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ABSTRACT
Personalization, or customizing the experience of each in-
dividual user, is seen as a useful way to navigate the huge
variety of choices on the Web today. A key tenet of per-
sonalization is the capacity to model user preferences. The
paradigm has shifted from that of individual preferences,
whereby we look at a user’s past activities alone, to that
of shared preferences, whereby we model the similarities in
preferences between pairs of users (e.g., friends, people with
similar interests). However, shared preferences are still too
granular, because it assumes that a pair of users would share
preferences across all items. We therefore postulate the need
to pay attention to “context”, which refers to the specific
item on which the preferences between two users are to be
estimated. In this paper, we propose a generative model for
contextual agreement in preferences. For every triplet con-
sisting of two users and an item, the model estimates both
the prior probability of agreement between the two users, as
well as the posterior probability of agreement with respect to
the item at hand. The model parameters are estimated from
ratings data. To extend the model to unseen ratings, we fur-
ther propose several matrix factorization techniques focused
on predicting agreement, rather than ratings. Experiments
on real-life data show that our model yields context-specific
similarity values that perform better on a prediction task
than models relying on shared preferences.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering; H.2.8 [Database Applications]: Data Mining

Keywords
user preference; contextual agreement; generative model

1. INTRODUCTION
Users face a dizzying array of choices for almost any deci-

sion they make on the Web today, e.g., which movie to see,

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2568006.

which book to purchase, which job to pursue next and when
[40], which tag to use [26]. In exploring options, the limiting
factor is often not affordability or availability, but rather the
user’s time and attention. Many Web platforms deal with
this scarce resource through personalization, by focusing the
user’s attention on things most likely to be of interest.

In order to provide a personalized experience to each user,
we first need to know the user’s preferences. To some ex-
tent, this is provided by the user’s own past activities, such
as which Facebook posts she liked or disliked, or which prod-
ucts on Amazon she purchased, or which movie on Netflix
she rated high or low. However, these preference signals are
too sparse. They are expressed over a very limited number of
items. For instance, most Netflix users would have assigned
ratings to only tens of movies, as compared to the thousands
of available movies. Hence, there is a need to extrapolate
from these signals to build a more general preference model.

Most of the previous work in this area focus on modeling
individual preferences. The aim is to derive user-specific
models from preference data, e.g., ratings, which will help
predict future adoptions or ratings by the user. There are
several well-known classes of methods, such as aspect model
[8, 9], matrix factorization [15], and content-based model [1,
31, 21] (see Section 2 for a more expansive review). These
methods are still actively being researched, and their use is
prevalent in industrial recommender systems.

Beyond individual preferences, there is also a significant
body of work on the complementary issue of shared prefer-
ence between pairs of users. For instance, neighborhood-
based collaborative filtering systems [12, 33, 5] predict a
user’s rating on an item as the weighted average of ratings
by her neighbors. Here, neighbors are other users with high
similarity in preferences, and the weights are proportional
to the degrees of similarity between a pair of users. Shared
preference is useful, because some individuals may not have
established a sufficiently long record of activities (e.g., rat-
ings) for a reasonably accurate individual model to be built.
However, the limited record may already be sufficient to in-
fer her similarity to another user with a longer record or
more accurate model, which can then be “borrowed” to help
in the predictions for the former user. Alternatively, there
may be extra information, e.g., social network, to induce
preference sharing between friends [24, 22].

While shared preference is helpful, it also makes the im-
plicit assumption that the similarity between two users ap-
plies equally to all items under consideration. More realisti-
cally, users have diverse preferences. Even a similar pair of
users do not agree at all times. We therefore postulate the
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Movie Rating by Rating by
talyseon youngchinq

Paranormal Activity 5 5
Payback 3 3
Coraline 5 5
Pan’s Labyrinth 5 5
Memento 5 4
Gran Torino 5 4
The Hurt Locker 5 4
Jurassic Park III 3 2
Twilight 3 1
Inception 5 3
Daredevil 3 1
I Am Legend 4 2
Rosemary’s Baby 5 2
The Day After Tomorrow 4 1
300 4 1
Moulin Rouge 5 2
Seven Pounds 4 1
The Dark Knight 5 1
The Last Samurai 5 1
Star Wars Episode III:
Revenge of the Sith

5 1

Table 1: Epinions users talyseon and youngchinq

need to pay attention to “context”, arguing that while a pair
of users may agree in their preferences in one “context”, they
may disagree in a different “context”. There are many ways
to define “context”. For instance, the product category or
the time of day could each be a specific context. However,
these definitions assume the presence of additional informa-
tion in the data. To retain the most common framework
in the literature, which is to rely on rating data alone, in
this paper, by “context”, we refer to each specific item. In
other words, we are interested in the contextual agreeement
of preferences between two users in the context of one item.

To illustrate this more clearly, we use a real-life example
from Epinions.com, an online rating site for various prod-
ucts, e.g., movies (used in this example). In Table 1, we
show the rating profiles of two users: talyseon and youngch-
inq, on twenty movies that both of them had rated. The rat-
ings are from 1 (low) to 5 (high). The traditional approach
of shared preference is to use these ratings to measure the
overall similarity between the two users. Using Pearson’s
correlation, their similarity is 0.53. Using Cosine similarity,
their similarity is 0.88. (See Section 2 for the definitions of
these measures.) These similarities are considered high as
Pearson ranges from -1 to 1, and Cosine ranges from 0 to 1.

On one hand, the two users do share some preferences.
The top few movies in the list are movies that both assign
high ratings to, which tend to be dramas and thrillers. On
the other hand, a single similarity value cannot reveal the
full picture of their preference sharing. The last few movies
in the list are those that talyseon likes but youngchinq dis-
likes. These tend to be fantasy types (e.g., Star Wars III,
Dark Knight). Therefore, agreement on preference should
be seen in the context of individual items. For instance, we
say that talyseon and youngchinq agree on their preference
in the context of “Paranormal Activity” movie. However,
they disagree in the context of “The Last Samurai” movie.

Problem. Given a set of users (e.g., u), a set of items
(e.g., i), and some ratings by users on items (e.g., rui), we
seek to model the contextual agreement between a pair of
users u and v on a specific item i (collectively denoted as a

triplet 〈u, v, i〉). Instead of just another similarity measure,
we model this contextual agreement as a probability mea-
sure, with a binary random variable yuvi with two outcomes:
agreement (yuvi = 1) or disagreement (yuvi = 0).

One key observation is that the observed rating values,
e.g., rui and rvi, provide signals of the agreement or dis-
agreement between u and v on item i. To represent this more
succintly, we derive a quantity xuvi, which is a function of
rui and rvi, i.e., xuvi = F(rui, rvi), through some function
F (to be defined later). Our problem can thus be restated
as estimating the probability of agreement P(yuvi = 1|xuvi).

This gives rise to two sub-problems. The first is the prob-
abilistic modeling of P(yuvi = 1|xuvi). This is akin to prob-
abilistic clustering, whereby we seek to decide the latent
“class” yuvi using the “feature” xuvi. Therefore, we adopt a
generative modeling based on Gaussian mixtures, which has
been applied to other unsupervised clustering problems. We
call this model Contextual Agreement Model or CAM.

The second sub-problem is that not all xuvi’s are observed,
arising directly from not having observed all possible ratings.
For “unseen” triplets, where either rui or rvi is unobserved,
we need to predict x̂uvi (the hat indicates predicted, rather
than observed). For this, we adopt the framework of matrix
factorization. The key to our approach is the minimization
of a novel objective function based on optimizing for agree-
ment, rather than rating, prediction. We call this method
Differential Probabilistic Matrix Factorization or DPMF.

Application. The probability of contextual agreement
allows for a better estimation of the contextual similarity
between a pair of users on a specific item. This will come
in useful in several potential applications. First, as we will
explore in Section 3, the agreement probability can be used
in calibrating the similarities between neighbors in an item-
specific manner for a neighborhood-based recommender sys-
tem to derive a rating prediction. Second, it can support a
more targeted social recommendation. When a user wants
to recommend an item to her friends, instead of sharing with
all friends, the contextual agreement probability can iden-
tify the subset of friends most in agreement on the item.
Third, the model may be useful in a study of prevalence of
agreement in different communities, product categories, etc.

Scope. While our work is related to recommender sys-
tems, our focus is on modeling preferences, and not on rat-
ing prediction. The reader may also surmise that a similar
contextual agreement framework may apply to triplets in-
volving a user and two items. This is indeed the case, but
to maintain focus, we will discuss only triplets involving two
users and an item. As input, we assume only ratings data,
and not other information such as categories or ontologies
[28]. We also assume that ratings are truthful and reflective
of user preferences (and not artefacts of dishonesty or fraud
[6]), which we believe is true for a vast majority of users.

Contributions. First, as far as we know, we are the
first to propose modeling item-specific context in estimating
the agreement between a pair of users on an item. Sec-
ond, to realize this modeling, in Section 4, we develop a
probabilistic generative model, called CAM, based on Gaus-
sian mixtures. We enforce a monotonicity property that
results in a specific parameter constraint, and describe how
to learn the constrained parameters with Expectation Max-
imization. Third, to extend this model to unseen triplets, in
Section 5, we outline how several matrix factorization meth-
ods can be applied. We also propose a new method, called
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DPMF, with a novel objective function that minimizes er-
rors in rating differences, and describe its gradient descent
learning algorithm. Fourth, in Section 6, we validate these
models comprehensively on three real-life, publicly available
rating datasets, showing how well the model parameters are
learned, and how they improve upon shared preference mod-
els in a neighborhood-based rating prediction task.

2. RELATED WORK
In the following, we survey related work on modeling pref-

erences, first focusing on individual users, and then on sim-
ilarities between users, and finally on the role of context.

Individual preference. Most works on modeling in-
dividual preference are found in model-based recommender
systems [1]. The main step is to construct a preference model
for each user, which is then used to derive predictions. Here,
we review three popular modeling choices. The first is aspect
model [8, 9]. A user u’s preference is modeled as a probabil-
ity distribution {P(zk|u)}Kk=1 over K latent aspects. Each
aspect zk is associated with a distribution over items i to be
adopted, i.e., P(i|zk), or over ratings r, i.e., P(r|zk, i).

The second is matrix factorization-based model [15]. User
u’s preference is modeled as a column vector Su in a K-
dimensional latent space. Each item i is also associated with
a rank-K column vector Qi. The rating prediction r̂ui by
u on i is given by Su

TQi. There are different factorization
methods [18, 39, 17, 25], which vary in their objective func-
tions, including several probabilistic variants [29, 34].

The third is content-based model [1, 31, 21]. User u’s pref-
erence is modeled as a content vector whose dimensionality
is the vocabulary size (e.g., tf · idf vector), derived from the
content (e.g., meta-data, text) of items that u likes.

Shared preference. Modeling sharing of preferences is
mostly found in neighborhood-based recommender systems
[11]. One approach is based on similarity. For user-based
collaborative filtering (CF) [12], the similarity wuv is be-
tween a pair of users u and v. The higher wuv is, the more u
and v share their preferences. The most common similarity
measures in the literature are Pearson’s correlation coeffi-
cient [33], and vector space or Cosine similarity [5]. Given
that ru and rv represent vectors of ratings, {rui} by u and
{rvi} by v, on a set of items {i}, Pearson is determined as
in Equation 1 (where r̄u and r̄v are average ratings), and
Cosine as in Equation 2. Correspondingly, for item-based
CF [35, 19], the similarity is between a pair of items.

wpearsonuv =

∑
i(rui − r̄u)(rvi − r̄v)√∑

i(rui − r̄u)2
√∑

i(rvi − r̄v)2
(1)

wcosineuv =
ru · rv

||ru|| × ||rv||
(2)

Another approach to model sharing of preferences is to
exploit existing structures. For example, in a social network,
each relationship (e.g., friends or follower-followee) is seen as
inducing sharing of preferences between the two users [24,
22]. Some exploit the taxonomy structure to induce sharing
between items in the same category [36, 2, 13, 27, 14].

Context. Most of the work discussed above base their ap-
proaches on the dyad of user-item pair. In some cases, addi-
tional information or “context” may be available, i.e., rather
than pairs 〈u, i〉, we observe triplets 〈u, i, c〉 where c refers
to some context. There are different approaches to dealing

with triplets. One approach is to break a triplet into mul-
tiple binary relations, e.g., friend-user-item into user-friend
and user-item such as done in [23, 38, 37] for rating-cum-link
prediction. [41, 20] suggest partitioning dyads into clusters
based on context, and then learning a separate model for
each cluster. Another approach is tensor factorization, such
as done in [10] for cross-domain rating prediction. Yet an-
other approach, such as ours, is to model triplets directly.
Differently from [32, 30, 16] targeting user-item-item triplets
for personalized ranking of items (asymmetric), we target
user-user-item triplets to model agreement.

3. OVERVIEW
Notations. The universal set of users is denoted as U ,

and we use u or v to refer to a user in U . In turn, we
use i or j to refer to an item in the universal set of items
I. The rating by u on i is denoted as rui. The set of all
ratings observed in the data is denoted R. We seek to model
user-user-item triplets 〈u, v, i〉. The universal set of triplets
comprises U × U × I, excluding triplets involving the same
users, e.g., 〈u, u, i〉. Each triplet 〈u, v, i〉 is associated with
two quantities (modeled as random variables): xuvi and yuvi,
which are essential to our probabilistic modeling.

The variable xuvi ∈ R is real-valued. It represents the
indicator of agreement between u and v on i, some of which
are observed in the data. The closer xuvi is to 0, the more
likely it is that u and v agree on i. If xuvi � 0 or xuvi � 0,
then disagreement is more likely. xuvi can be expressed as a
function of ratings, i.e., xuvi = F(rui, rvi). While there are
many possible definitions of F , in this paper, we simply use
the rating difference between two users on the same item,
as shown in Equation 3. This choice of function also implies
the symmetry of xuvi = −xvui.

xuvi = rui − rvi (3)

The second variable yuvi ∈ Y = {0, 1} is binary. yuvi = 1
represents the event of agreement between u and v on their
preference for i. yuvi = 0 is the event of disagreement.
These events are latent, and never observed. They are to
be estimated from the observed xuvi’s. The closer xuvi is to
0, the more likely we expect yuvi = 1. The further xuvi is
away from 0, the more likely we expect yuvi = 0.

Problem Formulation. Given ratings data R, and the
above xuvi definition, we seek to estimate the probability
P(yuvi|xuvi) for all triplets. Not all xuvi’s can be observed.
xuvi is not observed if either rui /∈ R or rvi /∈ R. This
gives rise to two sub-problems. The first is how to estimate
P(yuvi|xuvi) given the observed xuvi values. The second
sub-problem is how to predict the un-observed x̂uvi values.

For the first sub-problem, we propose the probabilistic
CAM model in Section 4. Since yuvi is latent, it is not pos-
sible to employ discriminative modeling. We therefore turn
to generative modeling, by representing xuvi as a random
variable, whose generative process is related to yuvi. Our
approach is thus to model the joint probability P(yuvi, xuvi).
The conditional probability P(yuvi|xuvi) can afterwards be
estimated from the joint probabilities as follows:

P(yuvi|xuvi) =
P(yuvi, xuvi)∑

y′uvi∈Y
P(y′uvi, xuvi)

(4)

The second sub-problem is how to predict the unseen x̂uvi.
We will then use the predicted x̂uvi with the parameters
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Figure 1: Distributions of P(x|y) and P(y|x)

learned in the first sub-problem, to estimate P(yuvi|x̂uvi).
Our key insight is that the x̂uvi’s are not independent from
one another. All triplets involving the same item i or the
same user pair (u, v) will share some dependency. Further-
more, the triplet should model the interaction of users and
items. Our approach is to model the generation of xuvi
based on user- or item-specific parameters so as to gener-
ate/predict unseen x̂uvi through matrix factorization in Sec-
tion 5. The framework can accommodate different predic-
tive methods. Indeed we outline several potential methods,
including a new proposed method called DPMF.

Application. One application of the agreement proba-
bilities is as a similarity value in a neighborhood-based col-
laborative filtering (CF). User-based CF [11] exploits the
similarities between users to predict unseen ratings. Adopt-
ing the same rating prediction framework, we can use the
contextual agreement to weigh the contributions of neigh-
bors. To predict an unseen rating r̂ui, we use Equation 5,
which is the weighted average of ratings on i by u’s neigh-
bors. Neighbor v can be any user, weighted by wuvi.

r̂ui =

∑
v 6=u,rvi 6=φ wuvi × rvi∑

v 6=u,rvi 6=φ wuvi
(5)

In our case, we use wuvi = P(yuvi = 1|x̂uvi), which is spe-
cific to every item i. In Section 6, we will compare this to
the traditional case of shared preference, where the weight
wuvi is set to the similarity between u and v, which is then
applied to all items. The most popular similarity functions
are Pearson’s coefficient [33] and Cosine similarity [5]. This
comparison is fair as both approaches are given exactly the
same set of ratings to use, but differ only in the relative
weights of the ratings. Note that in this application, our ob-
jective is not to propose a new rating prediction algorithm,
but rather to illustrate the utility of contextual agreement,
and enable comparison to appropriate baselines.

4. CONTEXTUAL AGREEMENT MODEL

4.1 Generative Model
Given the observed xuvi’s, we want to estimate the prob-

ability distribution of contextual agreement P(yuvi|xuvi).
When the context is clear, we simplify the notations for
yuvi and xuvi to y and x respectively. Because y is latent,
we estimate the conditional probability P(y|x) from the joint
probability P(y, x). In a generative modeling framework, we
decompose P(y, x) into P(x|y)P(y). P(y) corresponds to the

yuvi

xuvi

uv �U ×U
i � I

�uv �uv

Figure 2: Plate Diagram for CAM

prior probability of agreement between u and v on i. P(x|y)
is the likelihood that x has been generated from y.

The prior of agreement P(y) is the base level of agree-
ment between u and v before seeing the item i. Given that
there are two probable events, i.e., agreement (y = 1) and
disagreement (y = 0), we model this as a Bernoulli process
with a parameter α. In other words, the prior of agreement
is P(y = 1) = α, and of disagreement is P(y = 0) = 1− α.

In the event of agreement (y = 1), x will be generated
according to a probability P(x|y = 1). Because x is real-
valued, and we expect that its values in the event of agree-
ment will cluster together, we model the generation of x as a
Gaussian, with an underlying mean µ1 and variance σ2

1 . As
mentioned in Section 3, the closer is xuvi to 0, the more likely
it is that u and v agree on i. Therefore, we make a simplify-
ing step, and set µ1 = 0. We learn σ1 from data. The blue
curve in Figure 1(a) illustrates the probability density func-
tion (p.d.f.) of P(x|y = 1), which is a Normal distribution
centered at µ1 = 0 (in this example, σ1 = 0.9).

In the event of disagreement (y = 0), x will be generated
according to to a probability P(x|y = 0). Since x � 0 or
x � 0 indicates disagreement, the mean of this Gaussian
should be away from 0. Due to the symmetric property
xuvi = −xvui, we model this as a bimodal distribution, such
as an equally-weighted mixture of two Gaussians with pos-
itive mean at µ0 and negative mean −µ0, and a variance
of σ2

0 . The red curve on Figure 1(a) illustrates the bimodal
p.d.f. of P(x|y = 0) (in this example, µ0 = 2.5, σ0 = 1).

P(y|x) can therefore be expressed in terms of these com-
ponents as shown in Equation 6. The green curve on Fig-
ure 1(a) illustrates the “decision function” or the p.d.f. of
P(y = 1|x), estimated from the respective prior P(y) and
likelihood P(x|y). As expected, P(y = 1|x) is highest when
x ≈ 0. As x moves away from 0, the probability of agree-
ment decreases, which fits the modeling objective.

P(y|x) =
P(x|y)P(y)∑

y′∈Y P(x|y′)P(y′)
(6)

Generative Process. We now describe the full genera-
tive process for a set of observed triplets X = {x}.

For every triplet x ∈ X:

1. Draw an outcome for y ∈ {0, 1}:

y ∼ Bernoulli(α)

2. Draw an outcome for x ∈ R:
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(a) In the event of agreement, i.e., y = 1:

x ∼ N (µ1, σ
2
1)

(b) Else, in the event of disagreement, i.e., y = 0:

x ∼ 1

2
N (µ0, σ

2
0) +

1

2
N (−µ0, σ

2
0)

Based on this generative process, the distribution of x can
be expressed as a mixture of three Gaussians with weights
α, 1−α

2
, and 1−α

2
respectively, as shown in Equation 7.

x ∼ αN (µ1, σ
2
1) +

1− α
2
N (µ0, σ

2
0) +

1− α
2
N (−µ0, σ

2
0) (7)

Parameters. For the above generative process, the set
of parameters can be encapsulated by θ = 〈α, µ1, σ1, µ0, σ0〉.
The question arises whether there is a unique θ for every
triplet 〈u, v, i〉. Because θ is a distributional parameter, it
is not feasible to estimate θ from a single observation of
x. Another approach is to tie together the parameters of
a group of triplets. In this paper, we propose to tie the
parameters of triplets corresponding to each pair of users.
In other words, there is a specific θuv for each pair of users
u and v that applies to all items. As shown in the plate
diagram in Figure 2, αuv and θuv are within the plate of
each pair of users. For clarity, we draw αuv separately to
show that yuvi only depends on αuv, although αuv ∈ θuv.
xuvi is shaded, because it is observed.

4.2 Monotonicity Property
We would like to model P(y = 1|x) that increases as

x → 0, and decreases as x → ∞ or x → −∞. We re-
fer to this as the monotonicity property of the conditional
probability of agreement. This monotonicity property does
not always hold for any or all parameter settings. There are
errant parameter settings that may cause this property to
be violated. As an example, in Figure 1(b), we show a case
where P(y = 1|x) (the green curve) initially decreases as x
goes away from zero, but as x continues moving away, it
starts to increase again. This is not intuitive, as it suggests
that the probability agreement is very high even as x→∞.

To enforce the monotonicity property, we propose intro-
ducing some constraint to the parameters of the Gaussian
mixtures. By expanding Equation 6 according to the gener-
ative process, we can express the p.d.f. of P(y = 1|x) as in
Equation 8. Here, N (x;µ, σ2) denotes the p.d.f. of Normal

distribution, i.e., 1√
2πσ2

exp{− (x−µ)2

2σ2 }.

G(x) =
αN (x; 0, σ2

1)

αN (x; 0, σ2
1) + 1−α

2
N (x;µ0, σ2

0) + 1−α
2
N (x;−µ0, σ2

0)
(8)

Because the p.d.f G(x) is continuous and differentiable,
one way to ensure that monotonicity holds is to constrain
the gradient of G(x) to be negative for all x > 0, as shown
in Equation 9. Note that due to the symmetric property of
the Gaussian mixtures, it is sufficient to enforce this mono-
tonicity for x > 0, as the other case x < 0 is met by default.

∂G(x)

∂x
< 0, for all x > 0 (9)

By taking the derivative of G(x) with respect to x, Equa-
tion 9 can be reduced into the inequality in Equation 10.

exp

{
4xµ0

2σ2
0

}(
x

σ2
1

− x− µ0

σ2
0

)
+

(
x

σ2
1

− x+ µ0

σ2
0

)
> 0 (10)

This inequality still contains the variable x. We need to
reduce it to an inequality involving only the parameters. We
discover a simple constraint that meets that objective.

Proposition 1.The constraint σ1 < σ0 ensures that Equa-
tion 10 always holds for any x > 0.

Proof. Let us first consider the first additive term in
LHS of Equation 10, i.e., exp{ 4xµ0

2σ2
0
}( x
σ2
1
− x−µ0

σ2
0

). Because

x, µ0, and σ0 are all positive, we have 4xµ0

2σ2
0
> 0. In turn, we

have exp{ 4xµ0

2σ2
0
} > 1. Because σ1 < σ0, we also have ( x

σ2
1
−

x−µ0

σ2
0

) > 0. We can therefore take Step 1 in Equation 11.

From Step 1, we can go to Step 2 by a simple addition of
the terms. Finally, because x > 0, and σ1 < σ0, we have
2x( 1

σ2
1
− 1

σ0
) > 0 in Step 3, which concludes the proof.

exp

{
4xµ0

2σ2
0

}(
x

σ2
1

− x− µ0

σ2
0

)
+

(
x

σ2
1

− x+ µ0

σ2
0

)
(11)

≥
(
x

σ2
1

− x− µ0

σ2
0

)
+

(
x

σ2
1

− x+ µ0

σ2
0

)
(Step 1)

=2x

(
1

σ2
1

− 1

σ0

)
(Step 2)

>0 (Step 3)

We have shown that with the constraint of σ1 < σ0, Equa-
tion 9 holds, guaranteeing the monotonicity property for
x > 0 (and simultaneously for x < 0). This constraint
σ1 < σ0 is also intuitive, as when two users are agreeing
their rating difference is likely to be small and not vary as
widely as when they are disagreeing.

4.3 Parameter Estimation
Parameter estimation deals with learning the parameters

θ that best “describes” the observed data X = {x}. Because
every x is assumed to have been generated independently
in the generative process, the likelihood can be expressed as
the joint probability shown in Equation 12.

P(X|θ) =
∏
x∈X

P(x|θ) (12)

The strategy employed in this paper is to find the param-
eters that maximize the likelihood of observing X. Due to
the presence of constraints, the objective is to also find θ
that meets the constraints, as shown in Equation 13. The
first constraint ensures the mixture weights of the Gaus-
sians sum to 1, by setting the mixture weights to α1 = α
and α0 = 1− α respectively. The second constraint ensures
the monotonicity of P(y = 1|x) by setting σ1 < σ0.

arg max
θ

P(X|Θ),

subject to: α0 + α1 = 1, and σ1 < σ0 (13)

To maximize the likelihood, we can equivalently maxi-
mize the log-likelihood. As it is a constrained optimization
problem, we employ the use of Lagrangian multipliers [4] to
enforce the constraint. In Equation 14, we show the updated
log-likelihood function L. Both λα and λσ are Lagrangian
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multipliers for the constraints. We also introduce a slack
variable s2, whose positive value ensures that σ1 < σ0.

L =
∑
x∈X

ln P(x|θ)+λα(α1 +α0−1)+λσ(σ0−σ1−s2) (14)

To learn the parameters that maximize the log-likelihood
function L, we turn to Expectation Maximization (EM) al-
gorithm [3]. It can be shown that the derivation of L with
respect to each parameter leads to the following computa-
tions in the E-step and M-step.

In the E-step, we compute the following quantities (to be
used in the next M-step):

• c(x) = 1−α
2P(x|Θ)

(N (x| − µ0, σ
2
0) +N (x|µ0, σ

2
0))

• d(x) = αP(x|y=1)
P(x|Θ)

• e1(x) = (1−α)
2P(x|Θ)

N (x| − µ0, σ
2
0)

• e2(x) = (1−α)
2P(x|Θ)

N (x|µ0, σ
2
0)

In the M-step we compute µ0, σ1, σ0 and s.

• µ0 = 1
C

∑
x∈X(e1(x)− e2(x))x, where C =

∑
x∈X c(x)

• α = 1
|X|
∑
x∈X d(x)

• σ2
1 = 1

D

∑
x∈X d(x) · x2, where D =

∑
x∈X d(x)

• σ0 = ( 1
E

∑
x∈X(e1(x)·(x+µ0)2+e2(x)·(x−µ0)2))−

1
2 +

σ1, where E =
∑
x∈X(e1(x) + e2(x))

Once the parameters are learned, we can make inferences
for the posterior probability of agreement P(y = 1|x), based
on Equation 6, and substituting the learned parameters θ.

5. RATING DIFFERENCE PREDICTION
While CAM could explain the distributive properties of

xuvi’s and provide an estimation of the contextual agreement
probability P(yuvi|xuvi), it assumes that xuvi is known. This
is true only for a relatively small subset of triplets. In order
to extend the model to unseen triplets, we need to estimate
the unseen x̂uvi from ratings data. Inspired by previous work
on recommender systems, we adopt an approach based on
matrix factorization. While related, our problem is different
from traditional recommender systems in two ways. First,
the object of interest is a triplet 〈u, v, i〉, instead of a pair
〈u, i〉. Second, the value to be estimated xuvi is rating dif-
ference (see Equation 3), instead of ratings.

We outline three matrix factorization approaches to solve
this problem. The first, PMF, is an existing approach re-
purposed for our problem. The second, PPMF, is a modifi-
cation. The third, DPMF, is a new proposed method.

5.1 Probabilistic Matrix Factorization (PMF)
One way to predict x̂uvi is to first predict r̂ui and r̂vi,

and subsequently taking their difference. As a representa-
tive of this approach, we employ the Probabilistic Matrix
Factorization or PMF [29]. The set of ratings R can be rep-
resented as a matrix of size |U| × |I|, where each element
corresponds to a rating rui. This matrix is incomplete, and
the goal is to fill up the missing entries with predicted r̂ui.
The approximation uses two rank-K matrices S ∈ RK×|U|
and Q ∈ RK×|I|.

Let Su be a column vector in S for user u. Let Qi be a col-
umn vector in Q for item i. PMF places zero-mean spherical
Gaussian prior distributions on Su and Qi (with standard
deviations ϕU and ϕI) to control the complexity of the pa-
rameters, i.e., Su ∼ N (0, ϕ2

UI) and Qi ∼ N (0, ϕ2
II). The

plate diagram of PMF is shown in Figure 3(a). It shows how
ratings are generated by the parameters Su and Qi. Each
r̂ui is assumed to be drawn from a Gaussian distribution
centered at Su

TQi with variance γ2 (Equation 15).

r̂ui ∼ N (Su
TQi, γ

2) (15)

Parameter estimation is by maximizing the log-posterior
distribution over item and user vectors with hyper-parameters,
which is equivalent to minimizing the sum of squared-errors
function in Equation 16. IR(u, i) is an indicator function of
whether u has rated i. Equation 16 contains two compo-
nents. The first summand is the fitting constraint, while the
rest constitutes the regularization. The fitting constraint
keeps the model parameters fit to the training data whereas
the regularizers avoid overfitting, making the model gener-
alize better [7]. λU , λI are the regularization parameters.

E =
1

2

∑
u∈U

∑
i∈I

IR(u, i)(rui−Su
T
Qi)

2
+
λU

2

∑
u∈U
||Su||2+

λI

2

∑
i∈I
||Qi||2

(16)

The estimation is done using gradient descent [29], with
the following gradients. Once the parameters are learned,
we then predict each x̂uvi as Su

TQi − SvTQi.

∂E

∂Su
= −(rui − SuTQi)Qi + λUSu (17)

∂E

∂Qi
= −(rui − SuTQi)Su + λIQi (18)

5.2 Pairwise PMF (PPMF)
One potential issue with the previous approach using PMF

is the indirection of going through ratings, instead of pre-
dicting x̂uvi directly. The second approach is to instead fit
another matrix X, of size |U×U|×|I|. Each row corresponds
to a pair of users uv. Each column relates to an item i. Each
element xuvi is the rating difference rui − rvi.

To approximate X, we associate each user pair with a rank-
K vector Suv, and each item with Qi. To generate x̂uvi, we
draw it from a Normal distribution, as in Equation 19.

x̂uvi ∼ N (Suv
TQi, γ

2) (19)

We call this approach Pairwise PMF or PPMF. The plate
diagram is shown in Figure 3(b), which clearly illustrates the
difference from PMF. In PPMF, the observations (shaded)
are xuvi’s, instead of ratings. The objective function of
PPMF is specified in Equation 20.

E =
1

2

∑
uv∈U×U,u6=v

∑
i∈I

IR(u, v, i)(xuvi − SuvTQi)2+

λU

2

∑
uv∈U×U,u6=v

||Suv ||2 +
λI

2

∑
i∈I
||Qi||2 (20)
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Figure 3: Plate Diagrams: Matrix Factorization Models for Rating Difference Prediction

The estimation is done using gradient descent, with the
following gradients.

∂E

∂Suv
= −(xuvi − SuvTQi)Qi + λUSuv (21)

∂E

∂Qi
= −(xuvi − SuvTQi)Suv + λIQi (22)

Once the parameters are learned, we then predict each
x̂uvi as Suv

TQi.

5.3 Differential PMF (DPMF)
While PPMF estimates x̂uvi directly, it suffers from two

design issues. First, it blows up the number of parameters,
as we now have to learn the Suv for every pair, instead of
every user. Second, it assumes that the vectors Suv and Suv′
are independent, even as they share the same user u.

To address these deficiencies, we propose a new factoriza-
tion model, which we call Differential Probabilistic Matrix
Factorization or DPMF. The plate diagram is shown in Fig-
ure 3(c). In this approach, we will still associate each user
u with a latent vector Su, and each item i with Qi. The key
distinction is that we consider ratings to be latent, and fit
the rating difference xuvi directly. In other words, x̂uvi is a
draw from the following Normal distribution (Equation 23).

x̂uvi ∼ N (Su
TQi − SvTQi, γ2) (23)

The objective function of DPMF in Equation 24 shows
that we fit the prediction x̂uvi = Su

TQi − STv Qi to the
observation xuvi = rui − rvi.

E =
1

2

∑
u∈U

∑
v∈U,v 6=u

∑
i∈I

IR(u, v, i)((rui − rvi)− (Su
T
Qi − Sv

T
Qi))

2

+
λU

2

∑
u∈U
||Su||2 +

λI

2

∑
i∈I
||Qi||2 (24)

Estimation by gradient descent uses the gradients below.

∂E

∂Su
= −((rui − rvi)− (Su

TQi − STv Qi))Qi + λUSu (25)

∂E

∂Sv
= ((rui − rvi)− (Su

TQi − STv Qi))Qi + λUSv (26)

∂E

∂Qi
= −((rui − rvi)− (Su

TQi − STv Qi))(Su − Sv) + λIQi

(27)

6. EXPERIMENTS
Our objective in the experiments are three-fold. First, we

investigate the learning of CAM. Second, we study the effec-
tiveness of different methods in predicting rating differences.
Third, we test the combined model against baselines on an
evaluative rating prediction task. In addition, we include a
case study to better illustrate the workings of CAM. Our
focus here is on effectiveness, rather than on computational
efficiency. We will briefly comment on the runtime of the
learning algorithms in the appropriate sections.

6.1 Experimental Setup
Datasets. We conduct experiments on three real-life,

publicly available rating datasets, namely: Ciao1, Epinions1,
and Flixster2. Flixster contains ratings on movies. Ciao and
Epinions both contain ratings on various categories such as
books, electronics, movies, etc. We deliberately do not split
the ratings by category to see if the model can contextualize
the ratings per item basis without this information. Ratings
are normalized into a 5-point scale. In all cases, only ratings
(and not other information) are used in learning.

We pre-process the raw data as follows. First, we retain
only pairs of users who have co-rated at least 20 items. This
is to ensure that there is sufficient data to learn the model
parameters reasonably accurately. For each co-rated item,
we derive xuvi from rui− rvi. In addition, since Flixster has
timestamps, we decide to split the ratings into four annual
subsets: 2006-2009, and retain only user pairs who exist in
all four subsets. This is to see if the results will be consis-
tent across subsets of the data. The data sizes are shown in
Table 2. After pre-processing, all the datasets are still size-
able, with thousands of users/items, and tens to hundreds
of thousands rating differences.

Training vs. Testing. For each data set we create two
types of training/testing data. For Sections 6.2 and 6.3,
we work with rating difference triplets xuvi’s. We split the
observed tripletsX into two subsets: 80% training setXtrain
and 20% testing set Xtest. We average all the experimental
results across 30 such folds (created by random sampling).
For Section 6.4, we work with user-item ratings rui’s. To
form the corresponding training set for ratings Rtrain for

1http://www.public.asu.edu/~jtang20/datasetcode/
truststudy.htm
2http://www.cs.ubc.ca/~jamalim/datasets/
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Dataset Original Preprocessed
Users Items Ratings User Items Rating

pairs Differences

Ciao 10,980 112,832 301,534 3,312 7,425 91,277
Epinions 127,771 331,642 1,185,975 10,997 24,453 369,998
Flixster 147,612 48,794 8,196,077 - - -
- Flixster06 1,682 3,421 307,044
- Flixster07 1,682 3,642 106,312
- Flixster08 1,682 3,018 65,210
- Flixster09 1,682 2,127 44,863

Table 2: Datasets
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Figure 4: Perplexity of CAM on Testing Set

each Xtrain, we “decompose” each xuvi into the original rui
and rvi. Similarly, Rtest is created from Xtest, but with
an additional step of removing any rating that also exists
in Rtrain. Since there are 30 samples for Xtrain and Xtest,
correspondingly there are 30 samples for Rtrain and Rtest.

6.2 Contextual Agreement Model
Perplexity. First, we study the parameter learning for

CAM. As mentioned in Section 4, there is a set of parame-
ters θuv, for every pair of users. One measure of effective-
ness for a probabilistic model is perplexity, or the ability
of model parameters learned from training data (Xtrain)
to fit the testing data (Xtest). Perplexity is measured as

exp{− 1
N

∑N
m=1 log p(xm)}, whereN is the number of triplets

in the held-out testing data (Xtest), and p(xm) is the like-
lihood of observing the value of a triplet xm based on the
parameter θ. If a model is well-trained, the perplexity will
be lower as it gets better at generalizing over the held-out
data. To investigate if this is the case, in Figure 4, we plot
these perplexity values (averaged over 30 folds each). For
each dataset, we measure the perplexity of learned model
parameters after every iteration of the EM algorithm. The
perplexity decreases quickly in the first few iterations, and
then stabilizes. As the EM algorithm converges quickly in
improving the fitness of the model parameters to the train-
ing data, it also improves the fit with the held-out data.

Distribution of Agreement Prior. To get some sense
of the learned parameters, we also inspect the distribution of
parameter αuv’s (for different user pairs). This parameter is
the prior probability of agreement P(yuvi = 1) for a pair of
users u and v. We show the distribution as a series of white
box plots in Figure 5. It shows that in all six datasets,
there are diverse types of users. Some user pairs tend to
agree (α→ 1) while others tend to disagree (α→ 0). Most
users are somewhere in between. The median hovers around
0.6. In most datasets, the inter-quartile range around the
median is 0.3 to 0.4. This result supports our intuition that
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Figure 5: Distribution of P(yuvi = 1) or αuv

user pairs do not agree all the time. Most will have some
disagreements, and therefore it is important to contextualize
their agreement on per item basis. Note that this, as well
as the earlier conclusion, generally holds for all the annual
subsets of Flixster datasets.

Friendship. Since the datasets also contain the social
network links among users, we also test the frequently made
hypothesis that friendship or trust relationship can help in
learning the preferences of users [24, 22]. In the same Fig-
ure 5, we draw the distributions of αuv, narrowing down
the population to only those user pairs sharing friendship
or trustor-trustee relationship. These are drawn as red box
plots. One observation is that friendship does contain some
information. The comparison of every pair of white (all
pairs) vs. red (friends-only) box plots, show that friends
have greater agreement in general. This is especially evi-
dent in the Flixster datasets. However, another interesting
observation is that even some friends disagree a lot, as shown
by the lower whiskers of the box plots. Hence, just because a
pair of users are friends, it does not mean they always agree.
Therefore, it is helpful to know the context of agreement.

The EM learning algorithms are relatively efficient. For
each fold, the parameters for all user pairs can be learned in
1 to 4 minutes on an Intel(R) Xeon(R) Processor E5-2667
2.90GHz machine.

6.3 Rating Difference Prediction
We study the efficacy of different matrix factorization

methods outlined in Section 5 (PMF, PPMF and DPMF )
in deriving good predictions for unseen triplets. PPMF and
DPMF are trained on Xtrain, while PMF is trained on the
corresponding Rtrain, all using the same parameter choices
as in the original paper for PMF [29] (learning rate = 0.005,
number of latent factors = 30, regularization coefficient =
0.002). All three are tested on the same Xtest.

For every triplet xuvi in the test set Xtest, we derive a pre-
diction x̂uvi using each method, and compare the accuracy
of their predictions in terms of root mean squared error com-
monly used in matrix factorization. RMSEdiff is defined
in Equation 28. Lower value indicates better performance.

RMSEdiff =
∑

xuvi∈Xtest

√
(x̂uvi − xuvi)2

|Xtest|
(28)

Vary Epochs. In Figure 6, we plot the RMSEdiff at
different epochs. One epoch corresponds to a full iteration
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Figure 6: PMF vs. PPMF vs. DPMF (RMSEdiff)

over the whole training set. For all, the error goes down
with the epochs, and eventually converges. DPMF performs
the best in two respects. First, its converged error is the
lowest of the three, followed by PMF, and PPMF (worst).
Second, it achieves convergence much faster (by 30 epochs).
Although by 100 epochs, PMF narrows down the error gap
somewhat, it converges very slowly, requiring more epochs.

We hypothesize that this is due to the differences in the
objective functions. PMF tries to make its prediction as
close to the observed rating as possible, without considera-
tion on the level of difference between ratings. For example,
suppose users u and v give ratings of 4 and 1 respectively
to the same item in the test set. If the predicted ratings are
4.5 and 0.5, these are close enough to the actual ratings (4
and 1). However, in terms of the rating difference, it has
widened from 4−1 = 3 to 4.5−0.5 = 4. In contrast, DPMF
tries to fit the rating difference directly, for instance by pre-
dicting 4.5 and 1.5, which has the same error in terms of
rating, but zero error in terms of rating difference.

We perform one-tailed t-test with 0.01 significance level
on the RMSEdiff values of PMF and DPMF over different
epochs. The result confirms that the outperformance by
DPMF over PMF is statistically significant.

Vary Latent Factors. We conduct a separate experi-
ment on DPMF on different numbers of latent factors K.
The RMSEdiff at 100 epochs are shown in Table 3. It
shows that by around K = 30, the errors have converged.
There is no significant gain by running higher latent factors
(which will make the learning algorithms slower). Subse-
quently, we will use DPMF in conjunction with CAM with
the same parameter settings (K = 30, 100 epochs) .

The gradient descent learning algorithms are also efficient.
For all three methods, the parameters can be learned within

Dataset Number of latent factors K
10 20 30 40 50 100

Ciao 0.87 0.43 0.36 0.36 0.35 0.34
Epinions 0.77 0.45 0.35 0.34 0.33 0.32
Flixster06 0.78 0.55 0.41 0.33 0.29 0.23
Flixster07 0.65 0.47 0.40 0.38 0.37 0.35
Flixster08 0.62 0.42 0.35 0.34 0.33 0.32
Flixster09 0.58 0.35 0.30 0.29 0.28 0.28

Table 3: DPMF: Vary Latent Factors (RMSEdiff)

1 minute for each fold on the same Intel(R) Xeon(R) Pro-
cessor E5-2667 2.90GHz machine.

6.4 Application: Collaborative Filtering
Here, we use the model parameters of CAM, combined

with the rating difference predictions by DPMF to generate
contextual agreement probabilities wuvi = P(yuvi = 1|x̂uvi).
These probabilities are used as similarity in neighborhood-
based collaborative filtering, as outlined in Section 3.

In the rating prediction task, for every rating rui ∈ Rtest,
we predict r̂ui as a weighted average of neighbors’ ratings
in Rtrain. The accuracy of rating prediction is measured by
RMSErating defined in Equation 29.

RMSErating =
∑

rui∈Rtest

√
(r̂ui − rui)2

|Rtest|
(29)

Contextual vs. Shared. First, we compare the effi-
cacy of item-specific contextual agreement (labeled CAM-
DPMF ) as compared to baselines relying on shared pref-
erence that applies to all items of the same user pair, as
measured by Pearson and Cosine functions (see Section 2).

The prediction accuracies in terms of RMSErating are
listed in Table 4. For each dataset, we indicate with an ‘∗’
the best method with the lowest error, which is significantly
different from the second-best (using t-test significance test
at 0.01 significance level). For all of the datasets, CAM-
DPMF has the lowest errors. For Ciao, CAM-DPMF has
a lower error than Cosine or Pearson, but not statistically
significant at p = 0.01. As all the comparative methods
work with exactly the same set of ratings, the only difference
is how each method weighs the contribution of each rating.
This result shows that paying attention to context, as CAM-
DPMF does, helps to gain a lower prediction error.

Combination vs. Components. CAM-DPMF uses
a combination of CAM ’s model parameters and DPMF ’s
predicted rating differences. To show that this joining of
the two components is really necessary, it is instructive to
see how each respective component performs on the same
task. We therefore construct two more baselines based on
each component respectively. The first, called CAM -α, uses
the αuv of each pair as a non-contextual similarity value in
Equation 5. The second is the factorization model DPMF
described in Section 5. We also include PMF for complete-
ness. We use the users’ and items’ parameters Su and Qi
to predict unobserved ratings r̂ui. Table 5 shows a compar-
ison between the combined approach CAM-DPMF and the
two components, CAM -α and factorization models on the
rating prediction task. In five out of six datasets, CAM-
DPMF has a lower error than both components. One ex-
ception is Flixster06, where PMF performs slightly better.
Interestingly, DPMF performs very badly on its own. This
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Dataset CAM-DPMF Shared Preference
Cosine Pearson

Ciao 1.110∗ 1.119∗ 1.118∗

Epinions 1.141∗ 1.180 1.180
Flixster06 1.084∗ 1.144 1.143
Flixster07 1.011∗ 1.060 1.058
Flixster08 1.051∗ 1.081 1.079
Flixster09 1.087∗ 1.148 1.146

Table 4: Versus Shared Preference (statistically sig-
nificant best-performing entries are asterisked)

Dataset CAM-DPMF CAM-α DPMF PMF

Ciao 1.110∗ 1.129 4.181 1.183
Epinions 1.141∗ 1.198 4.075 1.194
Flixster06 1.084 1.150 3.446 1.046∗

Flixster07 1.011∗ 1.073 3.532 1.073
Flixster08 1.051∗ 1.095 3.617 1.095
Flixster09 1.087∗ 1.152 3.595 1.152

Table 5: Versus Model Components (RMSErating)

is because it is optimized for predicting rating differences,
and not ratings. The results emphasize the improvement of
CAM-DPMF over shared preference comes from the com-
plementary combination of both components, and not from
the sole contribution of either one.

6.5 Case Study
To illustrate the workings of CAM, we now show a case

study drawn from the Epinions dataset, involving the same
pair of users as in Section 1. Table 6 shows the ratings of
user u (talyseon) and v (youngchinq) on twenty movies.

Based on these ratings, the CAM parameters for this pair
are as follows: α = 0.40, µ0 = 2.9, σ0 = 0.83, σ1 = 0.81.
The relatively low α suggests that this pair do not always
agree. That µ0 = 2.9 suggests that when they disagree their
rating difference is around 3. This is evident from the fourth
column labeled |xuvi|, which tracks their rating differences.
The lower half of the table shows rating differences around
3, suggesting that these are movies the pair disagree on.

CAM uses these parameters to estimate the contextual
probability of agreement shown in the fifth column. As ex-
pected, the contextual probability of agreement is high (close
to 1) for the movies at the upper half of the table (where rat-
ing differences are low), and is low (close to 0) for the movies
at the lower half. In contrast to the item-specific agreement
produced by CAM, the baselines Pearson and Cosine each
assign a single similarity value that applies to all items, inad-
equately describing the nature of agreement between users.

To see that such cases of varying rating differences are
common, we employ the concept of entropy from informa-
tion theory. For each pair, we count the frequencies of rating
differences, and measure the entropy, i.e.,

∑
i=1 p(xi) ln p(xi)

where p(xi) is the normalized frequency of each rating dif-
ference value. If the entropy is high, the pair has rating
differences that are varied, rather than uniform (if entropy
is low). For instance, the user pair in the case study above
has an entropy of 2.3. Figure 7 plots a histogram of user
pairs binned by their entropies. There is a significant pro-
portion of the population with high entropies. In fact, the
low entropies are the exception, rather than the norm.

Movie rui rvi |xuvi| P(yuvi = 1| Pear- Cos-
xuvi) son ine

Paranormal Activity 5 5 0 1.00

0.53 0.88

Payback 3 3 0 1.00
Coraline 5 5 0 1.00
Pan’s Labyrinth 5 5 0 1.00
Memento 5 4 1 0.89
Gran Torino 5 4 1 0.89
The Hurt Locker 5 4 1 0.89
Jurassic Park III 3 2 1 0.89
Twilight 3 1 2 0.10
Inception 5 3 2 0.10
Daredevil 3 1 2 0.10
I Am Legend 4 2 2 0.10
Rosemary’s Baby 5 2 3 0.00
The Day After Tomorrow 4 1 3 0.00
300 4 1 3 0.00
Moulin Rouge 5 2 3 0.00
Seven Pounds 4 1 3 0.00
The Dark Knight 5 1 4 0.00
The Last Samurai 5 1 4 0.00
Star Wars Episode III:
Revenge of the Sith

5 1 4 0.00

Table 6: Epinions Case Study
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Figure 7: Entropy of Rating Differences in Epinions

7. CONCLUSION
We address the novel problem of estimating the contex-

tual agreement between two users in the context of one item,
by probabilistic modeling with two major components. The
first, called CAM, models contextual agreement in genera-
tive form, as a mixture of Gaussians. To ensure monotonic
behavior of the agreement probability, we propose a specific
constraint, and describe how the constrained parameters can
be learned through EM. To extend the use of CAM to un-
seen triplets, the second component predicts rating differ-
ences between two users on the same item. We outline three
different matrix factorization approaches, including a pro-
posed model called DPMF with a novel objective function.
The models are shown to be effective through experiments
on real-life rating datasets. As future work, we plan to inves-
tigate how the two components of our model can be joined
more tightly together, such that the learning for one can
help reinforce the other. In addition, just as we could apply
CAM-DPMF in similarity-based collaborative filtering, it
may be feasible to apply it in matrix factorization for rating
prediction as well, which requires further investigation.

8. ACKNOWLEDGMENTS
This research is supported by the Singapore National Re-

search Foundation under its International Research Centre
@ Singapore Funding Initiative and administered by the
IDM Programme Office, Media Development Authority (MDA).

324



9. REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. TKDE, 17(6),
2005.

[2] A. Ahmed, B. Kanagal, S. Pandey, V. Josifovski, L. G.
Pueyo, and J. Yuan. Latent factor models with
additive and hierarchically-smoothed user preferences.
In WSDM, 2013.

[3] C. M. Bishop and N. M. Nasrabadi. Pattern
Recognition and Machine Learning. Springer, 2006.

[4] S. P. Boyd and L. Vandenberghe. Convex
optimization. Cambridge University Press, 2004.

[5] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In UAI, 1998.

[6] H. Fang, Y. Baoy, and J. Zhang. Misleading opinions
provided by advisors: Dishonesty or subjectivity. In
IJCAI, 2013.

[7] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman.
The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, 2011.

[8] T. Hofmann. Collaborative filtering via gaussian
probabilistic latent semantic analysis. In SIGIR, 2003.

[9] T. Hofmann. Latent semantic models for collaborative
filtering. TOIS, 22(1), 2004.

[10] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu.
Personalized recommendation via cross-domain triadic
factorization. In WWW, 2013.

[11] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich.
Recommender Systems: An Introduction. Cambridge
University Press, 2010.

[12] R. Jin, J. Y. Chai, and L. Si. An automatic weighting
scheme for collaborative filtering. In SIGIR, 2004.

[13] B. Kanagal, A. Ahmed, S. Pandey, V. Josifovski,
J. Yuan, and L. Garcia-Pueyo. Supercharging
recommender systems using taxonomies for learning
user purchase behavior. PVLDB, 5(10), 2012.

[14] N. Koenigstein, G. Dror, and Y. Koren. Yahoo! music
recommendations: modeling music ratings with
temporal dynamics and item taxonomy. In RecSys,
2011.

[15] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8), 2009.

[16] Y. Koren and J. Sill. OrdRec: An ordinal model for
predicting personalized item rating distributions. In
RecSys, 2011.

[17] N. D. Lawrence and R. Urtasun. Non-linear matrix
factorization with gaussian processes. In ICML, 2009.

[18] D. D. Lee and H. S. Seung. Learning the parts of
objects by non-negative matrix factorization. Nature,
401(6755), 1999.

[19] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1), 2003.

[20] X. Liu and K. Aberer. SoCo: a social network aided
context-aware recommender system. In WWW, 2013.

[21] P. Lops, M. de Gemmis, and G. Semeraro.
Content-based recommender systems: State of the art

and trends. In Recommender Systems Handbook, pages
73–105. Springer, 2011.

[22] H. Ma, I. King, and M. R. Lyu. Learning to
recommend with social trust ensemble. In SIGIR,
2009.

[23] H. Ma, H. Yang, M. R. Lyu, and I. King. SoRec:
Social recommendation using probabilistic matrix
factorization. In CIKM, 2008.

[24] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King.
Recommender systems with social regularization. In
WSDM, 2011.

[25] L. W. Mackey, D. Weiss, and M. I. Jordan. Mixed
membership matrix factorization. In ICML, 2010.

[26] L. B. Marinho, A. Nanopoulos, L. Schmidt-Thieme,
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