Although the process topology handling is also
available in MPI, it is done in a slightly different way.
In PARMACS, the host process defines the node pro-
cess arrangement and creates the nodes accordingly. In
MPI, all processes are created at once, and each node
process itself calls the mapping routine which assigns
its role in the topology.

The translated MPI version of a PARMACS pro-
gram proceeds as follows: the host process sets up
the mapping structure and broadcasts it to the nodes,
which in turn call the mapping functions. The host pro-
cess then gathers a process table which contains for
each node process its position in the topology.

The PARMACS definitions allow creating a second
set of node processes once the first set has finished.
This does not match with the static process concept of
MPI-1. Therefore, using this PARMACS feature pro-
duces an error message during conversion. The sec-
ond phase of the MPI standardization activity, which
started in March 1995, will lead to the inclusion of a
chapter on dynamic process management in the result-
ing MPI-2 standard. So, eventually it will be possible
to remove this limitation in a later version of the trans-
lation tool.

The specification of message data-type information
for the automatic conversion in a heterogeneous in-
vironment is handled differently in PARMACS and
MPI. In PARMACS, the application passes a contigu-
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Fig. 1. Translation of a PARMACS send operation in an homogeneous environment.

ous buffer to the send routine, together with a descrip-
tion of the buffer (e.g., two integers, followed by ten
doubles). On the receiving side the message is passed
to the application program, after any necessary data
conversions have been made automatically. The regu-
lar MPI send/receive mechanism requires that the re-
ceiving process has a priori knowledge of the message
data types and layout. Thus, this mechanism cannot be
used in a PARMACS-to-MPI translation without the
cost of one additional message containing the struc-
ture information. Therefore, two different protocols are
used instead, the choice depending on whether the data
representations match or not. If they do, the message is
sent as a contiguous string of typeMPI_BYTE, which
gives the best possible performance. Only in the het-
erogeneous case, the pack/unpack mechanism of MPI
is employed. So, the additional memory copies are
only done in this case where communication speed
cannot be expected to be high.

This strategy ensures high message-passing perfor-
mance in the most frequent case where the representa-
tions match, without loosing the full generality in a het-
erogeneous environment. The program, however, can
only select the protocol at run-time, based on the rep-
resentation match/mismatch table. Thus, it must con-
tain code for both execution paths, which results in a
considerable increase in code length. If the MPI code
is to be used in a homogeneous environment only, the
user can select the command line option-hom which
results in a considerable reduction of the program size.
Figure 1 shows the translation of a send operation in
the homogeneous case.

The arguments for message destination, tag, and
length are assigned to temporary variables before be-
ing passed toMPI_SEND. The reason is that the actual
arguments can be expressions containing PARMACS
function references, which in turn can expand to sev-
eral statements (see Section 3.5). Note that this cannot
happen for the message buffer and error code which
are output arguments. In the general case the inserted

Fig. 2. Translation of a PARMACS send operation in an heteroge-
neous environment.

code contains some 50 lines, so Fig. 2 only depicts the
general logic used.

Although part of the complicated structure of the
heterogeneous MPI code is a result of the translation
from PARMACS, a substantial fraction of it is unavoid-
able even if the user directly writes the MPI program.
If, for the sake of saving multiple message start-ups, a
message contains more than one basic MPI data-type,
the set-up of derived data-types or the calling of buffer
pack/unpack routines always results in relatively long
code.
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Fig. 3.

3. The converter tool

3.1. Basic strategy

Transformation tools like the one presented in this
paper are usually based on pattern recognition tech-
niques. In this case there are several reasons, why the
processing of input patterns requires detailed knowl-
edge of the program context and cannot be accom-
plished by a straightforward string replacement. The
definitions of PARMACS functions depend on their us-
age in a host or node program. Whereas most func-
tions can appear in both contexts, some functions can
only be used in either a host or a node routine. Even
for those functions which have the same meaning in
host and node programs the corresponding MPI code
sequences can differ considerably.

A special problem is caused by the option in For-
tran to define arrays with arbitrary index ranges, as, for
example, in the following statement:

REAL A(-5:10).

If the MPI code which replaces a PARMACS call as-
signs values to this array in a loop, the loop index
bounds have to be adjusted accordingly. This problem
is discussed in more detail in Section 3.4.

To meet all these requirements, the conversion
consists of an analysis and a transformation phase.
For the analysis the converter employs a full-scale
FORTRAN 77 front-end that collects all relevant data.
This information is then used by the transformation
program which again is built using compiler technol-
ogy, based on the GMD development ADAPTOR [1].
Some of the problems encountered in the conversion

of PARMACS calls are presented in the following sec-
tions.

Some PARMACS functions do not have counter-
parts in MPI-1. If they are used in an application,
the automatic transformation fails. Also, the converter
does not check the PARMACS input for correctness.
This is the task of the application programmer, and no
guarantee is made about the transformation of an erro-
neous program.

3.2. Context sensitivity

In PARMACS applications the host and node pro-
grams have different execution environments. Data
structures initialized at program start contain different
information, and some types of information are only
available on either the host or node side. Although the
transformed MPI program is of SPMD type, at any
given time the state of a particular process depends on
which kind of PARMACS process it emulates. Thus,
PARMACS functions which are available on the host
and node sides with identical calling sequences have
to be translated into different MPI code sequences.
By selecting the converter options-host or -node ,
the programmer specifies whether a PARMACS source
code file is used in a host or node environment, repec-
tively.

The example in Fig. 3 shows how the MPI code
which replaces a simple PARMACS call depends on
the host/node context.

3.3. Simple transformations

The most simple kind of transformation occurs if
for a PARMACS function there exists a corresponding
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Fig. 4.

MPI routine with identical number and types of argu-
ments. In this case the transformation consists of a sim-
ple string substitution (see Fig. 4). Unfortunately, how-
ever, this situation is the exception rather than the rule,
and in most cases the PARMACS and MPI functions
differ considerably.

In general, the emulation of a PARMACS function
in an MPI environment requires the generation of a
more or less complicated code sequence. It may con-
tain assignments to temporary variables as well as to
the scalar or array arguments of the PARMACS proce-
dure. If all PARMACS function arguments are scalar,
the MPI code can be generated without additional
knowledge about the actual arguments. The transfor-
mation in the next example is of this relatively simple
kind (see Fig. 5).

The PARMACS functionPMPROBdelivers the tag
and sender information of an incoming message via the
scalar argumentsreqsnd andreqtag , whereas the
corresponding MPI functionMPI_IPROBEuses a sin-
gle array for the same purpose. The temporary array
PM_TEMP_STATUSis passed to the MPI routine, and
its return values are assigned to the scalar PARMACS
arguments. Since the array indicesMPI_SOURCEand
MPI_TAG are fixed and context independent, the in-
serted MPI code is static, except for the names of the
actual PARMACS arguments.

3.4. More complicated transformations

In the previous examples the transformations only
require information which can be extracted from the
PARMACS function reference, i.e., the number and
the names of the actual (scalar) arguments. If a PAR-
MACS function contains array arguments, the situation
is more complex for two reasons: first, array indexing
in Fortran 77 can start with any value (not necessar-
ily 1), and, although not supported by the standard, it is
common practice among Fortran programmers to pass
an element somewhere in the middle of an array as ac-
tual argument to a routine which expects an array ar-
gument. If the converter inserts assignment statements
to such an array argument, it must shift the indexing
accordingly.

The following code sections exemplify these situa-
tions. In the first (standard) case, indexing of the actual
array argumentsonvec starts with 1 (see Fig. 6).

The same MPI code is generated if the PARMACS
call is replaced by

call PMGLTR(nrsons,sonvec(1),father,code)

If, however, the actual PARMACS function argument
is not the first array element, as in the following exam-
ple

call PMGLTR(nrsons,sonvec(5),father,code)

the index space of the generated loop assignment has
to be shifted:

DO PM_TEMP_I=1,PM_NUM_SONS

sonvec(PM_TEMP_I+4)

= PM_TREE_SONS(PM_TEMP_I)

END DO

Fig. 5.
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Fig. 6.

Therefore, the converter scans all actual array argu-
ments for offsets and inserts them at the appropriate
positions of the transformation sequence.

Finally, the same shift as in the last example has to
be generated if, for some reason, the array declaration
is replaced by

INTEGER sonvec(5:max_sons+4)

and the PARMACS function is called as in the original
case. In this example the transformation is more diffi-
cult, because the index bounds of the actual array argu-
ment are not known at the point where the PARMACS
function is called. Therefore, the converter looks up
the array bounds in the internal tables generated by the
compiler front-end.

Another strategy to handle arrays with non-standard
offsets would be to copy them into temporary vectors
with standard indexing. For long vectors, however, this
would lead to a considerable overhead, both in memory
usage and execution time.

3.5. Nested PARMACS references

PARMACS function references can occur in various
different contexts, which the converter has to take into
account in the transformation. In the most simple sit-
uation a subroutine call is replaced by some statement
sequence. The transformation is more complicated for
Fortran function references which may appear in any
Fortran expression. In the easiest case where a PAR-
MACS function is converted into a single MPI func-
tion, the converter replaces the PARMACS function
with its MPI counterpart, and the structure of the code
remains unchanged.

This straightforward technique fails if the function
reference is expanded into several lines of code. We
call the case where the function reference occurs in
a simple assignment statement abasic occurrence.
The expanded code is inserted directly preceeding the
function reference, and the resulting function value

replaces the function call in the original PARMACS
statement.

If the function reference occurs in a more complex
context, as, for example, in a numeric expression or
an argument list of another function, the converter pro-
ceeds in two steps. First, it restructures the original
PARMACS code by inserting an assignment to a tem-
porary variable before the function occurrence, and re-
placing the original function reference with the tem-
porary variable. This reduces the PARMACS function
reference to abasic occurrence, and in the second step
the converter can process the code as described before.

Fig. 7 shows an example of this situation.
The converter recognizes the PARMACS function

PMFORM()in the argument list of the subroutinePM-
SNDand replaces it with the temporary variableTMP1.
At this point the converter is capable of transforming
thePMSNDcall to MPI, using the still undefined tem-
porary variable. A new statement which assigns the
value ofPMFORM()to the temporary variableTMP1
is inserted preceeding the original statement. Since this
assignment contains abasic occurrenceonly, the con-
version can be completed.

4. Applications

An automatic converter is only useful if it is able
to process large program packages correctly without
manual intervention. Therefore, testing the PARMACS-
to-MPI converter with large industrial applications has
been of high priority. Large codes which have been
successfully processed include:

– the operational European medium-range weather
forecasting program (IFS) of the ECMWF at
Reading, U.K. [5],

– the combustion simulation code FIRE of AVL,
– the market leading crash simulation package PAM-

CRASH of the ESI group [6,7],
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Fig. 7.

– and the CLIC communications library of GMD
which is the basis of the message-passing versions
of the German industrial CFD codes for aircraft
development [8].

The transformation of the first three codes was tested
by the application code owners as part of the Esprit
project P6643 (PPPE).

The communications library CLIC which contains
more than 100,000 lines of communication-intensive
code was transformed in the German national project
POPINDA. The whole task was accomplished in a few
days by a project partner who had no detailed knowl-
edge of the library. They only reported one problem:
Since the transformer removed all comment lines from
the source code, they had to move them all back to their
original locations.

In all test cases the converter proved to work in a
stable way, and the generated code ran correctly.
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