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In this paper, we investigate a stochastic appointment scheduling problem in an outpatient clinic with a single

doctor. The number of patients and their sequence of arrivals are fixed, and the scheduling problem is to

determine an appointment time for each patient. The service durations of the patients are stochastic, and only

the mean and covariance estimates are known. We do not assume any exact distributional form of the service

durations, and solve for distributionally robust schedules that minimize the expectation of the weighted

sum of patients’ waiting time and doctor’s overtime. We formulate this scheduling problem as a convex

conic optimization problem with a tractable semidefinite relaxation. Our model can be extended to handle

additional support constraints of the service durations. Using the primal-dual optimality conditions, we

prove several interesting structural properties of the optimal schedules. We develop an efficient semidefinite

relaxation of the conic program, and show that we can still obtain near optimal solutions on benchmark

instances in the existing literature. We apply our approach to develop a practical appointment schedule at

an eye clinic that can significantly improve the efficiency of the appointment system in the clinic, compared

to an existing schedule.
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1. Introduction

In many service delivery systems, the core operational activities are largely planned around

the arrival times of the customers. The ability to regulate the arrival of customers through

a suitable appointment system is thus central to the performance of these systems. The

FastPass service of Disney is a well known example. Customers in the park can obtain

a pass to ensure fast service at certain rides if they return at the stipulated time. The

temple of Tirumala in India has also used an online appointment system to convert its long

waiting line into a virtual queue. This has helped improve service delivery and generated

spillover economic benefits to businesses in the vicinity of the temple1.

The appointment design problem is also a core problem for healthcare facilities such as

outpatient clinics and operating rooms. The appointment system is thus used to regulate

the usage of the costly equipment and precious resources in the system. In an eye-care

facility that we have visited, there are two consultation sessions per day, each lasting four

hours, and the number of doctors available per session is around two to seven. Each doctor

has to handle 20 to 30 patients per session. The patients can be classified into “New” (20%)

and “Repeat” (80%) patient types. The mean and variance of the consultation times of the

new patients are noticeably higher than those of repeat patients, as the conditions of the

new patients are hitherto unknown prior to the visit. There are also various operational

details that complicate the situation. For instance, patients often have to go for a dilation

test prior to seeing the doctor. This process adds to the complexity of finding an optimal

appointment strategy for the system.

One key performance indicator in this system is the “Turnaround Time” (TAT), defined

to be the time from the moment the patient walks into the clinic, to the moment the patient

leaves the clinic. Figure 1 shows the overall median TAT, service time and waiting time
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(WT) of patients arriving in different time slots for two different sessions in the clinic,

where TAT is the sum of service and waiting times. Clearly the patients are experiencing

long turnaround time, with waiting time far exceeding the actual service time.

Figure 1 Median time from registration to payment

We note that there are several pertinent features in this system: (i) New patients often

have to undergo a series of checks (such as visual acuity, and/or other advanced tests) after

the consultation, some of which can take as much as 2.5 hours. To make sure that all the

tests and consultations can be performed within the same day, the doctors prefer to see

the new patients in the early portion of the morning session. Consequently, early morning

slots are reserved primarily for new patients. (ii) The current appointment strategy is to

allocate 5 minutes per patient slot for one hour, followed by a half hour break. Then in

a four-hour session (e.g., 8am–12noon), there are three contiguous one-hour consultation

periods with two half hour breaks in between. This allows each doctor to see 36 patients.

This leads to the central questions of this paper: is there any (near) optimal strategy to

schedule the arrival of patients (based on the patient’s classification) such that the waiting

time of the patients and overtime work of the doctor are minimized? Furthermore, are
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there any “distributionally robust” solutions that perform well for a wide range of service

time distributions?

The research on appointment system design over the past few decades has been driven

largely by these issues. However, these problems are notoriously difficult. Standard queue-

ing theory does not apply as we are interested in the transient performance measures of

the system. It is technically challenging to calculate the expected waiting time of the nth

patient in the sequence, due to the difficulty of propagating the impact of earlier events on

this patient. Recently, Begen & Queyranne (2009) showed that the scheduling problem is

solvable in polynomial time (in the size of the representation of the discrete distributions).

However, this method works well only for discrete distributions with a small number of dis-

tinct values. To the best of our knowledge, simulation and stochastic programming methods

are still the preferred approaches for the appointment design problem. Unfortunately, the

solutions obtained are often sensitive to the samples used to develop the schedules, and

hence very little is known about the structure of the optimal policies, even in the sim-

plest environment with one doctor and when patients arrive punctually according to the

appointment schedule.

1.1. Contributions

In this paper, we develop a convex conic programming approach to solve the appointment

scheduling problem. We show that this problem can be suitably reformulated as a two-

stage stochastic optimization problem. In the second stage, we construct a network flow

model to capture the waiting time of each patient, under a given scheduling policy (from

the first stage problem). Our novelty comes in the solution to the first stage problem, which

is a technically challenging problem. Instead of using a specific service time distribution

to design the schedule, we employ a minimax approach so that the schedule is designed
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to minimize the maximum expected cost achieved by some distribution from a family of

distributions. Next, we develop a conic optimization framework to transform the stochas-

tic appointment scheduling problem into a single deterministic copositive programming

problem (COP)2.

Using the primal-dual optimality conditions, we prove several interesting structural prop-

erties of the optimal schedule. For instance, our analysis shows that when the appointment

system is operating under the optimal schedule, other than the first slot and the last

few ones (where the consultation intervals allocated are zero, i.e., patients are bunched

together), the chances of waiting for service in the clinic is identical for patients assigned to

all other slots. Furthermore, our model can also handle the correlations between patients’

service durations, which has been largely overlooked in literature.

Computationally, we solve a tractable semidefinite approximation to the COP. Although

the schedule obtained using our model is optimal for a set of canonical service time dis-

tributions (called worst case distributions), our numerical results show that this schedule

also works reasonably well for several other service duration distributions with the same

moment conditions. We also find that the schedule obtained from solving the SDP approxi-

mation often satisfies the structural properties obtained from model analysis. Furthermore,

with the help of existing semidefinite programming (SDP) packages, we can now obtain

near optimal schedule for practical size appointment scheduling problems.

In a congested system with two types of patients, as in our eye clinic case, the optimal

schedule often exhibits the pattern: “Bailey’s Rule + Break”3 - the optimal schedule allo-

cates near zero time slots to the first few patients, which resembles the well known “Bailey’s

Rule”, and a break is often inserted before switching from a class of patients with higher

variability to another class of patients with lower variability. We use this observation and
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the solution from the SDP model to develop a simple and practical schedule for the eye

clinic. Compared to the naive approach of allocating equal interval to each patient with a

break in between (which is current practice in the clinic), our schedule can reduce the total

system waiting cost by around 36%. This approach has thus the potential of producing

near optimal appointment schedules that can be deployed in practice.

1.2. Structure of the Paper

In the next section, we briefly review the relevant literature for our problem. In Section

3, we describe the development of our conic optimization model in two steps, followed by

several important extensions in Section 4 to address more practical issues. In Section 5,

we analyze the structure and properties of the optimal scheduling policy, while in Section

6, numerical studies are presented to evaluate our approach under various circumstances

as well as a case study of the eye clinic. We conclude in Section 7.

2. Literature Review

Since the pioneering work of Bailey (1952) and Welch & Bailey (1952), there have been

extensive studies on the appointment design problem in the past six decades. In this section,

we briefly review some key findings that are most relevant to our paper, but refer the

readers to Cayirli & Veral (2003), Gupta (2007), Gupta & Denton (2008) and Erdogan &

Denton (2010) for more thorough reviews.

There are several pertinent issues related to the design of a good appointment system.

Some research considers the uncertainty of patient no-shows, i.e., a patient fails to show-

up for his or her appointment (Bailey (1952), Ho & Lau (1992), LaGanga & Lawrence

(2007), and Chen & Robinson (2012)). Some considers the possibility of (emergency) walk-

in patients without appointments (Fetter & Thompson (1966), Vissers &Wijngaard (1979),
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Chen & Robinson (2012)). While the majority of research effort has been put into the

analysis on the uncertainty of service durations (Bailey (1952), Wang (1993), Denton &

Gupta (2003), Robinson & Chen (2003), Kaandorp & Koole (2007), Begen & Queyranne

(2009)), less is known about the optimal policy even when the random service duration is

the only source of uncertainty. Our work follows this line of research and tries to solve the

problem from a different perspective. Using the primal-dual optimality conditions of our

convex conic formulation, we prove several interesting structural properties of the optimal

schedule.

Denton & Gupta (2003) formulated the appointment scheduling problem as a two-stage

stochastic linear program and used a sequential bounding approach to determine upper

bounds of the problem. Kaandorp & Koole (2007) assumed that the service durations

follow an exponential distribution and that the patient arrivals can only be scheduled at

discrete intervals. They used results in queueing theory to calculate the objective function

for a given schedule of starting times and used a local search algorithm to find the opti-

mal solution. Begen & Queyranne (2009) went a step further and argued that under mild

assumptions, the discrete time version of the appointment scheduling problem (i.e., the

service time distribution of each patient is given by a joint discrete probability distribution)

could be solved in polynomial time, by showing that the objective function is an L-convex

function. Unfortunately, the results are of theoretical nature and no numerical solutions

were presented. A recent paper by Begen et al. (2010) was based on the methodology

developed in Begen & Queyranne (2009) but assumed no prior knowledge of probabil-

ity distributions on job durations. They re-constructed an empirical distribution of the

consultation durations from a set of historical data and then developed a sampling-based

approach and established the cost (numbers of samples needed) to obtain a near-optimal
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solution with high probability. Thus far, simulation and stochastic programming remain

the main solution methodologies for the appointment scheduling problem.

In view of the analytical and computational difficulties of the problem, we address this

issue from a different angle, utilizing the concept of robust optimization. Evolving from

the minimax theorem established by John Von Neuman in 1928, the concept was first

brought into operations research area by Scarf (1958). Scarf solved an inventory problem

with random demand by assuming only the mean and variance of the demand instead of a

specific form of distribution. Noting that there could be multiple distributions that satisfy

a given mean and variance, Scarf identified a worst case distribution that would result in

the highest expected total system cost, and found an inventory strategy to minimize this

maximal cost. That is why another popular term describing the concept is distributionally

robust. Recently, this concept has been extensively studied and developed. One stream

of research is to exploit the connection between the theory of moments and semidefinite

programming (SDP) (cf. Bertsimas et al. (2004), Bertsimas et al. (2006), Bertsimas et al.

(2008), Vandenberge et al. (2007).). In a recent paper, Natarajan et al. (2010) showed that

a robust mixed 0-1 linear program under objective uncertainty is equivalent to a convex

conic program, which would be helpful in dealing with a second stage recourse function in

a two stage stochastic programming framework.

In this paper, we exploit the ideas and tools of (distributionally) robust optimization

to study the traditional appointment scheduling problem. The concept of distributionally

robust model fits naturally in such a context because it is difficult to characterize the exact

distribution of the service durations. Current research has assumed a wide range of distri-

butions, like gamma distribution (Bailey (1952), Soriano (1966), Denton & Gupta (2003)),

uniform distribution (Ho & Lau (1992), Denton & Gupta (2003)), exponential distribution
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(Ho & Lau (1992), Wang (1993), Kaandorp & Koole (2007)), normal distribution (Denton

& Gupta (2003)), and log-normal distribution (Cayirli et al. (2008), Chen & Robinson

(2012)), etc. On the other hand, estimating the moments of service durations is relatively

easier and the estimators are much more reliable. Therefore, finding a scheduling policy

that could perform reasonably well against various distributions satisfying certain moment

conditions appears to be a promising direction to solve the scheduling problem.

3. A Two Stage Model with the Copositive Cone

3.1. Assumptions, Notation and Problem Formulation

To isolate the impact of scheduling on the system performance, we rule out the presence

of other disruptions in the system. The basic assumptions are listed as follows:

1. The sequence of patient arrivals is fixed. Service occurs in the same sequence.

2. Patients arrive punctually at the scheduled appointment times4.

3. There is a single doctor in the facility. The doctor arrives punctually and only serves

the scheduled patients during the session. No break is taken during the time serving one

patient.

4. Patients in the same class are homogenous in the distribution of consultation dura-

tions.

5. Walk-in and emergency patients are not considered.

Note that in a typical appointment scheduling problem, it is common for the patients to

choose the appointment slots in a dynamic fashion, and their characteristics, such as mean

and standard deviation of service time, are known only at the time of booking. The problem

described above matches more the surgery scheduling environment. However, in certain

appointment scheduling environments, patients are classified into distinct classes and each

appointment slot in a single clinical session is pre-assigned to a dedicated class of patients.
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The slots are filled up when patients call in for appointments and their classifications are

revealed. We assume that the clinic has enough volume to fill up the slots available in each

day. In this way, the scheduling problem described here essentially addresses the design of

the appointment system based on the patient classifications, not on the characteristics of

individual patients.

Let N = {1,2, . . . , n} be the index set for all patients, and the sequence of arrivals is

1,2, . . . , n. Let ũi be the random service time of patient i, i = 1,2, . . . , n. We define s =

{s1, s2, · · · , sn}T , where si represents the length of time slot scheduled for ith patient in

the sequence. Therefore, the appointment time of the patients in the sequence is given by{
0, s1, s1 + s2, . . . ,

∑n−1
i=1 si

}
.

We assume that ũi follows a distribution with mean µi and standard deviation σi, and

P(ũi ≥ 0) = 1, i.e., ũi has nonnegative support. Let wi denote the waiting time of the ith

patient in the sequence. It is reasonable to assume that the first session starts at time

zero, i.e., w1 = 0. Define c̃i to be the difference between the actual consultation time and

the allocated consultation interval of the ith patient in the sequence, i.e., c̃i = ũi − si, i=

1, . . . , n. Then the waiting time of subsequent patients are given by the following recursions:

wi =max{0,wi−1 + c̃i−1} , i= 2,3, . . . , n.

More precisely,

wi =max

{
0, c̃i−1, c̃i−1 + c̃i−2, · · · ,

i−1∑
k=1

c̃k

}
, i= 2,3, . . . , n. (1)

If there were an additional “auxiliary” patient (i.e., the (n+ 1)st patient) arriving at

the end of the consultation session, then the doctor’s overtime would be exactly the wait-

ing time of this patient, i.e., wn+1 =max{0,wn + c̃n} . In this paper, we will use the total
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patients’ waiting time and doctor’s overtime (i.e.,
∑n

k=1wk and wn+1) as the key perfor-

mance indicators of the appointment system. The objective of the appointment scheduling

problem is to minimize the expectation of the weighted sum of the patients’ waiting times

and the doctor’s overtime, i.e.,

E

[
n∑

i=1

ρiwi + ρn+1wn+1

]
, (2)

where ρi, i= 1,2, . . . , n+1 are the corresponding weights (or the unit waiting time/overtime

cost). We first assume that ρi = 1 for all i= 1, . . . , n+1, and then relax this assumption in

Section 4.

Note that the doctor’s total idle time during the session is also a crucial performance

indicator of the appointment system. When the consultation interval (i.e., the session

length, denoted as T ) is pre-determined, the total idle time is T +wn+1 −
∑n

i=1 ũi. Hence,

we do not include the doctor’s idle time in the objective since adding the expected total

idle time can only cause the objective function to differ by a constant and the weight of

wn+1 to increase by 1.

The technical difficulty associated with the scheduling problem is partially due to the

computation of

E [wi] =E

[
max

{
0, c̃i−1, c̃i−1+ c̃i−2, · · · ,

i−1∑
k=1

c̃k

}]
, i= 2,3, . . . , n.

We introduce a two stage stochastic optimization framework to tackle this problem. In the

first stage, the appointment scheduling decisions are made under the objective to minimize

the expected total waiting time cost5 defined in equation (2). In the second stage, the

patients’ service durations are realized and the system performance is determined. Let us

consider the second stage problem first.
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3.2. The Second Stage Problem

Given the schedule of the patients (i.e., s is known), the total waiting time cost in equation

(2) can be computed by solving a network flow problem on a directed acyclic graph shown

in Figure 2, with n+1 supply nodes and a sink node s. The cost on arc (i, s) is 0, and the

cost on arc (i+1, i) is c̃i(s) = ũi − si, where the notation c̃i(s) is used here to emphasize

the dependencies of c̃i on the given schedule s (not in the figure). The capacities for all the

arcs are infinite. Let yi, i= 1,2, . . . , n, be the flows on arc (i+1, i), and zi, i= 1,2, . . . , n+1

be the flows on arc (i, s).

Figure 2 Network flow representation of the appointment scheduling problem

Proposition 1. Given the schedule s, the optimal cost of the following maximum cost

flow problem equals the total waiting time cost of the system under any realization of ũ:
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f (s, ũ) := max
n∑

i=1

c̃i(s) · yi =
n∑

i=1

(ũi − si) · yi

s.t. y1 − z1 =−1

yi − yi−1− zi =−1, ∀i= 2,3, . . . , n

−yn − zn+1 =−1

yi ≥ 0, ∀i= 1,2, . . . , n

zi ≥ 0, ∀i= 1,2, . . . , n+1

Proof. The proposition can be easily verified through tracking the flow of each unit of

supply at node 1,2, . . . n+1. A detailed argument can be found in EC.1 of the electronic

companion to this paper. �

Remark 1. Note that Proposition 1 is developed in the deterministic situation. In the

second stage, the patients’ service durations are realized, i.e., they can be considered as

deterministic. Then the network optimization problem in Proposition 1 is proposed to find

out the total waiting time cost under this realization. When the patients’ service durations

(c̃(s)) become stochastic, the optimal value of the network flow problem (f(s, ũ)) also

becomes stochastic and depends on c̃(s).

Removing one redundant network flow conservation constraint and using matrix nota-

tion, we rewrite f (s, ũ) as follows for the ease of exposition:

f (s, ũ) = max c̃T (s)y

s.t. a(j)Ty− e(j)Tz =−1, ∀j = 1,2, . . . n

y,z ≥ 0

where c̃ (s) = (c̃1(s), c̃2(s), . . . , c̃n(s))
T , y= (y1, y2, . . . , yn)

T , and z = (z2, z3, . . . , zn+1)
T ; and

e(j) ∈ Rn is the unit vector with its jth entry being one; and a(j)j = −1 for j = 1, . . . n,

a(j)j+1 = 1 for j = 1, . . . , n− 1, and a(j)k = 0 otherwise.



Kong et al.: Appointment Scheduling Using Copositive Cones
14 Article submitted to Operations Research; manuscript no. OPRE-2011-04-185

3.3. The First Stage Problem

As mentioned before, we will deploy the minimax approach in our modeling framework,

which we need to address before solving the scheduling problem. Under a fixed schedule

s, when the service durations become stochastic, but with given moment conditions, the

maximal expected total waiting time cost can be written as:

(P) ZP (s) := sup
ũ∼(µ,Σ)+

{Eũ[f (s, ũ)]}

where ũ∼ (µ,Σ)+ denotes that the distribution of ũ lies in the set of feasible multivariate

distributions supported on Rn
+ with finite first moment µ and finite second moment Σ. We

assume this set to be nonempty. The challenge to solve (P) reduces to the following: can

one find a distribution for the random variable ũ in such a way that

P (ũ≥ 0) = 1, E [ũ] =µ, E
[
ũũT

]
=Σ,

and a corresponding optimal solution (y(s, ũ),z(s, ũ)) to f (s, ũ) in (P ), so that

E
[
c̃(s)Ty(s, ũ)

]
attains the maximum ZP (s)? In general, if the maximum cannot be

attained, can one find a sequence of random variables so that ZP can be attained asymp-

totically?

It turns out that this problem can be reformulated into a conic programming problem

through a moment decomposition approach. Before showing the main result, we introduce

necessary notation, and briefly review related subjects on the conic optimization problem.

3.3.1. Notation and a Brief Review of Conic Optimization

The trace of a matrix A, denoted by tr(A), is the sum of the diagonal entries of A. The

inner product between matrices A and B of the same dimensions is denoted as A •B =

tr(ATB). In represents the identity matrix of dimension n×n, while 0m×n is used to denote

the zero matrix of dimension m×n. We may drop the subscript when it represents a zero

vector of an appropriate dimension that is obvious.
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For any cone K, its dual cone is denoted as K∗. Let Sn denote the cone of n×n symmetric

matrices, and S+
n denote the cone of n×n positive semidefinite matrices. A≽ 0 indicates

that the matrix A is positive semidefinite, and B ≽A is equivalent to B−A≽ 0. Similarly,

A ≥ 0 indicates that the matrix A has nonnegative entries, and B ≥ A is equivalent to

B−A≥ 0.

Two cones of special interest are the cone of completely positive matrices and the cone

of copositive matrices. The cone of n×n completely positive matrices is defined as

CPn :=
{
A∈ Sn : ∃V ∈Rn×k

+ , such that A= V V T
}
= conv

{
vvT : v ∈Rn

+

}
,

where “conv” means the convex hull. The cone of n×n copositive matrices is defined as

COn :=
{
A∈ Sn : ∀v ∈Rn

+, v
TAv≥ 0

}
.

A≽cp (≽co) 0 indicates that matrix A is completely positive (copositive). These two cones

are both closed, convex, pointed and have nonempty interior. Moreover, they are duals of

each other (cf. Berman & Shaked-Monderer (2003)). A linear program over the cone of

copositive matrices is called a copositive program (COP), whose dual problem is a linear

program over the cone of completely positive matrices known as a completely positive

program (CPP).

Despite the nice properties of these two cones, it is widely believed that their membership

status is NP-hard to check. For instance, the problem of testing if a given matrix is

copositive is known to be co-NP-complete (cf. Murty & Kabadi (1987)). In a recent paper,

Dickinson & Gijben (2011) showed that the membership problems for both copositive and

completely positive cones are NP-hard. Fortunately, there are well-known hierarchies of

linear and semidefinite representable cones that approximate the copositive and completely

positive cones (cf. Bomze et al. (2000), Klerk & Pasechnik (2002), Parrilo (2000)). In
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this paper, we restrict our attention to the simplest relaxations of CPP and COP for the

numerical experiments, i.e.,
A≽cp 0≈A≽ 0, and A≥ 0

A≽co 0≈∃A1 ≽ 0, and A2 ≥ 0, such that A=A1+A2.

(3)

More information on CPP and COP can be found in Berman & Shaked-Monderer (2003).

3.3.2. Moment Decomposition and Conic Representation

For ease of exposition, we define x=

y

z

, and rewrite the network flow constraints as

Ax= b, x≥ 0, where

A=



a(1)T −e(1)T

a(2)T −e(2)T

...
...

a(n)T −e(n)T


, and b=



−1

−1

...

−1


.

Since A has full rank, the only feasible solution to Ax= 0 and x≥ 0 is x= 0.

Let

D := conv




π

t

v




π

t

v



T

: π ∈R+, t∈Rn
+, v ∈R2n

+ , Av= bπ


. (4)

From the definition of CPn, we know that D is indeed the intersection of the completely

positive cone, CP3n+1 with a hyperplane in R2n+1 projected onto R3n+1 (i.e., a polyhedral

cone in R3n+1). Furthermore, if π = 0, then Av = 0 and consequently v = 0. Therefore,

every Z ∈D can be expressed as

Z =
∑
k∈K+

π(k)2


1

t(k)
π(k)

v(k)
π(k)




1

t(k)
π(k)

v(k)
π(k)



T

+
∑
k∈K0


0

t(k)

02n×1




0

t(k)

02n×1



T

, (5)
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where K+ and K0 are the corresponding indicator sets, and they can be chosen to be finite6

(c.f. Berman & Shaked-Monderer (2003)).

If Z1,1 = 1, then π(k)2 can be interpreted as the probability of the kth scenario with

service duration ũ= t(k)/π(k), and solution x(s, ũ) = (y(s, ũ),z(s, ũ)) = v(k)/π(k). The

corresponding objective function in the kth scenario is given by
∑n

i=1(ũi−si)y(s, ũ)i. Aver-

aging over all the scenarios each with probability π(k)2, we get the objective function given

by Y (s) •Z, where Y (s) is a (3n+1)× (3n+1) symmetric matrix defined as

Y (s) =



0 01×n −sT

2
01×n

0n×1 0n×n
In
2

0n×n

−s
2

In
2

0n×n 0n×n

0n×1 0n×n 0n×n 0n×n


.

The second term in the expression for Z in (5) can be viewed as a characterization of

the null set for the corresponding probability space. With such a moment decomposition

interpretation, we get the following optimization problem by incorporating other moment

conditions:

(C) ZC (s) := sup Y (s) •Z

s.t. Z1,1 = 1, Z1,i+1 = µi, Zi+1,j+1 =Σi,j, ∀i, j = 1,2, . . . , n

Z ∈D
Furthermore, we can prove that the above conic optimization problem is indeed equivalent

to Problem (P).

Proposition 2. For any given schedule s, ZC (s) =ZP (s).

Proof. There are two steps involved in the proof. Firstly, we show that Problem (C)

provides an upper bound for (P), i.e. ZC (s) ≥ ZP (s), ∀s. Next, through a constructive

approach, we find a sequence of random vectors, ũ∗
ϵ that satisfies the moment conditions
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in the limiting sense and E [f (s, ũ∗
ϵ)] converges to ZC (s) when ϵ converges to zero, i.e.,

the bound provided by (C) is tight. The technical details are omitted here but available in

EC.2. �

Remark 2. Note that our conic optimization model resembles the results of Natarajan et

al. (2010), but is obtained from a different perspective. Instead of separating the moment

requirement on ũ and the feasibility conditions on x and then enforcing their relationship

through a lifting constraint, we directly characterize the cone D from the moment decompo-

sition angle. There are several advantages to the new perspective - the dual program has a

more intuitive interpretation with this approach, making the primal-dual relationship clear

and transparent. Furthermore, strong conic duality follows directly via generalized Slater’s

constraint qualification (cf. Sturm (1999)). This framework can also be easily extended

to obtain conic relaxations for stochastic optimization problem with support conditions

imposed on the random parameters.

Now we have a conic maximization problem that solves Problem (P) exactly. To incor-

porate the scheduling decision s, we still need one more step, which is taking the dual of

Problem (P).

3.3.3. Conic Duality and Copositive Program
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Let D∗ denote the dual cone of D, i.e., D∗ = {W :Z •W ≥ 0, ∀Z ∈D}. Then the dual of

Problem (C), denoted by ZD (s), can be written as follows:

ZD (s) := inf Σ •Γ+µTβ+α

s.t. W =


α βT

2
01×2n

β
2

Γ 0n×2n

02n×1 02n×n 02n×2n

−Y (s) =



α βT

2
sT

2
01×n

β
2

Γ − In
2

0n×n

s
2

− In
2

0n×n 0n×n

0n×1 0n×n 0n×n 0n×n


W ∈D∗

where α ∈ R, β ∈ Rn and Γ ∈ Rn×n are the corresponding dual variables of the moment

constraints.

By the definition of D∗, for all (1, ũ,y(s, ũ),z(s, ũ))T satisfying

A

y(s, ũ)

z(s, ũ)

= b, ũ≥ 0, y(s, ũ)≥ 0, z(s, ũ)≥ 0,

we have 

α βT

2
sT

2
01×n

β
2

Γ − In
2

0n×n

s
2

− In
2

0n×n 0n×n

0n×1 0n×n 0n×n 0n×n


•





1

ũ

y(s, ũ)

z(s, ũ)





1

ũ

y(s, ũ)

z(s, ũ)



T


=



1

ũ

y(s, ũ)

z(s, ũ)



T 

α βT

2
sT

2
01×n

β
2

Γ − In
2

0n×n

s
2

− In
2

0n×n 0n×n

0n×1 0n×n 0n×n 0n×n





1

ũ

y(s, ũ)

z(s, ũ)


≥ 0,
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i.e.,  1

ũ


T α βT

2

β
2

Γ


 1

ũ

≥ (ũ− s)Ty(s, ũ).

Hence, for any distribution of the service durations, with probability 1, 1

ũ


T α βT

2

β
2

Γ


 1

ũ


≥max

(ũ− s)Ty(s, ũ) :A

y(s, ũ)

z(s, ũ)

= b, ũ≥ 0, y(s, ũ)≥ 0, z(s, ũ)≥ 0

 .

Then the weak duality ZD (s)≥ ZC (s) follows immediately. Furthermore, since Problem

(P) is obviously bounded, so is (C). Then as long as there is a feasible solution to (C) that

lies in the relative interior of D, by the generalized Slater’s constraint qualification, there

is no duality gap between the primal ZC (s) and its dual ZD (s). Note that this condition

is independent of the choice of s. Furthermore, it is worthwhile to point out that D needs

not be full dimensional for strong duality to hold. We use a simple example in EC.3 to

illustrate this.

To convert ZD (s) into a copositive programming problem, we need to analyze the struc-

ture of the cone D and D∗. Let Z ∈D, and

Mi =


b2i 01×n −biA

T
i

0n×1 0n×n 0n×2n

−biAi 02n×n AiA
T
i

=


−bi

0n×1

Ai




−bi

0n×1

Ai



T

, i= 1,2, . . . , n,

where AT
i is the ith row vector of A, i.e., AT

i =

(
a (i)T −e (i)T

)
. Note that


π

t

v



T

Mi


π

t

v

= (AT
i v− biπ)

2 = 0 if and only if AT
i v= biπ.
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Hence, we can rewrite D as

D= {Z :Z •Mi = 0, ∀i= 1,2, . . . , n, Z ∈ CP3n+1} , (6)

and it can be easily verified that

D∗ = cl

({
W :W = V −

n∑
i=1

γiMi, V ∈ CO3n+1, γi ∈R, i= 1,2, . . . , n

})
, (7)

where “cl” denotes “closure”.

Therefore, we obtain the following formulation for the appointment scheduling problem:

ZD(s) := inf Σ •Γ+µTβ+α

s.t.



α βT

2
sT

2
01×n

β
2

Γ − In
2

0n×n

s
2

− In
2

0n×n 0n×n

0n×1 0n×n 0n×n 0n×n


+

n∑
i=1

γi



−bi

0n×1

a (i)

−e (i)





−bi

0n×1

a (i)

−e (i)



T

≽co 0

where the decision variables are α∈R, β ∈Rn, Γ∈Rn×n, and γ ∈Rn. We can now optimize

the choice of s∈Rn, where s is constrained to be in a feasible set ∈Ωs. For example, s∈Ωs

in our case is
n∑

i=1

si ≤ T , and si ≥ 0, ∀i= 1,2, . . . , n, (8)

which means the time slots must be nonnegative and the total scheduled time cannot

exceed the session time T . We assume T > 0.

We have thus obtained the central result in this paper:

Theorem 1. Suppose there is a feasible solution to (C) that lies in the relative interior of

D, so that strong conic duality holds. Then

min
s∈Ωs

{
sup

ũ∼(µ,Σ)+
{E [f (s, ũ)]}

}
= inf

s∈Ωs

ZD(s) (9)
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Let (S) denote the convex conic programming problem on the RHS of (9). Dickinson

(2010) showed that

int (CP3n+1) =


m∑
i=1

aia
T
i :

ai ∈R3n+1
+ , ∀i= 1,2, . . . ,m,

span{a1,a2 . . . ,am}=R3n+1,

∃a∈ {a1,a2 . . . ,am} such that a> 0


.

Suppose Z ∈ int(CP3n+1), with Z =
m∑
i=1

aia
T
i given by the above characteriza-

tion, and aT
i = (πi, t

T
i ,v

T
i ). Since aia

T
i • Mk = (Akvi − bkπi)

2,Z • Mk = 0,∀k =

1,2, . . . , n if and only if Akvi − bkπi = 0,∀i, k = 1,2, . . . , n. In this case, vi ∈

R2n but dim(span{vi : i= 1,2, . . . ,m}) < 2n. This is a contradiction as it implies

span{a1,a2 . . . ,am} ̸=R3n+1. Thus the set D lies in the boundary of the completely positive

cone.

To ensure that there is a feasible solution to (C) in the relative interior of D, we

assume that there is a set of scenarios {c1,c2, . . . ,cp}, with corresponding probabilities

{π1, π2, . . . , πp}, so that

p∑
i=1

πi

1

ci


 1

ci


T

=

 1 µT

µ Σ

 .

Furthermore, we assume that the moments matrix lies in the interior of the completely

positive cone, i.e., for any positively supported distribution s̃ different from c̃ and πs̃ ≥ 0,

there exist a positively supported distribution t̃, πt̃ ≥ 0 and λ∈ (0,1) such that

E


1

c̃


 1

c̃


T= λE


πs̃

s̃


πs̃

s̃


T+(1−λ)E


πt̃

t̃


πt̃

t̃


T .

In this case, we can assume without loss of generality that there is a point in the relative

interior of D, say Zs, because D is nonempty and convex. By the definition of D, Zs can

be expressed as a sum of rank one matrices. We can apply the above assumption on c̃ for
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every rank one matrix in Zs to construct a point in D such that it satisfies all the moment

conditions in Problem (C) and it can be written as a sum of Zs and another point in D7.

Using the facts that D is a convex cone, and that adding a relative interior point of a

convex cone with any point in the cone still results in a relative interior point of the cone,

we can show that the point we found above lies in the relative interior of D. Hence, the

strong duality follows.

4. Extensions

In this section, we show that our model can be extended to capture more features of the

practical appointment scheduling problem, while still maintaining a formulation that is a

compact convex conic optimization problem.

4.1. General Waiting Time Costs

In the earlier discussion, we have assumed ρi = 1 for all patients. The network flow model

used in the second stage problem can be extended to cope with general waiting time costs

ρi. This can be achieved by simply changing the in-flow at each node i from 1 to ρi, and

the out-flow at node s from n+1 to
∑n+1

i=1 ρi. The reader can easily verify that the total

waiting time cost is now mapped to the maximum cost flow problem in the network with

the new supply and demand parameters.

4.2. Eye Test before Consultation (Late Arrivals)

Suppose that the ith patient in the sequence has to undertake a test prior to the consul-

tation. The test is often handled by a nurse and can be administered immediately upon

arrival. The duration of the test is random and denoted by the random variable l̃i. We

define the waiting time of the patients to be the waiting time needed to consult the doctor

after the test is administered. We also assume that the patients are seen by the doctor in
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the same sequence based on the appointment time, i.e., the sequence of the patients seen

by the doctors is the same as the sequence of arrival. In this case, we can also use the

network flow model to capture the impact of the test on the performance of the system.

This is achieved by changing the cost on arcs (i, s), i= 1,2, . . . , n, from 0 to the random

variables, l̃i. Then the network flow solution in our model corresponds to the total waiting

time cost in the system, offset by
∑n

i=1l̃i, i.e.,

f
(
s, ũ, l̃

)
= max

n∑
i=1

c̃i(s) · yi+
n∑

i=1

l̃izi−
n∑

i=1

l̃i

s.t. y1− z1 =−1

yi− yi−1 − zi =−1, ∀i= 2,3, . . . , n

−yn − zn+1 =−1

yi ≥ 0, ∀i= 1,2, . . . , n

zi ≥ 0, ∀i= 1,2, . . . , n+1

To see this, note that when zi = 1, the ith patient finishes the eye test and finds the doctor

to be idling. This patient gets to consult the doctor at time l̃i after arrival. The waiting

time is thus zero. This starts a new busy period, with the initial consultation duration

given by l̃i+ c̃i(s), so we need to offset the objective by l̃i. On the other hand, if after the

test, the patient finds the doctor to be busy, then zi = 0 in the network flow solution, and

hence the waiting time is simply the length of the longest path originating from node i

deducted by l̃i.

Then it is clear that we can extend the definition of the cone D8 to capture the impact

of l̃ just as ũ, and finally we can still arrive at a convex conic optimization formulation for

the appointment scheduling problem with random prior tests. Note that the effect of such

tests is exactly the same as late arrivals, i.e. patients arriving at a random time after the

scheduled appointment. Thus, we can also address the issue of late arrivals with the same

approach described above.
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4.3. Relationship to Scenario Planning

In our model, we assume that only the moments and covariance parameters of the service

durations are known. Then our model constructs a set of scenarios, the associated proba-

bility functions, and a solution which attains the (worst case) performance objective under

this set of scenarios. Our approach can be easily augmented to include specific scenarios

when describing the uncertainty set for the service durations. More specifically, suppose

that the system planner would like to construct the optimal schedule under the additional

restrictions to include N scenarios uL with probability pL, such that
∑N

L=1 pL = p ≤ 1.

Furthermore, the conditional first and second moments for the remaining scenarios are

denoted by (µ,Σ)+. Then our model reduces to

ZP (s) = (1− p) sup
ũ∼(µ,Σ)+

{E [f (s, ũ)]}+
N∑

L=1

pLfL (s, ũ) ,

where f (s, ũ) is defined as before and

fL (s, ũ) = max
n∑

i=1

(uL
i − si) · yLi

s.t. yL1 − zL1 =−1

yLi − yLi−1 − zLi =−1, ∀i= 2,3, . . . , n

−yLn − zLn+1 =−1

yLi ≥ 0, ∀i= 1,2, . . . , n

zLi ≥ 0, ∀i= 1,2, . . . , n+1

In this way, we use a small set of scenarios to ensure that the optimal solution constructed

will not perform too badly for these typical scenarios, and hence will not be overly con-

servative. Note that the dual to the above second stage problem can be written using the

approach described earlier, together with standard linear programming duality.

When p = 1, ZP reduces to the conventional stochastic optimization problem solved

via the sampling method. Hence, this framework can be viewed as a bridge between the

traditional stochastic optimization and modern robust optimization.
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4.4. Generalized Conic Relaxation Framework for More Support Information

For the random service time, except the moment conditions, we only require that they must

be nonnegative. In general, there may be other conditions that the system planner would

like to impose on the random service time, like a boundedness condition, etc. Our model

provides a natural way to incorporate more support information through the construction

of the cone D. Recall in equation (6), we express D as

D= {Z :Z •Mi = 0, ∀i= 1,2, . . . , n, Z ∈ CP3n+1} .

We can view D as the intersection of the completely positive cone CP3n+1 with

Mi := {Z :Z •Mi = 0} , i= 1,2, . . . , n.

While the network conservation constraints are embedded within Mi, CP3n+1 captures

both the non-negativity constraints for the network flow variables and nonnegative support

requirement of the random service time. Thus, it appears intuitive for us to augment CP3n+1

if we want to incorporate more support conditions. In order to develop a more general

framework, we need the following lemma, which can be easily verified by the definition of

a dual cone.

Lemma 1. Suppose Kk ⊆Rn×n, k= 1,2, . . . ,m, are closed convex cones. Let the dual cone

of Kk be Kk∗. Then the dual cone of the following cone

Kn :=
m∩
k=1

Kk =
{
A∈Rn×n :A∈Kk, k= 1,2, . . . ,m

}
is

K∗
n : = cl

(
m∑
k=1

Kk∗
)

= cl

({
A∈Rn×n : ∃Ak ∈Kk∗, k= 1,2, . . . ,m, such that A=

m∑
k=1

Ak

})
.
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With Lemma 1, one can easily derive the expression of the dual cone of D as shown

in equation (7) by recognizing that the dual cone of Mi is Mi∗ := {γiMi : γi ∈R}. Thus,

as long as the extra support conditions can be characterized with some conic constraints

and their dual cones are compactly representable, we could still obtain a single conic

optimization relaxation formulation for the appointment scheduling problem.

For example, suppose the system planner would like to add some boundedness conditions

for the random service time, which is characterized by the following ellipsoid constraint:

(ũ−u)T Q (ũ−u)≤ r with probability 1, for some Q∈ Sn ⊆Rn×n,u∈Rn and r ∈R.

This constraint restricts the random service time to lie in an ellipsoid of size r centered

at u. Using the probabilistic interpretation of Z ∈D, we can transform this condition into

the following conic constraint on Z together with the nonnegative and linear constraints,

Z ∈ E :=

conv




π

t

v




π

t

v



T

:


π

t

v



T 
r−uTu uTQ 01×2n

Qu −Q 0n×2n

02n×1 02n×n 02n×2n




π

t

v

≥ 0,

π ∈R+, t∈Rn
+, v ∈R2n

+ ,

Av= bπ


.

Define

Θ :=

conv




π

t

v




π

t

v



T

:


π

t

v



T 
r−uTu uTQ 01×2n

Qu −Q 0n×2n

02n×1 02n×n 02n×2n




π

t

v

≥ 0,

π ∈R

t∈Rn

v ∈R2n


.
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Then it is obvious that E ⊆D∩Θ, which provides a basis to get a relaxed conic optimization

formulation for the problem. By Lemma 1, (D∩Θ)∗ = cl(D∗ +Θ∗), where Θ∗ is the dual

cone of Θ. Furthermore, Θ∗ can be easily obtained using S-Lemma (cf. Polik & Terlaky

(2007)), i.e.,

Θ∗ :=


V ∈R(3n+1)×(3n+1) : ∃τ ≥ 0, such that V − τ


r−uTu uTQ 01×2n

Qu −Q 0n×2n

02n×1 02n×n 02n×2n

≽ 0


,

which will translate into an extra semidefinite constraint in the final dual formulation of

the problem. The resulted dual cone becomes

(D∩Θ)∗ = cl

({
W :W = V1 +V2 +

n∑
i=1

γiMi, V1 ∈ CO3n+1, V2 ∈Θ∗, γi ∈R, i= 1,2, . . . , n

})
.

Therefore, we have come to a relaxed formulation for the appointment scheduling problem

with ellipsoidal support constraints.

5. Model Analysis

Our model provides a single deterministic convex formulation to solve a two stage distri-

butionally robust stochastic optimization problem. The formulation is exact under mild

technical conditions so that strong conic duality holds. To the best of our knowledge,

this model is the first of its kind. Furthermore, as shown in the development of the conic

optimization model, the optimal solution to Problem (C) has a natural probabilistic inter-

pretation under the worst case distribution. Note that we can obtain the values of those

(primal) variables in (C) by taking the dual of (D). Together with the network flow for-

mulation of the waiting time experienced, they provide a new way to obtain some insights

into the structure of the optimal appointment schedule. In the rest of this section, we

show that the solution obtained from this deterministic model retains many of the intuitive
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properties of the optimal schedule under more realistic probabilistic consultation service

distributions. To maintain the flow of this paper as well as to keep it succinct, we relegate

all of the proofs in this section to EC.5. In terms of notation, we use the asterisk sign (∗)

to indicate the respective optimal solution. For example, s∗i denotes the optimal solution

of si in Problem (S).

We show first that if there is a need to bunch the arrival of patients together, then it is

optimal to bunch the arrivals at the end of the session. This is intuitive because whenever

the consultation time is modeled by a non-negative distribution, if bunching occurs for

the (i− 1)st and ith patient, but not the (i+ 1)st patient, then it is optimal to schedule

the arrival of the ith patient slightly later and keep the schedule of the (i+ 1)st patient

unchanged. The reason is obvious since the ith patient has to wait almost surely if she

comes at the same time as the (i−1)st patient. The optimal schedule in our model retains

this feature.

Proposition 3. Let the waiting time costs and overtime cost be strictly positive. In any

optimal solution s∗ to Problem (S), let I be the set of allocated service times, which are

zero, i.e., I := {i : s∗i = 0}. Then I = {n−|I|+1, . . . , n−1, n}, i.e., I is the last |I| members

of {1,2, . . . , n}.

In a practical settings, the nonnegativity constraints on the consultation slots (i.e., si ≥

0,∀i= 1,2, . . . , n) enforce that all the appointment times are within the consultation session

(T ). Intuitively, if the system is heavily congested, it may be optimal to schedule some

patients to arrive after time T , i.e.
∑k

i=1 si > T for some k < n. To incorporate this into

our model, we remove the nonnegativity constraints on the consultation slots. The next

proposition shows that if these nonnegativity constraints are removed, only the last slot

(sn) can be negative in the optimal schedule as long as the costs of waiting time and
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overtime are strictly positive. Note that the scheduled arrival time of the nth patient is∑n−1
i=1 si and is therefore larger than T if sn < 0, because

∑n
i=1 si = T . Furthermore, the

constraint
∑n

i=1 si = T ensures that the counting of the doctor’s overtime starts from time

T , and sn < 0 in the network flow structure indicates that the doctor’s overtime (i.e., the

(n+1)th patient’s waiting time) is at least −sn > 0.

Proposition 4. Suppose the nonnegativity constraints on consultation slots (i.e., the sec-

ond set of constraints in equation (8)) are removed. When the waiting time costs and

overtime cost are strictly positive, in the optimal solution to Problem (S), there is at most

one negative slot. Furthermore, if this negative slot exists, it must be the last one, i.e.,

s∗i > 0, ∀i= 1,2, . . . , n− 1, and s∗n < 0.

We investigate next the probability of a patient arriving at the scheduled time to find

the system busy. From Figure 2, the flow yi merges with ρi at node i. The probability that

this combined flow goes through arc (i, i−1) is exactly the probability that the ith patient

has to wait. Otherwise, the flow on arc (i, i− 1) would be zero, which indicates that the

waiting time cost is zero for the ith patient since arc (i, s) has zero flow cost. More precisely,

E[yi−1(s, ũ)] =E[E[yi−1(s, ũ)|yi(s, ũ)]]

=E[(yi(s, ũ)+ ρi) ·Pr{ith patient has to wait}]

= (E[yi(s, ũ] + ρi) ·Pr{ith patient has to wait}

=⇒ Pr{ith patient has to wait}= E[yi−1(s, ũ)]

E[yi(s, ũ)]+ ρi
.

Since the optimal s∗ is selected to minimize

E [f (s, ũ)] =E

[
n∑

i=1

c̃i(s)yi(s, ũ)

]
=E

[
n∑

i=1

(ũi− si)yi(s, ũ)

]
,

From the first order optimality conditions, we expect that at the optimal s∗, if s∗i−1 > 0

and s∗i > 0, then E[yi−1(s
∗, ũ)] = E[yi(s

∗, ũ)]. This holds indeed for the optimal schedule

obtained using our model.
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Proposition 5. If in the optimal solution to Problem (S), the allocated service time slots

are strictly positive, (i.e., s∗i > 0, ∀i ∈ I ⊆ {1,2, . . . , n}), then the network flow solution

must satisfy E[yi(s
∗, ũ)]≡K, ∀i∈ I, where K is some nonnegative constant.

Combining the propositions established thus far, we can derive an important optimality

condition for an appointment system:

Theorem 2. Suppose in the optimal solution to Problem (S), the allocated consultation

slots are strictly positive for the first k patients, (i.e., s∗i > 0, ∀i = 1,2, . . . , k, where 0 <

k ≤ n). Furthermore, if ρi ≡ ρ, for some constant ρ > 0, for all i = 1,2, . . . , k, then the

probabilities of waiting for the service are the same for all the patients from i= 2, . . . , k,

under the optimal worst case distribution.

Remark 3. Note that the optimality condition stated in the above theorem is independent

of the sequence of the patients. This property of the optimal schedule is particularly useful

for the patients: there is little incentive to choose between the slots in the clinical session

if the objective is to minimize the chances of waiting for the service.

6. Computational Results

All the computational studies are carried out in MATLAB on a Dell desktop (Core 1.86

GHz and 3GB of RAM). We solve the simplest form of SDP relaxation of the COP and

CPP as shown in equation (3). In MATLAB, we use YALMIP as the programming interface

with SDPT3 as the underlying SDP solver (cf. Löfberg (2004), Toh et al. (1999), Tutuncu

et al. (2003)).

Note that expressing a problem as a COP or CPP and relaxing it only partially resolve

the difficulty of the problem, because even solving a large-scale SDP can be computationally

prohibitive. Since our model lifts the original problem into a cone with higher dimensions,



Kong et al.: Appointment Scheduling Using Copositive Cones
32 Article submitted to Operations Research; manuscript no. OPRE-2011-04-185

the current computational power limits the size of the problem instance we can solve to

around 36 patients. While it is an interesting challenge to push the computational limit of

this approach further, we leave this to future research. By “large-scale problem”, we mean

problems that involve hundreds or even thousands of variables. Fortunately, in practice we

usually will not encounter such large sized problems. In the eye clinic case, we only need

to schedule 36 patients for the whole morning session.

In what follows, we use extensive numerical experiments to provide a glimpse into the

performance of the optimal scheduling solutions obtained using our model.

6.1. Comparison with near-optimal solutions

In this section, we test the performance of our model against a set of near optimal solutions

given in Denton & Gupta (2003). Table 1 lists the near optimal schedules given in that

paper, for 7 jobs with identically independent distributed service time (Uniform(0,2))

under different cost structures and fixed session length T = 7. The waiting time costs are

identical among all the patients. In their numerical results, the optimality gap is less than

1%. We compute Problem (S) to obtain the optimal schedule that minimizes the worst-

case cost under all distributions with mean 1 and standard deviation 1/
√
3. The results of

our model are presented in Table 2. Note that in Denton & Gupta (2003), the objective

function is the weighted sum of total waiting time, idle time and overtime of the doctor,

while in our model the objective function does not include the cost of idle time. According

to Proposition 1 in Denton & Gupta (2003) (similar to our argument in Section 3.1), we

can transform the optimal scheduling problem in Denton & Gupta (2003) equivalently

into our problem by combining the cost of idle time and overtime. Since Denton & Gupta

(2003) allows negative schedules, we remove the non-negativity constraints in equation (8)

when solving Problem (S) for a fair comparison.
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Table 1 Optimal schedules from Denton & Gupta (2003) under different cost

structures

(ρ1, ρn+1) (3,14) (5,12) (7,10) (3,12) (5,10) (7,8) (3,10) (5,8) (7,6)
s1 0.61 0.83 1.06 0.65 0.88 1.14 0.72 1.00 1.25
s2 1.09 1.18 1.27 1.11 1.22 1.34 1.13 1.25 1.38
s3 1.08 1.20 1.26 1.11 1.24 1.31 1.12 1.25 1.38
s4 1.09 1.20 1.27 1.13 1.22 1.32 1.13 1.25 1.38
s5 1.07 1.10 1.21 1.05 1.14 1.25 1.08 1.19 1.35
s6 0.94 1.00 1.16 0.96 1.01 1.20 0.94 1.07 1.24
s7 1.14 0.50 -0.23 1.01 0.31 -0.56 0.89 -0.01 -0.98

Table 2 Optimal schedules from our model under different cost structures

(ρ1, ρn+1) (3,14) (5,12) (7,10) (3,12) (5,10) (7,8) (3,10) (5,8) (7,6)
s1 0.35 0.87 0.94 0.52 0.89 0.99 0.76 0.92 1.05
s2 1.32 1.09 1.16 1.22 1.10 1.20 1.08 1.13 1.26
s3 1.05 1.17 1.25 1.08 1.19 1.30 1.11 1.22 1.38
s4 1.12 1.29 1.38 1.16 1.31 1.44 1.21 1.35 1.53
s5 1.20 1.31 1.36 1.23 1.31 1.42 1.26 1.33 1.50
s6 1.17 1.27 1.20 1.20 1.20 1.25 1.24 1.18 1.33
s7 0.79 0.00 -0.29 0.58 0.00 -0.61 0.33 -0.14 -1.04

Next, we compare the total waiting time costs under the schedules given in Tables 1

and 2 through Monte Carlo simulation. In evaluating our model, the service duration

of each patient is generated under four common distributions used in practice: uniform,

normal, two-point and Gamma distribution, with mean 1 and standard deviation 1/
√
3.

All 9 different cost structures are tested. 50,000 rounds of simulation are executed for

each of the 36 scenarios (4 distributions × 9 costs structures)9. The average total costs

under different scenarios are then compared with the corresponding benchmark schedules

given by Denton & Gupta (2003) under the uniform distribution. As shown in Table 3 the

schedules obtained from our model work phenomenally well when evaluated against the

benchmarks. The average total costs under our model is close to that of Denton & Gupta

(2003) even under different distributions. The gaps are within 2% and most of them are

less than 1%. Moreover, it is worthwhile to point out that the average total costs of our

schedules do not vary much under different distributions.
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Table 3 Comparison of the average total costs between the schedules obtained by our

model and Denton & Gupta (2003) under different distributions

(ρ1, ρn+1) (3,14) (5,12) (7,10) (3,12) (5,10) (7,8) (3,10) (5,8) (7,6)
Benchmark 23.32 27.03 28.50 21.42 24.51 25.02 19.43 21.69 20.94
Uniform 23.55 27.62 28.89 21.55 24.79 25.48 19.60 21.94 21.48
Normal 23.57 27.77 28.98 21.63 24.92 25.55 19.72 22.03 21.53

Two point 24.00 28.64 30.20 21.95 25.81 26.56 20.23 22.91 21.89
Gamma 22.73 27.53 28.87 20.93 25.08 25.84 19.48 22.10 22.21

6.2. Eye Clinic

In this subsection, we present numerical results based on data collected from the eye clinic

and discuss pertinent managerial insights from our model. We observed the consultation

durations of 1021 patients in the clinic for 7 working days. The mean and standard devi-

ation of the consultation time of the repeat patients are 6.24 minutes and 6.0 minutes

respectively, while the values for the new patients are noticeably higher, with a mean of

9.97 minutes and a standard deviation of 7.6 minutes.

In this experiment, we assume that one session lasts for 150 minutes. This mimics the

current practice with one hour block, followed by a half hour break and then another

one hour block. During one session, 24 patients are scheduled to arrive in the clinic, with

5 new patients arriving before 19 repeat patients. The consultation durations follow the

distributions with the mean and standard deviation as estimated by the empirical data.

Note that the sum of mean service durations of all patients is 168.41 minutes, which is

larger than the session length. This indicates that the system may be heavily congested.

The patient’s waiting time cost (ρi) is assumed to be identical among all the patients

and normalized to 1. We test various overtime costs, i.e., ρn+1 = 1, 20 or 40. Figure 3 plots

the optimal schedules obtained by our model under different ρn+1.

It is interesting to note that the optimal schedules exhibit the pattern of “Bailey’s Rule

+ Break”. First, the optimal schedule allocates near zero time slot to the first few patients.

Although Proposition 3 indicates that all the zero time slots should be placed at the end
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Figure 3 Optimal schedule when ρn+1 is equal to 1, 20 and 40, given ρ1=1
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of the session, the time slots for the first few patients are extremely small, though not zero

- the smallest among these intervals are around 10−4, well within the machine tolerance of

being zero, i.e., 10−16 on a 32-bit machine10. This scheduling rule arises because the system

is heavily congested and the overtime costs are large. The second outstanding feature is

that, after serving the group of new patients, a break is inserted before switching to the

group of repeat patients with lower variability. To confirm this feature, we run another

group of experiments with 3 classes of patients. Similar patterns are observed - breaks are

inserted after serving the first and the second class of patients.

One drawback of the optimal schedule is that it is generally not practical and is non-

intuitive. To fix this problem, we try to use the above insights to develop a simple but

effective appointment schedule. In the current practice, each patient is assigned with an

equal interval of 5 minutes and a 30 minute break is inserted after seeing 12 patients. We

simply modify the “Current Practice” by reinserting the 30 minutes break after the 5th

patient, i.e. after serving all the new patients. We call this schedule “Modified Practice”.

Note that each patient is still assigned 5 minutes of consultation time each.
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In a more advanced system, we allow the allocated service intervals to vary accordingly.

We denote this the “Varying Interval” schedule. To resemble the optimal schedule (under

ρn+1 = 1), we assign zero time slots to the first patient and the last six patients (This is

a characteristic of the optimal schedule obtained from the conic program). Other patients

are assigned with time slots by rounding up their mean service durations, i.e., 10 minutes

for a new patient and 7 minutes for a repeat patient. The remaining time is combined and

inserted after the 5th patient as a break.

Table 4 Average total waiting time cost under different scheduling
policies when ρ1 = 1 and ρn+1 = 1

Uniform Normal Two-points Gamma
Optimal Schedule 352.58 349.80 355.37 352.78
Current Practice 564.13 560.18 570.31 535.37
Modified Practice 485.36 479.95 491.95 462.44
Varying Interval 358.24 353.61 363.60 354.83

The simulated performance of various policies under different service time distributions

are shown in Table 4. Implementing a schedule resembling the optimal solution dramat-

ically decreases the total waiting time cost by about 35% as compared to the current

practice. Interestingly, it seems that one can significantly improve the performance of

the system by simply inserting a break after serving one class of patients in the optimal

scheduling. The easily implemented “Varying Interval” strategy makes it quite attractive

for practical considerations.

Note that the above simulation results are obtained under ρn+1 = 1. In most environment,

the overtime cost ρn+1 is likely to be large and should be proportional to the number

of patients seen in the clinic. The choice of ρn+1 = 1 is thus a conservative estimate and

assumes the doctor places small penalty on overtime work. In what follows, we summarize

the features of optimal schedules when ρn+1 increases. The pattern of “Bailey’s Rule +

Break” seems to be quite robust no matter how the overtime cost changes. Besides this,

Figure 3 also illustrates several interesting features: As ρn+1 increases,
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• more patients are assigned with near zero consultation time slots at the beginning of

the session;

• fewer patients are assigned with zero time slots at the end of the session;

• a longer time slot is assigned to the last patient.

Intuitively, all these features benefit a clinic that prefers a shorter overtime. Conse-

quently, patients may suffer from longer waiting times as a result.

As we can see from Figure 3, the optimal properties persist as the overtime cost ρn+1

increases. One question is whether we can still design efficient appointment systems with

the help of the optimal properties under different overtime costs. To answer this question,

we first solve our model with ρn+1 = 2, 5, 10, 20, 50, and 100, and then create the “Vary-

ing Interval” schedules using the following heuristics: allocating zero time slots to those

clustering patients (with zero or close to zero time slots) at the beginning and the end

of the session, assigning the rest of the patients their mean consultation durations, and

insert the remaining time as a break after the 5th patient. We simulate the expected total

costs of “Varying Interval” schedules and compare with current practice. Table 5 records

the efficiency gains under different overtime costs ρn+1. The percentage savings decrease

as ρn+1 increases. The efficiency gain drops to around 10% when ρn+1 = 100. Since higher

overtime cost indicates larger total cost, a 10% efficiency gain when ρn+1 = 100 can save

around 360 minutes in total waiting time. Hence, although efficiency gain drops as ρn+1

increases, employing the “Varying Interval” schedule can still ensure significant efficiency

improvement in the clinic.

7. Conclusion

We propose a novel approach to deal with the difficult appointment scheduling problem.

Instead of planning against a fixed service distribution, we plan against a canonical set of
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Table 5 Efficiency gains under different overtime costs

Percentage Increase
Overtime Uniform Normal Two-points Gamma

1 36.5% 37.1% 36.3% 33.7%
2 31.7% 32.0% 31.4% 28.5%
5 24.0% 24.3% 23.9% 21.0%
10 13.3% 13.4% 13.3% 10.1%
20 7.1% 7.3% 7.3% 4.2%
50 7.3% 6.8% 7.9% 5.5%
100 11.4% 11.5% 12.2% 9.7%

service distributions with the same mean and covariance parameters (may include more

support constraints). The canonical distribution is “constructed” via a general conic pro-

gramming framework. In this way, we reduce a difficult two stage stochastic programming

problem into a single stage convex programming problem. Through extensive simulations

we show that the optimal schedules obtained under the “worst case” give near-optimal

solutions when the objective is to minimize expected total waiting time cost. This approach

allows us to shed some light on the structure of the optimal schedules, which can be readily

modified to obtain more practical and efficient scheduling policies.

Our model is able to handle the correlations between the service durations of different

patients. It has been a standard assumption that patients’ service durations are indepen-

dent of each other. However, in reality, this assumption may not hold due to the common

resource – the doctor, who serves all the patients in a clinical session. The doctor could

impact the service durations of all patients in the same session uniformly. Nevertheless,

we leave the study of the impact of correlations for future research, while focusing on

developing the methodology to solve the appointment scheduling problem.

The approach can be generalized to deal with the situation when the patients need to

undergo a test (with random duration) prior to the consultation, which is a pertinent

feature in many eye clinics. The network flow approach can also be conceivably extended

to deal with other practical considerations in a clinical environment. There is however
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some limitation with this approach: the computational difficulty associated with solving

large-scale SDP limits our ability to solve large-scale appointment scheduling problems.

Endnotes

1. See http://www.iimahd.ernet.in/publications/data/2005-08-02nravi.pdf for a thor-

ough discussion.

2. A copositive programming problem is a linear programming problem over the convex

cone of the copositive matrices. Details of this optimization problem are discussed later in

this paper.

3. “Bailey’s Rule” refers to the scheduling strategy proposed in the seminal paper by

Bailey (1952). It states that in a highly congested system, “an optimum system seems to

be as follows: the patients are given appointments at regular intervals equal to the average

consultation time, and the consultant arrives at the same time as the second patient”. That

means the first two patients are scheduled to come at the beginning of the consultation

session at the same time.

4. This assumption can be relaxed. In Section 4.2, we demonstrate how to extend our

model to incorporate late arrivals.

5. In the rest of this paper, we use the phrase “the total waiting time (cost)” to include

both the waiting time (costs) of all the patients and the overtime (cost) of the doctor.

6. Indeed, not only could they be finite, but also bounded. This is related to the concept

of cp-rank, details of which can be found in Berman & Shaked-Monderer (2003).

7. Details of the decomposition and construction are available in EC.4.

8. More precisely, the new dimension of D is (4n+1)× (4n+1).

9. We obtain similar results through the test under a larger set of distributions as well,

but only the four most commonly used distributions are reported in this paper.
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10. We would like to thank one referee for pointing this out.
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Electronic Companion: Proofs of Statements and Case
Analysis

EC.1. Proof of Proposition 1

Proof. Recall equation (3), the waiting time of the ith patient in the appointment system

is given by

wi =max

{
0, c̃i−1, c̃i−1+ c̃i−2, · · · ,

i−1∑
k=1

c̃k

}
.

In the optimal network flow solution, the unit supply from node i will find a path to

destination s, by maximizing the flow cost among the paths:

(i→ s), (i→ i− 1→ s), . . . , (i→ i− 1→ . . .1→ s).

Hence the flow cost attained by the supply from node i is just wi. �

EC.2. Proof of Proposition 2

Proof. The proof consists of two parts. In the first part, we show that Problem (C)

provides an upper bound to Problem (P), i.e. ZC (s) ≥ ZP (s), ∀s. Next, through a con-

structive approach, we find a sequence of random variables, ũ∗
ϵ that satisfies the moment

conditions in the limiting sense and E [f (s, ũ∗
ϵ)] converges to ZC (s) when ϵ converges to

zero, i.e., the bound provided by (C) is tight.

Step 1. ZC (s)≥ZP (s), ∀s.

We can view Problem (C) from the following constructive perspective. For any distribu-

tion ũ with a nonnegative support, the variable Z defined below is contained in the cone

D:

Z :=E





1

ũ

y (s, ũ)

z (s, ũ)





1

ũ

y (s, ũ)

z (s, ũ)



T

.
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The constraint Z1,1 = 1 is obviously satisfied by the definition of Z. The rest linear con-

straints in Problem (C) rise from the moment conditions on ũ. Furthermore, the objective

function of Problem (C) encodes

Y (s) •Z =−sTy (s, ũ)+ ũTy (s, ũ) =Eũ [f (s, ũ)] .

By such constructive interpretation, it is obvious that Problem (C) is a relaxation of

Problem (P). Since both are maximization problems, we have ZC (s)≥ZP (s), ∀s.

Step 2. ZC (s)≤ZP (s), ∀s.

Let Z∗ be an optimal solution to Problem (C). As shown before, we can decompose Z∗

into

Z∗ =
∑
k∈K+

π(k)∗2


1

t(k)∗

π(k)∗

v(k)∗

π(k)∗




1

t(k)∗

π(k)∗

v(k)∗

π(k)∗



T

+
∑
k∈K0


0

t(k)∗

02n×1




0

t(k)∗

02n×1



T

,

where K+ and K0 are finite. For ϵ ∈ (0,1), we define a sequence of random vectors ũ∗
ϵ as

follows: 
P
(
ũ∗

ϵ =
t(k)∗

π(k)∗

)
= (1− ϵ2)π(k)∗2, ∀k ∈K+,

P

(
ũ∗

ϵ =

√
|K0|t(k)∗

ϵ

)
= ϵ2 1

|K0| , ∀k ∈K0,

where |K0| denotes the cardinality of the set K0. ũ
∗
ϵ is a valid probability distribution

because ∑
k∈K+

(1− ϵ2)π(k)∗2+
∑

k∈K0

ϵ2 1
|K0| = (1− ϵ2)

∑
k∈K+

π(k)∗2+ ϵ2
∑

k∈K0

1
|K0|

= (1− ϵ2)+ ϵ2

= 1.
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Moreover, ũ∗
ϵ is a valid service time distribution in the limiting sense, i.e., the moment

conditions for the service time distribution are satisfied by ũ∗
ϵ when ϵ ↓ 0,

E[ũ∗
ϵ ] =

∑
k∈K+

t(k)∗

π(k)∗
(1− ϵ2)π(k)∗2 +

∑
k∈K0

√
|K0|t(k)∗

ϵ
ϵ2 1

|K0|

= (1− ϵ2)
∑

k∈K+

t(k)∗π(k)∗+ ϵ
∑

k∈K0

t(k)∗√
|K0|

→
ϵ↓0

∑
k∈K+

t(k)∗π(k)∗

= µ,

E[ũ∗
ϵ ũ

∗T
ϵ ] =

∑
k∈K+

(
t(k)∗

π(k)∗

)(
t(k)∗

π(k)∗

)T
(1− ϵ2)π(k)∗2 +

∑
k∈K0

(√
|K0|t(k)∗

ϵ

)(√
|K0|t(k)∗

ϵ

)T

ϵ2 1
|K0|

= (1− ϵ2)
∑

k∈K+

t(k)∗t(k)∗T +
∑

k∈K0

t(k)∗t(k)∗T

→
ϵ↓0

∑
k∈K

t(k)∗t(k)∗T

= Σ.

As ϵ ↓ 0, the random vectors ũ∗
ϵ converge almost surely (a.s.) to ũ∗ defined as

P

(
ũ∗ =

t(k)∗

π(k)∗

)
= π(k)∗2, ∀k ∈K+.

Rigorously speaking, the convergence of ũ∗
ϵ to ũ∗ is a weak convergence, i.e., convergence

in distribution. However, since it is up to our construction on ũ∗
ϵ and ũ∗, from Skorohod’s

Theorem, we can construct them in the same probability space with the same probability

measure and ũ∗
ϵ converges to ũ∗ almost surely. From the Continuous Mapping Theorem,

ũ∗
ϵ → ũ∗ a. s. =⇒ f(s, ũ∗

ϵ)→ f(s, ũ∗) a. s.

Furthermore, since the feasible space for f(s, ũ∗
ϵ) is bounded, i.e., every feasible solution

y(ũ)≤Ke, for some 0<K <∞, where e is a vector of ones. Hence, the second moment
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of f(s, ũ∗
ϵ) is bounded for all ϵ∈ (0,1), i.e.,

E [f(s, ũ∗
ϵ)

2] ≤
∑

k∈K+

K2

[(
t(k)∗

π(k)∗
− s
)T

e

]2
(1− ϵ2)π(k)∗2

+
∑

k∈K0

K2

[(√
|K0|t(k)∗

ϵ
− s

)T

e

]2
ϵ2 1

|K0|

≤
∑

k∈K+

K2
[
t(k)∗Te

]2
+
∑

k∈K0

K2
[
t(k)∗Te

]2
< ∞.

The finiteness of the second moment implies that the sequence f(s, ũ∗
ϵ) is uniformly inte-

grable. Therefore, we have

lim
ϵ↓0

E [f(s, ũ∗
ϵ)] =E [f(s, ũ∗)] .

For any schedule s, define the space of all feasible first and second moments supported

on Rn
+ and the corresponding expected objective value as

K(s) =

{
λ
(
1, µ̂, Σ̂, f̂

)
: λ≥ 0, f̂ =E [f (s, ũ)] , for some ũ∼

(
µ̂, Σ̂

)+}
.

It can be easily verified that K(s) is a convex cone. Then the closure of K(s) (denoted as

K(s)) would be a closed convex cone. For every ϵ∈ (0,1), we have

(
1,E[ũ∗

ϵ ],E[ũ∗
ϵ ũ

∗T
ϵ ],E[f(s, ũ∗

ϵ)]
)
∈K(s).

Hence, the limit of this sequence of points also lies in the closure, i.e.,

lim
ϵ↓0

(
1,E[ũ∗

ϵ ],E[ũ∗
ϵ ũ

∗T
ϵ ],E[f(s, ũ∗

ϵ)]
)
∈K(s),

or equivalently,

(1,µ,Σ,E [f(s, ũ∗)])∈K(s).
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Since the point (1,µ,Σ,ZP (s)) lies on the boundary of this closed convex cone, we have

ZP (s)≥E [f(s, ũ∗)]. Thus,

ZP (s) ≥E [f(s, ũ∗)]

≥
∑

k∈K+


 t(k)∗

π(k)∗
− s

0n×1


T

v(k)∗

π(k)∗
π(k)∗2


= Y (s) •Z∗

=ZC (s) .

Therefore, we have completed the proof. �

Remark EC.1. It is clear from the above proof that decomposition (5) does not give the

exact worst case distribution, but merely provides us a way to construct a sequence of

distributions that satisfies the moment conditions and approximates the objective value

ZP (s) in the limiting sense. In fact, we do not have an explicit characterization of the worst

case distribution.

EC.3. An Example on Strong Conic Duality

Consider a simple two dimensional problem as follows for any Y ∈R2×2 and b∈R:

ZP := sup Y •Z

s.t. Z1,1 = 1

Z ∈D

where

D := conv


π

v


π

v


T

: π≥ 0, v≥ 0, v= bπ

 .

Clearly, D is not fully dimensional, since dim(D) = 1. In this case,

{Z :Z11 = 1,Z ∈D}=


1 b

b b2


 ,
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so

ZP = Y •

1 b

b b2

 .

On the other hand, the dual cone of D is

D∗ =

W :W •

 1 b

b b2

≥ 0

 ,

and the dual optimum

ZD := inf

α :W =

α 0

0 0

−Y ∈D∗

= Y •

1 b

b b2

=ZP .

EC.4. Analysis on the Strong Duality

In this section, we work out the detailed analysis on the sufficient condition of Theorem

1, i.e., the strong duality result. To make it a piece of self-contained argument, we repeat

two key assumptions here. First, we assume that there is a set of scenarios {c1,c2, . . . ,cp},

with corresponding probabilities {π1, π2, . . . , πp}, so that

p∑
i=1

πi

1

ci


 1

ci


T

=

 1 µT

µ Σ

 .

Next, we assume that the moments matrix lies in the interior of the completely positive

cone, i.e., for any positively supported distribution s̃ different from c̃ and πs̃ ≥ 0, there

exist a positively supported distribution t̃ and πt̃ ≥ 0 such that

E


1

c̃


 1

c̃


T= λE


πs̃

s̃


πs̃

s̃


T+(1−λ)E


πt̃

t̃


πt̃

t̃


T ,

for some 0<λ< 1. Note that these two assumptions are rather standard in literature.
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Since D is nonempty and convex, it has a nonempty relative interior. Hence, we can

safely assume that there is a point in the relative interior of D, say Zs. By the definition

of D, Zs can be expressed as follows:

Zs =
∑
j∈K+


πj

sj

xj




πj

sj

xj



T

+
∑
j∈K0


0

sj

02n×1




0

sj

02n×1



T

,

where πj > 0, Axj = bπj, ∀j ∈K+, and sj ≥ 0, ∀j ∈K+ ∪K0. From the above assumption

on c̃, for every rank one matrix of Zs, we can find a distribution t̃j, π
t
j ≥ 0 and λj ∈ (0,1)

such that

E




1

c̃

xj

πj




1

c̃

xj

πj



T
= λj


1

sj
πj

xj

πj




1

sj
πj

xj

πj



T

+(1−λj)E




1

t̃j

xj

πj




1

t̃j

xj

πj



T
 , ∀j ∈K+,

and

E




1

c̃

xj




1

c̃

xj



T
= λj


0

sj

02n×1




0

sj

02n×1



T

+(1−λj)E




1√
1−λj

t̃j

xj√
1−λj




1√
1−λj

t̃j

xj√
1−λj



T , ∀j ∈K0,
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where for j ∈K0, xj is chosen as any feasible solution to Axj = b. Summing up all the

equalities with some suitable scaling operations, we get

∑
j∈K+

π2
j

λj
E




1

c̃

xj

πj




1

c̃

xj

πj



T
+

∑
j∈K0

1
λj
E




1

c̃

xj




1

c̃

xj



T


= Zs+
∑

j∈K+

1−λj

λj
π2
jE




1

t̃j

xj

πj




1

t̃j

xj

πj



T
+

∑
j∈K0

1−λj

λj
E




1√
1−λj

t̃j

xj√
1−λj




1√
1−λj

t̃j

xj√
1−λj



T .

The second and third term on the RHS of the above equality lie in D. Given that Zs lies in

the relative interior of D, the LHS also lies in the relative interior of D, since D is a convex

cone. Furthermore, we can scale the LHS by multiplying 1/(
∑

j∈K+
π2
j/λj +

∑
j∈K0

1/λj)

such that the resulting matrix satisfies the moment conditions in Problem (C) and still

lies in the relative interior of D. Hence, the sufficient condition on the strong duality is

satisfied.

EC.5. Proofs of the Propositions in Section 5

Before presenting the proofs, we first define the necessary dual variables of ZD(s). Let Z

be the dual variables of the conic constraint. Note that Z is exactly the conic variable in

(C), i.e., Z ∈D. Denote 
Z1,n+1+i = ŷi, i= 1,2, . . . , n,

Z1,2n+1+i = ẑi+1, i= 1,2, . . . , n.

Then from the probabilistic interpretation on the decomposition of Z shown in (5), we

have 
ŷi =E [yi (s, ũ)] , i= 1,2, . . . , n,

ẑi+1 =E [zi+1 (s, ũ)] , i= 1,2, . . . , n.
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where (y(s, ũ),z(s, ũ)) is the optimal solution to f (s, ũ) under the worst case distribution

of ũ. Define the dual variables of the constraints in (8) by θ and λi, where θ corresponds

to the total session time limit constraint, whereas λi corresponds to the non-negativity

constraint for si.

The proofs are based on the KKT conditions and the network structure shown in Fig-

ure 2. We have shown that the Slater’s constraints qualification is satisfied, so the KKT

conditions are both necessary and sufficient in characterizing the optimal solutions.

EC.5.1. Proof of Proposition 3

Proof. Assume in the optimal solution, s∗i = 0 and s∗i+1 > 0 for some i∈ {1,2, . . . , n−1}.

Then the cost on arc (i+1, i) in the network is c̃i = ũi − s∗i = ũi ≥ 0. Due to the nature of

maximal cost flow problem, any flow entering node i+1 will choose arc (i+1, i) instead of

arc (i, s) whose cost is zero in any situations. Then we have zi+1(ũ) = 0 for any realization

of ũ, and consequently E[zi+1] = 0, i.e., in the optimal solution to Problem (S), ẑ∗i+1 = 0.

Recall that ρi is the cost of the waiting time of the ith patient in the sequence. From the

following KKT conditions: 

λ∗
i s

∗
i = 0,

λ∗
i+1s

∗
i+1 = 0,

λ∗
i+1 ≥ 0,

ŷ∗i = θ∗−λ∗
i ,

ŷ∗i+1 = θ∗−λ∗
i+1,

ρi+1+ ŷ∗i+1 = ŷ∗i + ẑ∗i+1,
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we get

s∗i+1 > 0

=⇒ λ∗
i+1 = 0

=⇒ ŷ∗i+1 = θ∗ −λ∗
i+1 = θ∗

=⇒ ŷ∗i = ρi+1+ ŷ∗i+1− ẑ∗i+1 = ρi+1 + θ∗.

Since ŷ∗i = θ∗ −λ∗
i , we have

ρi+1+ θ∗ = θ∗ −λ∗
i

=⇒ λ∗
i =−ρi+1 < 0,

which contradicts λ∗
i ≥ 0. Hence, the result follows. �

EC.5.2. Proof of Proposition 4

Proof. By a similar proof as in Proposition 3, all the negative time slots should be

scheduled at the end of the session. Hence, we only need to prove that there is only one

such slot, which is s∗n+1.

Assume in an optimal schedule, denoted by s(1), there are at least two nonpositive time

slots, i.e., s
(1)
n−1 < 0 and s

(1)
n < 0. Consider a new schedule, s(2) defined as


s
(2)
i = s

(1)
i , ∀i= 1,2, . . . , n− 2,

s
(2)
n−1 = 0,

s
(2)
n = s

(1)
n−1 + s

(1)
n .

Let TC(1)(ũ) and TC(2)(ũ) be the total waiting time cost for the schedule s(1) and s(2),

respectively. Note that for any service time realization, ũ
(k)
n−1− s

(k)
n−1 ≥ 0, and ũ

(k)
n − s

(k)
n ≥ 0,

k= 1,2. Then considering the input of the last two nodes, i.e., ρn entering node n and ρn+1
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entering node n+1, we get

TC(1)(ũ)−TC(2)(ũ) = ρn(ũn−1− s
(1)
n−1)+ ρn+1(ũn − s

(1)
n + ũn−1− s

(1)
n−1)

−[ρn(ũn−1− s
(2)
n−1)+ ρn+1(ũn − s

(2)
n + ũn−1 − s

(2)
n−1)]

= −ρns
(1)
n−1

> 0

with probability 1.

Thus, s(1) should never be optimal, and we reach a contradiction. �

EC.5.3. Proof of Proposition 5

Proof. The proof only makes use of part of the KKT conditions, i.e.,
−ŷ∗i + θ∗ −λ∗

i = 0, ∀i= 1,2, . . . , n,

λ∗
i s

∗
i = 0, ∀i= 1,2, . . . , n,

θ∗ ≥ 0.

(EC.1)

When s∗i > 0, ∀i∈ I ⊆ {1,2, . . . , n}, from the second set of constraints in equation (EC.1),

we get

λ∗
i = 0, ∀i∈ I ⊆ {1,2, . . . , n}.

Hence,

ŷ∗i = θ∗ ≥ 0, ∀i∈ I ⊆ {1,2, . . . , n},

i.e.,

E [yi(s
∗, ũ)] = θ∗ ≥ 0, ∀i∈ I ⊆ {1,2, . . . , n}.

Defining the constant K := θ≥ 0, we get the desired result. �


	Scheduling arrivals to a stochastic service delivery system using copositive cones
	Citation

	tmp.1399256982.pdf.k3STz

