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Abstract This article reviews the literature on techniques of credit risk models, multi-
period risk measurement, and capital allocation, and gives a tutorial on applying these
techniques to credit portfolios with a focus on practical aspects. The effects of the
choice of considered loss process concerning the handling of write-offs and matured
assets or rating migration are displayed, and the impact on portfolio optimization
decisions is discussed. We highlight the trade-off between short-term and long-term
profitability and allude to the practical challenges of an application of multi-period
risk measurement.
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1 Introduction

The financial crisis from 2008 to 2010 gave an indication that a bias for short-term
profit maximization in banks that can contravene the target of sustainable profitability
exists. There are several ways to address this issue: through a new risk culture, new
incentive systems, or adjusted risk modeling. One specific way and focus of this
article is to change credit risk assessment techniques such as the time frame of risk
measurement. In this paper, we review and synthesize the existing streams of literature,
discuss the application in practical terms and consider effects on portfolio management
decisions as well as challenges for portfolio managers. We show that an optimization
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Fig. 1 Ingredients to portfolio optimization for credit portfolios.

based on one-period risk measurement can reduce long-term profitability, and that this
effect can be mitigated by choosing multi-period risk measures.

A particular task of a risk manager is to decide in which of several various asset
classes (subportfolios) the bank should invest. The target is typically to maximize
return per risk, where, in our case, return is fixed and given. To determine risk, three
important steps are necessary: definition of the parameter or process of which risk is
measured, definition of the measure that is used, and definition of the way in which
the risk is allocated to the subportfolios. Figure 1 displays the choices in each step that
are required to be made for the case of the optimization of credit portfolios in banks,
where the credit loss process is determined by the combination of a credit risk model
and a certain type of loss process.

Credit risk is typically assessed in a one-period view. In a regulatory environment
this approach is expanded by maturity adjustments. However, there a broad discussion
on dynamic credit risk models of discrete or continuous type also prevails. The aim
of this paper is to provide an overview of the state of the literature on each of the
three aforementioned steps—credit risk models, risk measures, and capital allocation
principles—in a multi-period context. Moreover, we use the insights of the review
to give a tutorial for risk managers who are supposed to care about multi-period risk
measurement focusing on discrete multi-period models. We conduct an application
of the introduced methods of risk measurement and capital allocation to the specific
case of a credit portfolio in a multi-period setting. The main results of the empirical
application provide clues leading to the fact that a portfolio optimization decision
is dependent on the choice of the time frame, especially when rating migration is
considered.

The paper is divided into two main parts. Section 2 reviews the relevant literature
and Section 3 exemplifies, in a tutorial, how the techniques can be applied for credit
portfolios with an emphasis on practical aspects. In the literature review section, we
begin by introducing the notation we use for condensing the different results of the
existing literature, before reviewing the literature on credit risk models, risk measures,
and capital allocation in the subsequent sections. The tutorial part begins with con-
sidering multi-period Expected Shortfall, before laying down the characteristics of
credit loss processes used and illustrating them on simple credit risk trees as well as
on credit risk models for a sample credit portfolio. The tutorial ends with performing
a multi-period capital allocation and demonstrate the effects on portfolio optimiza-
tion. Finally, Section 4 concludes our article with a summary of the results, practical
challenges of multi-period risk assessment, and an outlook on further research topics.
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2 Literature Review

In this section we depict the existing literature according to the three topics of credit
risk models, risk measures, and capital allocation, which we connect in the tutorial
in Section 3. For the propose of easy legibility and comprehensibility we commence
with a brief subsection which introduces the notation we standardize for all studies
which we will refer to.

2.1 Notation

We consider a portfolio structured in N subportfolios, called asset classes. An asset
class is a set of obligors in a credit portfolio. Each obligor is identified through its
default indicator variable Y, ; € {0,1}, a random variable that describes default of
obligor i, in asset class n in a given time period 7 by ¥ i, = 1. We consider 7' € N time
periods. Let u’ = (u}, ...,u}y) be the deterministic vector of asset class sizes in terms
of the number of obligors in time period 7 € {1,...,T} and denote u, = max,—; 7 u,,
Furthermore, let u = ZnN:1 u, be the upper bound of the number of obligors in the
portfolio.

One asset class is defined by common characteristics. As characteristics we con-
sider the following variables:

— The maturity of obligor i, € {1,...,u, } in asset class n is denoted m,,;, € {1,...,T}.
The maximum maturity in asset class n is denoted m,,, and hence m,,;, <m, <T.
— The unconditional probability of default of each obligor in asset class 7 in time
period ¢ is called PD!,. We set PD!, = 0 for my, i, <t <T and, for asset classes
with inhomogeneous PD, we introduce PD’ . as PD of obligor i, in asset class n.
— The conditional probability of default of one obhgor in asset class n is PD!, |.%;_
where . = (%;)1>,>7 is a filtration, such that .%; represents all information given
at time ¢.
— The correlation between the default events of an obligor in asset class m to an
obligor in asset class 7 is denoted by p,, , = pm 2 (Y i n ;,)- Correlation is as-
sumed to be the same for all obligors in one asset class and to be constant over
time.
Furthermore, x}, = u, Zl Y, €[0,1] is a random variable and indicates the
fraction of defaults in asset class # in time period ¢. Based on this definition, we
introduce the following types of default vectors or bundlings of elements of the type

xt .

n*

- X! = (x},....xI) €[0,1]" is the random vector of defaults in asset class n up to time
period ¢.

- X, =XI = (x] ,,, xI) € 10,1]7 is the random vector of defaults in asset class n.

-X'= (xfl yoeey X ) [0, 1]V is the fraction of defaults per asset class in time period
t €{1,...,T}, where X' is the transposed of x.

We assume that exposure at default (EaD) and loss given default (LGD) are equal
to 1 for all obligors. Hence, the portfolio loss at time ¢ is given by I’ = u’ - X', and the
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Fig. 2 Classification of credit risk models. The dashed box depicts models that are considered in this paper.

cumulative loss from period 1 to¢ by L' =Y _, I, and accordingly for asset class n:
I=ul, ¥ and LI, = Y'_, IL.

Let (22,P,.7) be a probability space where .# = (.%;);>,>r is a filtration and
X! € % (ie, X! is .#-measurable for each n). £~ = ¥*(Q,P,.7%)={Z:Q —
R|Z € #,||Z|| = < oo} is the space of all (bounded) credit instruments. Q' denotes a
new sample space defined via Q' = Q x {1,...,T}. We set P’ as probability measure on
Q/, defined by P'(U << {E"} x {t}) = X/ wP(E"), L w, = 1 for E' C Q; see
Artzner et al (2007). In particular, we introduce P*(U;>,>7{E'} x {t}) = P(E*) for
(Wi, ..., Wgy .oy wr) = (0, .., 1,...0). In this way a random process on £ is transformed
into a random variable on Q’.

2.2 Credit risk models

The first ingredient of capital allocation in credit portfolios is a model for credit
risk, which will be used to deduce loss functions. An overview of credit risk models
can be found e.g. in Bluhm et al (2002), Bielecki and Rutkowski (2002), Duffie and
Singleton (2003), Schoenbucher (2001), McNeil et al (2005) or Hull and White (2008).
In general, the models apportion to two types: structural models, which are based
on the Merton model (Black and Scholes 1973; Merton 1974) for firm values with
(time-dependent) risk factors (eg, Hamerle et al 2007), and reduced-form models,
where default time is triggered by an intensity function (Jarrow and Turnbull 1995;
Duffie and Singleton 1999). The latter are more popular in practice because they
require less detailed firm specific information (Jarrow and Protter 2004) and are,
therefore, the focus of our work. Nevertheless, there are studies such as Kunisch and
Uhrig-Homburg (2008) that show that combining the beneficial attitudes of both types
of models (the mathematical elegance of the reduced-form models and the economic
attraction of the structural models) yield a promisingly flexible tool for modeling
default dependencies. Duffie and Lando (2001) also present an example of a structural
model that is consistent with reduced-form representations.

Considering reduced-form risk models means to be faced with several classes of
them. Following the classification of McNeil et al (2005), the simplest class is the one
of Conditionally Independent Defaults (Kijima and Muromachi 2000; Kijima 2000).
More sophisticated models include correlation of default events over time, eg, Copula
models or models with Interacting Intensities (Schoenbucher and Schubert 2001;
Laurent and Gregory 2005; Frey and Backhaus 2004). Based on these risk models,
loss distributions and risk can be determined. Our classification is displayed in Figure 2.
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Moreover, Table 1 classifies the most relevant studies concerning reduced-form credit
risk models into our three categories.

The common industry credit risk models, which a risk manager is referred to, are
Credit Suisse Financial Products’ CreditRisk™ (Boston 1997), JP Morgan’s Credit-
Metrices (Gupton et al 1997), McKinsey & Company’s CreditPortfolioView (Wilson
1997a,b), and KMV’s PortfolioManager. Whereas the supply of different models ap-
pears constitute be an excessive demand for a risk manager, Koyluoglu and Hickman
(1998) demonstrate that these models have the underlying framework in common.

In the following, we give a short introduction to the three types of reduced-form
models which are already multi-period models or are appropriate to be extended to it.
For this, however, we must first clarify our notation of hazard rates.

Hazard rates

According to Duffie and Singleton (2003) or McNeil et al (2005), an intensity or hazard
rate hy,(t), or respectively A, in a discrete setting, of asset class n describes the chance
of default of obligor i, € {1,...,u, } at time 7 given survival up to time 7. The cumulative
hazard rate H,(t) = [jhy(u)du or H! = ¥!_, I, is defined accordingly. Moreover,
7, = H, '(E;) is called stopping time with E; standard exponentially distributed.
Default of obligor i, up to time ¢ occurs if 7;, <, ie, if E;, < H,(¢t). Furthermore, the
so-called survival function S, (#) = 1 — P(1;, <) = exp(— [g hn(u)du) describes the
probability that obligor #,, does not default before time z.

The hazard rate can be chosen in three different ways: constant, deterministic
time-varying or stochastic. Examples of this are:

— hyu(t) = ¢ € R for all ¢, which describes a constant PD over time,

- hy(t)=c, s €Randt € {1,2,...,T}, which corresponds to a rating migration in
discrete time steps, and

- h,(t) =04+ ):;f’:l O, iM, ; +E; ;, with M; ;,E,; ;, CIR-square-root diffusions and
0, Oy j € R*. For further details see, eg, Duffie and Garleanu (2003).

With this notation, we are now able to describe the three forms of reduced-form
models—Conditionally Independent Defaults model, Copula model, and Interacting
Intensities models—in more detail.

Conditionally Independent Defaults model

The simplest way of stepping from the default of one obligor to loss probabilities
of one portfolio is through the assumption of conditional independence. Conditional
independence for a given point in time 7 then means that default times are independent
given the realization of some observable background process. To be precise, we define:

the following three assumptions hold:

1. H(t) hazard rate process is strictly increasing
2. Forallt;>0:P(1; > ti|yr) = P(’L’,’ > fi|yz,-)
3. P(ti <t1,..., T < ty|Fr) = IIIL | P(7; < ;| Fr)
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Then 7; is called doubly stochastic conditionally independent random time.

Thus, the basic idea beyond these models is that from the viewpoint of r — 1 we
consider no dependencies between the defaults in 7.

Copula model

The second option for a multi-period credit risk model are Copula Models (see Frey
et al 2001; Li 2000; McNeil et al 2005), where a dependence structure between
default times is introduced. Copula models can be defined for deterministic as well
as for stochastic hazard rates. We will focus on the deterministic case. The essential
difference between Copula models and Conditional Independent Default models is
that in Copula models the dependencies of defaults in ¢ are considered at the earlier
time t — 1.

Here, random times 7y, .., T, follow a Copula model with u-dimensional survival
copula C, if there is an u-dimensional random vector U ~ C, independent of .%r, such
that

7, =1inf{t > 0:exp(—H(r)) < U}, 1<i<u.

For deterministic hazard rates %(z) and corresponding survival function S(z) in a
Copula model the default probability for#; € {1,...,T} is given by

Pty > 11,0, Ty > 1) =C(S(11), ..., S (1))

A frequently employed copula is the one-factor Gaussian Copula, which is a
reduced-form model in the classification applied in this paper but also corresponds to
a one-factor structural model in the one-period case, as shown in McNeil et al (2005).

Interacting Intensities

As a third option we consider models with Interacting Intensities (see Frey and
Backhaus 2004), in which the impact of defaults on the hazard rate of surviving
obligors is exogenously specified, ie, there is a function £, (7,Y") for Y* = (Y} )i=1,_u
that is dependent on the current state of the portfolio. This function provides the
opportunity to model counterpart risk explicitly.

A simple example for an interacting intensity can be created by the assumption
that the default intensity of obligor n is linearly dependent on the default of obligor m

(and independent of the default of all other obligors in the portfolio):

hn(t,Xt) =da +b]].‘[m§t

2.3 Risk measures

The second essential step towards making a portfolio optimization decision is the
definition of a risk measure, so that the risk of the portfolio can be determined. The
so-defined portfolio risk will become part of the target parameter of a later portfolio
optimization.



Capital allocation in credit portfolios in a multi-period setting 9

Two streams of literature deal with multi-period risk measurement; one considers
risk as a real number, the other as a random process. The first option is usually
discussed with a focus on market risk, where multi-period Value at Risk forecasts
or, respectively, volatility forecasts as a modification of the GARCH forecast are the
key issues (eg, Kleindorfer and Li 2005; Kinateder and Wagner 2011, 2013). Credit
risk measurement, on the other hand, is based on the loss distribution that results
from a credit risk model. The measure of risk or economic capital requirement can
be transferred from the one-period setting (Artzner et al 2003, 2007; Frittelli and
Scandolo 2006; Cherny 2008, 2009). Alternatively, the conditional risk per time step
can be considered so that risk is a time-dependent random process (Pflug 2006; Riedel
2004; Roorda et al 2005; Cheridito and Kupper 2011). The advantage of risk as a real
number is the immediate applicability for capital allocation and portfolio optimization,
whereas a risk process is useful for forecasting purposes. Thus, this article focuses on
the first type of risk and its application areas.

Technically speaking, in a one-period model a risk measure is a map of a random
variable (RV) into the real numbers. This can be generalized in a multi-period setting
by measuring risk of random processes (RP) instead of random variables (see Table 2).
There are two concepts for multi-period risk measurement: Either real-valued numbers
(eg, Assa 2009; Frittelli and Scandolo 2006; Roorda et al 2005) or random processes
(eg, Acciaio et al 2012; Cheridito and Kupper 2011; Delbaen et al 2010). Table 3
classifies the most relevant studies concerning risk measurement according to their
theoretical framework into the categories of Table 2.

Table 2 Alternative concepts of risk measurement.

RV — R  one-period
RP— R multi-period (static)
RP — RP multi-period (dynamic)

A commonly used coherent risk measure is the Expected Shortfall (ES) introduced
as a one-period risk measure by Acerbi and Tasche (2002). The ES is also called
Conditional Value at Risk and Expected Tail Loss, and is defined as being the mean
value of an %-tail, ie, formally speaking

1
ESa(X) = —— (EX Ly )] +xa(@— PIX < xa)).
with X being the random number of portfolio return, x, = inf{x € R: P(X <x) > a},
and a € (0, 1) a specific probability level. In contrast to the Value at Risk (VaR), ES

additionally satisfies the subadditivity property. ES can be transferred in a multi-period
setting, as we will show in Section 3.1.

Multi-period risk as real number (static)

The relevant type of risk measurement for capital allocation is risk measurement
by real numbers. This concept allows us to describe today’s riskiness of a credit



Tamara Pfister et al.

10

(orwreukp) porrad-nnw
(orwreuAp) porred-nnw
(orwreuAp) porrad-nnuw

(o1wreu
-Ap ‘oness) porred-nnu

(orwreuAp) porred-nnw

(orwreuAp) porred-nnw
(orwreukp) porrad-nnw

(orwreuAp) porred-nnw

(orwreuAp) porred-nnw
(orwreu

-Ap ‘oness) poured-ninw
(orwreu

-Ap ‘oness) poured-ninw

pouad-ouo

(oneis)

pouad-nnu ‘porrad-suo
(one)s) porrad-nnuw
(orwreuAp) porred-nnw
pourad-auo

pouad-auo

(orwreuAp) porred-nnw

Qoueur] 2 Junjueg Jo [euInof
QOUBUL] [EONRWAYIRIA
QOUBUL] [EONRWAYIRIN

QOUBUL] [EONRWAYIRIA
AIMuad Yy g
A} 10J SAINSBAW ST MON

SUOISIOR(] 29 SOUSNL)S
SOIISBYD0}S PUE QOURUL]

SONSLYD0)S PUB OURUL]
Qoueur parddy
PUE [BO1}9I0JY ], JO [eUInOf

Q0URUL] [EOTBWAYIRIA
suoneodrddy

)] pue A1j1qeqoid jo K109y],
SOTUIOU0dHq

[eIoURUL] PUB SONBUIAIBIAL

AVYED np s1amye) s
[oIeas

-9y suoneradQ jo sjeuuy
(younz HLA) diosnuepy
QOURUL] [EONBWAYIRIA

S3JON d1rouodq

SOTISBYD0}S pUE AOURUL]

K)1AT9€ JIWOU099 porad

-nnw ur ysu Sunmseaw o} yoreoidde uonewIojuI-jo-on[eA
SOINSBAUI YSLI XAUOD BIA UOHBN[BA OUSIIFIPUT OTUreuk (]
SQINSBAW YSII XOAUOD JIWEBUAD pUE SUOTIBN[BA

sassaoo1d 10y sjuawarmbar ejides pue sanseawr Ysry

SQINSBAW YSLI XOAUOD OTWRUA(]

suorouny

Kyreuad 1oy Jo sorwreuAp 9y} puE SAINSLIUL YSLI XIAUOD)
SQINSBAW YSLI OTWERUAP pue [RUOT)IPUOD)

sanIhn

QABOUOD dTWRUAP JO wId) Ayfeuad oy jo uonejuasardoy
qur) AJIVSIP UT SAINSBIW

YS1I AIe)jouow JTWRUAp Ju9)sisuod-owy jo uonisodwo))
3SLI JUIAYOD

QWIN-9JAIOSIP YIIM UOTINGLIUOD YSLI pue uonesofe reide)

NS JURIYOD PIM SuTotg

soouanbas gruyur Jo ooeds oY) UO SOINSBAW YSTY
suoneorjdde pue sasseooxd

Se[peo papunoq Joj sanseaws Ysur jo A11adoid andsoqo
ordrourd

S ueW[[og pue sanfea pajsnipe ysi1 porrod-nnu JusIayo))
JUSWIDINSEAW YSII porradnnur JueIoyo))

YSLI JO SAINSEAW JUIY0D)

AT

1B 9N[EA 0} SANBUIO)E JUSISYOD [eINjeU Y :[[eJI0YS poroadxyg
$91qqnq Jo 901 Ay pue ‘ANnJiquie IuRUNOISIp

‘Kym3Iquie [OpPOJAl :SMOY YSBD UTBIId0UN J0J JUIWISSISSE ST

(9002) 3nyd

(L00T) 1ozroMUYdS pue [oddory
(8007) s19803 pue 112q0f
(9002) o[opuedS pue 1[N
(+007) utuer pue IjeNL]

(9007) 19uuxg pue IW[Q]
(S002) oropueog pue ussjapaq

(0107) v 3 udeqpQq

(1107) 10ddny] pue opproy)
(6007) Autoy)

(8007) Auroy)

(010T) SO[EIOA pUE eSSy
(6007) essy

(L00T) e 10 1ouZ)IY

(£007) Te 10 JouzZIY

(6661) [e 19 1ouz)IY

(200T) SYOSEL, pue 1100y

(T107) Te 19 ore1odYy

Sunjeg

[ewnor

SPLL

loyny

"z IqeL ur pajiodar $a11039)ed 221y} Y) OJUI SAANSLIW YSLI JO UONBIYISSE]D) € J[qRL



Capital allocation in credit portfolios in a multi-period setting

KouQ)SISUOD drueU

(otureu£p) porrad-nnu Q0URUL] [EOTEWAYIRI -Ap pu® ‘UOT)EUIIOJUT ‘SOINSEBIW YSII JUBLIEAUT-UOTINQLIST(] (9007) 129oM
[oIeasay (9002)
(orwreuAp) porred-nnw suonerad( Jo sonewayIBA sSurddew ysu reuonipuo) ondeys pue D[SUAZIZSNY
(one1s) porrad-ninu QouRUL] [BONBWAYIRIA sfopowr porradnynu ur samseaw A11qe1dosde juareyo) (S00?) T® 12 BpI0OY
suoneorddy
(orureu£p) porrad-ninu II3Y ], PUB $35S3001J JNSLY001S SQINSBAW YSLI JUSISYOD dTURuA( (#007) 1opary
Sumeg [euwrnor apiL loyny

"panunuod ¢ qeL,



12 Tamara Pfister et al.

instrument with given maturity of one or more time periods. Risk as a random process,
on the other, hand describes ongoing riskiness of a credit instrument either with focus
on its final value or on the risk trajectory.

For risk measurement by real numbers, there are two representations of risk
measures that are presented in Frittelli and Scandolo (2006) and Artzner et al (2007),
the first being:

Definition 2 Ler £ be a vector space of random vectors, € C 4> ={Z € L~|

Y. ,Z € R} and : € — R. Then any map p : £ — R is called risk measure or
capital requirement if

PX)=pyzaX)=inf{n(Y)eR|Y €€ . X+Y c A} XL

for some set of C L, provided it is a finite value.

According to Frittelli and Scandolo (2006), from a practical viewpoint, <7 represents
the fixed set of acceptable positions, % represents the positions achievable by means
of permitted hedging strategy and 7 describes the initial cost or dealing of capital over
time, ie, the choice of 7 determines, among other things, whether freed cash from one
year can be reinvested in the following years. Finally, .Z represents the vector space
of considered loss processes. Overall, the definition states that risk is measured as
the minimum amount of capital that has to be invested in order to make the portfolio
acceptable. Therefore, .7 is also called acceptability set. The definition of <7 as a
convex cone can be found in Artzner et al (2007) but more general acceptance sets can
also be considered. Frittelli and Scandolo (2006) introduce two specific risk measures:

Definition 3 Let £ be a vector space of random vectors as defined above and
€ C . Then for some set o/ C L:

1. A risk measure p is called simple capital requirement forT =1 and n(Y) =Y.
2. A risk measure p is called standard capital requirement for n(Y) = Y| Y',
provided it is a finite value.

The second equivalent representation for convex risk measures is given in Artzner et al
(2007):

Proposition 1 If p fulfills the Fatou property, there is a closed convex set 2 of
probabilities on (Q', F') absolutely continuous with respect to P', such that:

T
p(X)=— inf Ex[X]= —inf Y wEp[fiX"; f = (fi): € ],
e =

for a random vector X with values in a sample space 2, where 9 is a set of density
functions of probability measures Q' € &' with respect to P, called determining system,
and w; > 0 with ¥.I_  w,Ep[f)] = 1. f, : Q — R is a F'-measurable and non-negative
function on L for all t.
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Multi-period risk as random process (dynamic)

One can define a risk process p(X) = (p'(X));=1,...,r for a random vector X as a time-
dependent random process. Desmedt et al (2004) show from an insurer’s perspective
that there are two approaches for a risk process: one not using future information and
one using future information. This can be formulated as follows:

p'(X) = p(X'|7°), or
p'(X) = p(X'|7"),

where the filtration represents the available information.

The first approach is very unlikely to find any form of application. The second
approach, on the other hand, provides an answer to two practically relevant questions
(see Desmedt et al 2004):

1. Is it probable that, at a given moment in the future, new capital will need to be
allocated?
2. Given that new capital needs to be allocated, how large could this amount be?

An example for a multi-period risk process using future information is the negative of
a utility process as presented in Cherny (2009).

Definition 4 Let X be a one-dimensional (#')-adapted process. The coherent utility
Sfunction U is a real-valued process defined as:

UT+1(X) _ 0,
U' = essinfE[f (X" U™ (X)) .71,
fE.@Hl

with ('), is a determining system. Here, p(X) = (p"(X))s=1,....7 with p" = =U"(X)
is the corresponding coherent risk process.

Risk processes are less relevant in the setting of portfolio optimization because
they cannot be used for today’s capital allocation purposes. Different concepts of
risk processes can be found in Frittelli and Gianin (2004), Artzner et al (2007), Pflug
(2006), or Cheridito and Kupper (2011). The main application areas are risk forecasting
and planning processes. Coherence of a risk measure as defined by Artzner et al (1999)
can be extended to a risk process in the multi-period setting by definition of dynamic
consistency; see, eg, Riedel (2004) or Pflug (2006).

2.4 Capital allocation

Having detailed credit risk models and the resulting loss distributions, as well as
different risk measures that can be applied to the loss distributions, we now turn to
capital allocation.

Capital allocation in a dynamic setting can be transferred from the one-period
setting. Allocation principles, such as gradient allocation as introduced in Tasche
(2004), can be used to determine the marginal capital amount of one subportfolio,
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asset class or credit instrument (Desmedt et al 2004; Cherny 2009; Assa 2009; Buch
et al 2011). Depending on the chosen risk measure, the allocated capital can either be
a real number or a process. Table 4 classifies studies regarding risk capital allocation
into one-period or multi-period frameworks.

In the case of real-valued capital allocation, the definition from the one-period
setting can be transferred. Let AP be an allocation principle so that Y'Y, AL =p(L).
In particular, gradient allocation is given for any differentiable risk measure p by

Ap — lim p(Zn;ém L’l + hLm) - p(Znyém LH) .
" hs0 h

The allocated capital requirement and the return of the instrument or subportfolio
form the decision drivers in portfolio optimization models. Models in a one-period
setting were introduced by Li and Ng (2000) as a simple mean-variance optimization
approach or by Rockafellar and Uryasev (2000) and based on this by Pflug (2006) in a
more complex setting. Furthermore, Stoughton and Zechner (2000) focus on incentive
systems and the role of learning in portfolio optimization decisions and Hallerbach
(2004) considers optimization techniques with side conditions. Finally, Tasche (2004)
and Buch et al (2011) analyze RORAC (return on risk-adjusted capital) optimization
based on gradient allocation, the latter with a focus on asymmetric information.

Laeven and Goovaerts (2004) suggest a generalization to a dynamic setting based
on the direct updating of the real world probability measure in spirit of the theory of
dynamic asset pricing (see Duffie 1996). They provide an optimization approach to the
allocation of economic capital and distinguish between an allocation or raising princi-
ple and a measure for the risk residual. Another application of capital allocation using
VaR which considers various time horizons is Kleindorfer and Li (2005). Coherent
risk measures in static and dynamic setting are investigated by Cherny (2008).

3 Tutorial

Having reviewed the relevant literature for the different ingredients of capital allocation,
we now conduct a tutorial on how the techniques of multi-period risk measurement
and capital allocation can be applied for credit portfolios with an emphasis on practical
aspects. We begin with detailing on the application of a coherent risk measure, namely
ES, in a multi-period context. Next, we stipulate the characteristics of credit loss
processes and illustrate the chosen models in simplified credit risk trees. Afterward,
we apply our multi-period ES measures to the credit loss trees as well as on credit
risk models for a sample credit portfolio. Finally, we perform a multi-period capital
allocation and demonstrate the effects on portfolio optimization.

3.1 Multi-period Expected Shortfall

In the following we consider the most common coherent risk measure, ES, for a
random process L = (L'),, which will later be identified through the chosen loss
process (I'), or (L"),. ES can be extended in a multi-period setting in several ways.
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In this tutorial, we confine ourselves to the two most common extensions; a more
comprehensive list of possible extensions is given in Appendix A, which also caters to
similar multi-period extensions of the VaR. For notational purposes we define

%, = {Y|Y is #'-measurable}, and
Ay ={Z¢€ L7|E(Z-14)>0,VA' € F's.t. P(A") > a}.

With this notation, we can denote the one-period ES as the expected loss given that
the loss exceeds a certain threshold (see, eg, Frittelli and Scandolo 2006):

P (L) =ESa(L) = sup{~E(LIA)|A € Z,P(4) > a}.

To augment the one-period ES to a multi-period setting, we use the following two
extensions:

1. Product-type capital requirement with focus on final values; based on the product-
type acceptance sets given in Frittelli and Scandolo (2006). This approach only
accounts for loss at the end of maturity. The difference to the one-period setting is
that asset class characteristics, like PD, can change over time. Formally, let

A =LXLX X L XAy
then p ;. (L) =ESq(L").

In illiquid markets where interference of risk managers is not possible, the focus
lies on final values. However, the concept of capital requirements with a focus on
final values ignores an increase in capital requirements by rating downgrades for
t < T as well as the timing of default.

2. Product-type weighted capital requirement; based on the cumulative-stopping risk
given in Assa (2009). We use a discrete version of cumulative-stopping risk. In its
simplest form, this risk measure describes the arithmetic mean of the risk in future
time periods. By changing the weights, this approach is generalized in the way
that it is able to account for influencing factors such as the time value of money. In
this specific case we speak of a weighted capital requirement with a discount rate
(see Example 6 in Appendix A for further explanation). Formally, let

A = )X ALK .. X A
T T
m(Y)=Y wY with Y w, =1,
=1 t=1

Wy ESa(Z})

1=

then p; o (L) =

t=1

3.2 Characteristics of credit loss processes

In order to discuss risk of credit portfolios, the definition of the characteristics of the
analyzed loss process is crucial. In a multi-period setting, the first decision to make is
whether losses (I'), or cumulative losses (L"), should be considered. Cumulative losses
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in particular need to be chosen for our two risk measures.! Next, we fix the character-
istics of the loss process to four specific types of credit loss processes. We base our
analysis and discussion on the premise of zero growth. This means no additional credit
instruments are added to the portfolio. Given this premise, there are four dimensions
that have to be considered when talking about credit loss processes: replacement of
write-offs, replacement of matured assets, maturities, and rating migration. In this
tutorial, we focus our analysis on four types of credit processes as introduced below
and summarized in Table 5.

Table 5 Characteristics of the four types of credit loss processes analyzed in the tutorial.

Typel Type2 Type3 Type4

Replacement of write-offs no yes no no
Replacement of matured assets no no no no
Different maturities no no yes no
Rating migration no no no yes

— Type 1: In each asset class, we assume no replacement of write-offs, identical
maturities of all obligors, and no rating migration:
w, > ul forall s <t <m,,
My, =my =T forall i, € {1,...,ul}, and
PD!, = PD, forallt € {1,...,T}.

— Type 2: We assume replacement of write-offs at the beginning of each period,
identical maturities, and no rating migration:
u, =ul, forall s <t <my,
My, =my, =T for all i, € {1, ..,ut}, and
PD!, =PD, forallt € {1,...,T}.

— Type 3: We assume no replacement of write-offs or matured assets, different matu-
rities for each obligor, and no rating migration. We do not consider replacement of
matured assets because the process would not be distinct from Type 1:

w, > ul forall s <t <my,
My i, <my, =T foralli, € {1,...,u}}, and
PD!, =PD, forallt € {1,...,my;, }, for each obligor i,; PD!, = 0 for t > m,,;,.

— Type 4: We assume no replacement of write-offs and identical maturities, but allow
rating migration in each time period:
w, > ul forall s <t <m,,
My, =my =T forall i, € {1,...,ul}, and
there exists an s # ¢ for at least one obligor i, with PD; ; # PD;J" for s,t €

{1,...,T}. We denote PD!, = ui, Z?il PD!, ;, the average probability of default of

! On the other hand, considering loss would be sensible when analyzing the loss of a single period
(potentially not the upcoming one) or when using risk measures that simply sum up over different periods.
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asset class n in time period ¢. Typically, the probability of default changes with the
rating, eg, as given in the S&P rating migration matrix; see Table 9 in Appendix B.

Link of credit risk model and loss process type

Loss process types are defined by two components of the applied credit risk model:
the hazard rate and the vector of asset class sizes. Besides this, all input parame-
ters define the asset class characteristics, but not the process type. The mapping
of process types, hazard rate, and asset class size can be seen in Table 6. For
the readability of the table, we define two parameters: D!, = Y/ 1 e, =1} and

in=1
M, =Y (I{Y;,in:o} : l{mn,,-n:t})

Table 6 Risk model parameters of asset class n in time period ¢ for credit loss process types.

Type 1 Type2  Type3 Type 4
Hazard rate 7, PD, PD, PD, PD},
Cumulative hazard rate H,  ¢-PD, t-PD, t-PD, Y. ,PD,
Number of obligors u/, -t —pt ! u'—pl—M, W'Dl

Notice that the application of a credit risk model, such as Conditional Independent
Defaults or Copula Model, already accounts for the reduction of asset class size due
to defaulted obligors. Hence, for technical implementation, one does not have to
deduct D!, for process types one, three, and four but has to add the number of replaced
defaulted obligors for process type two.

Inserting the input parameters according to Table 6 in a credit risk model leads
to the correspondent cumulative loss distribution. To deduce the loss distribution per
period, one has to consider the difference of cumulative losses in period ¢ and # — 1.

3.3 Simple credit risk trees

We illustrate the processes introduced above using probability trees. This allows us to
make certain concepts, like filtration, more tangible and to define and illustrate several
terms for the subsequent discussion of risk measurement. We consider an exemplary
portfolio consisting of two independent obligors, ie, N =2, u; =uy =1, T = 3. The
resulting tree structures for the four types of credit processes are displayed in Figure 3.

In the figure, d, indicates default of the obligor in asset class n € {1,2}, d»
indicates default of both obligors and n indicates no default at the given time period.
This means d; £(x% = 1,x£ =0) and so on. The trees of Types 1 and 4 only differ in
their distribution of default probabilities.

The filtration .% = (%), is given by the available information at any given time
t. In the case of trees, the filtration corresponds to the partitions of the space Q2 that
represents the available information at time 7 = 3. For tree Type 1, this for instance
means
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/\

dl\{lz 7‘12\ d]z
/dz/dl ..
- T d —_— ..
n —~ th.. d
diz . —
/j] n ~ dy
n <d2 n _4 n—
< 2 =
" h Type 3 with
Type 1 and 4 Type 2 my=1,my =3

Fig. 3 Credit loss trees for two obligors for the four credit loss processes given in Section 3.2, using the
notation from Section 3.3

- Q= y}; = {[dldz], [dlndz], [dlnn], [dzdl], [dgndl], [dzl’ln], [dlz], [ndldz], [ndln],
[ndyd1], [ndan], [nd12], [nnd], [nnd), [nnd2], [nnn] },

{
ﬁ]:{[ . [da),[dra). [},
- F ={ldid2],din],[d2d\], [d2n], [d12], [ndy], [ndb], [nd12], [nn] }.

Hence, .%; is a refinement of .%;_.

3.4 Application on credit loss trees

In order to visualize the effects of different loss processes as well as risk measures
on portfolio risk, we apply one of our multi-period ES risk measures from above to
the simple example of a credit loss tree, where determination of risk is analytically
solvable. We choose the product-type capital requirement with a focus on final values
at the end of period T'. As a credit process, we consider cumulative losses of a credit
portfolio of independent obligors. Thus, we formally make the following assumptions:

The portfolio consists of # = 2 obligors.

As a risk measure, we choose the multi-period ES with a focus on final values as
introduced in Example 1 in Section 3.1.

The confidence level of the risk measure is & = 0.95.

The initial rating of both obligors is BB, which corresponds to PD| = PD} = 0.9%.
We consider one to ten periods, ie, 7 = 1, ..., 10. Notice that the vast majority of
loans is fixed for a maximum period of ten years.

The correlation between the loss indicators of both obligors is p1 > = 0.
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Fig. 4 Expected Shortfall as final-values-focused capital requirement of cumulative loss distribution for
four types of credit loss trees as introduced in Section 3.2.

— We analyze the effects of rating migration. One obligor improves, and the other
devalues the PD by 0.1% per time period.

Based on the given data, we calculate the risk of the portfolio in a model of
Conditionally Independent Defaults for one to ten periods. As loss processes, we
consider cumulative loss processes of Types 1 to 4. Figure 4 displays the resulting risk
in the four cases as a function of the considered time frame. The analysis reveals that
ES with a focus on final values increases with T for cumulative losses. The increase is
high in the first two or three periods, but becomes smaller for more time periods due to
the high level of discreteness of the example. Furthermore, the calculation shows that
risk is highest if defaulted assets are replaced (Type 2). Obviously, risk is decreased
by reduced maturity of assets. We wish to point out that Types 1 to 3 lead to almost
identical ES values up to time period 4, but onwards the gap widens.

Our two main takeaways here are that firstly, risk increases with the considered
time frame 7', and secondly, the chosen process type has an increasing influence on
portfolio risk, the more time periods are considered.

3.5 Application on credit risk models

After the highly stylized example above, we now continue to determine the risk of a
more practical credit portfolio. We therefore consider a portfolio with 100 obligors.
As credit processes, cumulative losses are considered. We determine risk with both
focus on final values and weighted capital requirements, respectively, as introduced in
Section 3.1. Thus, we formally make the following assumptions:

The portfolio consists of # = 100 obligors.

As a risk measure, we choose the multi-period ES with focus on final values and a
weighted capital requirement with discount rate, respectively.

The confidence level of the risk measure is & = 0.95 as above.

The initial rating of the obligors is BB, which corresponds to PD' = 0.9%.

We consider one to ten periods, ie, T = 1, ..., 10 as above.
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— As a discount rate for weighted capital requirements, we set » = 0.1.

— We analyze the effects of rating migration according to the S&P transition matrix
(Table 9) with initial rating BB for # = 1. The resulting conditional average portfolio
PDs for the 10 considered time periods are:

PD' = 0.9%, PD?* = 1.54%,PD? = 2.03%, PD* = 2.47%,PD’ = 3.17%,PD® =
3.44%,PD’ = 3.66%,PD® = 3.84%,PD° = 3.98%, PD'" = 4.09%.

— We choose the model of Conditionally Independent Defaults and the Copula Model

with a Gauss-Copula with covariance matrix X as risk models, where

1 017---017 0.1 - 0.1
s_|017 101 0.1
“lo1 -~ 01 1 014---014 |

0.1 0.1 014 e 1

which is assumed to be constant over time.

Based on these assumptions, we determine, via Monte Carlo simulation, the
cumulative loss function for the different time frames T € {1, ..., 10} and calculate the
respective portfolio risk. The results are displayed in Figures 5 and 6. This allows us
to analyze the effects of the chosen process, credit risk model, risk measure, and time
frame on portfolio risk.

Risk increases with time in all considered cases, as becomes apparent when
evaluating the figures. Hence, assets with a high maturity level lead to higher risk
values in general. The risk of cumulative losses with a focus on final values increases
nearly linearly with T for all credit loss processes but Type 3. In a Copula model
(Figure 6), risk is higher than it is in a model of Conditionally Independent Defaults
(Figure 5) due to the correlation of default events. In particular, a loss process of Type 2
leads to clearly higher risk for large 7. This effect can be explained by higher default
rates, which have, in addition to the direct effect on risk, the secondary effect of a
higher number of replaced assets for the following periods. Besides this difference, the
results for Conditionally Independent Defaults and Copula Models are comparable.

If we include rating migration according to the S&P transition matrix, we see
a stronger risk increase with time in Figures 5c and 5d, caused by a worsening of
the average portfolio PD. It is worth mentioning that high initial ratings lead to an
above-average risk increase due to the extremely low risk in a one-period setting for
a confidence level of 95%. For higher confidence levels, this effect reverts back to
the opposite. In Figure 7 we compare, for example, the one-period risk as a weighted
capital requirement with discount rate » of an AA-rated asset (ESéS% = 0.4) with
its ten-period risk (ES;(S)% = 2.9), which implies that the long-term risk is 7.1 times
higher. For a BB-rated company, it is merely 6.9 times higher. However, for o = 99%
the factor for an AA-rated asset is 3.6 while it is 5.9 for the BB-rated asset. This shows
that short term risk measurement can over- or underrate the risk of an asset, depending
on credit quality and chosen risk measure or quantile. Furthermore, this result reveals
that maturity effects decrease when the quantile is increased. This is consistent with
the work of Kalkbrener and Overbeck (2002).
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Fig. 5 Risk as weighted (with discount rate » = 10%) or final-values-focused capital requirement of loss
distribution for different types of credit loss processes as introduced in Section 3.5, simulated in a risk
model of Conditionally Independent Defaults with 100,000 model runs.

Our analysis in this section highlights the fact that multi-period risk measurement
is based on a number of different potential loss processes and risk measures and their
choice can lead to significantly different results. Hence, it is important to respectively
choose the most relevant process and risk measure carefully.

Relevance of a risk measure depends on the purpose of risk measurement. Here,
two dimensions should be considered: Relevance of timing of default events and
cost of capital. The question of timing of default leads to a decision between a risk
measure with a focus on final values, where only the outcome at maturity counts,
and a weighted capital requirement, where each period matters. Differences might
be triggered by rating migration or options of interference. As Figures 5 and 6 show,
high maturities lead to a higher level of risk for a final-value focused risk measure
than for a weighted risk measure with a discount rate. The reason for this effect is that
the weight for high cumulative losses at the end of the considered time frame is one
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requirement for different initial ratings.

Fig. 6 Risk as weighted (with discount rate » = 10%) or final-values-focused capital requirement of loss

distribution for different types of credit loss processes as introduced in Section 3.5, simulated in a Copula
Model with 100,000 model runs.

for a final-value focused risk measure, while it is lower for weighted risk measures.
If economic capital is a limiting factor and therefore a worsening of ratings in early
periods is critical, the risk measure should consider more than the final value. Also, if
portfolio managers have the chance to react to a change in portfolio characteristics, the
risk measure should reflect these changes. Finally, when considering cost of capital,

the weighted capital requirement should be chosen, which is capable of reflecting the
time value of capital cost.
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Fig. 7 ES of cumulative loss L7 as weighted capital requirement with confidence levels o = 95%, and
a = 99%; simulated in a model of Conditionally Independent Defaults with 100,000 model runs.

3.6 Multi-period capital allocation

Once the risk or economic capital of the complete portfolio is determined, the next step
for portfolio valuation and optimization is the allocation of risk to the subportfolios,
as introduced in Section 2.4.

As an example, if we consider ES as a weighted capital requirement and L =
(L"), = (I'); as loss process, ie, p((I');) = XL, w,ES(I"), then

Zthl w, ES (Zn;ém 12 + hl)tn) - ZtT=1 w; ES (Zn;ém 12)

Ly) =1
plln) = limy h
o i . _ES (Zn;ém lﬁz + hlin) —ES (Zn;ﬁm 151)
=Y w;lim .
= 0 h

The resulting allocated capital of subportfolio m equals the weighted sum over all
periods of allocated capital per time period.

If this allocation principle is applied for portfolio management purposes, it im-
plicitly assumes that each subportfolio is homogeneous or moderately heterogeneous;
see Dorfleitner and Pfister (2012, 2013). For small or inhomogeneous subportfolios,
alternatives such as incremental risk measurement should be used.

If we consider a capital requirement process p = (p');, it has to fulfill the three
conditions of normalization, monotonicity, and the translation property as defined in
Cheridito and Kupper (2011). According to Cherny (2009) a utility allocation can be
defined for this kind of risk process. If we choose gradient allocation to calculate the
utility contribution or respectively the risk contribution of one asset class at time 7, we
obtain

. ! Ly, +hL,) — p"(Lzm Ln
Pt(Lm) — lim p (Zn;ﬁm + ) p (Z # )
h—0 h
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Table 7 Absolute and relative risk of the second asset class (rating of first asset class: AA) for different
initial ratings as weighted capital requirement with @ = 95% and discount rate » = 10%; modeled in a
model of Conditionally Independent Defaults with 100,000 simulation runs.

T=1 T=5 T=10
abs rel abs rel abs rel

AAA 0.0 0.0% 1.2 414% 2.1 42.8%
AA 04 500% 1.6 500% 29 50.0%
A 1.1 729% 27 627% 47 61.8%
BBB 1.5 795% 52 765% 95 76.7%
BB 33 894% 133 89.0% 229 889%
B 9.0 958% 31.1 95.0% 43.0 93.8%

Here, p’ can be interpreted as risk of the portfolio at time 7 given all future information
up to time ¢ — 1. Desmedt et al (2004), for example, defines p’ as follows: Let R (L) =
E[YL'|.7"), then p' = p(Y.L' —R'|.Z"), where p is a one-period risk measure.

The target of this work is to use capital allocation for portfolio optimization.
Therefore, we focus on the first case of allocation of real-valued capital requirements.
Our analysis examines the dependence of allocated capital and of the considered time
frame. Let us introduce another example in order to examine the effects of the chosen
risk measure and time frame on allocated capital: We consider a portfolio consisting
of two asset classes with 100 obligors each (u% = ué = 100). The two asset classes
are independent. We consider the allocated capital as a weighted capital requirement
(ESy with & = 0.95, discount rate r =0.1) for T =1, T =5, and T = 10. The first
asset class is fixed and has an initial rating of AA. Asset class 2 at time period t = 1
has an average asset class rating of AAA in the first case, AA in the second case, ...,
or B in the last case, according to the S&P rating definition. The rating, and hence the
PD, of both asset classes will migrate according to the modified S&P transition matrix
given in Table 9. We compare the absolute risk of the second asset class for all cases,
based on the cumulative loss process (Type 4), as well as the relative proportion of
allocated risk as a fraction of the total capital requirement of the portfolio. The results
are reported in Table 7.

Rating migration has a significant influence. As Table 7 shows for a confidence
level of @@ = 95%, the relative share of capital of higher initial rating decreases for ES
as weighted capital requirement. The same calculation for higher confidence levels
leads to the opposite result, ie, worse-rated credit instruments need an even higher
share of required capital when two or more periods are considered. This result gives
a first indication that the chosen time frame might influence portfolio management
decisions.

3.7 Effects on portfolio optimization
In order to discuss the effects of multi-period risk measurement on portfolio opti-

mization decisions, one has to define a target parameter. In this section we will use
RORAC. The definition of RORAC in a multi-period setting is dependent on the
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Table 8 RORAC per asset class for two asset classes with different initial rating (AA and BB) for 7 = 1
and 7' = 10 with & = 95% and & = 99% in a model of Conditionally Independent Defaults; RORAC is
calculated according to formulas (1) and (2).

Asset class 1 Asset class 2

one-period  final values  weighted one-period final values  weighted

Time periods 7' 1 10 10 1 10 10
pDT 0.02% 0.29% 0.29% 0.90% 4.09% 4.09%
Cum. return 0.06 0.60 0.40 0.20 1.81 1.25
ESos9, 0.40 4.37 2.85 3.31 34.50 22.87
ES99g, 1.02 5.41 3.65 425 37.25 25.12
Expected cum. loss ~ 0.02 1.42 0.80 0.90 25.62 15.94
RORAC (95%) 15.91% 20.28% 19.75% 8.30% 20.39% 18.03%
RORAC (99%) 6.02% 14.98% 14.20% 5.98% 15.57% 13.61%

chosen loss process, risk measure, and allocation principle. Hence, there are a lot of
different ways in which to calculate RORAC. We wish to analyze whether the chosen
definition has an impact on the portfolio management decision. In this section we use
the following two alternative RORAC definitions, which match the two risk measures
from Section 3.1:

Cumulative return
RORAC = 1
ES with focus on final values — Expected cumulative loss M

or

Present value (PV) of cumulative return

RORAC = 2

ES as weighted capital requirement — PV of expected cum. loss
Notice that in a one-period setting, the two formulas coincide and meet the classic
definition.

We revisit the example of the previous section in order to analyze the effects of
the choice of risk measure and RORAC definition on a portfolio optimization decision.
Two asset classes with different initial ratings are provided. Assuming that each asset
class consists of 100 obligors at time f = 1 and each non-defaulted obligor yields a
return of 0.0006 in the first asset class and 0.002 in the second asset class, if we focus
on the case where the first asset class had a initial rating of AA and the second asset
class BB, we can determine the RORAC per asset class.

We calculate the average PD with the rating transition matrix given in Table 9. The
ES is determined via a simulation of the cumulative loss distribution with a model of
Conditionally Independent Defaults as introduced in Section 2.2. We use the definition
of capital requirement with a focus on final values and weighted capital requirements
from Section 3.2 with a discount rate of 10%. The expected cumulative loss is deduced
from the simulated loss distribution. Finally, we calculate the expected cumulative
return by multiplying the return per deal with the expected number of deals per period.
In order to obtain the present value used for the second case, we discount the yearly
return by a rate of 10%. If we follow the basic concept of an optimization algorithm as
introduced, eg, in Rockafellar and Uryasev (2000), we have to invest in the asset class
with the higher RORAC. Using the one-period ES, this leads to an increase of Asset
class 1 for both confidence levels. However, if a ten-period ES with a focus on final
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values is used, the RORAC is higher in Asset class 2, as shown in Table 8. The results
also demonstrate that the RORAC varies considerably with the chosen risk measure
and time frame.

This example illustrates that the portfolio optimization decision is influenced
significantly by the choice of the risk measure and time frame. This leads to the
necessity to define a clear optimization target and to trade short-term profitability
against sustainability.

4 Conclusion

In order to apply multi-period credit risk measurement, capital allocation, and portfolio
optimization to credit portfolios, a number of practical aspects have to be considered.
In this article, we reviewed the relevant literature for the main ingredients, namely
credit risk models, risk measures, and capital allocation principles and applied the
techniques to real-world examples.

First of all, a suitable credit risk model is required to simulate credit losses. Here,
one is required to distinguish between loss and cumulative loss, and one has to be
aware of the effects of different assumptions, such as the replacement of write-offs,
replacement of matured assets, or rating migration. We made these assumptions and
showed how this presetting has to be incorporated in an applied credit risk model.

Based on the so-defined different types of loss processes, risk measures can be
introduced. Expected Shortfall can be expanded in different ways in a multi-period
setting with deviant results in absolute terms. We introduced ES as weighted capital
requirement with a discount rate as risk measure in order to display the future capital
requirement of a loss process as present value of cash flows.

In order to achieve a risk-return-based portfolio management decision, the result-
ing portfolio risk has to be allocated to asset classes. One-period capital allocation
principles and portfolio optimization can be applied to a multi-period setting. Based
on an example we illustrated that portfolio optimization decisions with a view on
multi-period risk can be different from the one-period view. Hence, there is a trade-off
between short-term and long-term capital needs. If multi-period risk measurement
and portfolio optimization are applied, this implies that risk management departments
face a number of different practical issues and challenges in three areas: interpretation,
implementation, and communication.

In the first area, the main issue is that the new assessment technique leads to a
number of alternative risk numbers depending on the chosen time frame, loss process,
and risk measure. It is crucial to interpret each number correctly and to choose the
most relevant one for the decision process. Furthermore, the multi-period risk measure
will differ from the (maturity-adjusted) regulatory capital requirement (see Kalkbrener
and Overbeck 2002). This deviance has to be interpreted as well, and a consideration
and weighting of sustainability and long-term risk reduction versus short-term capital
needs is required.

Implementation is closely linked to the interpretation result. Systems and IT
infrastructure have to provide the option to consider all different types of relevant risk
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measures. Also, the reporting structure must exhibit the different types of risks and
processes, and every affected employee has to be trained to read the new numbers.
Finally, the multi-period setting leads to a higher level of complexity in commu-
nication between risk modeling experts and management or externals. While rather
simple concepts like VaR can be communicated to non-specialists, the rather complex
time-dependent risk concept that leads to a number of different outcomes per credit
instrument may lead to confusion. Overall, the barriers to a more sustainable under-
standing of risk measurement should not be underestimated, but can be overcome.
All these challenges of application are interesting food for further thought. Fur-
thermore, our results are based on models of Conditionally Independent Defaults and
Copula Models with time-independent copula. An indication that default risk depen-
dencies change over time, based on the example of the subprime crisis, can be found
in Grundke (2010). It is subject to further research to transfer the results to alternative
models or parameters, such as time-varying correlation or copula, respectively.
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Appendix A: Multi-period risk measures

In this appendix, we demonstrate several ways in which risk measures can be extended
in a multi-period setting. We consider the two most common risk measures, VaR and
ES, for a random process L = (L'),.? For later use we define

%, = {Y|Y is #'-measurable},
Ay =4{Ze L*|P(Z<0)<a}forac (0,1)and Z € F', and
Ay ={2¢€ L7|E(Z-14)>0,VA' € F' s.t. P(A") > a}.

1. One-period view: simple capital requirement; see, eg, Frittelli and Scandolo (2006).
This definition coincides with the common definition of VaR as a quantile of the
loss distribution function and ES as the expected loss, given that the loss exceeds
a certain barrier.

P r(L) = VaRo(L) = inf{y € RIP(L+y < 0) < o}
.15 (0) = ESa(l) = sup{ ~E(LIA)A € 7, P(4) > a}

2 Notice that VaR is not coherent. While some authors argue that it should not be classified as a risk
measure at all, we consider VaR to be a non-coherent risk measure.
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2. More-than-one periods: product-type standard capital requirement; based on the
product-type acceptance sets given in Frittelli and Scandolo (2006).

A =) XX XA
o = oy X A2 X ... x AT,

T
then Py (L) = Y VaRa (L"),

=1

ESq(L).

gl

and p; . (L) =

t=1

3. More-than-one periods: product-type capital requirement with a focus on final
values; based on the product-type acceptance sets given in Frittelli and Scandolo
(2006). This approach merely accounts for loss at the end of maturity. The dif-
ference to the one-period setting is that asset class characteristics, like PD, can
change over time.

A =LXLX XL A

In illiquid markets in which interference of risk managers is not possible, the focus
is on final values. However, the concept of capital requirements with a focus on
final values ignores an increase of capital requirements by rating downgrades for
t < T as well as the timing of default.

4. More-than-one periods: product-type weighted capital requirement; based on
the cumulative-stopping risk given in Assa (2009). We use a discrete version
of cumulative-stopping risk. In its easiest form, this risk measure describes the
arithmetic mean of the risk in future time periods. By changing the weights, this
approach is generalized in a way that it is able to account for influence factors like
time value of money.

o = oy X A2 X ... X AL,
A =) X Tp X ... XA

T T
n(Y)=Y wY with ) w, =1,
=1 t=1

~
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5. More-than-one periods: product-type discounted capital requirement. The identifi-
cation of risk with capital requirement in a multi-period setting translates into the
present value of the discounted future cash flows triggered by in- or decrease of
capital requirements per period. Expected Shortfall in this sense can be described
as follows:

pa(L) =ESa(L') + . : (ESq(L?) —ESq(L")) +---+

“+r
+¥(
(1+r)T-1

where r is the discount rate. ES (L) — ES4(L'~") describes the change of capital
requirements in period ¢ that occurs due to rating migration or maturing assets.
In the first period the full capital requirement ES¢ (L') has to be raised. At the
end of the last period the remaining capital ESq(LT) is freed if we assume that
all remaining assets mature. In this manner, only opportunity costs of capital
per period are taken into account. This implies that unexpected losses over the
complete time frame are 0, ie, loss approaches expected loss. Therefore, this
definition should only be used for large 7.

ESq(L") —ESq (L™ 1)) - ﬁ ESq(LT)

6. More-than-one periods: product-type weighted capital requirement with discount
rate. A potential approach of considering opportunity costs without ignoring
unexpected loss is a combination of Example 3 with Example 5. In Example 3
we ignored opportunity costs and timing of default events, while in Example 5
we only focus on opportunity costs. We can define the total risk as the sum of
opportunities up to time 7' — 1 (which equals to Example 5) and the discounted
final-value risk at time 7'

1 ((1 o ES“@)) g7 ESe(E) ®

r-l r =t 1 7T
= <(r)tESa(L )) +WES(1(L )

In this sense, the combination of discounted and final-value focus risk measurement

is a weighted capital requirement with weights w, = (H%), fort=1,...,T—1and
— 1 3

WT = T

As an alternative, we set ESy(L') = 0 for # > T and can then interpret the dis-

counted capital requirement as weighted capital requirement (Example 4) with
r

wi = (piyr for r € [0,1). It follows for 7' — co that limr .. Yo ow=1.

3 Notice that while it may look as if ESq (L") was discounted only for T — 1 periods, it is actually
discounted for T periods, cf. Equation (3).
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Table 9 One-year migration matrix (in %) of average global corporate transition rates based on S&P data
(1981-2011) excluding unrated corporates; rows indicate initial rating, columns indicate rating after one
year.

AAA AA A BBB BB B CCC
AAA 9023 8.99 0.56 0.05 0.08 0.03 0.05
AA 0.58  90.00 8.65 0.56 0.06 0.08 0.02
A 0.04 2.00 91.59 5.71 0.40 0.17 0.02
BBB 0.01 0.13 3.80  90.71 4.18 0.68 0.16
BB 0.02 0.04 0.18 5.82 84.23 7.98 0.83
B 0.00 0.05 0.15 0.25 6.35  83.69 5.04

CCC 0.00 0.00 0.21 0.32 0.97 17.01 54.66

7. More-than-one periods: utility-based standard capital requirement; based on the
utility-based acceptance sets given in Frittelli and Scandolo (2006).

o ={Z e L”|N(Z) > N(Z*)}, with N utility functional, ie, N : & — R
is concave and strictly increasing with N(0) = 0, and Z* reference process,

eg, N(Z) =E(Z' - 14|.7"7"), vA' e Z'71 P(A) > a, and Z* =0,

then p(L)=po L' I?,...,L Z sup{ —E(L'|A"Y)} ZES (L"),
and p(L)=p g=(L',[*)= inf {sup( E[L'+17 - Y|A2D}.
e Yed) p2

Appendix B: S&P rating migration matrix

See Table 9.
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