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We present a detailed analysis of a class of extensions to the SM Gauge chiral symmetry SU(3)C ×
SU(3)L ×U(1)x (331 model), where the neutrino electroweak interaction with matter via charged
and neutral current is modified through new gauge bosons of themodel. We found the connections
between the nonstandard contributions on 331 model with nonstandard interactions. Through
limits of such interactions in cross-section experiments, we constrained the parameters of the
model, obtaining that the new energy scale of this theory should obey V > 1.3 TeV and the new
bosons of the model must have masses greater than 610GeV.

1. Introduction

Although the standard model (SM) is a good phenomenological theory, describing very well
all experimental results, it leaves several unanswered questions that suggest that the SM
might be an effective model at low energies, originating from a more fundamental theory.
Some of the unexplained aspects in the SM are the existence of three families and lepton
flavour violation observed in solar [1–5], atmospheric [6–11], and reactor [12–17] neutrino
experiments. These results demonstrate that new physics is required, being interpreted as a
sign of physics beyond the SM.

In principle neutrinos new interactions not described by Standard Model can arise in
extensions of the SM. We assume that the new physics which induces the nonstandard neu-
trino interactions (NSIs) [18–29] arises in some models enlarging the symmetry group where
the SM is embedded. Models with larger symmetries that may allow us to understand the
origin of the families have been proposed [30–34]. In somemodels, it is also possible to under-
stand the number of families from the cancellation of chiral anomalies, necessary to preserve
the renormalizability of the theory [35–37]. This is the case of the SU(3)C ⊗ SU(3)L ⊗U(1)X
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or 331 models, which are an immediate extension of the SM [38–46]. There are a great variety
of such models, which have generated new expectations and possibilities of solving several
problems of the SM.

Our goal is to investigate how NSI with matter can be induced by new physics gener-
ated by 331 models. Through the constraints from neutrino elastic scattering experiments on
this NSI parameters, we can constrain some values expected for 331 model parameters. We
find that the constraints on vacuum expectation values of the model, as well as for the mass
of the new bosons, are in full agreement with the limits found in the literature, which makes
this class of models a viable theory for a higher energy level.

The paper is organized as follows. In Section 2 we briefly review NSI and present
how new interactions can contribute to new matter effects, in addition to the SM electroweak
ones. In Section 3 we introduce a specific 331 model and we give the fermion gauge-boson
couplings. In Section 4 we calculate the interactions involving neutrinos and how these
interactions can be interpreted as new terms beyond SM. Finally, in Section 5 we summarize
our main results.

2. Nonstandard Neutrino Interactions

One convenient way to describe neutrino new interactions with matter in the electro-weak
(EW) broken phase are the so-called nonstandard neutrino interactions (NSIs), which is
a very widespread and convenient way of parameterizing the effects of new physics in
neutrino oscillations [18–29]. NSIs with first generation of leptons and quarks for four-
fermion operators are contained in the following Lagrangian density [18–22, 24, 25, 28]:

LNSI
eff = −2

√
2GF

∑

f,P

ε
fP

αβ

[
fγμPf

][
ναγ

μLνβ
]
, (2.1)

where GF is the Fermi constant, f = u, d, e, and P = L,R with 2L = (1 − γ5), 2R = (1 + γ5),
and the coefficients εfP

αβ
encode the deviation from standard interactions between neutrinos of

flavor α with component P -handed of fermions f , resulting in a neutrinos of flavor β. Then,
the neutrino oscillations in the presence of nonstandard matter effects can be described by an
effective Hamiltonian, parameterized as

H̃ =
1
2E

⎡
⎢⎣U

⎛

⎝
0 0 0
0 Δm2

21 0
0 0 Δm2

31

⎞

⎠U† + a

⎛
⎜⎝

1 + εee εeμ εeτ
ε∗eμ εμμ εμτ
ε∗eτ ε∗μτ εττ

⎞
⎟⎠

⎤
⎥⎦, (2.2)

where a =
√
2GFnf , E is the neutrino energy and εαβ =

∑
f,P ε

fP

αβ
nf/ne with ne and nf the

electrons and fermions f density in the medium, respectively. These parameters εαβ can be
found in solar [22, 47], atmospheric [20, 48], accelerator [18, 19, 22, 49], and cross-section
[18, 19, 21, 50, 51] neutrino data experiment.
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We focus on cross-section neutrino experiment, where at low energies the standard
differential cross-section for ναe → ναe scattering processes has the well-know form:

dσα
dT

=
2GFme

π

[
(
gα1

)2 +
(
gα2

)2
(
1 − T

Eν

)2

− gα1 gα2
meT

E2
ν

]
, (2.3)

whereme is the electron mass, Eν is the incident neutrino energy, and Te is the electron recoil
energy. The quantities gα1 and g

α
2 are related to the SMneutral current couplings of the electron

geL = −1/2 + sin2θW and geR = sin2θW , with sin2θW = 0, 23119. For νμ,τ neutrinos, which take
part only in neutral current interactions, we have gμ,τ1 = geL and g

μ,τ

2 = geR while for electron
neutrinos, which take part in both charge current (CC) and neutral current (NC) interactions,
ge1 = 1 + geL, g

e
2 = geR. In the presence of nonuniversal standard interaction, the cross-section

can be written in the same form of (2.3) but with gα1,2 replaced by the effective nonstandard
couplings g̃α1 = gα1 + εeLαα and g̃α2 = gα2 + εeRαα , leading to the following differential scattering
cross-section [19, 21, 50, 51]

dσα
dT

=
2GFme

π

{(
gα1 + εeLαα

)2
+
(
gα2 + εeRαα

)2
(
1 − Te

Eν

)2

−
(
gα1 + εeLαα

)(
gα2 + εeRαα

)meTe
Eν

}
.

(2.4)

3. 331 Model

The success of the standard model (SM) implies that any new theory should contain the
symmetry SU(3)C ⊗ SU(2)L ⊗U(1)Y (G321) in a low energy limit. Then, it is natural that one
possible modification of SM involves extensions of the representation content in matter and
Higgs sector, leading to extension of symmetry group G321 to groups SU(NC)C ⊗ SU(m)L ⊗
U(1)X with SU(NC)C ⊗ SU(m)L ⊗U(1)X ⊃ G321.

In early 90’s, Pisano and Pleitez [38, 39] and Frampton [40] suggested an extension of
the symmetry group SU(2)L ⊗U(1)Y of electroweak sector to a group SU(3)L ⊗U(1)X , that
is, with NC = m = 3. The 331 models present some interesting features; for instance, they
associate the number of families to internal consistence of the theory, preserving asymptotic
freedom.

In these models, the SM doublets are part of triplets. In quark sector three new quarks
are included to build the triplets, while in lepton sector we can use the right-handed neutrino
to such role [38, 40]. Another option is to invoke three new heavy leptons, charged or not,
depending on the choice of charge operator [41, 42]. In SM the electric charge operator is
constructed as a combination of diagonal generators of SU(2) ⊗ U(1)Y . Then, it is natural
to assume that this operator in SU(3)L ⊗ U(1)X is defined in the same way. The most
general charge operator in SU(3)L ⊗U(1)X is a linear superposition of diagonal generators of
symmetry groups, given by

Q ≡ aT3L + 2√
3
bT8L +XI3, (3.1)
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where the group generator is defined as TiL ≡ λiL/2 with λiL, i = 1, . . . , 8, being the Gell-Mann
matrices for SU(3)L, where the normalization chosen is Tr(λiLλjL) = 2δij and I3 = diag(1, 1, 1)
is the identity matrix, and a and b are two parameters to be determined. Then the charge
operator in (3.1) acts on the representations 3 and 3∗ of SU(3)L having the following form:

Q[3] = diag
[
a

2
+
b

3
+X, −a

2
+
b

3
+X, −2b

3
+X

]
, (3.2)

Q[3∗] = diag
[
−a
2
− b

3
+X, +

a

2
− b

3
+X, +

2b
3

+X
]
, (3.3)

where we have two free parameters to obtain the charge of fermions, a and b (X can be
determined by anomalies cancellation). However, a = 1 is necessary to obtain doublets of
isospins SU(2)⊗U(1)Y correctly incorporated in the model SU(3)L⊗U(1)X [41, 42, 45]. Then
we can vary b to create different models in 331 context, being a signature that differentiates
such models. For b = −3/2, we have the original 331 model [38, 39].

To have local gauge invariance, we have the following covariant derivative: Dμ = ∂μ −
i(g/2)λαWα

μ − igxXBμ and a total of 17 mediator bosons: one field Bμ associated with U(1)X ,
eight fields associated with SU(3)C, and another eight fields associated with SU(3)L, written
in the following form:

Wμ ≡Wα
μλα =

⎛
⎜⎜⎜⎜⎜⎜⎝

W3
μ +

1√
3
W8

μ

√
2W+

μ

√
2KQ1

μ

√
2W−

μ −W3
μ +

1√
3
W8

μ

√
2KQ2

μ

√
2K−Q1

μ

√
2K−Q2

μ − 2√
3
W8

μ

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.4)

where

W±
μ =

1√
2

(
W1μ ∓ iW2μ

)
, K±Q1

μ =
1√
2

(
W4μ ∓ iW5μ

)
, K±Q2

μ =
1√
2

(
W6μ ∓ iW7μ

)
. (3.5)

Therefore, charge operator in (3.2) applied over (3.4) leads to Q1 = 1/2 + b and Q2 =
(−1/2) + b. Then the mediator bosons will have integer electric charge only if b =
± 1/2,± 3/2,± 5/2, . . . ,± (2n+1)/2, n = 0, 1, 2, 3, . . .. A detailed analysis shows that if a and b
are associated with the fundamental representation 3, then −a and −b will be associated with
antisymmetric representation 3∗.

3.1. The Representation Content

There are many representations for the matter content [46], for instance, b = 3/2 [38]. But we
note that if we accommodate the doublets of SU(2)L in the superior components of triplets
and antitriplets of SU(3)L, and if we forbid exotic charges for the new fermions, we obtain
from (3.2) the constrain b = ±1/2 (assuming a = 1). Since a negative value of b can be
associated to the antitriplet, we obtain that b = 1/2 is a necessary and sufficient condition to
exclude exotic electric charges in fermion and boson sector [41].
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The fields left- and right-handed components transform under SU(3)L as triplets and
singlets, respectively. Therefore the theory is chiral and can present anomalies of Alder-Bell-
Jackiw [52, 53]. In a non-abelian theory, in the fermionic representation R, the divergent
anomaly is given by

Aabc ∝
∑

R
Tr
[{
TaL(R), TbL(R)

}
TcL(R) −

{
TaR(R), TbR(R)

}
TcR(R)

]
, (3.6)

where Ta(R) are the matrix representations for each group generator acting on the basis R
with helicity left or right. Therefore, to eliminate the pure anomaly [SU(3)L]

3, we should
have that Aabc ∝ ∑

R′ Tr[{TaL(R′), TbL(R′)}TcL(R′)] = 0. We use the fact that SU(3)L has two
fundamental representations, 3 and 3∗, then its generators should be associated to Ta and
Ta∗, respectively, that is,

∑

R′
Tr
[{
TaL

(R′), TbL
(R′)}TcL

(R′)] =
∑

R
Tr
[{
TaL(R), TbL(R)

}
TcL(R)

]

−
∑

R∗
Tr
[{
Ta∗L (R∗), Tb∗L (R∗)

}
Tc∗L (R∗)

]
,

(3.7)

but we know that the matrix representations for each group generator satisfies that Ta∗L (R∗) =
−TaL(R) [54]. So, we can see that for the anomalies to be canceled, the number of fields that
transform as triplets (first term in equation above) and antitriplets under SU(3)L has to be the
same; that is, two triplets quark families × 3 (color) = one antitriplet quark family × 3 (color)
+ 3 antitriplet lepton families. This implies that two families of quarks should transform
differently than the third family, as will be discussed in next paragraph.

Usually the third quark family is chosen to transform in a different way than the first
two families. But we will assume that the first family transform differently, to address the fact
that mu < md, mν� < m� while mc � ms and mt � mb. To state this in a clearer way, we
recall that in SM the SU(2)L doublets are (ν�, �)

T , (u, d)T , (c, s)T , (t, b)T , with � = e, μ, τ . We
can see that the first component of leptons doublets and first quark family is lighter than the
second component. But for the second and third quark families, the opposite occurs. Then we
use this idea to justify that first quark family transform as leptons.

3.2. Minimal 331 Model on Scalar Sector

Among the different possibilities of 331models, wewill present a detailed study on aminimal
model on scalar sector without exotic electric charges for quarks and with three new leptons
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without charged [41] (b = 1/2), where the fermions present the following transformation
structure under SU(3)C ⊗ SU(3)L ⊗U(1)X :

ψ�L =
(
�−, ν�, N0

�

)T
L
∼
(
1, 3∗,−1

3

)
,

ν�R ∼ (1, 1, 0),

�−R ∼ (1, 1,−1),
N0

�R ∼ (1, 1, 0),

Q1L = (d, u,U1)
T
L ∼

(
3, 3∗,

1
3

)
,

uiR ∼
(
3, 1,

2
3

)
,

diR ∼
(
3, 1,−1

3

)
,

U1R ∼
(
3, 1,

2
3

)
,

QaL = (ua, da, Da)
T
L ∼ (3, 3, 0),

DaR ∼
(
3, 1,−1

3

)
,

(3.8)

where i = 1, 2, 3, � = e, μ, τ, a = 2, 3. We note that the leptons multiplets ψ�L consist of three
fields � = {e, μ, τ}, the corresponding neutrinos ν� = {νe, νμ, ντ}, and new neutral leptons
N0

�
= {N0

e ,N
0
μ,N

0
τ}. We can also see that the multiplet associated with the first quark family

Q1L consists of down and up quarks and a new quark with the same electric charge of quark
up (namedU1), while the multiplet associated with second (third) familyQaL consists of SM
quarks of second (third) family and a new quark with the same electric charge of down quark
(named D2 (D3)). The numbers on parenthesis refer to the transformation properties under
SU(3)C, SU(3)L, and U(1)X , respectively. With this choice, the anomalies are cancelled in a
nontrivial way [55], and asymptotic freedom is guaranteed [56–59].

3.2.1. Scalar Sector and the Yukawa Couplings

The scalar fields have to be coupled to fermions by the Yukawa terms, invariants under
SU(3)c ⊗ SU(3)L ⊗U(1)X . In lepton sector, these couplings can be written as

ψ�L�R ∼
(
1, 3,

1
3

)
⊗ (1, 1,−1) =

(
1, 3,−2

3

)

︸ ︷︷ ︸
ρ∗

,

ψ�Lν�R ∼
(
1, 3,

1
3

)
⊗ (1, 1, 0) =

(
1, 3,

1
3

)

︸ ︷︷ ︸
η

,

ψ�LN
0
�R ∼

(
1, 3,

1
3

)
⊗ (1, 1, 0) =

(
1, 3,

1
3

)

︸ ︷︷ ︸
χ

,

(3.9)
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and writing only three terms in quarks sector, for example,

Q1LuiR =
(
3∗, 3,−1

3

)
⊗
(
3, 1,

2
3

)
=
(
1, 3,

1
3

)

︸ ︷︷ ︸
χ

⊕
(
8, 3,

1
3

)

︸ ︷︷ ︸
Color Higgs

,

Q1LdiR =
(
3∗, 3,−1

3

)
⊗
(
3, 1,−1

3

)
=
(
1, 3,−2

3

)

︸ ︷︷ ︸
ρ∗

⊕ . . . ,

QaLdiR = (3∗, 3∗, 0) ⊗
(
3, 1,−1

3

)
=
(
1, 3∗,−1

3

)

︸ ︷︷ ︸
η∗

⊕ . . . , . . . .

(3.10)

As usual in these class ofmodels, we impose colorless Higgs (i.e., selecting only themultiplets
that transform as singlets under SU(3)C). We note that we need only three Higgs multiplets,
ρ, χ, and η, to couple the different fermionic fields and generate mass through spontaneous
symmetry breaking. In (3.9) and (3.10)we note that quantum numbers of triplets χ and η are
the same, which leads us to consider models with two or three Higgs triplets. We will adopt
the first option, two Higgs triplets, due to the simpler scalar sector in comparison with the
scenario with three triplets [41–44].

3.3. Model with Two Higgs Triplets

For the models with two Higgs triplets, we obtain (note that in this model we assumed Φ1 =
χ, η e Φ2 = ρ)

Φ1 =
(
φ−
1 , φ

′0
1 , φ

0
1

)T ∼
(
1, 3∗,−1

3

)
,

Φ2 =
(
φ0
2, φ

+
2 , φ

′+
2

)T ∼
(
1, 3∗,

2
3

)
.

(3.11)

Assuming the following choice to the Higgs triplets vacuum expectation value (VEV) [41]
〈Φ1〉0 = (0, ϑ1, V )T and 〈Φ2〉0 = (ϑ2, 0, 0)

T , we associate V with the mass of the new fermions,
which lead us to assume V � ϑ1, ϑ2. We expand the scalar VEVs in the following way:

φ0
1 = V +

H0
φ1

+ iA0
φ1√

2
, φ

′0
1 = ϑ1 +

H
′0
φ1

+ iA
′0
φ1√

2
, φ0

2 = ϑ2 +
H0

φ2
+ iA0

φ2√
2

. (3.12)

The real (imaginary) partHφi(Aφi) is usually called CP-even (CP-odd) scalar field. The most
general potential can be written as

V (Φ1,Φ2) = μ2
1Φ

†
1Φ1 + μ2

2Φ
†
2Φ2 + λ1

(
Φ†

1Φ1

)2
+ λ2

(
Φ†

2Φ2

)2

+ λ3
(
Φ†

1Φ1

)(
Φ†

2Φ2

)
+ λ4

(
Φ†

1Φ2

)(
Φ†

2Φ1

)
.

(3.13)
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Demanding that in the displaced potential V (Φ1,Φ2) the linear terms on the field should be
absent, we have, in tree-level approximation, the following constraints:

μ2
1 + 2λ1

(
ϑ2
1 + V

2
)
+ λ3ϑ2

2 = 0,

μ2
2 + λ3

(
ϑ2
1 + V

2
)
+ 2λ2ϑ2

2 = 0.
(3.14)

The analysis of such equations shows that they are related to a minimum in scalar potential
with the value Vmin = −ϑ4

2λ2 − (ϑ2
1 + V 2)[(ϑ2

1 + V 2)λ1 + ϑ2
2λ3]. Then, replacing (3.12) and

(3.14) in (3.13), we can calculate the mass matrix in (H0
φ1
,H0

φ2
,H

′0
φ1
) basis through the relation

M2
ij = 2(∂2V (Φ1,Φ2)/∂H0

Φi
∂H0

Φj
), obtaining

M2
H = 2

⎛

⎝
2λ1V 2 λ3ϑ2V 2λ1ϑ1V
λ3ϑ2V 2λ2ϑ2

2 λ3ϑ1ϑ2

2λ1ϑ1V λ3ϑ1ϑ2 2λ1ϑ2
1

⎞

⎠. (3.15)

Since (3.15) has vanishing determinant, we have one Goldstone boson G1 and two massive
neutral scalar fieldsH1 andH2 with masses (note that if λ23 = 4λ1λ2, we obtain two Goldstone
bosons, G1 and H2, and a massive scalar field H1 with mass M2

H1
= 4[λ1(ϑ2

1 + V
2) + λ2ϑ2

2],
where λ1λ2 > 0; then imposingM2

H1
> 0 leads to λ1 > 0 and λ2 > 0)

M2
H1,H2

= 2λ1
(
ϑ2
1 + V

2
)
+ 2λ2ϑ2

2

± 2
√[

λ1
(
ϑ2
1 + V

2
)
+ λ2ϑ2

2

]2 + ϑ2
2

(
ϑ2
1 + V

2
)(
λ23 − 4λ1λ2

)
,

(3.16)

where real values for λ’s produce positive mass to neutral scalar fields only if λ1 > 0 and
4λ1λ2 > λ23, which implies that λ2 > 0. A detailed analysis shows that when V (Φ1,Φ2) in
(3.13) is expanded around the most general vacuum, given by (3.12) and using constrains
in (3.14), we do not obtain pseudoscalar fields A0

Φi
. This allows us do identify three more

Goldstone bosons, G2 = A0
Φ1
, G3 = A0

Φ2
, and G4 = A

′0
Φ1
. For the mass spectrum in charged

scalar sector on (φ−
1 , φ

+
2 , φ

′+
2 ) basis, the mass matrix will be given by

M2
+ = 2λ4

⎛

⎝
ϑ2
2 ϑ1ϑ2 ϑ2V

ϑ1ϑ2 ϑ2
1 ϑ1V

ϑ2V ϑ1V V 2

⎞

⎠, (3.17)

with two eigenvalues equal to zero, equivalent to four Goldstone bosons G±
5 , G

±
6 and two

physical charged scalar fields with large masses given by λ4(ϑ2
1 +ϑ

2
2 +V

2), which leads to the
constrain λ4 > 0.

This analysis shows that, after symmetry breaking, the original twelve degrees of
freedom in scalar sector leads to eight Goldstone bosons (four electrically neutral and four
electrically charged), four physical scalar fields, two neutral (one of which being the SM
Higgs scalar), and two charged. Eight Goldstone bosons should be absorbed by eight gauge
fields as we will see in next section.
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3.3.1. Gauge Sector with Two Higgs Triplets

The gauge bosons interaction with matter in electroweak sector appears with the covariant
derivative for a matter field ϕ as

D
ϕ
μ = ∂μ − i

2
gWa

μλaL − igXXϕBμ = ∂μ − i

2
gMϕ

μ, (3.18)

where λaL, a = 1, . . . , 8 are Gell-Mann matrices of SU(3)L algebra and Xϕ is the charge of
abelian factor U(1)X of the multiplet ϕ in which Dμ acts. The matrix Mϕ

μ contains the gauge
bosons with electric charges q, defined by the generic charge operator in (3.1). For b = 1/2
the matrix Mϕ

μ will have the following form:

Mϕ
μ =

⎛
⎜⎜⎜⎜⎜⎜⎝

W3μ +
W8μ√

3
+ 2tXϕBμ

√
2W+

μ

√
2K+

μ

√
2W−

μ −W3μ +
W8μ√

3
+ 2tXϕBμ

√
2K0

μ

√
2K−

μ

√
2K

0
μ

−2W8μ√
3

+ 2tXϕBμ

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.19)

where t = gx/g and nonphysical gauge bosons on nondiagonal entries, W±
μ and K±

μ , are
defined in (3.5) with Q1 = 1, and

K0
μ =

1√
2

(
W6μ − iW7μ

)
, K

0
μ =

1√
2

(
W6μ + iW7μ

)
. (3.20)

Then for the 331 model we are considering (b = 1/2), we have two neutral gauge bosons, K0
μ

and K
0
μ, and four charged gauge bosons, W±

μ and K±
μ . The three physical neutral eigenstates

will be a linear combination of W3μ, W8μ, and Bμ. After breaking the symmetry with 〈Φi〉,
i = 1, 2, and using covariant derivative Dμ = ∂μ − (i/2)gMϕ

μ for the triplets Φi, we obtain the
following masses for the charged physical fields:

M2
W ′ =

1
2
g2ϑ2

2, M2
K′ =

1
2
g2
(
ϑ2
1 + ϑ

2
2 + V

2
)
, (3.21)

and the following physical eigenstates:

W
′±
μ =

1
√
ϑ2
1 + V

2

(
−ϑ1K

±
μ + VW

±
μ

)
, K

′±
μ =

1
√
ϑ2
1 + V

2

(
VK±

μ + ϑ1W
±
μ

)
. (3.22)
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The neutral sector in approximation (ϑi/V )n ≈ 0 for n > 2 leads to the following masses for
the neutral physical fields:

M2
photon = 0,

M2
K0
R

=
1
2
g2
(
V 2 + ϑ2

1

)
,

M2
Z ≈ 1

2
g2ϑ2

2

(
3g2 + 4g2

x

3g2 + g2
x

)
,

M2
Z′ ≈ 2

9

(
V 2 + ϑ2

1

)(
3g2 + g2

x

)
+
ϑ2
2

(
3g2 + 4g2

x

)2

18
(
3g2 + g2

x

) ,

M2
K0
I

=
1
2
g2
(
V 2 + ϑ2

1

)
.

(3.23)

We can see from (3.21) and (3.23) that we have one nonmassive boson, which we associate
with the photon, and four massive neutral fields, where the mass of one of them is
proportional to ϑ2 while the other three have masses proportional to V (new energy scale).
Therefore we can associate the field Z with SM Zμ and the fields Z′, K0

I , and K
′0
R with three

new neutral bosons. We note that (3.23) contains two same of the eigenvalues; thus, the
K0
I and K

′0
R components have the same mass, and this conclusion contradicts the previous

analysis in [41], but this is in agreement with [43, 44]. We also have four massive charged
fields, where two of them have masses proportional to ϑ2. Thus we can associate the fields
W

′±
μ to the SM fieldsW±

μ , while the fields K
′±
μ are new bosons. The eigenstates Bμ, W3μ, W8μ,

and Ko
Rμ can be related to the physical eigenstates Aμ, K

′0
Rμ, Z

0
μ, and Z

′0
μ by

⎛
⎜⎜⎜⎝

Bμ
W3μ

W8μ

Ko
Rμ

⎞
⎟⎟⎟⎠ = M−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Aμ

K
′0
Rμ

Z0
μ

Z
′0
μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.24)

Assuming (ϑi/V )n ∼ 0 for n > 2, we obtain

M−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
t
SW 0

1
t
T2
WCW + β1 − 1√

3
TW + β2

SW
−ϑ1

V
CW + β3 β4

1√
3
SW

√
3ϑ1

V
− 1√

3
TWSW + β5 −1

t
TW + β6

0 1 − β7 ϑ1

V
C−1
W

√
3ϑ1

tV
TW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.25)
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where, again, t = gx/g and

SW =

√
3gx√

3g2 + 4g2
x

, CW =
√
1 − S2

W, TW =
SW
CW

,

β1 = − ϑ2
2

4tV 2
T2
WC

−3
W , β2 = −

√
3ϑ2

2

4t2V 2
T3
WC

−2
W,

β3 = − ϑ2
1

2V 2
C−1
W, β4 = −

√
3
(
2C2

Wϑ
2
1 + ϑ

2
2

)

4tV 2
TWC

−2
W,

β5 =
6C4

Wϑ
2
1 −

(
3 − 4S2

W

)
ϑ2
2

4
√
3V 2C5

W

, β6 =

(
6C4

Wϑ
2
1 + S

2
Wϑ

2
2

)

4tV 2C4
W

TW,

β7 = −2ϑ
2
2

V 2
.

(3.26)

We note that all βi are of order O((ϑi/V )2). So, assuming ϑi ∼ O(10−1) TeV, for a new energy
scale of order V ∼ 10 TeV, all the βi’s are negligible.

3.3.2. Charged and Neutral Currents

The interaction between gauge bosons and fermions in flavor basis is given by the following
Lagrangian density:

Lf = Riγμ
(
∂μ + igxBμXR

)
R + Liγμ

(
∂μ + igxBμXL +

ig

2
λaW

a
μ

)
L, (3.27)

where R represents any right-handed singlet and L any left-handed triplet. We can write
Lf = Llep +LQ1 +LQa , and in lepton sector, we obtain

Llep = Lkin
lep +LCC

lep +LNC
lep , (3.28)

where

Lkin
lep = Riγμ∂μR + Liγμ∂μL, (3.29)

LCC
lep = − g√

2
�Lγ

μν�LW
+
μ − g√

2
�Lγ

μN0
�LK

+
μ + h.c., (3.30)

LNC
lep =

gx
3

[
�Lγ

μ� + ν�Lγμν�L +N0
�Lγ

μN0
�L

]
Bμ + gx�Rγμ�RBμ

− g

2
√
3

[
�Lγ

μ�L + ν�Lγμν�L − 2tN0
�L
γμN0

�L

]
W8μ −

g√
2
ν�Lγ

μN0
�LK

0μ

− g

2

[
�Lγ

μ�L − ν�Lγμν�L
]
W3μ −

g√
2
N0

�Lγ
μν�LK

0
μ.

(3.31)
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In quark sector we have that for the first family triplet X = 1/3, and for the singlets d, u, and
U1, we have X = −1/3, 2/3 and 2/3, respectively. Then we have

Lkin
Q1

= Q1Riγ
μ∂μQ1R +Q1Liγ

μ∂μQ1L,

LCC
Q1

= − g√
2
dLγ

μuLW
+
μ − g√

2
dLγ

μU1LK
+
μ + h.c.,

(3.32)

LNC
Q1

=
gx
3

(
dRγ

μdR − 2uRγμuR − 2U1Rγ
μU1R

)
Bμ +

g

2
uLγ

μuLW3μ

− gx
3

(
dLγ

μdL + uLγμuL +U1Lγ
μU1L

)
Bμ −

g

2
dLγ

μdLW3μ −
g√
2
U1Lγ

μuLK
0
μ

− g

2
√
3

(
dLγ

μdL + uLγμuL − 2U1Lγ
μU1L

)
W8μ −

g√
2
uLγ

μU1LK
0
μ.

(3.33)

For second and third families we know that X = 0 for the triplets and X = 2/3, −1/3
and −1/3, for the singlets u2,3, d2,3, D2,3, respectively, where u2 = c, u3 = t, d2 = s, d3 = b.
Then we obtain for a = 2, 3

Lkin
Qa

= QaRiγ
μ∂μQaR +QaLiγ

μ∂μQaL,

LCC
Qa

= − g√
2
uaLγ

μdaLW
+
μ − g√

2
uaLγ

μDaLK
+
μ + h.c.,

LNC
Qa

=
gx
3

[
−2uaRγμuaR + daRγμdaR +DaRγ

μDaR

]
Bμ

− g

2
√
3

[
uaLγ

μuaL + daLγμdaL − 4DaLγ
μDaL

]
W8μ −

g√
2
daLγ

μDaLK
0
μ

− g

2

[
uaLγ

μuaL − daLγμdaL
]
W3μ −

g√
2
DaLγ

μdaLK
0
μ.

(3.34)

4. Neutrinos Interactions with Matter in 331 Model

It is well known that neutrino oscillation phenomenon in a material medium, as the sun,
earth, or in a supernova, can be quite different from the oscillation that occurs in vacuum,
since the interactions in the mediummodify the dispersion relations of the particles traveling
through it [60]. From the macroscopic point of view, the modifications of neutrino dispersion
relations can be represented in terms of a refractive index or an effective potential. And
according to [60, 61], the effective potential can be calculated from the amplitudes of coherent
elastic scattering in relativistic limit.

In the present 331 model, the coherent scattering will be induced by neutral currents,
NC, mediated by bosons Z

′0
μ , Z

0
μ, andK

′0
Rμ and by charged currents, CC, mediated by bosons

W
′±
μ andK

′±
μ . Following [61], we calculate in next sections the neutrino effective potentials in

coherent scattering.
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4.1. Charged Currents

The first term of (3.30) shows that the interaction of charged leptons with neutrinos occurs
only through the gauge bosons W±

μ ; then, by (3.22) we obtain that the interaction through
charged bosons is given by

− g√
2
�Lγ

μν�LW
+
μ = − Vg

√
2
√
ϑ2
1 + V

2
�Lγ

μν�LW
′±
μ − gϑ1

√
2
√
ϑ2
1 + V

2
�Lγ

μν�LK
′±
μ . (4.1)

The amplitude for the neutrino elastic scattering with charged leptons in tree level through
CC is given by (note from (4.1) that only left-handed leptons interact with neutrinos, as in
SM)

Lcc
int = −

⎛
⎜⎝− Vg

√
2
√
ϑ2
1 + V

2

⎞
⎟⎠

2

�L
(
p1
)
γμν�L

(
p2
) −igμλ
(
p2 − p1

)2 −M2
W

ν�L
(
p3
)
γλ�L

(
p4
)

−

⎛
⎜⎝− gϑ1

√
2
√
ϑ2
1 + V

2

⎞
⎟⎠

2

�L
(
p1
)
γμν�L

(
p2
) −igμλ
(
p2 − p1

)2 −M2
K

ν�L
(
p3
)
γλ�L

(
p4
)
.

(4.2)

For low energiesM2
W ′ , M

2
K′ � (p2 − p1)2, the effective Lagrangian is given by

Lcc
eff ≈ − g2

2
(
ϑ2
1 + V

2
)
(

V 2

M2
W ′

+
ϑ2
1

M2
K′

)[
�L

(
p1
)
γμ�L

(
p4
)][

ν�L
(
p3
)
γμν�L

(
p2
)]
, (4.3)

where we used the Fierz transformation [62] to go from (4.2) to (4.3). Replacing (3.21) in
(4.3), we obtain

−Lcc
eff ≈

[
1
ϑ2
2

− ϑ2
1

V 2ϑ2
2

+

(
ϑ2
1

V 4

)

K′
+O

(
1
V 4

)]〈
�γμ

(
1 − γ5

)

2
�

〉
{
ν�L

(
p
)
γμν�L

(
p
)}
, (4.4)

where we used ( )K′ to denote the term that appears from the new charged boson. We can
see that for a new energy scale V � ϑ1 the term that comes from the new boson does not
contribute to the process, as expected, since the new charged boson K

′±
μ has a mass of the

order of the new energy scale of the theory (see (3.21)).
Now, since usual matter has only leptons from first family, we will restrain our

calculations to the neutrino interactions with first family standard model particles. The term
〈 〉 in (4.4) can be calculated following [61], where we have the correspondence 〈eγμγ5e〉 ∼
spin, 〈eγie〉 ∼ velocity, and 〈eγ0e〉 ∼ ne, where ne is the electronic density. Assuming
nonpolarized medium and vanishing average velocity, we obtain that (4.4) can be written
as

Lcc
eff ≈ −

[
1

2ϑ2
2

− ϑ2
1

2V 2ϑ2
2

+

(
ϑ2
1

2V 4

)

K′
+O

(
V −4

)]
neνeLγ

0νeL. (4.5)
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The modifications on electronic neutrino dispersion relations can be represented by the
following effective potential:

V e
CC ≈ 1

2ϑ2
2

ne −
ϑ2
1

2V 2ϑ2
2

ne +

(
ϑ2
1

2V 4

)

K′
ne +O

(
V −4

)
. (4.6)

Disregarding the term ( )K′ since we are assuming V � ϑi, and remembering that in
Section 3.3.1 we associated bosonW ′ with SM bosonW , we can easily associate

√
2GF ≈ 1

2ϑ2
2

− ϑ2
1

2V 2ϑ2
2

. (4.7)

We note that (4.7) gives limits for the VEV of one of the Higgs triplets. Under assumption
ϑ1, ϑ2 � V , we can write GF ≈ (1/2

√
2ϑ2

2)(1 − ϑ2
1/V

2), from which we can see that the
maximum value of ϑ2

2 is achieved when we consider (ϑ2
1/V

2) → 0, in which replacing GF =
1.16637(1) × 10−5 Gev−2 leads to

ϑ2 � 174.105GeV. (4.8)

4.2. Neutral Current

The Lagrangian for neutrino elastic scattering with fermions f = e, u, d through NC is given
by

−LNC
int = f

(
p1
)
γμ
(
g
f

z′L + g
f

z′R

)
f
(
p2
) −igμλ
(
p2 − p1

)2 −M2
z′

ν�L
(
p3
)
γλgνz′ν�L

(
p4
)

+ f
(
p1
)
γμ
(
g
f

zL + g
f

zR

)
f
(
p2
) −igμλ
(
p2 − p1

)2 −M2
z

ν�L
(
p3
)
γλgνzν�L

(
p4
)

+ f
(
p1
)
γμ
(
g
f

k′L + g
f

k′R

)
f
(
p2
) −igμλ
(
p2 − p1

)2 −M2
k′

ν�L
(
p3
)
γλgνk′ν�L

(
p2
)
.

(4.9)

For low energies, we have that M2
k′ ,M

2
z,M

2
z′ � (p2 − p1)2 with p3 = p4 = p and (4.9), and

following the same procedure of Section 4.1, we obtain

LNC
eff ≈ −

∑

P=L,R

(
g
f

z′P
Gνz′

M2
z′
+ gfzP

Gνz

M2
z

+ gf
k′P
Gνk′

M2
k′

)
1
2
nfν�Lγ0ν�L. (4.10)
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4.2.1. Leptons Sector

From (3.31) and (3.24), we obtain that for the known neutral leptons

gx
3
ν�Lγ

μν�LBμ = ν�Lγμν�L
[
−g
3
SWAμ +

(
g

3
T2
WCW +

gx
3
β1

)
Z0
μ

−gx
3

(
1√
3
TW − β2

)
Z

′0
μ

]
,

(4.11)

g

2
ν�Lγ

μν�LW
μ

3 = ν�Lγμν�L

[
g

2
SWAμ −

gϑ1

2V
K

′0
Rμ +

g
(
CW + β3

)

2
Z0
μ +

gβ4
2
Z

′0
μ

]
, (4.12)

−g
2
√
3
ν�Lγ

μν�LW
μ

8 = ν�Lγμν�L

[
−g
6
SWAμ −

gϑ1

2V
K

′0
Rμ +

(
g

6
S2
W

CW
− gβ5

2
√
3

)
Z0
μ

+
g

2
√
3

(
1
t
TW − β6

)
Z

′0
μ

]
.

(4.13)

By (4.11), (4.12), and (4.13), we obtain that vertex interactions with neutrinos can be written
as

ν�Lγ
μν�LAμ ∝ 0, (4.14)

ν�Lγ
μν�LK

′0
Rμ ∝ −gϑ1

V
≡ GνK′ , (4.15)

ν�Lγ
μν�LZ

0
μ ∝ 1

2
gC−1

W + η1 ≡ GνZ, (4.16)

ν�Lγ
μν�LZ

′0
μ ∝

(
3g − 2gxt

6
√
3t

)
TW + η2 ≡ GνZ′ , (4.17)

where

η1 =
−4gtC2

Wϑ
2
1 + gx

(
1 − 2S2

W

)
ϑ2
2

8tV 2C5
W

,

η2 =
gt
(
1 − 4C2

W

)
ϑ2
1

2
√
3V 2CWSW

−
(−gt3 + 2gt3C2

W + 8gt3C4
W + 6gxS4

W

)
ϑ2
2

24
√
3t2V 2C5

WSW
.

(4.18)
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We note from (4.14) that neutrinos do not interact electrically, as expected. For charged
leptons, from (3.31) and (3.24), we obtain

gx
3
�Lγ

μ�LBμ = �Lγμ�L
[−g
3
SWAμ +

(
g

3
T2
WCW +

gx
3
β1

)
Z0
μ

−gx
3

(
1√
3
TW − β2

)
Z

′0
μ

]
,

−g
2
�Lγ

μ�LW
μ

3 = �Lγμ�L

[
−g
2
SWAμ +

gϑ1

2V
K

′0
Rμ −

g
(
CW + β3

)

2
Z0
μ −

gβ4
2
Z

′0
μ

]
,

−g
2
√
3
�Lγ

μ�LW
μ

8 = �Lγμ�L

[
−g
6
SWAμ −

gϑ1

2V
K

′0
Rμ +

(
g

6
S2
W

CW
− gβ5

2
√
3

)
Z0
μ

+
g

2
√
3

(
1
t
TW − β6

)
Z

′0
μ

]
,

gx�Rγ
μ�RBμ = �Rγμ�R

[
− gSWAμ +

(
gT2

WCW + gxβ1
)
Z0
μ

−gx
(

1√
3
TW − β2

)
Z

′0
μ

]
,

(4.19)

and therefore

�γμ�Aμ ∝ −gSW, (4.20)

�Lγ
μ�LK

′0
Rμ ∝ 0 ≡ g�k′L = g�k′R, (4.21)

�Lγ
μ�LZ

0
μ ∝ 1

2
g
(
−1 + T2

W

)
CW + η3 ≡ g�zL,

�Rγ
μ�RZ

0
μ ∝ gT2

WCW + η5 ≡ g�zR,

�Lγ
μ�LZ

′0
μ ∝ 1

6
√
3t

(
3g − 2tgx

)
TW + η4 ≡ g�z′L,

(4.22)

�Rγ
μ�RZ

′0
μ ∝ − gx√

3
TW + η6 ≡ g�z′R, (4.23)

where

η3 =

(−1 + 2C2
W

)
gxϑ

2
2

8tV 2C5
W

,

η4 =

(
gt3

(
1 + 2C2

W

)2 − 12gt3S2
WC

2
W − 6gxS4

W

)

24
√
3t2V 2C5

WSW
,

η5 = − gxϑ
2
2

4tV 2C3
W

T2
W,

η6 = −
√
3gxϑ2

2

4t2V 2C2
W

T3
W,

(4.24)
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and, again, t = gx/g. We note that by (4.20) we can make the association gSW = |e|. Then for
f = e, (4.15)–(4.17) and (4.21)–(4.23) lead to

LNC
eff−e ≈ −

∑

P=L,R

1
2

(
gez′P

Gνz′

M2
z′
+ gezP

Gνz

M2
z

+ gek′P
Gνk′

M2
k′

)
neν�Lγ0ν�L

≈ −
{[

T4
W

144t2g2
xV 2

(
3g − 2tgx

)2 +
T2
W

8V 2

(
1 − T2

W

)

+
1
2

(
1

2ϑ2
2

− ϑ2
1

2V2ϑ2
2

)(
1 − 2C2

W

)]

L

+

[
T4
W

(
2tgx − 3g

)

24tgxV 2
− T4

W

4V 2
+

(
1

2ϑ2
2

− ϑ2
1

2V 2ϑ2
2

)
S2
W

]

R

}
neν�Lγ0ν�L.

(4.25)

Since intermediate neutral bosons in (4.9) do not distinguish between different lepton flavors,
the interaction through NC with electron is described by the following effective potential:

V e
NC = V μ

NC = V τ
NC = V �

NC,

= V �L
NC + V �R

NC,
(4.26)

where

V �L
NC =

[
T4
W

144t2g2
xV 2

(
3g − 2tgx

)2 +
T2
W

8V 2

(
1 − T2

W

)

+
1
2

(
1

2ϑ2
2

− ϑ2
1

V 2ϑ2
2

)(
1 − 2C2

W

)]
ne,

V�R
NC =

[
T4
W

(
2tgx − 3g

)

24tgxV 2
− T4

W

4V 2
+

(
1

2ϑ2
2

− ϑ2
1

2V 2ϑ2
2

)
S2
W

]
ne,

(4.27)

and index � refers to neutrino flavor. We note that the potential through CC comes from
interactions of electron neutrinos with left-handed electrons, while the effective potential
through NC comes from left- and right-handed electrons.

Considering both NC and CC, we can write the effective potential felt by neutrinos as
V � = V �L + V �R, where

V �L =

(
1

2ϑ2
2

− ϑ2
1

2V 2ϑ2
2

)
δe�ne + V �L

NC,

V �R = V �R
NC.

(4.28)

Comparing with SM expression for such potential:

V�
NC = −

√
2GF

(
1
2
− 2S2

W

)
ne, Ve

CC =
√
2GFne, (4.29)
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we can find that

V �L = V �L +

[
T4
W

144t2g2
xV 2

(
3g − 2tgx

)2 +
T2
W

8V 2

(
1 − T2

W

)]
ne,

V �R = V �R
NC +

[
T4
W

(
2tgx − 3g

)

24tgxV 2
− T4

W

4V 2

]
ne,

(4.30)

where we adopt in what follow, the convention that V denotes SM-like part of the model;
thus, the new terms beyond SM [ ] can be associated with the parameters ε′s in NSI [63]. So,
in the approximation (ϑi/V )n ≈ 0, for n > 2, we obtain

εeL�� ≈
(
1 − 2S2

W

)
ϑ2
2

8V 2C4
W

, (4.31)

εeR�� ≈ −S
2
W

(
1 + 2S2

W

)
ϑ2
2

4V 2C4
W

. (4.32)

We note that on limit V → ∞, we recover SM. The NSIs are a subleading interaction, as
expected. By (4.31) and (4.32), we obtain εeR

��
≈ −2S2

Wε
eL
��

− (ϑ2
2/V

2)T4
W .

4.2.2. Quarks Sector

For the quarks of the first family, the Lagrangian density in (3.33) describes the interactions
with gauge bosons W3μ, W8μ, and Bμ; then, by (3.24) and (3.25) we obtain the following
interactions for up quarks:
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μ
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(4.33)
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The couplings quark-quark-boson for the first family are given by

uLγ
μuLAμ ∝ 2

3
gSW, (4.34)

uRγ
μuRAμ ∝ 2

3
gSW, (4.35)

uLγ
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V
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0
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(4.36)

where
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(4.37)

We note that (4.34) and (4.35) reflect the fact that quarks interact electrically through photons
with coupling constant Qf sin θW , as in SM. The effective Lagrangian at low energies for
neutrino interaction with quarks up through neutral currents are given by (4.10) with f = u:
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(4.38)

where nu is the up quarks average density.
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SM predictions, using result of (4.7), can be written as
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By comparison, we obtain
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Then we can say that εu
��

= εuL
��

+ εuR
��
, where
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Again, we obtain universal NSI, as for the electrons. We note that εuL�� = −(ϑ2
1/2V

2) +
(3ϑ2

2/8V
2C4

W) − 2εuR�� and in the limit V → ∞we recover SM.
For down quarks by (3.33) and (3.24), we obtain that
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Then by (4.10) for f = d, we obtain the following effective Lagrangian for NC:
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and the effective potential felt by neutrinos when crossing a medium composed by a density
nd of down quarks is V d

NC = V dL
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Then we can easily see that in SM the NC effective potential for neutrinos in a d-quark
medium, using result of (4.7), will be given by
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Then from (4.47)–(4.50), we obtain
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and neglecting terms of order (ϑi/V )n, for n > 2, we obtain that εd
��

= εdL
��

+ εdR
��
, where
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Then we obtain εdL
��

≈ (ϑ2
2/8V

2 C4
W) + εdR

��
. Note that again in limit V → ∞ we recover the

SM.

5. Results

In last sections we saw that in 331 model we chose, all NSI parameters are universal and
diagonal and will not affect oscillation experiments. However, measurements of cross-section
will be sensitive to such parameters, through modifications on gαi [51]. We will now compare
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Table 1: Values for NSI in 331 model and experimental limits taken of the strongest constraints on these
parameters are given in [18, 19, 21, 22].

331 Model Exp. 90% C.L.
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our results with those obtained in cross-section measurements. We will assume sin2θW =
0.23149(13).

In Table 1 we can see that constrains in εeP
��

lead to V 2 > 4.7ϑ2
2., while the constrains in

εuR
��

lead to V 2 > 21.7ϑ2
2, and the constrains in εdP

��
(|εdLμμ | < 0.003) lead to V 2 > 60ϑ2

2. If ϑ2 has its
maximum value of 174.105 GeV, then V � 1.3TeV.We note also that by |εuLμμ | < 0.003 we obtain
|ϑ2

2−ϑ2
1| < 0.006V 2; then, for V ∼ 1.3TeV and ϑ2 = 174GeV, we obtain 142GeV< ϑ1 < 201GeV.

We therefore cannot predict any hierarchy to the VEV’s ϑ1 and ϑ2. Based on those results, we
obtain the following inferior limits for the new gauge bosons masses:

MKI =MZ′ > 610GeV,

MK′ > 613GeV,

MKR > 740GeV.

(5.1)

6. Conclusion

We presented in this work a procedure to show that models with extended gauge symmetries
SU(3)C × SU(3)L × U(1)X can lead to neutrino nonstandard interactions, respecting the
Standard Model Gauge symmetry SU(3)C × SU(2)L ×U(1)Y , without spoiling the available
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experimental data and reproducing the known phenomenology at low energies. We also have
shown that with an assumption about a mass hierarchy for the Higgs triplets VEV’s we could
qualitatively address the mass hierarchy problem in standard model. Finally we obtained
limits for the triplets VEV’s based on limits for NSI in cross-section experiments.

We believe that the class of model presented here is an interesting theoretical
possibility to look for new physics beyond SM. We restrained our work to a simple scenario,
but flavor-changing interactions can be naturally introduced in the model, leading to new
constraints on NSI.
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