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Abstract A detailed five-dimensional calculation of the
Higgs-boson decay into two photons is performed in both
the minimal and the custodially protected Randall–Sundrum
(RS) model, where the Standard Model (SM) fields propa-
gate in the bulk and the scalar sector lives on or near the
IR brane. It is explicitly shown that the Rξ gauge invari-
ance of the sum of diagrams involving bosonic fields in the
SM also applies to the case of these RS scenarios. An exact
expression for the h → γ γ amplitude in terms of the five-
dimensional (5D) gauge-boson and fermion propagators is
presented, which includes the full dependence on the Higgs-
boson mass. Closed expressions for the 5D W -boson propa-
gators in the minimal and the custodial RS model are derived,
which are valid to all orders in v2/M2

KK. In contrast to the
fermion case, the result for the bosonic contributions to the
h → γ γ amplitude is insensitive to the details of the localiza-
tion of the Higgs profile on or near the IR brane. The various
RS predictions for the rate of the pp → h → γ γ process are
compared with the latest LHC data, and exclusion regions for
the RS model parameters are derived.

1 Introduction

After the discovery of the Higgs boson in July 2012 [1,2],
a solution to the hierarchy problem—the question why the
electroweak scale is so much lower than the Planck scale—is
more urgently needed than ever. Among the numerous pos-
sibilities to solve the hierarchy problem, the most popular
approach is low-scale supersymmetry. A promising alterna-
tive is given by models with a warped extra dimension [3],
in which the Standard Model (SM) is embedded in a slice
of anti-de Sitter space, while the Higgs field is localized on
the “infra-red (IR) brane”, one of the two four-dimensional
hyper-manifolds that bound the extra dimension. These so-
called Randall–Sundrum (RS) models can provide a natural
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explanation for this vast hierarchy, since the fundamental
ultra-violet (UV) cutoff is the warped Planck scale, which
near the IR brane takes values in the TeV range. Moreover,
by allowing the fermion fields to propagate into the bulk,
warped extra-dimension models can also provide an expla-
nation for the hierarchies observed in the flavor sector [4–6]
and the smallness of flavor-changing neutral currents [7–13].

Unfortunately, none of the Kaluza–Klein (KK) particles
predicted in extra-dimensional extensions of the SM have
been observed yet, and electroweak precision measurements
indicate that these particles are probably too massive for
a direct detection at the LHC. Thus, indirect searches like
the precision measurements of the Higgs-boson couplings to
SM particles, which are accessible via studies of both the
Higgs production cross section and its decay rates, become
more and more attractive. Concerning warped extra dimen-
sions, especially the loop-mediated Higgs couplings to glu-
ons and photons could give hints about the existence of addi-
tional KK particles. While the gluon-fusion process has been
discussed extensively in several works [14–24], the present
paper focuses on the Higgs decay into two photons, which
was investigated in [16–20]. The first analysis of the effects
of the KK tower of the W boson on the h → γ γ amplitude
was performed in [18]. The first complete calculation of the
h → γ γ decay rate, in which both the Yukawa couplings to
the Z2-even and to the Z2-odd fermions were included, was
performed in [19]. It was found in this paper that the Higgs
decay rate into two photons is enhanced relative to the SM due
to the effect of the KK fermions, which turned out to give the
dominating correction. At about the same time, an indepen-
dent analysis of the h → γ γ decay rate came to the opposite
conclusion [20]. An explanation for these deviating results
was first given in [23], followed by a five-dimensional (5D)
analysis in [24], which found that the two results belong to
two different scenarios of the RS model.1 While these papers

1 These papers analyzed the quark KK-tower contributions to the Higgs
production process gg → h. Up to different factors for the color
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focused on the contribution stemming from the fermionic KK
states, in the present work we provide a detailed analysis of
the bosonic loop contributions to the h → γ γ amplitude,
which in unitary gauge stem from the W bosons and their
KK excitations. The advantages of this approach are that we
are able to derive an exact result, which includes the full
dependence on the Higgs-boson mass and holds to all orders
in v2/M2

KK, where v is the Higgs vacuum expectation value
(VEV), and MKK sets the mass scale for the low-lying KK
excitations of the SM particles. It is also straightforward to
extend our formulas to the case where the Higgs boson lives
in the bulk of the extra dimension. Our approach also allows
us to carefully study the effects of the fifth components of
the gauge fields, whose profiles are discontinuous on the IR
brane, similar to the Z2-odd fermion profiles which indeed
require a careful treatment.

Our paper is structured as follows: In Sect. 2 we define the
set-up and comment on the necessity to distinguish between
the so-called brane-Higgs and narrow bulk-Higgs scenar-
ios when calculating the fermionic loop contributions to the
gg → h and h → γ γ amplitudes. In Sect. 3 we discuss
the general structure of the h → γ γ amplitude and summa-
rize the results for the fermionic contributions from charged
quarks and leptons propagating in the loop. We then focus
on the bosonic loop contributions, calculate them in the KK-
decomposed theory and show that the result for the contri-
butions of each individual KK mode is gauge invariant. In
the next step we resum the KK towers and derive an exact
formula for the h → γ γ amplitude in terms of an over-
lap integral over the Higgs-boson profile and the transverse
part of the 5D gauge-boson propagator, including the exact
dependence on the Higgs-boson mass. To the best of our
knowledge, such a formula has not been obtained before. We
derive an explicit, closed expression for the 5D propagator
and show that the overlap integral is insensitive to the pre-
cise details of shape of the Higgs-boson profile, once this
profile is localized very close to the IR brane. By expanding
our results in powers of v2/M2

KK, we can identify the contri-
butions from the W bosons (with modified couplings to the
Higgs boson) and their KK towers, confirming the results of
[18]. In Sect. 4 we generalize our findings to an extended ver-
sion of the RS model with a custodial symmetry protecting
electroweak precision observables [25–27]. Again, we obtain
an exact formula for the h → γ γ amplitude and, for the first
time, for the 5D gauge-boson propagator in the custodial RS
model. When expanded to order v2/M2

KK, our findings for
the contributions of the W boson and its KK excitations are
consistent with the findings of [19]. Phenomenological impli-
cations of our results in the context of the latest LHC data are

Footnote 1 continued
multiplicity and electric charges, an analogous discussion holds for the
quark and lepton KK-tower contributions to h → γ γ .

discussed in Sect. 5, where we study the Higgs decay into two
photons in two different versions of the minimal and the cus-
todially protected RS model. We illustrate the magnitude of
the effects as a function of the mass of the lightest KK gluon
state and the scale of the 5D Yukawa couplings, and derive
the regions in parameter space that are already excluded by
recent LHC measurements. Our main results are summarized
in the conclusions.

2 Preliminaries

We focus on RS models where the electroweak symmetry-
breaking sector is localized on or near the IR brane. The extra
dimension is chosen to be an S1/Z2 orbifold parametrized
by a coordinate φ ∈ [−π, π ], with two branes localized on
the orbifold fixed-points at φ = 0 (UV brane) and |φ| = π

(IR brane). The RS metric reads [3]

ds2 = e−2σ(φ) ημν dxμdxν − r2dφ2

= ε2

t2

(
ημν dxμdxν − 1

M2
KK

dt2

)
, (1)

where e−σ(φ) with σ(φ) = kr |φ| is referred to as the warp
factor, and the size r and curvature k of the extra dimension
are assumed to be of Planck size, k ∼ 1/r ∼ MPl. The
quantity L = σ(π) = krπ measures the size of the extra
dimension and is chosen to be L ≈ 33−34 in order to explain
the hierarchy between the Planck and the TeV scales. With
the help of the curvature k and the warp factor evaluated at
the IR brane, ε = e−σ(π), one defines the KK mass scale as
MKK = kε. On the right-hand side of (1) we have introduced
the dimensionless coordinate t defined by t = ε eσ(φ) ∈
[ε, 1],2 which will be used throughout this work.

Our paper deals with the minimal RS model based on the
SM gauge group, as well as with an extended RS model with
a larger bulk gauge group, which after electroweak symmetry
breaking includes an SU (2) custodial symmetry protecting
the T parameter and suppressing larger corrections to the
Zb̄b couplings [25–27]. In both versions of the RS model,
all fermions and gauge bosons are allowed to propagate into
the bulk, resulting in infinite towers of heavy KK copies of
the SM particles. In contrast, the scalar sector is assumed to
reside on or near the IR brane so as to provide a solution to
the hierarchy problem. We recall that RS models are effec-
tive field theories valid up to a position-dependent UV cutoff
[28–31]


UV(t) ≈ MPl e−σ(φ) = MPl
ε

t
≡ 
TeV

t
. (2)

2 This variable is related to the frequently used conformal coordinate z
by the rescaling z = t/MKK.
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At this scale, gravity becomes strong and the model needs
to be UV-completed into a theory of quantum gravity. The
fact that RS models are defined with an inherent UV cutoff
can be used to distinguish between different scenarios for the
localization of the Higgs sector. We shall consider a scalar
field� localized on or very near the IR brane. Its profile along
the extra dimension is described by a normalized distribution
δη(t−1)with width η � 1. For η → 0 this profile becomes a
δ-function, corresponding to a strictly brane-localized scalar
field. Following [24], we introduce the characteristic width
of the Higgs field along the extra dimension as 
−1

h ≡ η/v.
If the inverse width is larger than the inherent UV cutoff near
the IR brane, 
h � 
TeV, then the Higgs profile cannot
be resolved by the high-momentum modes contained in the
effective Lagrangian of the RS model, and hence for all prac-
tical purposes such a scalar field can be regarded as a brane-
localized Higgs field. On the other hand, if the inverse Higgs
width is smaller than the cutoff scale, then the modes of the
effective theory can resolve its profile, and we speak of a bulk
Higgs field. While calculations in generic bulk-Higgs models
are rather complicated, it has been shown in [24,32] that there
is the possibility of obtaining analytical results for the spe-
cial case of a narrow bulk-Higgs field, whose inverse width
is such that MKK � 
h � 
TeV. As has been explained
in [23,24], the fermionic loop contributions to the gg → h
and h → γ γ amplitudes are sensitive to the details of the
localization mechanism, and indeed the results obtained in
a brane-localized Higgs scenario [19,22] differ significantly
from those derived for a narrow bulk-Higgs field [20,33]. We
thus need to distinguish between the two types of localization
mechanisms in our phenomenological analysis. As we will
show, however, the bosonic contributions to the h → γ γ

amplitude are insensitive to the precise localization of the
scalar sector and approach an unambiguous result in the limit
where η � 1.

3 5D analysis of the h → γ γ amplitude

Our goal is to calculate the h → γ γ decay amplitude entirely
in terms of the 5D propagators for both gauge bosons and
fermions. While the contributions from quarks and charged
leptons can easily be deduced from the corresponding results
for the gg → h amplitude, a detailed consideration of the
gauge-boson contribution has not yet been performed in 5D
language. Our approach in the present work is the follow-
ing: In a first step, we calculate the bosonic contributions to
the h → γ γ amplitude in the KK-decomposed, 4D effec-
tive theory and show that at each KK level the sum of all
diagrams is gauge invariant. The only contributing diagrams
in the unitary gauge are those with vector bosons propagat-
ing in the loop. We can then rewrite the amplitude, summed
over KK states, as an expression involving the 5D gauge-

boson propagator in the mixed momentum-position repre-
sentation [28,34–37]. We show that in the limit of a very nar-
row Higgs profile the amplitude approaches an unambiguous
value, which is insensitive to the details of the Higgs local-
ization mechanism. At the end of this section, we employ
our exact results to derive expressions for the contributions
of the zero modes (the standard W bosons) and their infinite
towers of KK excitations to the h → γ γ amplitude.

We begin with the calculation in the minimal RS model
with the SM gauge group in the bulk, broken to U (1)EM on the
IR brane, where the Higgs field develops a VEV. Details for
the implementation of the Higgs, gauge-boson, and gauge-
fixing sectors in the context of this model and using our nota-
tion have been given in [10], while Appendix A includes a
summary of the relevant Feynman rules needed for our anal-
ysis. Here, it suffices to mention that we decompose the 5D
W -boson field into 4D mass eigenstates

W ±
μ (x, t) = 1√

r

∞∑
n=0

χ W
n (t)W ±(n)

μ (x),

W ±
φ (x, t) = − 1√

r

L

π

∞∑
n=0

1

mW
n

t ∂tχ
W
n (t) ϕ

±(n)
W (x),

(3)

where W ±(n)
μ are the KK modes of the W bosons with masses

mW
n . The scalar particles ϕ±(n)

W are “unphysical” in the sense
that they provide the longitudinal degrees of freedom of the
W bosons (n = 0) and the massive W -boson KK modes
(n ≥ 1), and thus they can be gauged away. Indeed, the scalar
fields W ±

φ mix with the charged Goldstone bosons arising
from the Higgs sector. Assuming for the time being that the
scalar sector is localized on the IR brane, we parameterize
the Higgs doublet after electroweak symmetry breaking in
the usual form

�(x) = 1√
2

( −i
√

2ϕ+(x)
v + h(x)+ iϕ3(x)

)
. (4)

Throughout this paper, v denotes the Higgs VEV in the RS
model, which differs from the SM value vSM ≈ 246 GeV
by a small amount [18]. We determine v from the shift to
the Fermi constant derived in the RS model by considering
(at tree level) the effect of the exchange of the infinite tower
of KK gauge bosons on the rate for muon decay, using the
definition vSM = (

√
2 G F )

−1/2. This yields [24]

κv = v

vSM
= 1 + Lm2

W

4c2
ϑM2

KK

+ O
(
v4

M4
KK

)
, (5)

where cϑ = 1 in the minimal RS model. When we general-
ize our analysis to the case of an extended RS model with a
custodial symmetry in Sect. 4, this relation will still hold, but
the parameter cϑ will then take on a non-trivial value. The
decomposition of the scalar fields ϕ± into the mass eigen-
states ϕ±(n)

W reads [10]
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 1 One-loop Feynman diagrams for the process h → γ γ . Diagram
(a) contains the fermion loops, while diagrams (b)–(k) show the con-
tributions from the gauge sector in a general Rξ gauge. Solid lines rep-
resent fermion mass eigenstates, wavy lines vector-boson mass eigen-

states W ±(n)
μ , dashed lines scalar mass eigenstates ϕ±(n)

W , and dotted

lines ghost mass eigenstates c±(n)
W . The ghost masses and profiles are

the same as for the W bosons and their KK excitations [38]

ϕ±(x) =
∞∑

n=0

m̃W

mW
n

√
2π χW

n (1) ϕ
±(n)
W (x),

m̃W = g5√
2πr

v

2
, (6)

where m̃W is the leading contribution to the W -boson mass
in an expansion in powers of v2/M2

KK. The relation between
the two parameters can be written as [10]

m̃2
W = m2

W

[
1 + m2

W

2M2
KK

(
L

c2
ϑ

− 1 + 1

2L

)
+ O

(
v4

M4
KK

)]
,

(7)

where once again cϑ = 1 in the minimal RS model. Since
the profile of the zero mode is flat up to corrections of order
v2/M2

KK, it follows that

√
2π χW

0 (1) = 1 − m2
W

2M2
KK

(
L − 1 + 1

2L

)
+ O

(
v4

M4
KK

)
(8)

is close to 1, and hence the fields ϕ± coincide with ϕ±(0)
W

to leading order. Mixing effects arise at order v2/M2
KK

and higher. Note also that one can adjust the gauge-fixing
Lagrangian so as to cancel any mixings between W ±

μ and the
scalar fields W ±

φ and ϕ± [10].
The one-loop Feynman diagrams contributing to the h →

γ γ decay amplitude are shown in Fig. 1 for a general Rξ
gauge. In the subsequent section we will demonstrate that
the full amplitude is gauge invariant. In the unitary gauge
only the diagrams (a)–(c) contribute. In order to present our
results, we find it convenient to parameterize the h → γ γ

amplitude, including the contributions from SM particles, by
means of two Wilson coefficients C1γ and C5γ define via

A(h → γ γ ) = C1γ
α

6πv
〈γ γ |FμνFμν |0〉

−C5γ
α

4πv
〈γ γ |Fμν F̃μν |0〉, (9)

where F̃μν = − 1
2ε
μναβFαβ with ε0123 = −1. Each Wilson

coefficient can be written as a sum of three terms,

Ci = CW
i + Cq

i + Cl
i , (10)

where in a general gauge CW
i includes the bosonic contri-

butions from gauge bosons, scalar bosons, and ghosts. The
calculation of these bosonic contributions is the main sub-
ject of this work. The fermionic loop contributions due to
virtual quarks and leptons shown in diagram (a) can be read-
ily deduced from expressions derived in [24]. They will be
summarized in Sect. 3.1.

In our analysis we will also discuss the case of a very
narrow Higgs boson localized near the IR brane, where the
Higgs profile δη(t − 1) has a characteristic width η subject
to the condition MKK � v/η � 
TeV. In principle, such
a scenario gives rise to a tower of physical scalar particles
φ

±(n)
W , which in some sense are the KK excitations of the

charged components of the Higgs doublet. As discussed in
detail in [38], these fields are defined in terms of a gauge-
invariant superposition of W ±

φ and ϕ±. It has been shown
in the same reference that the effect of these heavy scalar
particles on the h → γ γ amplitude is

Cφ
1γ = 1

8

∞∑
n=1

vg(n,n)hφφ(
mφ

n
)2 Aφ(τ

φ
n ), Cφ

5γ = 0, (11)

where τφn = 4(mφ
n )

2/m2
h , and the function

Aφ(τ ) = 3τ
[
τ f (τ )− 1

]
, with f (τ ) = arctan2 1√

τ − 1
,

(12)
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approaches 1 for τ → ∞. In the limit of a very narrow Higgs
profile the couplings g(n,n)hφφ scale like 1/η, while the masses
of the heavy scalar particles scale like MKK/η. It follows that
Cφ

1γ = O(η), and hence this contribution decouples in the
limit η → 0, as expected. We will therefore not consider the
corresponding Feynman diagrams in our analysis.

3.1 Fermionic contributions to the Wilson coefficients

The one-loop contributions to the h → γ γ amplitude due to
the exchange of virtual quarks and leptons can be derived in
a straightforward way from analogous results for the quark
contributions to the gg → h amplitude, which were stud-
ied in [19–24]. Here we will use expressions derived in our
previous work [24], where a variety of RS models were con-
sidered using the same 5D approach employed in the present
work. All that is necessary is to include appropriate factor of
color and electric charges. The exact result can be written in
the form

Cq
1γ = 3Nc

∑
f =u,d

Q2
q

1∫
0

dx

1−x∫
0

dy (1 − 4xy)

×
[
T q

+(−xym2
h)− T q

+(
2
TeV)

]
,

Cq
5γ = 2Nc

∑
f =u,d

Q2
q

1∫
0

dx

1−x∫
0

dy

×
[
T q

−(−xym2
h)− T q

−(
2
TeV)

]
, (13)

where Qu = 2/3 and Qd = −1/3 are the electric charges
of the quarks, and Nc = 3 is the number of colors. The
functions T q

±(−p2) are defined in terms of linear combina-
tions of overlap integrals of the Higgs-boson profile with the
chirality-odd components of the 5D fermion propagator (see
eq. (15) in [24] for more details). An analogous expression,
with Nc replaced by 1 and Qq replaced by Qe = −1 holds
for the charged-lepton contribution. These exact results can
be simplified by neglecting some terms of order v4/M4

KK and
chirally suppressed O(v2/M2

KK) terms, which is an excellent
approximation numerically. This leads to the explicit expres-
sions [24]

Cq
1γ ≈

[
1 − v2

3M2
KK

Re
(Y uY †

uYu)33

(Y u)33

]
Nc Q2

u Aq(τt )

+Nc Q2
d Aq(τb)+

∑
q=u,d

Nc Q2
q Re Tr g(Xq),

Cq
5γ ≈ − v2

3M2
KK

Im

[
(Y uY †

uY u)33

(Y u)33

]
Nc Q2

u Bq(τt )

+
∑

q=u,d

Nc Q2
q Im Tr g(Xq), (14)

and

Cl
1γ + iCl

5γ ≈ Q2
e Tr g(Xe), (15)

where the contributions from the SM fermions and the KK
excitations can now readily be identified. The loop functions
are given by (with τi = 4m2

i /m2
h)

Aq(τ ) = 3τ

2

[
1 + (1 − τ) f (τ )

]
, Bq(τ ) = τ f (τ ). (16)

They both approach 1 for τ → ∞. For values τ < 1 the
function f (τ ) in (12) must be analytically continued, with
τ → τ − i0. The quantities

X f = v√
2MKK

√
Y f Y †

f ; f = u, d, e (17)

are defined in terms of the dimensionless 5D Yukawa matri-
ces of the RS model, whose entries are assumed to be random
complex numbers of order 1. The observed hierarchies in
the spectrum of fermion masses and mixing angles are gen-
erated when these anarchic Yukawa matrices are combined
with the values of the fermion profiles near the IR brane,
which are exponentially small for all light fermions [4–6].
Note that with the hermitian matrices X f the traces over
matrix-valued functions g(X f ) are real, so that Cl

5γ = 0 and

the only contribution to the coefficient Cq
5γ arises from the

top-quark contribution given by the first term on the right-
hand side of (14). The precise form of the function g(X f )

depends on the details of the localization of the scalar sec-
tor on or near the IR brane. For the two scenarios with a
brane-localized Higgs and a narrow bulk Higgs, as defined
in Sect. 2, one finds [23,24]

g(X f )
∣∣
brane Higgs = − X f tanh X f

cosh 2X f
= −X2

f + O
(
v4

M4
KK

)
,

g(X f )
∣∣
narrow bulk Higgs = X f tanh X f = X2

f + O
(
v4

M4
KK

)
, (18)

so that the effect of the KK tower is approximately equal
but of opposite sign in the two cases. The difference is
due to a “resonance effect” in the narrow bulk-Higgs sce-
nario, where very heavy KK modes with masses of order
the inverse Higgs width 
h = v/η give an unsuppressed
contribution to the loop amplitude [23,32]. At a techni-
cal level, the difference arises from the subtraction term at
large Euclidean momentum in (13), which is relevant for the
function T f

+ (−p2) only. For a brane-localized Higgs, this
function approaches a plateau at large momenta, such that
T f

+ (
2
TeV) = Tr X f tanh 2X f . For a narrow bulk Higgs, on

the other hand, the function T f
+ (p2

E )vanishes like 1/pE in the
region of large Euclidean momenta p2

E = −p2 � (v/η)2,

and hence T f
+ (
2

TeV) can be set to zero. In [24] we have also
considered a variant of the brane-Higgs scenario with two
different Yukawa matrices YC

f and Y S
f for the Z2-even and

Z2-odd fermion fields. In this so-called type-II brane-Higgs
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model the matrices X f are no longer hermitian, but to leading
order

g(YC
f ,Y S

f )
∣∣
type-II brane Higgs = − v2

2M2
KK

YC
f YC†

f + O
(
v4

M4
KK

)

(19)

is still a hermitian matrix. The type-II brane-Higgs scenario
is thus rather similar to the original brane-Higgs model with
identical Yukawa matrices YC

f = Y S
f = Y f . Numerically,

we find that the main difference is a slightly larger spread
of the distribution of scatter points when one scans over the
parameter space of the model. In our phenomenological anal-
ysis in Sect. 5, we will therefore restrict ourselves to a study
of the two cases shown in (18).

3.2 Gauge invariance of the amplitude

In the SM, a recent paper [39] has thoroughly discussed the
ξ independence of the h → γ γ amplitude in dimensional
regularization and has shown that the calculation can be per-
formed consistently in the unitary gauge ξ → ∞. In the case
of the RS model, it is convenient to first work in the KK-
decomposed theory, where 4D Feynman propagators have
the same structure as in the SM. The Feynman rules required
to evaluate the one-loop diagrams shown in Fig. 1 are sum-
marized in Appendix A. From these rules, it follows that:

• All vertices involving one or two external photons but no
Higgs boson are diagonal in KK number after one inte-
grates over the extra-dimensional coordinate of the vertex
with measure

∫ π
−π dφ = (2π/L)

∫ 1
ε

dt/t . The Feynman
rules for these vertices have the same form as in the SM
after one identifies the 4D electromagnetic coupling as
e = e5/

√
2πr [40,41]. This is a consequence of U (1)EM

gauge invariance. For the mass-dependent vertex connect-
ing a photon to W ±(n)

μ ϕ
∓(n)
W , one must replace mW → mW

n .
• As a result, all one-loop diagrams contributing to the h →
γ γ amplitude involve a single KK particle in the loop.
Hence, only KK-diagonal Higgs couplings are required in
the calculation.

• All KK-diagonal Higgs couplings have the same structure
as in the SM but come with an overall prefactor

v

2

g2
5

2πr
2π
[
χW

n (1)
]2 = 2m̃2

W

v
2π
[
χW

n (1)
]2
, (20)

which replaces the corresponding factor gmW = 2m2
W /

vSM in the SM. In addition, for each scalar boson ϕ±(n)
W

a factor 1/mW
n appears, which replaces 1/mW in the cor-

responding SM Feynman rule for vertices involving the
Goldstone bosons ϕ±.

It follows from these observations that, diagram by diagram
and in a general Rξ gauge, the bosonic loop contributions

obtained in the RS model resemble those of the SM up to
trivial substitutions, such that

AW
RS(h → γ γ )

= m̃2
W

v

∞∑
n=0

2π
[
χW

n (1)
]2
[
vSM

m2
W

AW
SM(h → γ γ )

]
mW →mW

n

.

(21)

For vertices involving a photon and a pair of vector bosons,
fermions or ghosts, the statement that the interactions are
diagonal in KK number (first bullet) is a direct consequence
of the flatness of the photon profile and the orthogonality
of the relevant vector-boson and fermion profiles. For inter-
actions involving the scalar bosons ϕ±(n)

W , however, which
according to (3) and (6) receive contributions from W ±

φ and
ϕ±, the vertices become diagonal only after one adds up
these two contributions. This is discussed in more detail in
Appendix A.

Let us now explore the consequences of the general result
(21). Obviously, this relation implies that for each single KK
mode the h → γ γ amplitude in the RS model is gauge
invariant provided the amplitude is gauge invariant in the SM.
Since, as we will demonstrate below, the sum over KK modes
is convergent, it follows that gauge invariance is maintained
also in the 5D theory. We recall that to show gauge invariance
in the SM one divides the W -boson propagator in Rξ gauge
into two parts,

i

p2 − m2
W

[
(1 − ξ) pμ pν

p2 − ξm2
W

− ημν

]

= i

p2 − m2
W

(
pμ pν

m2
W

− ημν

)
− i

p2 − ξm2
W

pμ pν

m2
W

,

(22)

where the first part coincides with the propagator in uni-
tary gauge and the second part has the same structure as the
scalar-boson and ghost propagators. It has been shown in
[39] that, after adding up all diagrams, many intricate can-
celations occur, and at the end only the diagrams (b) and (c)
in Fig. 1 with the W -boson propagators in unitary gauge, as
well as the fermion loop contributions shown in diagram (a),
remain. We have repeated this analysis and checked these
cancelations by explicit calculation, thereby confirming that
it is justified to use unitary gauge also in the RS model.

3.3 5D analysis of the bosonic loop contributions
to h → γ γ

We now repeat the calculation of the bosonic loop contri-
butions to the h → γ γ amplitude using a 5D approach.
Based on the findings of the previous section we adopt uni-
tary gauge and consider only the contributions of diagrams
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(b) and (c) in Fig. 1. We employ the mixed momentum-
position representation of the 5D gauge-boson propagator
Dξ

W,μν(t, t ′; p) [28,34–37], in which the extra-dimensional
coordinate is kept in position space. This is very convenient
from a technical point of view, but it is also physically well
motivated, as by AdS/CFT correspondence the position along
the extra dimension defines the natural mass scale of the
model [28,42]. It is well known that even in the SM the
loop-momentum integral must be regularized dimensionally
in order to preserve gauge invariance. We will thus introduce
a dimensional regulator d = 4 − 2ε̂ on the loop integral in
intermediate steps. This regulator can be removed at the end
of the calculation. We also regularize the Higgs profile by
replacing the δ-function profile of the brane-localized Higgs
field by a smooth function δη(t − 1) of width η � 1. Such a
regularization is important in the calculation of the fermionic
loop contributions to the gg → h and h → γ γ amplitudes.
However, we will find that in the calculation of the bosonic
loop contributions the limit η → 0 can be taken without
encountering any ambiguities.

Diagrams (b) and (c) give rise to the amplitude

iA(h → γ γ ) = −2m̃2
W

v
2πe2 ε∗μ(k1) ε

∗
ν (k2) η

αβ

∫
dd p

(2π)d

1∫
ε

dt δη(t − 1)
2π

L

1∫
ε

dt1
t1

×
⎡
⎣2π

L

1∫
ε

dt2
t2

2V γμλρνδDξ→∞
W,αγ (t, t1, p + k1)D

ξ→∞
W,λρ (t1, t2, p) Dξ→∞

W,δβ (t2, t, p − k2)

+ (2ηγ δημν − ηδνηγμ − ηνγ ημδ
) ×Dξ→∞

W,αγ (t, t1, p + k1) Dξ→∞
W,βδ (t1, t, p − k2)

⎤
⎦ , (23)

where V γμλρνδ = V γμλ(p + k1,−k1,−p) V ρνδ(p,−k2,

−p + k2) arises from the product of two triple gauge-boson
vertices, with Vμνρ(k, p, q) = ημν(k− p)ρ+ηνρ(p−q)μ+
ηρμ(q − k)ν . Our goal is to rewrite this result as a Feynman
parameter integral over a single 5D gauge-boson propagator,
which should be possible since in the KK-decomposed theory
only a single KK mode propagates in the loops. In order to
simplify the answer, we decompose the 5D propagator as

Dξ
W,μν(t, t ′; p) = BW (t, t ′; −p2 − i0)

(
ημν − pμ pν

p2

)

+BW (t, t ′; −p2/ξ − i0)
pμ pν

p2 , (24)

and use the KK decomposition

BW (t, t ′; −p2 − i0) =
∞∑

n=0

χW
n (t) χ

W
n (t

′)(
mW

n

)2 − p2 − i0
(25)

in an intermediate step. The use of the KK representation is
merely a mathematical trick, similar to the use of Feynman
parameters in conventional loop calculations. It is justified
because all expressions are finite and the KK sum converges.
At the end of the calculation we obtain an expression without
any reference to KK modes.

Due to the mode-diagonality of the vertices involving a
photon, we can perform the integration over t1 and t2 using
the orthonormality relation [10,40,41]

2π

L

1∫
ε

dt

t
χW

m (t) χ
W
n (t) = δmn (26)

for the gauge-boson profiles. Working out the Dirac algebra
and making use of Passarino–Veltman reductions, we can
reduce the answer to a simple Feynman parameter integral.
After the contributions from the various diagrams have been
combined, the dimensional regulator ε̂ can be set to 0. We
find

CW
1γ = −3π m̃2

W

1∫
ε

dt δη(t − 1)
∞∑

n=0

[
χW

n (t)
]2
[

1(
mW

n

)2

+6

1∫
0

dx

1−x∫
0

dy
1 − 2xy(

mW
n

)2 − xym2
h − i0

⎤
⎦ , (27)

and CW
5γ = 0. It is now a simple exercise to recast the answer

in terms of the 5D propagator function BW (t, t ′; −p2)

defined in (24). We obtain

CW
1γ = −3πm̃2

W

⎡
⎣TW (0)

+ 6

1∫
0

dx

1−x∫
0

dy (1 − 2xy) TW (−xym2
h)

⎤
⎦ , (28)
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where TW (−p2) denotes the overlap integral of the Higgs
profile with the transverse part of the 5D W -boson propagator
evaluated at t = t ′,

TW (−p2) =
1∫
ε

dt δη(t − 1) BW (t, t;−p2 − i0)

= BW (1, 1;−p2 − i0)+ O(η). (29)

For the case of a brane-localized scalar sector, an explicit
expression for the function BW will be derived in the follow-
ing section. The more general case of a narrow bulk Higgs
will be briefly considered at the end of Sect. 3.5 and will be
described in more detail elsewhere. Such an analysis demon-
strates that the above integral exhibits a smooth behavior in
the limit of small η, so that the last identity holds and the
regulator on the Higgs profile can be taken to zero without
encountering any ambiguities.

Relation (28) is one of the main results of this work.
It shows the exact result for the Wilson coefficient C1γ in
dependence of overlap integrals of the Higgs profile and
the 5D gauge-boson propagator. With the help of the find-
ings in [38], it can be shown that this relation also holds
for an arbitrary bulk-Higgs profile χh(t), provided one uses
the corresponding 5D gauge-boson propagator in the bulk-
Higgs model. Then the regularized δ-function in (29) must
be replaced by

δη(t − 1) → 2π

Lt

v(t)

v
χh(t) = 2(1 + β) t1+2β + · · · , (30)

where v(t) is the profile of the Higgs VEV, and we use the
conventions of [24]. Note, however, that in this case it is nec-
essary to also include the contribution (11) due to the physical
scalar excitations of the bulk Higgs field. The last equation
in (30) holds (up to very small corrections) in the particular
bulk-Higgs model analyzed in [43,44]. The parameter β > 0
is related to the 5D mass parameter of the bulk scalar field.
In the region where β � 1, the function on the right-hand
side indeed approaches a regularized δ-distribution, with a
characteristic width given by η = 1/(2β).

Note that relation (27) results after integrating a Feynman
loop integrand of the type 1/[p2

E + (mW
n )

2 − xym2
h]3 over

d4 pE (after the Wick rotation), which corresponds to the
integral over the second derivative ∂2

p2
E

TW (p2
E − xym2

h). In

order for this integral to exist, we need to require that both
TW (p2

E ) and pE ∂pE TW (p2
E ) vanish for very large Euclidean

momenta. We will show in the following section that this is
indeed the case.

3.4 Calculation of the 5D gauge-boson propagator

The calculation of the propagator function BW in (24) in the
RS model with a brane-localized Higgs field is a straight-

forward exercise and has been performed, for instance, in
[28,45,46]. This function is the solution to the differential
equation (with p2 ≡ p2 + i0)(

t ∂t
1

t
∂t + p̂2

)
BW (t, t ′; −p2)

= − Lt

2πM2
KK

δ(t − t ′); p̂2 = p2

M2
KK

, (31)

subject to the boundary conditions [10]

∂t BW (t, t ′; −p2)

∣∣∣
t=ε = 0,

∂t BW (t, t ′; −p2)

∣∣∣
t=1− =b1 BW (1, t ′; −p2), b1 =−Lm̃2

W

M2
KK

.

(32)

Note the close similarity with the corresponding equations for
the gauge-boson profiles χW

n (t) given in relations (A.3) and
(A.4) of Appendix A. The notation t = 1− means that the IR
brane is approached from the left (t < 1). Such a prescription
is necessary because the derivative of the propagator function
is discontinuous on the IR brane. Integrating the differential
equation (31) over an infinitesimal interval around t = t ′, we
derive the jump condition

∂t BW (t, t ′; −p2)

∣∣∣ t ′+0

t=t ′−0
= − Lt ′

2πM2
KK

. (33)

The propagator itself is continuous at t = t ′. In the region
of time-like momenta (p2 ≥ 0), the general solution can be
written in the form

BW (t, t ′; −p2)

= Ltt ′

4M2
KK

[
p̂D10(t>, 1)− b1 D11(t>, 1)

]
D10(t<, ε)

p̂D00(1, ε)− b1 D10(1, ε)
,

(34)

where

Di j (t, t ′) = Ji ( p̂t) Y j ( p̂t ′)− Yi ( p̂t) J j ( p̂t ′). (35)

For space-like momenta, we find instead (with p2
E = −p2 >

0 and p̂2
E = p2

E/M2
KK)

BW (t, t ′; p2
E )

= Ltt ′

2πM2
KK

[
p̂E D10(t>, 1)+ b1 D11(t>, 1)

]
D10(t<, ε)

p̂E D00(1, ε)− b1 D10(1, ε)
,

(36)

with

Di j (t, t ′)= Ii ( p̂E t) K j ( p̂E t ′)−(−1)i+ j Ki ( p̂E t) I j ( p̂E t ′).
(37)

For our result (29) we need the propagator in the time-like
region, evaluated at t = t ′ = 1. Using the general solution
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in (34), we obtain (with p̂ ≡ p/MKK + i0)

TW (−p2)

= 1

2πm̃2
W

[
1+ p̂M2

KK

Lm̃2
W

J0( p̂) Y0( p̂ε)−Y0( p̂) J0( p̂ε)

J1( p̂) Y0( p̂ε)−Y1( p̂) J0( p̂ε)

]−1

≡ 1

2πm̃2
W

T̂W (−p2), (38)

which is exact to all orders in v2/M2
KK.3 It follows from

this expression that T̂W (0) = 1. We have thus succeeded in
deriving a closed analytic expression for the Wilson coef-
ficient CW

1γ in (28), valid for the minimal RS model with a
Higgs sector localized on the IR brane. Note that we have
kept the quantity m̃W , which is the leading-order contribu-
tion to the mass of the physical W boson, in the prefactor
above, since it will cancel against a corresponding factor in
the definition of the Wilson coefficient (28). Indeed, our final
result for this coefficient takes the form

CW
1γ = −3

2

⎡
⎣1 + 6

1∫
0

dx

1−x∫
0

dy (1 − 2xy) T̂W (−xym2
h)

⎤
⎦ .

(39)

Before proceeding, we briefly study the behavior of
the propagator function in the region of large space-like
momenta. For large Euclidean momenta pE � MKK, this
function approaches an inverse power-law behavior given by

TW (p
2
E ) = L

2πMKK

1

pE
+ O(p−2

E ). (40)

It follows that both TW (p2
E ) and pE ∂pE TW (p2

E ) vanish for
large Euclidean momenta p2

E = −p2 → ∞, and hence the
conditions required for the validity of our relation (28) are
indeed satisfied.

3.5 Analysis of the zero-mode and KK contributions

Our exact expression for the overlap integral TW (−p2) in
(38) contains the contribution of the zero mode—the standard
W boson with its modified coupling to the Higgs field—as
well as the infinite tower of KK excitations. It is instructive
to isolate the contribution from the zero mode and the KK
tower explicitly. To this end, we expand the exact formula
in powers of v2/M2

KK, using that we need this function for
values p2 = O(m2

h) much smaller than the KK scale M2
KK.

3 The result can be simplified using J0( p̂ε) = 1+O(ε2) and Y0( p̂ε) =
(2/π)(γE + ln( p̂/2)− L)+ O(ε2).

We find

T̂W (−p2)

= m2
W

m2
W − p2 − i0

[
1 − m2

W

2M2
KK

(
L

c2
ϑ

− 1 + 1

2L

)]

+ m2
W

2M2
KK

(
L

c2
ϑ

− 1 + 1

2L

)
+ O

(
v4

M4
KK

)
, (41)

where cϑ = 1 in the minimal RS model. In Sect. 4.4 we will
show that the same result holds in the custodial RS model,
where, however, the parameter cϑ = 1/

√
2 takes a different

value. In the above result we have replaced the parameter m̃W

by the physical W -boson mass mW using relation (7), which
was derived in [10] by solving the eigenvalue equation for
the W -boson profiles and extracting the lowest eigenvalue.
In Appendix B, we present an alternative approach, where
the above relation is derived with the help of our expressions
for the 5D gauge-boson propagator.

Based on the formulas above, we can perform the integra-
tion over the Feynman parameters in (28) and find the Wilson
coefficient

CW
1γ =−21

4

[
κW AW (τW )+νW

]+O
(
v4

M4
KK

)
, CW

5γ = 0,

(42)

where τW = 4m2
W /m2

h , and the function

AW (τ ) = 1

7

[
2 + 3τ + 3τ(2 − τ) f (τ )

]
(43)

with f (τ ) from (12) approaching 1 for τ → ∞. The for-
mer contribution to C1γ arises from the standard W boson,
whose coupling to the Higgs boson is modified, compared
with the SM, by a factor κW times vSM/v. The latter factor
is accounted for by using the Higgs VEV in the RS model in
the definition of the effective operators in (9). The term νW

in (42) is due to the KK excitations. Explicitly, we obtain

κW = 1 − m2
W

2M2
KK

(
L

c2
ϑ

− 1 + 1

2L

)
,

νW = m2
W

2M2
KK

(
L

c2
ϑ

− 1 + 1

2L

)
. (44)

Note that at this order νW = (1 − κW ), such that the
RS corrections to C1γ in (42) would cancel in the limit
τW → ∞. This simple relation is, however, not preserved
in higher orders. Our result for C1γ agrees with a corre-
sponding expression derived in [18]. Notice also that the
value of κW is consistent with relation (20), which gives

κW = m̃2
W

m2
W

2π [χW
0 (1)]2.

We close this section by returning briefly to the case of
a narrow bulk-Higgs model, in which the scalar sector is
localized not on but near the IR brane. As a concrete model,
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we adopt the scenario discussed in [24,43,44] featuring a
bulk scalar field, which acquires a VEV due to a Mexican-
hat potential localized on the IR brane. As discussed earlier,
relation (29) still holds in this model provided one makes the
replacement (30) and calculated the gauge-boson propagator
in the background of a bulk-Higgs field. It is the solution to
the differential equation(

t ∂t
1

t
∂t + p̂2 − 2πm̃2

W

M2
KK

v2(t)

v2

)
BW (t, t ′; −p2)

= − Lt

2πM2
KK

δ(t − t ′), (45)

with Neumann boundary conditions ∂t BW (t, t ′,−p2) = 0
for t = ε, 1. We will present the details of such an analysis
elsewhere. Here it suffices to note that in the limit where
η = 1/(2β) � 1, one obtains

κ
bulk Higgs
W = κW + 3Lm2

W

2M2
KK

η + O(η2),

ν
bulk Higgs
W = νW − Lm2

W

M2
KK

η + O(η2) (46)

instead of (42). This demonstrates that the result for the
bosonic loop contributions to the h → γ γ amplitude inter-
polates smoothly from the narrow bulk-Higgs scenario into
a scenario with a brane-localized scalar sector.

4 Extension to the RS model with custodial symmetry

We will now present the generalization of the above results
to the RS model with custodial protection, which has been
proposed to mitigate the large corrections to electroweak pre-
cision observables, so that the lightest KK particles are in
reach for the direct detection at the LHC [47–50]. We will
consider an RS model based on the enlarged bulk symmetry
SU (3)c × SU (2)L × SU (2)R ×U (1)X × PL R , whose SU (2)
subgroups are broken on the IR brane via the symmetry-
breaking pattern SU (2)L × SU (2)R → SU (2)V . This sym-
metry breaking is accomplished by means of the Higgs field
transforming as a bi-doublet under the two SU (2) gauge
groups. In component notation, it is given by

�(x) = 1√
2

(
v + h(x)− iϕ3(x) −i

√
2 ϕ+(x)

−i
√

2 ϕ−(x) v + h(x)+ iϕ3(x)

)
,

(47)

where ϕi are real scalar fields, ϕ± = (ϕ1 ∓ iϕ2)/
√

2, and v
denotes the Higgs VEV in the custodial RS model. The result-
ing SU (2)V supplies the custodial symmetry and protects
the T parameter [25,26]. The PL R symmetry prevents the
left-handed Zbb̄ coupling [27] and its flavor-changing coun-
terparts [11] from receiving too large corrections. On the UV

brane, the symmetry breaking SU (2)R × U (1)X → U (1)Y
generates the SM gauge group. This is achieved by an inter-
play between UV and IR boundary conditions. Thorough
discussions of this model containing many technical details
can be found in [19,51], and we will adopt the notation of
the first reference throughout this analysis.

4.1 Quark contributions to the Wilson coefficients

As a consequence of the discrete PL R symmetry, the left-
handed bottom quark needs to be embedded in an SU (2)L ×
SU (2)R bi-doublet with isospin quantum numbers T 3

L =
−T 3

R = −1/2. This assignment fixes the quantum numbers
of the remaining quark fields uniquely. In particular, the right-
handed down-type quarks have to be embedded in an SU (2)R

triplet in order to obtain a U (1)X -invariant Yukawa coupling.
One arrives at the following multiplet structure for the quark
fields with even Z2 parity:

QL =
(

u(+)L 2
3
λ
(−)
L 5

3

d(+)L − 1
3

u′ (−)
L 2

3

)
2
3

, uc
R =

(
uc (+)

R 2
3

)
2
3

,

TR = T1R ⊕ T2R =

⎛
⎜⎜⎝



′ (−)
R 5

3

U ′ (−)
R 2

3

D′ (−)
R − 1

3

⎞
⎟⎟⎠

2
3

⊕
(

D(+)
R − 1

3
U (−)

R 2
3


(−)
R 5

3

)
2
3

. (48)

The field QL transforms as (2, 2) under SU (2)L × SU (2)R ,
while TR transforms as (3, 1) ⊕ (1, 3). The fields with odd
Z2 parity have the opposite chirality. Their profiles are
related to those of the Z2-even fields by the field equa-
tions. The inner and outer subscripts on the various fields
denote their U (1)EM and U (1)X charges, respectively, which
are connected through the relations Y = −T 3

R + Q X and
Q = T 3

L + Y . The superscripts on the fields specify the
type of boundary conditions they obey on the UV boundary.
Fields with superscript (+) obey the usual mixed boundary
conditions allowing for a light zero mode, meaning that we
impose a Dirichlet boundary condition on the profile func-
tions of the corresponding Z2-odd fields. These zero modes
correspond to the SM quarks. Fields with superscripts (−)
correspond to heavy, exotic fermions with no counterparts in
the SM. For these states, the Dirichlet boundary condition is
imposed on the Z2-even fields, so as to avoid the presence
of a zero mode. The UV boundary conditions for the fields
of opposite Z2 parity are of mixed type and follow from the
field equations.

Note that we chose the same SU (2)L × SU (2)R quan-
tum numbers for all three quark generations, which is neces-
sary to consistently incorporate quark mixing in the anarchic
approach to flavor in warped extra dimensions. Altogether,
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there are 15 different quark states in the up sector and nine in
the down sector (for three generations). The boundary con-
ditions give rise to three light modes in each sector, which
are identified with the SM quarks. These are accompanied
by KK towers consisting of groups of 15 and nine modes of
similar masses in the up and down sectors, respectively. In
addition, there is a KK tower of exotic fermion states with
electric charge Qλ = 5/3, which exhibits nine excitations in
each KK level.

The fermionic loop contributions to the h → γ γ ampli-
tude in the custodial RS model can be parameterized in terms
of the same 3 × 3 Yukawa matrices appearing in the mini-
mal model, however, with different coefficients that reflect
the embeddings of the various fermion species under the
enlarged bulk gauge group. The generalizations of relations
(14) for the quark contributions have been worked out in [24].
They are

Cq
1γ ≈

[
1 − 2v2

3M2
KK

Re
(Y uY †

uYu)33

(Y u)33

]
Nc Q2

u Aq(τt )

+Nc Q2
d Aq(τb)

+Nc Q2
u Re Tr g(

√
2Xu)

+Nc

(
Q2

u + Q2
d + Q2

λ

)
Re Tr g(

√
2Xd),

Cq
5γ ≈ − 2v2

3M2
KK

Im

[
(Y uY †

uY u)33

(Y u)33

]
Nc Q2

u Bq(τt )

+Nc Q2
u Im Tr g(

√
2Xu)

+Nc

(
Q2

u + Q2
d + Q2

λ

)
Im Tr g(

√
2Xd). (49)

For various RS models with a brane-localized scalar sector
or a narrow bulk-Higgs sector, the explicit forms of the func-
tion g(X f ) have been given in (18) and (19). Recall that the
Taylor expansion of these functions starts with X2

f , and thus

the factors of
√

2 arising in the quark contributions in the
custodial model approximately double the contribution aris-
ing in the minimal model. Combined with the large electric
charge of the λ-type quarks, one finds that due to the higher
multiplicity of KK quark states the contribution in the cus-
todial RS model is much larger than in the minimal model
[22,24], by approximately a factor 68/5.

4.2 Charged-lepton contributions to the Wilson coefficients

The result for the loop contributions to the h → γ γ ampli-
tude involving charged leptons depends on the way in which
the lepton fields are embedded into the extended gauge sym-
metry of the custodial RS model. As a first possibility, we
consider a model in which the lepton multiplets are chosen
in analogy to the quark multiplets in (48). This choice was
adopted in [51]. In component notation, the corresponding
fields are

ξ1L =
⎛
⎝ ν(+)L 0 ψ

(−)
L 1

e(+)L −1 ν
′ (−)
L 0

⎞
⎠

0

, ξ2R =
(
ν

c (+)
R 0

)
0
,

ξ3R = T3R ⊕ T4R =

⎛
⎜⎜⎜⎝
�

′ (−)
R 1

N ′ (−)
R 0

E ′ (−)
R −1

⎞
⎟⎟⎟⎠

0

⊕
(

E (+)R −1 N (−)
R 0 �

(−)
R 1

)
0
. (50)

There are 15 different lepton states in the neutrino sector
and nine in the charged-lepton sector. The boundary condi-
tions give rise to three light modes in each sector, which are
identified with the SM neutrinos and charged leptons. These
are accompanied by KK towers consisting of groups of 15
and nine modes in the two sectors, respectively. In addition,
there is a KK tower of exotic lepton states with electric charge
Qψ = +1, which exhibits nine excitations in each KK level.
The gauge-invariant Yukawa interactions for these fields are
constructed in complete analogy with the quark Yukawa
interactions [19,51]. They can be expressed in terms of two
dimensionless 3 × 3 Yukawa matrices Y ν and Y e, which we
assume to have an anarchic structure. When dressed with the
fermion profiles on the IR brane, these matrices give masses
to the SM leptons. The resulting contributions to the Wil-
son coefficients have the same structure as in (49), except
that there are no zero-mode contributions (they are propor-
tional to m2

l /m2
h and thus can be neglected) and that we must

replace Y u → Y ν , Y d → Y e, Nc → 1, and Qu → Qν = 0,
Qd → Qe = −1, Qλ → Qψ = +1. We thus obtain

Cl
1γ + iCl

5γ ≈
(

Q2
e + Q2

ψ

)
Tr g(

√
2Xe), (51)

with Xe as defined in (17). It follows that the leptonic
contribution in the custodial RS model is approximately 4
times larger than in the minimal model.

As a second possibility, we consider a model with a more
minimal embedding of the leptons into the extended gauge
group. The simplest assignment is to put the left-handed neu-
trino and electron into an SU (2)L doublet (as in the SM) and
the right-handed electron along with a new, exotic neutral
particle NR into an SU (2)R doublet. The lepton fields with
even Z2 parity are then chosen as

L L =
⎛
⎝ ν(+)L 0

e(+)L −1

⎞
⎠

− 1
2

, Lc
R =

⎛
⎝ec(+)

R −1

N (−)
R 0

⎞
⎠

− 1
2

, (52)

and they transform as (2, 1) and (1, 2), respectively. The
choice of the boundary conditions is such that the zero modes
correspond to the light leptons of the SM, without a right-
handed neutrino. The gauge-invariant Yukawa interaction
that can be built using these fields is
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LY = v√
2

π∫
−π

dφ δ(|φ| − π) e−3σ(φ) 2

k

(
Ye
)

i j

×(L̄i
L�εLc j

R + L̄i
R�εLc j

L

)+ h.c., (53)

where ε = iσ 2. Upon electroweak symmetry break-
ing this generates a mass term for the zero modes of the
charged leptons. The SM neutrinos remain massless at this
order. Their masses can be explained by means of higher-
dimensional operators. The only additional lepton field is the
right-handed neutrino, which is charged under SU (2)R but
electrically neutral, so that it does not affect the h → γ γ

decay amplitude. The lepton contribution is therefore the
same as in the minimal version of the RS model, namely
Cl

1γ + iCl
5γ ≈ Q2

e Tr g(Xe) as in (15).

4.3 The bosonic sector

In order to derive the Feynman rules and the 5D gauge-boson
propagator it is inevitable to understand the bosonic sector
of the custodial RS model, whose 5D action reads

Sgauge =
∫

d4x
2πr

L

1∫
ε

dt

t

(
LL ,R,X +LHiggs+LGF

)
. (54)

Since it is of no significance for our discussion, we refrain
from presenting the gauge-fixing term LGF, whose explicit
form can be found in [19]. The gauge-kinetic terms read

LL ,R,X =
√

G

r
G K M GL N

(
−1

4
La

K L La
M N

−1

4
Ra

K L Ra
M N − 1

4
X K L X M N

)
, (55)

where G M N denotes the 5D metric with determinant G =
r2e−8σ(φ), and where a sum over the gauge-group indices
a = 1, 2, 3 is implied. We choose the 4-components of the
gauge fields to be even under the Z2 parity, while the fifth
components are chosen to be odd, in order to derive at a low-
energy spectrum that is compatible with observation. As in
the previous section, it does not make any difference if we
consider a narrow bulk- or a brane-localized Higgs sector, and
we thus focus on the scenario in which the Higgs Lagrangian
is localized on the IR brane. The Higgs transforms as a bi-
doublet under SU (2)L × SU (2)R and is neutral with respect
to U (1)X ; see (47). In order to show how the symmetry break-
ing SU (2)L × SU (2)R → SU (2)V is accomplished, we use
the covariant derivative

Dμ� = ∂μ�− igL ,5La
μT a

L �+ igR,5�Ra
μT a

R , (56)

where gL ,5 and gR,5 are the 5D gauge couplings associated
with SU (2)L ,R , and T a

L ,R = σ a/2 are the corresponding
generators. In order to evaluate the kinetic term for the scalar

bi-doublet, it is convenient to rotate the gauge bosons La
μ and

Ra
μ into a new basis of fields Ãa

μ and V a
μ , such that [52](

Ãa
M

V a
M

)
=
(

cosϑ − sin ϑ
sin ϑ cosϑ

)(
La

M
Ra

M

)
≡ Rϑ

(
La

M
Ra

M

)
, (57)

where

cosϑ = gL ,5√
g2

L ,5 + g2
R,5

, sin ϑ = gR,5√
g2

L ,5 + g2
R,5

. (58)

The PL R symmetry, which is imposed to protect the left-
handed Zb̄b couplings from receiving large corrections [27],
enforces us to have gL ,5 = gR,5, and hence cosϑ =
sin ϑ = 1/

√
2. In our discussion in this section we will,

however, keep the value of ϑ as a free parameter. The
Higgs VEV 〈�〉 = (v/

√
2) 1 then generates a mass term

M2
Ã

= v2(g2
L ,5 + g2

R,5)/4 for the fields Ãa
μ, while the fields

V a
μ remain massless. We can also read off the coupling to the

Higgs boson, once we replace v2 by (v+ h)2. Note that only
the fields Ãa

μ couple to the Higgs boson h. This will become
important for the derivation of the propagator. The further
symmetry breaking via boundary conditions is not relevant
for our discussion, and we again refer to [19] for details.
Notice that relation (57) represents the connection between
the UV basis fields (right), which obey Dirichlet boundary
conditions on the UV brane, and the IR basis fields (left),
which obey Dirichlet boundary conditions on the IR brane.

We now focus on the charged sector and define the gauge-
boson fields

�W ±
M ≡

(
Ã±

M

V ±
M

)
= Rϑ

(
L±

M

R±
M

)
= Rϑ√

2

(
L1

M ∓ i L2
M

R1
M ∓ i R2

M

)
, (59)

whose KK decomposition can be written in a form analogous
to (3), such that [19]

�W ±
μ (x, t) = Rϑ√

r

∞∑
n=0

�χ W
n (t)W ±(n)

μ (x),

�W ±
φ (x, t) = − Rϑ√

r

L

π

∞∑
n=0

1

mW
n

t ∂t �χ W
n (t) ϕ±(n)

W (x). (60)

The orthonormality relation for the gauge-boson profiles
reads

2π

L

1∫
ε

dt

t
�χ W

n (t)T �χ W
m (t) = δnm . (61)

The profiles �χ W
n (t) are Z2-even functions on the orbifold.

Their upper (lower) components are “untwisted” (“twisted”)
functions. Untwisted even functions obey Neumann bound-
ary conditions on the UV brane, allowing for light zero
modes. Twisted even functions obey Dirichlet boundary con-
ditions on the UV brane and are thus not smooth at this
orbifold fixed point. The upper (lower) components of the
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rotated profiles Rϑ �χ W
n (t) obey mixed (Neumann) boundary

conditions on the IR brane, such that

Rϑ ∂t �χ W
n (t)

∣∣
t=1− = − Lm̃2

W

c2
ϑM2

KK

P+ Rϑ �χ W
n (1);

m̃W = gL ,5√
2πr

v

2
, (62)

which generalizes relation (A.4) in Appendix A. Here P+ =
diag(1, 0) is a projector on the upper component, and from
now on we use the abbreviations cϑ ≡ cosϑ and sϑ ≡ sin ϑ .
As in the minimal RS model, the parameter m̃W is the leading
contribution to the W -boson mass in an expansion in powers
of v2/M2

KK; see (7).
It is now straightforward to deduce the Feynman rules in

the custodial model from the ones in the minimal model com-
piled in Appendix A. Using (61), we can convince ourselves
that the W ±

M couplings to the photon are not changed at all.
This statement is independent of the basis, since the rotation
matrix Rϑ drops out in the orthonormalization condition. In
contrast, as mentioned earlier the Higgs only couples to the IR
basis fields Ã±

μ with a strength proportional to (g2
L ,5 + g2

R,5).
This can be taken into account with the help of the projection
operator P+ rotated into the IR basis and accompanied by a
factor 1/c2

ϑ . It follows that, compared with the SM, all KK-
diagonal Higgs couplings in the custodial RS model come
with a prefactor

2m̃2
W

c2
ϑ v

2π �χ W
n (1)T RT

ϑ P+ Rϑ �χ W
n (1)

≡ 2m̃2
W

c2
ϑ v

2π �χ W
n (1)T Dϑ �χ W

n (1), (63)

which replaces the corresponding factor (20) in the mini-
mal model. Here we have introduced

Dϑ = RT
ϑ P+ Rϑ =

(
c2
ϑ −sϑcϑ

−sϑcϑ s2
ϑ

)
. (64)

In analogy with (25), we now define the propagator function

BUV
W (t, t ′; −p2 − i0) =

∞∑
n=0

�χ W
n (t) �χ W

n (t ′)T(
mW

n

)2 − p2 − i0
(65)

in terms of gauge-boson profiles in the UV basis. An explicit
expression for this function will be derived in the next section.
In analogy with expression (21) valid in minimal RS model,
we find that the h → γ γ amplitude in the custodial RS model
can be written as

AW
cust.RS(h → γ γ )

= m̃2
W

c2
ϑ v

∞∑
n=0

2π �χW
n (1)

T Dϑ �χW
n (1)

×
[
vSM

m2
W

AW
SM(h → γ γ )

]
mW →mW

n

. (66)

It follows that expression (28) for the Wilson coefficient CW
1γ

derived in Sect. 3.3 remains valid, provided we replace the
quantity TW (−p2) defined in (29) with

TW (−p2) = Tr

[
Dϑ

c2
ϑ

BUV
W (1, 1;−p2 − i0)

]
. (67)

4.4 Calculation of the 5D gauge-boson propagator

We now derive the exact expression for the 5D gauge-boson
propagator in the RS model with custodial symmetry, which
to the best of our knowledge has not been done before. The
differential equation for the propagator function BUV is the
same as in the minimal model; see (31). However, the bound-
ary conditions are modified to [19]

(P+ ∂t + P−) BUV
W (t, t ′; −p2)

∣∣
t=ε = 0,

(∂t − b1 Dϑ) BUV
W (t, t ′; −p2)

∣∣
t=1− = 0; b1 = − Lm̃2

W

c2
ϑM2

KK

.

(68)

The first equation follows from the boundary conditions for
the UV fields L±

M and R±
M , where we have defined P− =

diag(0, 1). The second equation is a direct consequence of
(62). We find that, in the region of time-like momenta (p2 >

0), the general solution for the propagator function reads

BUV
W (t, t ′; −p2) = Ltt ′

4M2
KK

1[
p̂D00(1, ε)−b1 D10(1, ε)

]
D01(1, ε)−b1

4s2
ϑ

π2 p̂2ε

×
{[[

p̂D10(t>, 1)− b1 D11(t>, 1)
]
D01(1, ε) −b1

2s2
ϑ

π p̂
D11(t>, ε)

]
D10(t<, ε) P+

+
[[

p̂D00(1, ε)− b1 D10(1, ε)
]
D10(t>, 1) +b1

2s2
ϑ

π p̂
D10(t>, ε)

]
D11(t<, ε) P−

−b1
2sϑcϑ
π p̂

[
D10(t, ε) D11(t

′, ε) P12 +D11(t, ε) D10(t
′, ε) P21

]}
, (69)
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where the functions D±
i j (t, t ′) have been defined in (35), and

we have introduced the 2 × 2 matrices P12 and P21, which
have an entry 1 at the corresponding position indicated by the
subscripts and entries 0 otherwise. Note that up to irrelevant
O(ε2) terms we can replace p̂εDn1(t, ε) = − 2

π
Jn( p̂t) for

n = 0, 1. This gives rise to a simpler expression, in which the
spurious 1/ε term in the denominator is removed. In the limit
sϑ → 0, we can identify the coefficient of P+ in (69) with the
result (34) obtained in the minimal RS model. Moreover, for
the special case p2 = 0 our result reduces to equation (54) in
[19]. Our general results above valid for arbitrary momentum
are, however, new.

It is now straightforward to calculate the quantity TW (−p2)

in (67), which we need for the calculation of the Wilson
coefficient C1γ in (28). Expanding this answer in powers of
v2/M2

KK and for p2 = O(m2
h), we recover expression (41).

With respect to the minimal RS model, the only modification
concerns the coefficient of the leading L-enhanced correction
terms, which is enhanced by 1/c2

ϑ . This affects both the con-
tributions from the W boson and from the KK tower. In the
custodial RS model with PL R symmetry, this enhancement
factor is equal to 2. Note that with c2

ϑ = 1/2 the expressions
in (44) are compatible with corresponding results obtained in
[19]. In this reference the Wilson coefficient C1γ belonged to
the operator vhFμνFμν instead of the one in (9), and hence
κ

Ref.[19]
W = κW /κ

2
v .

5 Phenomenological implications

We now present a numerical study of the Higgs decay into
two photons in both the minimal and the custodial RS model,
which can be directly compared to experimental data. As in
our recent work on Higgs production [24], we distinguish
the two cases of a brane-localized and a narrow bulk-Higgs
scenario. We consider the ratio of the measured pp → h →
γ γ cross section normalized to its SM value,

Rγ γ = (σ · Br)(pp → h → γ γ )RS

(σ · Br)(pp → h → γ γ )SM

=
[(|κg|2 + |κg5|2

)
fGF + κ2

W fVBF
](|κγ |2 + |κγ 5|2

)
κ2
v κh

,

(70)

where we have included the two main Higgs production chan-
nels via gluon fusion (GF) and vector-boson fusion (VBF),
with probabilities of fGF ≈ 0.9 and fVBF ≈ 0.1 at the LHC
with

√
s = 8 TeV [53]. Other Higgs production channels,

such as the associated production with a t t̄ pair or a vector
boson, can be neglected to a very good approximation. The
quantities κi and κi5 (with i = g, γ ) parameterize the val-
ues of the relevant Wilson coefficients normalized to their
SMvalues,

κi = C1i

CSM
i

, κi5 = 3

2

C5i

CSM
i

. (71)

Explicit expressions for the Wilson coefficients C1γ and
C5γ in the RS model have been derived in Sects. 3 and 4.
The corresponding SM value is CSM

γ = Nc
[
Q2

u Aq(τt ) +
Q2

d Aq(τb)
]− 21

4 AW (τW ). The RS effects on the gluon-fusion
production process were studied in [24]. The values of the
Wilson coefficients C1g and C5g can be obtained from C1γ

and C5γ by replacing Qu,d → 1, Qe → 0, and Nc → 1. In
the SM we have CSM

g = Aq(τt ) + Aq(τb). Concerning the
VBF production process, we note that using κW as a correc-
tion factor in (70) is only approximate but sufficient for our
purposes [54].

The parameter κv in (70) parameterizes the shift of the
Higgs VEV in the RS model relative to the SM and has
been given in (5). Finally, we take into account the RS
corrections to the SM Higgs width �SM

h = 4.14 MeV (for
mh = 125.5 GeV) [55] by means of the parameter

κh = κ2
v

�RS
h

�SM
h

≈ 0.57 κ2
b + 0.22 κ2

W

+0.09
(|κg|2 + |κg5|2

)+ 0.12, (72)

where the corrections to the decays h → τ+τ−, cc̄, Z Z (∗),
γ γ, . . . have a numerically insignificant effect and therefore
can be neglected (the combined branching ratio for these
channels is 12 % in the SM). Neglecting some small chirally
suppressed terms, the correction to the Higgs coupling to a
bb̄ pair can be well approximated by [19,22,23]

κmin.RS
b ≈ 1 − v2

3M2
KK

(Y d Y †
d Y d)33

(Y d)33
,

κcust.RS
b ≈ 1 − 2v2

3M2
KK

(Y d Y †
d Y d)33

(Y d)33
. (73)

It is an important goal of future LHC and ILC analyses
to determine as many of the effective Higgs couplings κi as
possible from a global fit to the data. A detailed discussion
of the individual effective Higgs couplings to fermions and
gauge bosons in the context of RS models will be presented
in a future work [54]. At present, however, the experimental
groups have not yet presented a detailed, model-independent
analysis of Higgs couplings [57–59], and we will thus focus
on the ratio Rγ γ in the present work. Note also that, in con-
trast to the observable Rγ γ , the quantities κi and κi5 are not
directly observable. The gluon-fusion rate is proportional to
the sum of the absolute squares of κg and κg5, and no observ-
able sensitive to a different combination of these parameters
is experimentally accessible. In the case of h → γ γ decay, it
is in principle possible to access the CP-violating coefficient
κγ 5 by studying the distribution of the two electron–positron
pairs in events in which both photons undergo nuclear con-
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Fig. 2 Predictions for the ratio
Rγ γ as a function of the lightest
KK gluon mass Mg(1) and for
different values of the parameter
y� in the minimal RS model, for
the cases of a brane-localized
Higgs boson (left) and a narrow
bulk-Higgs field (right). The
dashed curves show the
approximation (74) for y� = 3

versions [56]; however, this will be very challenging experi-
mentally.

Figure 2 shows our predictions for Rγ γ obtained in the
minimal RS model with a brane-localized Higgs sector (left
plot) and a narrow bulk-Higgs state (right plot). The new-
physics effects arising in these scenarios scale with 1/M2

KK.
We find it useful to convert the mass parameter MKK to the
physical mass Mg(1) ≈ 2.45MKK of the lightest KK gluon
(or KK photon) state, which is independent of the details of
the localization of the scalar sector and of the choice of the
electroweak gauge group in the bulk [40,41]. Our numerical
results also depend on the RS volume L = ln(MPl/
TeV)

and the dimensionless 5D Yukawa matrices Yu , Y d and Y l .
Typical values for L fall in the range 33−34, corresponding
to 
TeV ∼ 20−50 TeV, and we take L = 33.5 for con-
creteness. We work with anarchic Yukawa matrices, whose
individual entries are taken to be random complex numbers
subject to the condition that 0 ≤ |(Y f )i j | ≤ y�. As a fur-
ther constraint, we impose the condition that these matri-
ces correctly reproduce the Wolfenstein parameters ρ and
η of the unitarity triangle (see [10] for explicit formulas)
and that, with appropriately chosen bulk mass parameters
ci , one can reproduce the correct values for the masses of
the SM quarks. The dominant corrections to the gg → h
and h → γ γ amplitudes arise from fermionic loop contri-
butions and scale with y2

� [19–24]. The value of y� should
be naturally of O(1), and requiring that one-loop corrections
to the Yukawa couplings remain perturbative one can derive
an upper bound y� � 3 [9] (see also [24] for a detailed
discussion). The green, red, and blue scatter points in the
figure correspond to RS model points obtained using three
different values of y�. The latest experimental values for Rγ γ

reported by the ATLAS and CMS collaborations are
RATLAS
γ γ = 1.55+0.33

−0.28 (at mh = 125.5 GeV) [57] and RCMS
γ γ =

0.77 ± 0.27 (at mh = 125.7 GeV) [58] which we naively
average to obtain Rγ γ = 1.08+0.21

−0.19. The 1σ error band cor-
responding to this result is shown by the blue band in the two
plots. Model points falling outside these bands are excluded
at 68 % confidence level (CL). It is interesting to observe
that for relatively large values for y� the data already dis-
favor KK gluon masses in the low TeV range. The tensions
between our theoretical predictions and the experimental data
are stronger for the brane-Higgs model due to the mild ten-
dency of an enhanced cross section seen in the data, which is
in conflict with the suppression of the predicted cross section
in this case. We emphasize, however, that using the individ-
ual values for Rγ γ reported by ATLAS and CMS one would
obtain different conclusions.

The shape of the various bands of scatter points shown
in the plots can be understood as follows. For not too small
Yukawa couplings, the largest RS corrections are those aris-
ing from fermionic loop contributions. In the brane-localized
Higgs (narrow bulk-Higgs) scenario, they suppress (enhance)
the gluon-fusion cross section and enhance (suppress) the
decay rate into photons. Since the dominant SM contribution
to h → γ γ involves W -boson loops and acts in the opposite
direction as the fermionic contributions, the RS corrections to
the Higgs production cross section dominate over those to the
decay rate. Hence, we find a suppression (an enhancement)
of Rγ γ in the brane-Higgs (narrow bulk-Higgs) scenario. To
see this more explicitly, it is instructive to expand the various
expressions in (70) to first order in v2/M2

KK and to approxi-
mate Aq(τt ) ≈ 1 and Aq(τb) ≈ 0. Keeping the dependence
on AW (τW ) ≈ 1.19 explicit, we obtain

Rγ γ ≈ 1 + v2

2M2
KK

[(
fGF − 4

3|CSM
γ |

)(
∓18 − 10

3

)
y2
� −

(
fVBF + 21

[
AW (τW )− 1

]
4|CSM

γ |

)

× 2m2
W

v2

(
L − 1 + 1

2L

)
Lm2

W

v2 + 0.57
10

3
y2
� + 0.22

2m2
W

v2

(
L − 1 + 1

2L

)
−0.09

(
∓18 − 10

3

)
y2
�

]
, (74)
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where the first two lines contain the corrections to the pro-
duction and decay rates, with corrections to the h → γ γ

rate being accompanied by a factor of 1/|CSM
γ | with CSM

γ ≈
4
3 − 21

4 AW (τW ) ≈ −4.9. The third line shows the correc-
tions to the Higgs VEV and total width, as parameterized
by κh in (72). The upper sign holds for the brane-localized
Higgs scenario, while the lower sign corresponds to the nar-
row bulk-Higgs case. Above we have used the fact that for a
large set of random complex matrices on average [24]

〈
Tr Y f Y †

f

〉
= N 2

g
y2
�

2
,〈(

Y uY†
uY u

)
33

(Yu)33

〉
= (2Ng − 1)

y2
�

2
, (75)

where Ng = 3 is the number of fermion generations. We
explicitly see from the first term on the right-hand side of (74)

that the fermionic contributions to the gg → h production
process dominate over those to the h → γ γ decay rate and
come with opposite sign. Altogether, we find

Rγ γ ≈ 1 − v2

2M2
KK

[
(±9.7 − 0.1) y2

� + 4.1
]
. (76)

For the case where y∗ = 3 this result is shown by the dashed
lines in the figure. Note also that due to the contribution of the
VBF production process the observable Rγ γ is bounded from
below in the brane-Higgs case. This explains the behavior for
very small MKK values seen in the left plot in Fig. 2. For y∗ =
3, the gg → h production cross section vanishes for Mg(1) ≈
3.5 TeV, because the new-physics contribution cancels the
SM amplitude. However, due to the VBF production process
a non-zero value of Rγ γ remains.

Even at the present level of precision, the existing mea-
surements of the observable Rγ γ already provide some inter-
esting constraints on the parameter space of the RS models
under consideration. In Fig. 3 we show the regions in the
Mg(1)–y� parameter space that are excluded by the current
data at various confidence levels. For instance, for the par-
ticular choice y� = 3 one finds Mg(1) > 8.5 TeV at 95 %
CL for the brane-Higgs model and Mg(1) > 6.4 TeV at 68 %
CL for the narrow bulk-Higgs model. Weaker constraints are
obtained for smaller values for y�. These bounds can be com-
pared with the constraints derived from a tree-level analysis
of the electroweak S and T parameters [60], which in the
minimal RS model leads to the lower bound Mg(1) > 12 TeV

at 95 % CL [61]. This value is indicated by the vertical dashed
line in the figure. At present, this bound is still stronger than
the constraints derived from Rγ γ .

Softening the constraints from electroweak precision
observables by means of a symmetry has been the main moti-
vation for extending the RS model by enlarging the bulk
gauge group [25–27]. It has been pointed out in [22,24] that
the large number of heavy fermionic degrees of freedom in
such an extended model can potentially give rise to large vir-
tual effects on the Higgs-boson production and decay rates.
The corresponding effects on the quantity Rγ γ arising in the
RS model with custodial symmetry are studied in Fig. 4. In
analogy with (74), we can expand the result in powers of
v2/M2

KK, exploiting the anarchy of the 5D Yukawa matrices
and making the same approximations as above. For the model
with the minimal lepton sector shown in (52), this yields

Rγ γ ≈ 1 + v2

2M2
KK

[
∓
(

72 fGF − 213

|CSM
γ |

)
y2
� − 20

3

(
fGF − 4

3|CSM
γ |

)
y2
� −

(
fVBF + 21

[
AW (τW )− 1

]
4|CSM

γ |

)
2m2

W

v2

×
(

2L − 1 + 1

2L

)
− 2Lm2

W

v2 + 0.57
20

3
y2
� + 0.22

2m2
W

v2

(
2L − 1 + 1

2L

)
−0.09

(
∓72 − 20

3

)
y2
�

]
. (77)

If instead the extended lepton sector shown in (50) is
employed, then the coefficient 213 inside the parentheses
in the first term must be replaced by 240. Note that the indi-
vidual corrections due to fermion loops are huge; however,
significant cancelations take place when one adds the cor-
rections to the gg → h and h → γ γ rates. Altogether, we
obtain for the model with the minimal lepton sector

Rγ γ ≈ 1 − v2

2M2
KK

[
(±15.0 − 0.2) y2

� + 8.3
]
. (78)

In the model with the extended lepton sector the coeffi-
cient ±15.0 in the first term must be replaced by ±9.5. We
observe that in linearized form the corrections are only mod-
erately larger than in the minimal model; see (76). Once
again, for y∗ = 3 this result is shown by the dashed lines
in the figure, where we show results for the custodial model
with the minimal lepton sector. If instead the model with an
extended lepton sector is considered, the distribution of scat-
ter points looks very similar. For the brane-localized Higgs
scenario, Fig. 4 shows a similar behavior as in the minimal
model, but the new-physics effects are slightly larger. For
y∗ = 1.5 and 3, the gg → h production cross section van-
ishes near Mg(1) ≈ 3.5 TeV and 7 TeV, respectively, and the
VBF process remains as the only production mechanism.
This explains the minimum values for Rγ γ at these points.
For even smaller masses the ratio Rγ γ increases and can
even exceed 1. In the narrow bulk-Higgs case, on the other
hand, the linearized approximation (77) breaks down for
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Fig. 3 Excluded regions of
parameter space in the minimal
RS model, for the
brane-localized Higgs scenario
(left) and the narrow bulk-Higgs
model (right). The vertical
dashed line denotes the lower
bound on Mg(1) obtained from a
tree-level analysis of
electroweak precision
observables [61]

Fig. 4 Predictions for the ratio
Rγ γ as a function of the KK
gluon mass Mg(1) in the
custodial RS model with
minimal lepton sector (52), for
the cases of a brane-localized
Higgs boson (left) and a narrow
bulk-Higgs field (right)

Fig. 5 Excluded regions of
parameter space in the custodial
RS model with minimal lepton
sector (52), for the
brane-localized Higgs scenario
(left) and the narrow bulk-Higgs
model (right). The vertical
dashed line denotes the lower
bound on Mg(1) obtained from a
tree-level analysis of
electroweak precision
observables [61]

large values y∗, as is evident from the discrepancy between
the dashed curve and the blue band of scatter points. A rea-
sonable approximation, shown by the solid line, is obtained
by linearizing the expressions for the various κi parameters
but not further expanding expression (70). It turns out that the
negative corrections to the h → γ γ decay rate are so signifi-
cant in this model that they compensate the large positive cor-
rections to the gluon-fusion rate in the region of large Mg(1) .
For smaller KK masses, these negative corrections become
dominant and drive the ratio Rγ γ toward values significantly
less than 1. Eventually, for Mg(1) ≈ 3 TeV (for y∗ = 1.5) and
5.5 TeV (for y∗ = 3), the di-photon decay rate even vanishes.
It is obvious that in regions of parameter space where such
dramatic cancelations occur our predictions are highly model
dependent. Given the preliminary pattern of Higgs couplings
seen in experiment, which within errors agree with the SM

predictions, it appears unlikely (but not impossible) that there
could be O(1) corrections to the gg → h and h → γ γ pro-
duction and decay rates, which cancel each other in the result
for the observable Rγ γ . Too large corrections to the gluon-
fusion rate are also disfavored by the good agreement of the
pp → Z Z (∗) → 4l rate with its SM value. A detailed dis-
cussion of the corresponding constraints on the RS parameter
space has been presented in [24].

Figure 5 shows the excluded regions of RS parameter
space derived from the analysis of the observable Rγ γ in the
custodial RS model. In the scenario with a brane-localized
Higgs sector, we can exclude the ranges 5.9 TeV < Mg(1) <

13.4 TeV and Mg(1) < 3.5 TeV for y� = 3, while in the
narrow bulk-Higgs model we exclude 5.2 TeV < Mg(1) <

8.4 TeV, both at 95 % CL. Note that there is a small region
in the upper left corner of the left plot, which is allowed by
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both Rγ γ and the T parameter constraint Mg(1) > 4.7 TeV at
95 % CL. However, bounds derived from the analysis of the
decay h → Z Z (∗) → 4l exclude this region [24,54].

The exclusion plots in Figs. 3 and 5 can also be read in a
different way. Under the assumption that the first KK gluon
resonance is in reach for direct production at the LHC, these
plots allow one to impose bounds on y�. For instance, in
the minimal RS model with a hypothetical KK gluon mass
Mg(1) = 5 TeV, our results imply an upper bound of y� < 1.5
at 95 % CL in the brane-Higgs model, and y� < 2.4 at 68 %
CL in the narrow bulk-Higgs scenario. In the custodial RS
model, those bounds are tightened to y� < 0.9 for a brane
Higgs and y� < 1.7 for a narrow bulk Higgs, both at 95 % CL.
Even though the constraints are rather strong in the case of
the custodial RS model, they do not quite compete with those
stemming from the decays h → Z Z (∗),W W (∗) [24,54]. This
is due to the fact that the RS corrections to the decay into two
photons partially compensate the huge effect in the gluon-
fusion production process. This compensation does not occur
in the decays into two weak gauge bosons, whose couplings
to the Higgs are only slightly affected by new-physics effects.

6 Conclusions

The discovery of a Higgs boson at the LHC in the summer
of 2012 [1,2] has marked the beginning of a new era in ele-
mentary particle physics. The couplings of this new particle
are found to be non-universal and indeed very close to those
predicted for the elementary scalar boson of the SM. An
explanation for the hierarchy problem is thus more pressing
than ever. Measuring precisely the Higgs couplings to various
SM particles provides an important tool to discover and dis-
tinguish between new-physics models that can address the
hierarchy problem. Especially interesting are loop-induced
processes like Higgs production via gluon fusion gg → h
and the radiative decay h → γ γ .

In this paper, we have focused on the Higgs decay into
two photons in different scenarios of RS models, where the
Higgs sector is localized on or near the IR brane, while the
remaining fields propagate in the bulk of the warped extra
dimension. While the contribution from diagrams with vir-
tual fermions (quarks and charged leptons) in the loop has
been extensively discussed in recent work, mostly in the con-
text of gluon fusion [19–24], here we have further concen-
trated our analysis on the diagrams with bosonic fields prop-
agating in the loops, generalizing the findings of [16–20]. We
have shown that the relevant diagrams, calculated in the gen-
eral Rξ gauge, add up to a gauge-invariant result. Working in
unitary gauge, we have derived an exact expression for the
h → γ γ decay amplitude in terms of an integral over the
5D W -boson propagator with the Higgs-boson profile along
the extra dimension, given in (28). This expression can be

used to calculate the bosonic contributions to the amplitude
as long as one is able to derive an analytic expression for the
5D W -boson propagator. We have shown that the 5D loop
diagrams with bosonic fields are insensitive to the precise
details of the localization of the scalar sector on or near the
IR brane. This finding is in contrast to the case of fermionic
loops, for which one finds different results for the cases of
a strictly localized Higgs sector and a scenario in which the
Higgs is a narrow bulk field [23,24]. In our approach we
retain the exact dependence of the amplitude on the Higgs-
boson mass. Taking a 5D perspective on the calculation, we
have not distinguished between the SM modes and the KK
particles. However, in our final results we have been able to
identify the contributions from the W boson and the infinite
tower of its KK excitations. Finally, we have generalized our
findings to the RS model with custodial protection of elec-
troweak precision observables, for which we have discussed
two different embeddings of the lepton sector in the extended
gauge group of the model.

In the phenomenological part of this paper, we have ana-
lyzed the new-physics effects on the cross section times
branching ratio for the process pp → h → γ γ , includ-
ing effects on the production cross sections via gluon fusion
or vector-boson fusion, the h → γ γ decay rate, and the total
Higgs width. We have focused on the ratio Rγ γ representing
the cross section times branching ratio in the RS model nor-
malized to its SM value, and distinguished between the brane-
localized and the narrow bulk-Higgs scenarios of both the
minimal and the custodial RS models. We have also derived
approximate formulas for Rγ γ , which allow for a reasonable
parameterization of our results in terms of the KK mass scale
and the maximal value y� imposed on the magnitude of the
individual entries of the anarchic 5D Yukawa matrices. We
have pointed out the fact that the RS corrections to Higgs
production via gluon fusion act in the opposite direction as
those to the decay into two photons, where generally the new-
physics effects on the gluon-fusion rate provide the dominant
source of corrections to the SM predictions. For not too small
values of y� and not too large values of MKK, new-physics
effects in RS models can lead to significant deviations of Rγ γ
from 1. While in all brane-Higgs scenarios considered here
Rγ γ < 1 in most regions of parameter space, RS scenarios
with the Higgs implemented as a narrow bulk field allow for
the possibility that Rγ γ > 1.

Comparing our results with the latest ATLAS and CMS
data [57,58], we have derived exclusion regions in the Mg(1)–
y� parameter space of the various models, shown in Figs. 3
and 5. In the minimal model, we can exclude KK gluon
masses lighter than 8.5 TeV × (y�/3) at 95 % CL for the
brane-localized scenario, and 6.4 TeV × (y�/3) at 68 % CL
for the narrow bulk-Higgs scenario. In case of the custodially
protected RS model and for a brane-localized Higgs, we can
exclude KK masses below 13.4 TeV × (y�/3) at 95 % CL.
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For a narrow bulk-Higgs field, we find the excluded region
Mg(1) < 8.4 TeV×(y�/3) at 95 % CL. More precise measure-
ments of Rγ γ and of other Higgs production and decay rates
would be required to differentiate between different incarna-
tions of RS models. Importantly, significant deviations of the
Higgs couplings from their SM values could arise even if the
KK mass scale is so large that KK modes are out of reach for
direct production at the LHC.

Together with our previous work [24], the present paper
allows for a full treatment of the loop-mediated Higgs cou-
plings and can be supplemented by the remaining tree-level
couplings to arrive at a comprehensive description of Higgs
physics in RS models, where the scalar sector lives on or near
the IR brane. With increasing experimental precision on the
extracted Higgs couplings, it will be exciting to compare our
results for various RS models with the data. Even if no KK
excitations will be discovered at the LHC, it is conceivable
that future precision measurements of Higgs couplings at the
LHC and ILC could provide a first hint on the existence of a
warped extra dimension.
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Appendix A: Feynman rules in the 4D effective theory

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)
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Here we list the Feynman rules needed for the calculation
of the one-loop gauge-boson, scalar, and ghost contributions
to the h → γ γ decay amplitude in the KK-decomposed
version of the minimal RS model, using the notation of [10].
We work in a general Rξ gauge and use mass eigenstates of
all SM particles and their KK excitations. The Feynman rules
for the vertices shown above are

(a) : m̃2
W

vmW
n

2π χW
m (1) χ

W
n (1) (pϕ − ph)ν,

(b) : 2i m̃2
W
v

2π χW
m (1) χ

W
n (1) ημν,

(c) : ±e
m̃2

W
vmW

n
2π χW

m (1) χ
W
n (1) ημν,

(d) : − im2
h
v

m̃2
W

mW
m mW

n
2π χW

m (1) χ
W
n (1),

(e) : −ie2
(
2ηλρ ημν − ηλμ ηρν − ηλν ηρμ

)
δmn,

( f ) : ie (p+ − p−)μ δmn,

(g) : ±e mW
m ημν δmn,

(h) : 2ie2 ημν δmn,

(i) : ±ie pμ δmn,

( j) : −ξ i m̃2
W
v

2π χW
m (1) χ

W
n (1),

(k) : ie δmn Vρμσ (p+, pγ , p−),

(A.1)

where v is the Higgs VEV in the RS model, the parameter
m̃W has been defined in (6), and the tensor structure Vρμσ of
the 3-boson vertex has been given in the text after (23).

The fact that the vertices (e)–(i) and (k) involving one or
two photons but no Higgs boson are diagonal in KK number
requires some comments. For vertices involving a photon and
a pair of vector bosons, fermions or ghosts, this follows from
the flatness of the photon profile, enforced by U (1)EM gauge
invariance, and the orthogonality of the relevant vector-boson
and fermion profiles. However, the situation is different for
vertices involving the scalar bosonsϕ±(n)

W , which receive con-
tributions from the original fields W ±

φ and ϕ±; see (3) and
(6). In this case the vertices become diagonal only after one
adds up these two contributions. Consider, as an example, the
vertex (h) needed for diagram (j) in Fig. 1. After integrating
over the coordinate of this vertex, we obtain the Feynman
rule

2ie2ημν

[
M2

KK

mW
m mW

n

2π

L

∫ 1

ε

dt

t

[
∂tχ

W
m (t)

] [
∂tχ

W
n (t)

]

+ m̃2
W

mW
m mW

n
2π χW

m (1) χ
W
n (1)

]
, (A.2)

where the first contribution originates from the WφWφ AμAμ

term contained in the Yang–Mills action for the W -boson
fields using the KK decomposition (3), while the second con-
tribution arises from the ϕ+ϕ− AμAμ term contained in the
kinetic term for the Higgs doublet using the KK decomposi-
tion (6). We now integrate by parts in the first term use the
equations of motion [40,41]

−t ∂t
1

t
∂tχ

W
n (t) =

(
mW

n

)2
M2

KK

χW
n (t) (A.3)

for the gauge-boson profiles along with the boundary condi-
tions

∂tχ
W
n (t)

∣∣
t=ε = 0, ∂tχ

W
n (t)

∣∣
t=1− = − Lm̃2

W

M2
KK

χW
n (1) (A.4)

corresponding to a Neumann boundary condition on the UV
brane and a mixed boundary condition on the IR brane. In
this way, we obtain the Feynman rule

2ie2ημν

⎡
⎣mW

n

mW
m

2π

L

1∫
ε

dt

t
χW

m (t) χ
W
n (t)

⎤
⎦ = 2ie2ημν δmn,

(A.5)

where the boundary term cancels the contribution arising
from the ϕ+ϕ− AμAμ term. In the last step we have used the
orthonormality relation (26) for the gauge-boson profiles.

Appendix B: W mass and profile derived from the 5D
propagator

For the analysis of the zero-mode contributions in Sect. 3.5
we need to expand the W -boson propagator at t = t ′ = 1 in
powers of v2/M2

KK. In this context, we also need the relation
between the physical W -boson mass and the model parameter
m̃W in (6) beyond the leading order. A corresponding formula
was derived in [10] by solving the eigenvalue equation for
the W -boson profiles and extracting the lowest eigenvalue.
We now present an alternative approach based on our exact
expression for the 5D gauge-boson propagator, which allows
us to derive explicit expressions for the W -boson mass and
profile to any order in v2/M2

KK.
Starting from the exact expression (34), we perform an

expansion in powers of v2/M2
KK while keeping p2 and m̃2

W
fixed and of order v2. This yields

BW (t, t ′; −p2)

= 1

2π

−1

(p2 − m̃2
W )
[
1 +�(t, t ′; p2)

]+�(p2)+ i0
,

(B.1)

where

�(p2) = m̃4
W

2M2
KK

(
L − p2

m̃2
W

+ 1

2L

p4

m̃4
W

)
,
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�(t, t ′; p2) = m̃2
W

2M2
KK

{
Lt2
> + p2

m̃2
W

[
Lt2
<

−t2
(

1

2
− ln t

)
− t ′2

(
1

2
− ln t ′

)]}
, (B.2)

which are valid up to terms of order v4/M4
KK. The zero of the

denominator of the propagator in (B.1) defines the physical
mass mW of the ground state, and the residue of the pole
determines the corresponding product of profile functions
χW

0 (t) χ
W
0 (t

′). Indeed, for p2 ≈ m2
W we find

BW (t, t ′; −p2) = 1

2π

−Z2(t, t ′)
p2 − m2

W + i0
+ non-singular terms,

(B.3)

where

m2
W = m̃2

W −�(m2
W )

= m̃2
W

[
1 − m̃2

W

2M2
KK

(
L − 1 + 1

2L

)
+ . . .

]
,

Z2(t, t ′) = 1 −�(t, t ′; m2
W )− ∂�(p2)

∂p2

∣∣∣
p2=m2

W

= 1 + m̃2
W

4M2
KK

[
2 − 2

L
+ t2 (1 − 2L − 2 ln t)

+t ′2
(
1 − 2L − 2 ln t ′

) ]+ · · · . (B.4)

These results are valid up to O(v4/M4
KK) corrections. The

relation in the first line is equivalent to (7). Rewriting the
second relation in the form Z2(t, t ′) = 2π χW

0 (t) χ
W
0 (t

′),
we can extract

χW
0 (t) = 1√

2π

{
1 + m̃2

W

4M2
KK

[
1 − 1

L

+t2 (1 − 2L − 2 ln t)

]
+ . . .

}
, (B.5)

which gives the first non-trivial correction to the profile of
the W boson [10,45].
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