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Abstract. Von Willebrand factor (VWF) is a large multimeric protein, the function of which has 

been demonstrated to be pivotal to the haemostatic system. Indeed, quantitative and/or qualitative 

abnormalities of VWF are associated with the bleeding disorder Von Willebrand disease (VWD). 

Moreover, increased plasma concentrations of VWF have been linked to an increased risk for 

thrombotic complications. In the previous decades, many studies have contributed to our 

understanding of how VWF is connected to the haemostatic system, particularly with regard to 

structure-function relationships. Interactive sites for important ligands of VWF (such as factor 

VIII, collagen, glycoprotein Ibα, integrin αIIbβ3 and protease ADAMTS13) have been identified, 

and mutagenesis studies have confirmed the physiological relevance of the interactions between 

VWF and these ligands.  However, we have also become aware that VWF has a more versatile 

character than previously thought, given its potential role in various non-hemostatic processes, like 

intimal thickening, tumor cell apoptosis and inflammatory processes. In the presence review, a 

summary of our knowledge on VWF structure-function relationships is provided in the context of 

the "classical" haemostatic task of VWF and in perspective of pathological processes beyond 

haemostasis.

Introduction. Von Willebrand factor (VWF) is a 

protein that has historically been known for its role in 

the haemostatic process. However, many hurdles had to 

be overcome between the initial description in 1926 of 

the bleeding tendency that is now known as Von 

Willebrand disease (VWD)
1
 and the identification of 

the protein that is associated with this disorder. Indeed, 

it took 30 years after the seminal paper by Erik von 

Willebrand, before it was reported that the bleeding 

episodes in von Willebrand disease could be corrected 

upon the infusion of a plasma factor.
2
 The search for 

the identity of this plasma component was far from 

simple. Indeed, it was complicated by the multimeric 

nature of VWF and the notion that VWF circulates in 
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complex with coagulation factor VIII (FVIII), the 

protein that is associated with hemophilia A. The 

technical difficulties that needed to be addressed have 

nicely been put in context in several personal anecdotes 

describing the events that led to the discovery in the 

early 1970s that VWF and FVIII are separate proteins 

and that VWF is a multimeric protein.
3-5

 The 

identification of VWF as a plasma component that is 

associated with VWD provided the basis for numerous 

additional studies. For starters, the purified protein was 

used to determine its sequence, which in turn was 

needed to clone the gene encoding VWF.
6-10

 This 

breakthrough stimulated the rapid expansion of our 

knowledge on the epidemiology, genetics and 

molecular basis of VWD.
11,12

 With the help of recent 

multicenter studies in Europe, Canada and the USA, 

our insight into the complex genetic background of 

VWD has been dramatically improved, a necessary 

step to further refine clinical and laboratory diagnosis 

of the disease.
13,14

 Clinical studies further taught us that 

the critical role of VWF in haemostasis is not only 

obvious from the bleeding tendency that is associated 

with its functional deficiency, but also in view of its 

relationship with thrombotic disorders. Increased levels 

of VWF have been shown to be predictive for 

atherothrombotic complications.
15-22

 In line with VWF 

being a risk factor for atherothrombotic complication, a 

recent study reported a reduced prevalence of arterial 

thrombosis in patients with VWD.
23

 Importantly, the 

role of VWF in the development of thrombotic 

complications is not limited to myocardial infarctions, 

but also include stroke and venous thrombosis.
24-28

 Of 

note, the contribution of VWF to venous thrombosis 

may be both direct as part of a complex with neutrophil 

extracellular traps (NETs),
29

 and indirect via FVIII 

(which is an independent risk factor for venous 

thrombosis), given the role of VWF as a determinant of 

FVIII plasma levels.
30,31

 

Fundamental studies on the structure-function 

relationships of VWF provided insight into how this 

multimeric protein supports the different aspects of the 

haemostatic process. Importantly, from these studies it 

also became clear that VWF has a more versatile 

character than previously thought, given its potential 

role in various non-hemostatic processes, like cell 

proliferation and tumor cell apoptosis.
32

 In the present 

review, an overview of our current knowledge of VWF 

structure and function will be provided. Subsequently, 

we will describe the contribution of VWF to (patho)-

physiological processes beyond haemostasis. Finally, 

we will discuss how shear stress and modulation of 

multimer size regulate classical and novel functions of 

VWF. 

 

Structure of VWF. The biosynthesis of VWF has been 

described extensively in several excellent reviews (see 

for example Wagner
33

 and Sadler
34,35

). Its synthesis is 

limited to endothelial cells and megakaryocytes,
36,37

 

 

Figure 1. Domain structure of VWF. The molecular architecture of VWF is characterized by the presence of distinct domain structures. 

Panel A represents the arrangement of five different structures according to the original analysis of the VWF sequence (reviewed by 

Pannekoek & Voorberg).38 The numbering of the domain boundaries has been used in our laboratory in the previous years. Panel B shows 

the domain organization as has recently been proposed by Zhou et al.41 One striking difference with the original domain structure is the 

replacement of the B1-3 - C1 - C2 domain region by 6 homologous C-domains. In addition, their analysis revealed that the D-domains 

consist of various independent structures, which are highlighted in panel C. The D1, D2 and D3 domains each contain a VW-domain, a 

trypsin inhibitor-like (TIL)-structure, a C8 fold and an E module. The D' region lacks the VW domain and TIL-structure. The D4 domain 

lacks the E module, but instead comprises a unique sequence designated D4N. 
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where it is produced as a single chain pre-pro-protein. 

It consists of a 22-amino acid signal peptide, a 741-

amino acid propeptide and a mature subunit of 2050 

amino acids (Figure 1).
33-35

 Initial analysis of the VWF 

primary structure revealed that the molecular 

architecture of the pro-protein distinguishes a discrete 

domain structure, arranged as D1-D2-D'-D3-A1-A2-

A3-D4-B1-B2-B3-C1-C2-CK, with the propeptide 

comprising the D1-D2 domains, and the mature 

subunits the remaining domains.
33-35,38

 More recently, 

the domain structure of VWF has been re-evaluated 

using structural information from other proteins with 

homologous domains in combination with electron 

microscopy techniques.
39-41

 This exercise revealed a 

number of interesting insights. First, it allowed a more 

detailed assignment of disulfide bonds between 

cysteines throughout the molecule.
41

 Second, it 

appeared that the D-domains have a more complex 

structure than initially thought. In fact, D-domains 

consist of 4 independent structures: a von Willebrand 

domain, a Cysteine-8 structure, a trypsin-inhibitor-like 

(TIL)-fold and an E module (Figure 1).
41

 Third, the 

region carboxyterminal to the D4 domain (i.e. the B1-

B2-B3-C1-C2 domains) was recognized to consist of 

six consecutive C-domains instead of two, with the 

Arg-Gly-Asp   (RGD)-integrin   recognition   sequence 

being located in the C4 domain (Figure 1).
41

 These 

new insights in VWF structure will help us to better 

understand the cross-talk between domains in the 

functions of VWF.  

A most intriguing aspect of VWF biology concerns 

the multimeric structure of the protein. The mature 

VWF protein exists as a heterologous series of 

covalently-linked mature subunits ranging from dimers 

(molecular weight 0.5 millionDa) to large polymers 

consisting of over 40 subunits (molecular weight >20 

millionDa).
33-35

 As will be discussed later in this 

review, the multimer structure is important for a subset 

of VWF functions, and regulation of multimer size and 

quaternary structure is an important tool to modulate 

these functions.  

 

The classical functions of VWF: FVIII binding. The 

intricate linkage between VWF and FVIII is perhaps 

best illustrated by the nomenclature that was previously 

used to distinguish between the coagulation- and 

platelet-related activities of the complex: FVIII 

coagulant activity (FVIII:C), FVIII related antigen 

(FVIII:RAg) and FVIII ristocetin cofactor activity 

(FVIII:RCF).
42

 In fact, some still use the term 

FVIII:RAg instead of VWF to describe staining of 

endothelial cells in the immunohistochemical analysis 

of healthy and pathological tissues (see e.g. Bauer et 

al.
43

).  

VWF and FVIII circulate in a tight non-covalent 

complex in the circulation, and the affinity is estimated 

to be less than 1 nM.
44,45

 The binding site for FVIII is 

located in the amino-terminal D’D3 region, spanning 

residues 764-1035.
46,47

 In a recent study, Castro-Nunez 

and coworkers used an approach of mass spectrometer-

assisted footprinting to discover that VWF residues 

Ser-764 and Lys-773 seem to be directly involved in 

the binding of FVIII.
48

 The complementary binding site 

in FVIII has also been identified, involving residues at 

both the amino- and carboxyterminal regions of the 

FVIII light chain.
49,50

 

The physiological relevance of VWF/FVIII 

complex formation is exemplified by the markedly 

reduced FVIII plasma levels in patients with 

undetectable VWF levels (VWD-type 3) or with a 

defect in the FVIII-interactive site of VWF (VWD-type 

2N).
51-53

 Indeed, the majority of VWD-type 2N 

mutations are located in the region spanning residues 

764-1035,
54

 suggesting that these mutations affect 

FVIII binding directly by modulation of the FVIII 

interactive site.  

VWF protective function towards FVIII is related to 

several aspects:
55

 (1) VWF stabilizes the heterodimeric 

structure of FVIII;
56

 (2) VWF protects FVIII from 

proteolytic degradation by phospholipid-binding 

proteases like activated protein C and activated factor 

X (FXa);
57,58

 (3) VWF interferes with binding of FVIII 

to negatively-charged phospholipid surfaces, which are 

for example exposed on activated platelets;
45

 (4) VWF 

inhibits binding of FVIII to activated factor IX (FIXa), 

thereby denying FVIII access to the FX-activating 

complex;
59

 (5) VWF shields FVIII from part of the 

inhibitory antibodies that may be generated during 

FVIII-replacement therapy in about 30% of the severe 

hemophilia A patients;
60-63

 and (6) VWF prevents the 

uptake of FVIII by some cells, including dendritic 

cells.
64,65

 In view of the role of dendritic cells in 

antigen-presentation to T-cells, this latter function may 

be of relevance regarding the immune-response 

towards FVIII that has been observed in the treatment 

of hemophilia patients. In several in vivo studies using 

mice, it has been shown that the addition of VWF 

reduces the immune-response towards FVIII.
63,66-68

 

This may suggest that the presence of VWF in 

therapeutic FVIII preparations may influence the 

development of inhibitory antibodies, although 

epidemiological studies have revealed conflicting data 

on this possibility.
69-73

  

Apart from its protective role, VWF may also play a 

role in the targeting of FVIII to sites of vascular 

injury.
74

 It should be noted that complex formation is 

not an absolute requirement for FVIII to reach the 

developing thrombus, as has been shown in studies 

using VWF-deficient mice.
75,76 
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The classical functions of VWF: collagen binding. 

Shortly after the identification of VWF as a plasma 

protein, its capacity to adsorb to collagens was 

reported.
77

 Subsequent studies revealed that a dominant 

binding site for collagen in VWF is located in the VWF 

A3 domain involving a discontinuous epitope.
78-81

 The 

A3 domain is able to interact with various types of 

collagen, including collagens I & III, and the 

complementary binding sequences in collagen I and III 

have been deciphered in detail.
82-85

 The importance of 

the A3 domain in binding to collagen is supported by 

the finding that mutations in or around the collagen 

binding site may be associated with an increased 

bleeding tendency.
86-89

 

An alternative binding-site for collagen in the VWF 

protein is located in the A1 domain, as has been 

demonstrated by various research groups.
83,90-93

 

However, opposite findings have been reported 

concerning the contribution of the A1-domain in 

facilitating VWF-platelet interactions under conditions 

of flow.
79,94

 Nevertheless, it appears that some 

mutations in the A1 domain found in VWD patients 

may affect collagen binding, providing a rationale for 

the bleeding tendency in these patients.
95-98

 

It should be noted that the bleeding tendency 

associated with mutations in the collagen binding site 

is usually mild, which is in line with the observation 

that a murine VWF variant with a defective collagen 

binding in the A3 domain displays no defect in the 

correction of the bleeding time in a tail clip-model for 

normal haemostasis.
99,100

 In contrast, this mutant shows 

a strongly delayed occlusion time in a ferric chloride-

induced model of vascular injury, suggesting that 

blocking VWF-collagen interactions could be a 

potential therapeutic approach in the treatment of 

arterial thrombosis.
100

 This possibility has been 

explored in animal models for thrombosis, revealing 

that antibodies blocking VWF-collagen interactions are 

efficient in reducing the thrombotic tendency.
101,102

 

Many in vitro studies revealed that VWF-collagen 

interactions are needed for the recruitment of platelets 

particularly under conditions of high shear rates (for 

reviews see Sixma et al.
103

 and Nuyttens et al.
104

). In 

spite of this important function, defects in collagen 

binding are associated with only a mild bleeding 

tendency. The explanation for this apparent 

contradiction may originate from the redundancy in the 

process that mediates platelets adheres to collagen. 

First, VWF contains multiple collagen-binding sites, 

which may perhaps compensate for each other under 

particular conditions. Second, platelets contain other 

collagen receptors, such as α2β1 and Glycoprotein-VI 

(GpVI), that could allow them to interact with collagen 

in the absence of VWF.
105

 It should be mentioned that 

both receptors do not resist high shear forces,
105

 

indicating that they are unable to function as a back-up 

system for VWF under high shear conditions. Finally, 

the subendothelial matrix comprises also other 

components that function as an adhesive surface for 

VWF, such as tenascin-C and laminin.
106,107

 However, 

the binding sites for these proteins have not yet been 

identified.  

From a structural point of view, the multimeric 

VWF protein attached to the collagen surface will 

undergo shear stress-induced conformational changes 

that lead to the exposure of the binding site for its 

platelet-receptor GpIb.
108

 Interestingly, binding to 

collagen has also a secondary effect, in that it results in 

release of FVIII from the VWF molecule. This 

phenomenon was already recognized in the original 

manuscript that described the adsorption of VWF to 

collagen,
77

 and was further elaborated by Bendetowicz 

and colleagues.
109

 The reason for this release is yet 

unclear, but it could be that release of FVIII from 

collagen-bound VWF makes it more rapidly available 

for the coagulation cascade: VWF-bound FVIII is 

poorly activated by FXa/phospholipids, whereas VWF-

free FVIII is efficiently activated by this complex.
57

 

Alternatively, this collagen-induced release could be a 

mechanism to prevent FVIII binding to VWF that is 

located in the subendothelial matrix, preventing 

undesired extravasation of FVIII.
109 

  

The classical functions of VWF: platelet binding. A 

key function of VWF is to mediate the recruitment of 

platelets to sites of vascular injury, especially at those 

locations where collagen-binding platelet-receptors do 

not resist high shear forces. Interactions between 

platelets and VWF are mediated by two distinct platelet 

receptors: GpIbα and integrin αIIbβ3. GpIbα is part of 

the GpIb-IX-V complex that is abundantly expressed at 

the platelet surface.
110,111

 Contacts between VWF and 

GpIbα require the VWF A1 domain, and the GpIbα 

interactive site has been elucidated at the atomic level 

using co-crystal structures of the VWF A1 domain and 

a soluble GpIbα fragment.
112-114

 Mutations of residues 

in the VWF A1 domain that cover the interactive 

surface with GpIbα have indeed found to be associated 

with impaired VWF function and a bleeding tendency 

in patients with VWD-type 2M.
12

 The VWF-GpIbα 

interaction is probably the best-studied aspect of VWF 

at both the functional and structural level, and its 

importance for the formation of platelet-rich thrombi 

has been extensively reviewed elsewhere (see for 

instance references 
108,115-117

). 

The binding site for αIIbβ3 is located in the C1 

domain of VWF (C4 domain according to the new 

annotation proposed by Zhou et al.
41

) and involves the 

classical Arg-Gly-Asp (RGD) recognition sequence for 

integrins. The function of the VWF-αIIbβ3 interaction 
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is related to the enforcement of platelet-platelet 

interactions as has been demonstrated in several in 

vitro studies.
118-121

 However, since several other ligands 

(notably fibrinogen) are capable of doing so as well, 

this VWF function has long been thought to be 

redundant. This view is compatible with the notion that 

so far no patients having mutations in the αIIbβ3 

binding sequence have been reported. However, studies 

using a mouse model expressing a VWF mutant with 

defective αIIbβ3 binding have forced us to change this 

view. Although mice expressing this mutant show 

normal correction of the bleeding time in a tail clip-

model for haemostasis, they are characterized by an 

impaired vessel occlusion time in a ferric chloride-

induced model of vascular injury.
99,100

 A similar 

reduction of vessel occlusion was observed in mice 

treated with antibodies against the RGD-sequence of 

VWF.
102

 More detailed analysis of thrombus formation 

in these mice revealed that initial thrombus formation 

is unaffected. However, larger thrombi seem to 

dissolve as a result of the increased hydrodynamic 

forces to which the growing thrombus is exposed.
100,102

 

This strongly suggests that the VWF-αIIbβ3 interaction 

is not redundant, but of physiological relevance with 

regard to the stabilization of the growing thrombus.  

 

Novel aspects of VWF function: the molecular bus. 

As described in the paragraph “The classical functions 

of VWF: FVIII binding”, VWF is particularly known 

as a carrier protein for FVIII in the circulation to 

maintain appropriate FVIII plasma levels. However, in 

recent years it has become clear that FVIII is not the 

only protein that circulates in complex with VWF in 

the circulation. Other examples of proteins that are 

associated with VWF in plasma include 

ADAMTS13,
122,123

 osteoprotegerin,
124-126

 angiopoietin-

2 (Christophe OD, Cherel G, Lenting PJ, Denis CV; 

unpublished publications) and two members of the 

galectin family, galectin-1 and galectin-3.
127

 It would 

not be surprising if this list of VWF-bound proteins 

will grow in the future. For instance, Turner & Moake 

recently published that several members of the 

complement family (i.e. C3, C5 and factors B, D, P H 

& I) attach to VWF that is freshly released from 

endothelial cells.
128

 It seems reasonable to assume that 

at least some of these proteins remain associated to 

VWF upon release from the endothelial surface into the 

circulation. 

Like for FVIII, galectin-1 and galectin-3 plasma 

levels were higher in wild-type mice compared to mice 

deficient for VWF,
127,129

 suggesting that VWF is 

needed to stabilize galectin-1 and galectin-3 in the 

circulation. With regard to osteoprotegerin, a recent 

study revealed a positive correlation between VWF and 

osteoprotegerin levels in a cohort consisting of patients 

with cardiovascular disease and asymptomatic 

controls.
126

 This correlation appeared particularly 

relevant in asymptomatic individuals without coronary 

calcification. These recent findings might suggest that 

VWF could play a similar protective role to stabilize 

osteoprotegerin in plasma. Of course, additional studies 

are needed to support this point of view. An opposite 

observation has been made regarding ADAMTS13 in 

that an inverse relationship between plasma levels of 

VWF and ADAMTS13 was reported.
130

 In addition, 

ADAMTS13 levels were ~40% higher in patients 

lacking circulating VWF than in control individuals.
130

 

How VWF influences ADAMTS13 plasma levels 

remains to be determined. One possible explanation 

can be that VWF-bound ADAMTS13 is cleared in 

conjunction with VWF, which has a shorter half-life 

than ADAMTS13.
131,132

 

The wide variety of proteins that are bound to VWF 

in the circulation raises a number of questions. First, 

how many passengers can be on the VWF bus at the 

same time? For FVIII and both galectins, we know that 

their plasma concentrations are about 100-fold lower 

than that of VWF, which suggests that they will not 

occupy all the places that are available. As for 

ADAMTS13, Feys et al. calculated that it circulates in 

complex with VWF in a stoichiometry of 1:250, also 

indicating that the majority of the VWF subunits 

remain non-occupied.
123

 A second question is: what are 

the functional consequences of complex formation? 

VWF protects FVIII and may promote its targeting to 

sites of vascular injury. In contrast, FVIII may have the 

opposite effect on VWF, as it has been reported that the 

presence of FVIII promotes VWF degradation by 

ADAMTS13.
133

 With regard to the galectins, 

angiopoietin-2 and osteoprotegerin, the functional 

consequences of their binding to VWF have been 

investigated to a limited extent, if at all. In view of the 

large size of the VWF protein, it seems conceivable 

that VWF has a profound effect of the functionality of 

these proteins in that it may prevent the interaction 

with their natural ligand via sterical hindrance. 

However, many unknowns remain in this respect, and 

it would be of interest to explore the mutual functional 

effects between VWF and its passengers.  

 

Novel aspects of VWF function: cell effector in the 

angiogenic process. During the last two decades, more 

than 20 proteins have been identified that interact with 

VWF, several of them being involved in cellular 

signaling processes.
32

 Consequently, VWF has been 

linked to other (patho)physological processes than 

haemostasis as well, including angiodysplasia, tumor 

metastasis and smooth muscle cell proliferation 

(Figure  2;  for  recent   reviews   on  these  topics  see 

references 
32,134,135

). However, the mechanism by which 
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Figure 2. The functional diversity of VWF. VWF is best known for its link with the hemostatic system, where it participates in the 

recruitment of platelets to the injured vessel wall and acts as a carrier protein for FVIII. The physiological relevance of this function is 

underscored by VWF being associated with bleeding problems (VWD and acquired VW syndrome) as well as thrombotic complications 

(myocard infarction, stroke and venous thrombosis). More recently it has been found that VWF is involved in other patho-physiological 

processes as well, such as tumor metastasis (inducing tumor cell death), angiogenesis (which could provide a rationale for the relatively 

frequent occurrence of angiodysplasia in VWD patients), cell proliferation (associated with enhanced intima thickening after angioplasty and 

in CADASIL), and inflammatory processes (as observed in animal models for atherosclerosis, stroke, wound healing and experimental 

allergic encephalomyelitis). 

 

VWF  is  linked to this processes is  largely  

undefined.For each of the three conditions a brief 

overview of our current knowledge will be provided. 

With regard to the angiogenic process, it has been 

found that the absence of VWF increases endothelial 

cell proliferation in vitro.
136

 In line with this 

observation, VWF-deficient mice display an increased 

vessel density of the vasculature in the ears in 

comparison to VWF-expressing mice,
136

 suggesting 

that VWF acts as a negative modulator of angiogenesis. 

The molecular basis of this modulatory effect is yet 

unclear. Results from the study by Starke and 

colleagues point to an effect of VWF on vascular 

endothelial growth factor (VEGF)-dependent 

angiogenesis, which proceeds via multiple intracellular 

and extracellular pathways dependent on αVβ3 and 

angiopoietin-2.
136

 Given that both proteins are ligands 

for VWF, it seems possible that VWF acts on the 

angiogenic process via interactions with both proteins. 

However, the endothelial cells contain several other 

VWF-binding proteins with pro- and anti-angiogenic 

properties, such as galectins-1 and -3,
137,138

 connective 

tissue growth factor
139

 and insulin-like growth factor 

binding protein-7.
140

 This points to a complex role of 

VWF, able to affect the angiogenic process at different 

levels. 

Irrespective of the precise mechanism, the link 

between VWF and angiogenesis seems to be of 

physiological relevance, given the relatively frequent 

occurrence of angiodysplasia in patients with 

VWD.
134,141

 Angiodysplasia is characterized by 

vascular malformations resulting from an impaired 

angiogenic process, and is often clinically manifested 

via gastro-intestinal bleedings.
142

 Interestingly, the 

manifestation of angiodysplasia in VWD patients is 

observed more frequently in patients that lack high 

multimers, either because of hereditary defects
141,143

 or 

because of acquired conditions, such as Heyde's 

syndrome or patients carrying circulatory assist 

devices.
144,145

 Why there is this specific link with high 

molecular weight multimers is unclear. Perhaps it 

involves a mechanism that is similar to the interaction 

between VWF and GpIbα, which also is more efficient 

for the larger multimers compared to smaller variants. 

The possibility exists that VWF interacts in a multimer 

size-dependent manner with so far unidentified cellular 

receptors (expressed on endothelial cells or other cells 

in the vascular wall) that are involved in maintaining 

the vascular integrity. Solving this enigma would be of 

interest for the development of novel therapeutic means 

to manage this severe complication of VWD. 

 

Novel aspects of VWF function: cell effector in 

smooth muscle cell proliferation. Care should be 

taken in extrapolating the anti-proliferative effect of 

VWF towards VEGF-stimulated endothelial cells also 

to other cell types. As will be discussed in this section, 

VWF may also exert a proliferative effect, 

demonstrating that the cell effector function of VWF 

may be very much dependent on the local cellular 

environment. Upon damage of the vascular endothelial 

layer, VWF is able to penetrate into the intima of large 

peripheral vessels, where it is exposed to smooth 

muscle cells.
146-148

 The deposition of VWF in the 
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intima coincides with intimal thickening,
149

 suggesting 

that VWF plays a role in the pathogenesis of intimal 

hyperplasia by promoting smooth muscle cell 

proliferation. This possibility is supported by in vitro 

experiments showing that VWF directly stimulates 

smooth muscle cell proliferation,
149

 The transcriptional 

changes in smooth muscle cells that are being induced 

upon exposure to VWF have recently been unraveled, 

and involve multiple genes associated with growth 

factor stimulation.
150

   

The effect of VWF-dependent smooth muscle cell 

proliferation is not only of relevance with regard to 

vascular damage, for instance as a consequence of an 

angioplasty procedure,
146,147

 but may also be of 

importance in view of the hereditary disorder 

CADASIL (cerebral autosomal dominant arteriopathy 

with subcordial infarcts and leukoencephalopathy).
150

 

The clinical phenotype of this disorder includes 

recurrent strokes and dementia. Analysis of brain 

sections of CADASIL-patients revealed that VWF is 

abundantly present in the brain vessels, particularly in 

the subarachnoid arteries that are characterized by 

concentric thickening of the media and adventitia.
150

 

The identification of VWF as a player in CADASIL-

related smooth muscle cell proliferation could provide 

the basis for a novel therapeutic approach in the 

treatment of these patients. 

 

Novel aspects of VWF function: cell effector in 

apoptosis. The versatility of VWF is nicely illustrated 

by the notion that VWF is not only capable of 

stimulating cell proliferation but also by its capacity to 

induce cell death. Again, it is important to take into 

account the local cellular environment in this regard, 

since the apoptotic function of VWF is probably 

restricted to but a few cell types. First, it was shown 

that VWF is able to induce platelet apoptosis via 

interactions with GpIbα, thereby initiating the caspase-

3, Bak and Bax-dependent apoptosis pathway.
151

 The 

physiological consequences of this finding remain to be 

determined, but they could be of relevance for those 

conditions where there are enhanced VWF-platelet 

interactions without the need for thrombus formation. 

One such a condition could be VWD-type 2B, where 

gain-of-function mutations in the VWF A1 domain 

result in spontaneous VWF-platelet interactions. 

Tumor cells are another cell type that might be 

susceptible to VWF-induced apoptosis. Unexpectedly, 

tumor cells were found to have a higher metastatic 

potential in VWF-deficient mice than in VWF-

expressing control mice.
152

 This higher metastatic 

potential appeared to be the result of a longer survival 

of living cells in the absence of VWF.
152

 In vitro 

studies confirmed that VWF induced death of tumor 

cells.
152,153

 The underlying mechanism of VWF-

induced cell death remains unclear, although the 

observation that VWF-tumor cell interactions were 

mediated by αVβ3 suggest that VWF induces cell death 

via this integrin.
152

 The capacity of VWF to induce 

tumor cell death in an αVβ3-dependent fashion was 

recently confirmed in an elegant study by Mochizuki 

and colleagues.
154

 However, they also identified a 

series of tumor cells that was capable of escaping 

VWF-induced cell death. The explanation for this 

resistance against VWF-induced apoptosis was rather 

unexpected: they found that tumor cells are able to 

secrete a protease (ADAM-28) that is able to degrade 

VWF.
154

 Thus, VWF negatively regulates tumor cell 

survival, and certain tumor cells have armed 

themselves against VWF via the production of a 

protease that destroys the pro-apoptotic function of 

VWF. 

 

Novel aspects of VWF function: a pro-inflammatory 

agent. The adhesive nature of the VWF protein allows 

it to function as a landing platform for platelets. This 

raises the question whether this adhesive capacity is 

selective for platelets, or whether also other cells are 

able to adhere VWF. We have previously addressed 

this issue, and observed that leukocytes may adhere to 

immobilized VWF under conditions of low shear.
155

 In 

the same study, we were able to identify PSGL-1 and 

β2-integrins as potential counter-receptors for VWF at 

the leukocyte surface.
155

 More recently, we also 

identified Siglec-5 as a leukocyte receptor that is able 

to interact with VWF, although we did not test whether 

Siglec-5 contributes to leukocyte-VWF interactions 

under conditions of flow.
156

 Evidence is also 

accumulating from other studies that VWF may 

actively participate in leukocyte recruitment. First, 

platelet-decorated VWF strings at the cellular surface 

efficiently attract leukocytes, even under conditions of 

high shear stress.
157

 Furthermore, VWF-platelet 

complexes play a crucial role in the extravasation of 

leukocytes upon an inflammatory response.
158

 

The participation of VWF in the inflammatory 

response has been confirmed in several animal models 

for inflammation, such as atherosclerosis, wound 

healing, experimental allergic encephalomyelitis, and 

stroke.
159-162

 Whether VWF plays a similar important 

role in the human pathology of these diseases is 

unclear, which could be related to the multi-factorial 

nature of such inflammatory conditions. For instance, 

VWF-deficient mice and pigs develop fewer 

atherosclerotic lesions compared to VWF-expressing 

animals, suggesting that VWF could participate in 

attracting leukocytes to lesion sites.
161,163

 However, 

human studies revealed conflicting information 

whether or not atherosclerosis is reduced in patients 

with VWD (recently reviewed by van Galen et al.
164

). 
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One crucial difference that could explain the observed 

differences between humans and animals that lack 

VWF is that patients receive replacement therapy to 

replenish the reservoir of circulating VWF. As such 

they are less deficient in VWF compared to the 

animals. 

 

Regulation of classic and new VWF functions: 

multimer size and shear stress. In the circulation, 

VWF is exposed to many of its ligands, including 

platelets. Therefore, mechanisms need to be in place to 

prevent premature interactions between VWF and 

platelets in order to prevent undesired vessel 

occlusion.
165

 On the other hand, for some ligands (such 

as FVIII) it is actually necessary that VWF is able to 

interact with them in a constitutive manner, without a 

strict regulation. From these two examples it becomes 

clear that the versatility of VWF is not only restricted 

to its functions, but also with regard to the regulation of 

these functions. 

There are two dominant mechanisms in place that 

contribute to the regulation of VWF function. First, 

VWF is able to change conformation in response to 

shear stress.
166-168

 In the normal circulation VWF is 

present as a globular protein, whereas exposure to 

increased shear forces drives the protein into an 

elongated conformation.
166-168

 This change in 

conformation has a number of consequences:
169

 (1) it 

results in decryption of the GpIbα binding site, 

allowing platelet binding;
108

 (2) the cleavage site for 

ADAMTS13 becomes available;
170,171 

(3) it exposes 

methionine residues that are sensitive to oxidation;
172

 

(4) it promotes disulfide bridge formation between 

cysteine-residues in the CK-domain;
173,174

 (5) it 

enhances VWF self-association;
175

 and (6) it turns 

VWF into a ligand for its clearance receptor LRP1.
176

 

In contrast to these shear stress-dependent 

phenomenon, the interactions between VWF and 

collagen or FVIII do not seem to require shear stress-

induced conformations, as they already occur under 

static conditions. 

Do these shear stress-induced conformational 

changes also affect the novel functions of VWF? In 

most cases, this does not seem to be the case. The 

effects of VWF on angiogenesis, smooth muscle cell 

proliferation and tumor cell death have usually been 

investigated in vitro under static conditions. Of course, 

this does not necessarily mean that shear stress will not 

affect these functions. However, additional studies are 

needed to get insight into the role of shear stress on 

novel VWF functions. 

A second mechanism to regulate VWF function is 

to vary its multimer size, and several mechanisms are 

at hand to do so. One protein that contributes to the 

regulation of VWF multimer size is thrombospondin, 

which controls VWF multimer size via the introduction 

of new thiols.
177

 Second, shear stress-induced self-

association may contribute to enlarge the multimer size 

of VWF.
175

 However, the most dominant regulator 

seems to be ADAMTS13, which is able to 

proteolytically degrade VWF via cleavages in the A2 

domain between residues Tyr1605 and Met1606.
178

 

The mechanism by which ADAMTS13 recognizes and 

cleaves its substrate has been described in detail in an 

excellent review by Crawley and colleagues.
179

 The 

importance of ADAMTS13 in the regulation of VWF 

multimer size in view of its hemostatic properties is 

evident from the thrombotic complications that occur 

in the absence of ADAMTS13, a disorder known as 

thrombotic thrombocytopenic purpura.
180-182

 However, 

does ADAMTS13 also affect non-hemostatic functions 

of VWF? There are indications that this is indeed 

conceivable. First, we already mentioned that 

angiodyplasia is particularly associated with VWD 

patients that lack high molecular weight multimers, 

such as in VWD-type 2A.
143

 Apparently, an increased 

degradation of VWF interferes with the property of 

VWF to maintain the integrity of the vasculature. 

Second, increased leukocyte rolling on unstimulated 

veins and increased leukocyte adhesion in inflamed 

veins has been observed in mice deficient for 

ADAMTS13. Moreover, it has been found that the 

absence of ADAMTS13 exacerbates the inflammatory 

response in animal models for stroke and 

atherosclerosis.
159,183-185

 Apparently, proteolytic 

degradation of VWF by ADAMTS13 downregulates 

the inflammatory potential of VWF. With regard to the 

effect of VWF on tumor cell death, the importance of 

multimer size is yet unclear. It should be noted that 

ADAM-28 reduced VWF multimer size via proteolysis 

at two distinct sites in the VWF protein, which 

coincides with a loss in apoptotic potential.
154 

Since 

these sites are located away from the αVβ3-recognition 

sequence (i.e. the RGD-motif), it seems conceivable 

that VWF multimer size plays a role in the interaction 

with tumor cells to initiate the apoptotic process. 

 

Conclusion. Forty years after its first purification from 

plasma, VWF still carries many mysteries. Its 

versatility is steadily being exposed but even its role in 

thrombosis, once thought to be well understood, is still 

eluding us. Indeed, the notion that a VWF-mutant 

unable to bind αIIbβ3 is protective against thrombosis 

in a ferric chloride-induced model for arterial 

thrombosis while it is without effect in a stroke model, 

is a perfect example of this constant reassessment that 

is forced upon us.
100,186

 The possibility to target VWF 

in the management of thrombotic disorders should 

therefore be considered as a real option. With regard to 

the non-hemostasis functions of VWF, many avenues 
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also remain to be explored. The combination of data 

originating from both clinical and basic studies on 

VWF will no doubt be instrumental in expanding our 

knowledge of this intriguing protein.  
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