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Human characteristics concerning voluntary motion control are investigated, because this motion is fundamental for the machine
operation and human-computer system. Using a force feedback haptic device and a balancing task of a virtual inverted pendulum,
participants were trained in the task, and hand motion/force was measured, and brain activity was monitored. First, through brain
analysis by near-infrared spectroscopy (NIRS) and motion analysis of the pendulum, we identified a participant who was the most
expert. Next, control characteristics of the most expert were investigated by considering the operational force and delay factor
of a human. As a result, it was found that predictive control based on velocity information was used predominantly although a
perception feedback control against the pendulum posture worked. And it was shown that an on-off intermittency control, which
was a strategy for the skilled balancing, can be described well by a liner model involving two types of time shifts for the position and
velocity. In addition, it was confirmed that the cortex activity for observation in an ocular motor control area and visual processing
area was strong to enhance above-mentioned control strategies.

1. Introduction

Modern life is surrounded and enhanced by gadgets based
on mechatronics and computer products. However, in some
cases of machine manipulations, such as driving of a
vehicle, it appears to be implicitly required that humans
must train themselves to use the machines. Hence, control
theories on a human-machine system and the development
of assistive robots and computer systems have become an
active area of research. On this issue, many international
research projects have been launched: Human Adaptive
Mechatronics (HAM) project [1, 2] whose main concerns
are analyses of a human skill and the establishment of the
assistive methods, COGNIRON [3], which is concerned with
robot companions for human-centered environments, and
the MORPHA [4] project, which studies interactions with
intelligent system assistants.

Because knowledge of human control characteristics
is useful in designing an operational assistance system,
human modeling is a significant theme in such research
projects, and this theme has been studied in the field of

control engineering since its early beginnings. Regarding
basic models, a linear servo control model [5], a PID-based
time-variant model having randomness [6], and an optimal
control model [7] had been proposed. A crossover model
that expresses human flexibility and wide-range adaptability
is frequently utilized to tune a controller in a human-
machine system [8].

Skilled motion of human body parts requires an adequate
cooperation between perception from sensory receptors,
cognition in the brain, and motor control, as in the model
human processor (MHP) [9], and voluntary motor control
and visuomotor control are especially significant. Points of
discussion about the visuomotor control appear as (a) time-
delay compensation, (b) learning, and (c) estimation. Since
delays lie between about 30 ms for a spinal reflex up to 200–
300 ms for a visually guided response [10], the visuomotor
control cannot work well without some compensation for
delay. This is why the discussion (a) occurs. The Smith-
predictor is often used as a human model to compensate
for time-delays of the nerve system [11]; however, a forward
model on the sensory preprocessing loop of control is
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another good model because the estimation error in the
Smith-predictor does not converge theoretically if the con-
trolled system is unstable [12]. Regarding the discussion (b),
learning, feedback-error-learning model is widely accepted
[13]. After learning is finished sufficiently, a forward model-
based controller gives the most suitable explanation for the
visuomotor control [14]. And, the forward or internal model
is considered a basic mechanism to estimate the next state
of the body parts given the current state and action [12].
Mechanism of the visuomotor control has been studied
through various experimental tasks: a hand reaching test
under dissociated visual information against proprioception
[15], a tracking task using an impedance-controlled robot
[16], and a crank turning task [17]. Many studies on the
stick balancing or manual control of a pendulum are also
reported [18–25], and the following facts about the skilled
stick balancer are known.

(F1) The distribution of change in the hand velocity is a
truncated Lévy distribution [21].

(F2) The power spectrum of fluctuations in the stick’s
height shows two scaling regions with two different
power laws [20, 24, 26].

(F3) About 98% of corrective movement occurred faster
when compared to the time delay of human percep-
tion [22].

Concerning (F1), it was reported that increases in stick
balancing skill over were mirrored by a broad of the tails of
the distribution of the changes in speed of the hand. The
reason of the truncation is the decrease of the role of closed-
loop feedback [21]. The fact described in (F2) is interpreted
as a sign for on-off intermittency. Existence of the on-off
intermittency control means that human is not a simple
continuous-time controller but a complex of controllers that
are switched depending on the circumstances. Since the two
different power laws are also found in both finger-tip direct
stick balancing and virtual indirect stick balancing, this ten-
dency appears an intrinsic characteristic of a skilled human
who controls unstable object. Fact (F3) is very fascinating
and suggests that an effect of direct visual feedback is small.
The phenomenon described in (F3) is interpreted as a result
of parametric noise control or drift-and-act control [25].
So-called noise control increases stability of slow (passive)
phase in the on-off intermittency control (the drift-and-
act control). It has already been verified that such random
fluctuations can improve balance control [23]. The noise
control appears to be governed in the motor system in
the brain due to faster processing than delays in the nerve
system for visual perception; however, visual attention to the
controlled object is also required to switch the on/off phases.
The above discussion is summed up by the fact that the
human control in stick balancing is a complex of the delay
compensator in the sensory loop, a parametric noise control
in the motor system, and a feedback-like switcher for on-
off intermittency. Then how is the human brain activated to
execute such complex processing?

On the other hand, although force was often measured to
investigate operational characteristics of a human, the force

information was rarely considered in previous studies on
the stick balancing task, where alternative information such
as the hand position, the cart velocity, or the acceleration
computed from the positional data was used. In a precise
sense, movement of the stick is a result that occurs after the
human affects it; the movement is not direct information
from the human. For analysis of skill for the machine
operation, a relation between a human and a machine should
be considered carefully in order to avoid misconstruing the
machine characteristics as human properties.

In addition, two delays should be considered in the
position and velocity variables for description of a human
controller, because the velocity information cannot be
recognized using only measurement of the present time t.
That is, the velocity is computed as a difference between
the present position p(t) and past position p(t − τ), where
τ is some delay on perception [27]. In most of the studies,
however, one type of time delay was only treated (Although
two delays were considered in the proportional-minus-delay-
controller in [28], the discussion there was based on the
theoretical analysis using control engineering and not on the
human response data. In [29], two delays associated with
the proprioception and vision control loops were introduced;
however, human postural sway control, which was not pure
voluntary motion control, was analyzed. Moreover, both
studies assumed solely pure time-delay and did not consider
prediction effect that can be expressed by minus value of time
delay.).

From the above-mentioned discussions, in the present
study, the following were performed:

(O1) development of a virtual stick balancing task system
using an input device that enables to generate precise
reaction force,

(O2) wide-area monitoring of the brain cortex in the
process of learning during a machine operation, and

(O3) identification of the human control characteristics
using the force information by considering two delays
for the position and velocity.

For (O1), an haptic interface, that had a movable unit
controlled with specified dynamics and equipped with a force
sensor, was developed. Using this interface system, data for
the identification denoted in (O3) were obtained.

Regarding (O2), several noninvasive brain function mea-
surement methods capable of normal activity are known, as
summarized in Figure 1. The functional magnetic resonance
imaging (fMRI) and positron emission tomography (PET)
have made a significant contribution to elucidation of the
functions of the nervous system. These methods, however,
request to rest completely supine or prone inside the tunnel
and the subject cannot move the body. That is, it is difficult
for the fMRI and PET to investigate the brain of an
operator who manipulates the machine in a natural attitude.
Other popular method capable to monitor brain activity
concerning voluntary motion is the electroencephalogram;
however, the measured signal is contaminated by electric
noise from the device that was operated by the subject.
Hence, in the present study, a near-infrared spectroscopy
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(NIRS) system was used to resolve above-mentioned issues.
The NIRS system measures changes in the concentration of
oxy- and deoxy-hemoglobin using different spectra lasers in
the near-infrared range. Since “the hemodynamic response
is partly related to neuronal activity [30],” the activation
strength at each local brain area can be estimated by detecting
changes in the concentration. The NIRS is robust against
electrical noise because of laser measurement and allows it
to measure the brain activation of natural behavior in a
nonrestrictive environment, such as speaking [31], reading
[32], and language recognition [33]. In addition, there are
several reports showing robustness of the NIRS against body
heady motion: cyclic coupled movements of the hand and
foot [34], multijoint discrete motor task (i.e., bilboquet)
[35], and medical rehabilitation by walking [36]. Of course,
the NIRS is not a perfect method and there are some
objections due to the limitation of the spacial and temporal
resolution. Alternative approach to investigate voluntary
motion might be the motor imagery (MI) using fMRI [37].
However, in practice, it can be very difficult for subjects,
especially novices, to perform MI at all [38]. Considering
situations mentioned above, for the wide-area monitoring
that permits the subject to manipulate the interface device,
there is no adequate measurement system except the NIRS.

In the present study, actions described in (O1)–(O3)
were performed, and properties of the most expert were
investigated. As previous studies using NIRS did not pay
attention to a decomposition of the multiple activation
patterns, the measured NIRS signals were analyzed by
principal component analysis (PCA).

The latter sections are organized as follows: Section 2
explains details of an experimental system and PCA. The
experimental results are shown in Section 3. Section 4
describes the preliminary analysis of brain activation and
manipulation in the accreditation of the most expert in the
balancing task. Main analyses of the brain and the control
characteristics of the certified expert are outlined in Sections
5 and 6, respectively. Section 7 presents the conclusion and
discussion.

2. Experimental System Setup

The left side of Figure 2 shows a photograph of the
experimental setup. The experimental system consists of
three units: a real-time computer graphics (CG) generator of
a virtual pendulum, a haptic interface device, and an NIRS
system. The participant sat in a chair to suppress excessive
artifact caused by unnatural body movement. The arm and
elbow were not fixed to the chair since we intentionally
allowed the participant to posture themselves. In order
to give the participant a sense of supporting the virtual
pendulum on the palm, the participant manipulated a grip
fixed to the slider of the interface device by placing the
back of the right hand on the grip. The force added by
the participant was detected by the sensor embedded in the
slider. The motion of the virtual pendulum was computed
in real time using the detected force. Details of each unit are
explained below.

2.1. Virtual Pendulum. Although many studies have been
conducted on manual stabilization of an (virtual) inverted
pendulum (-like motion) using an input device [12, 24],
there are few studies utilizing such device that can generate
precise reaction force. Commercially available joysticks with
force-feedback function were used in some researches, but
such joystick cannot measure the human force and cannot
generate precise reaction force due to insufficient linearity,
large hysteresis, and backlash. Therefore, in the present
study, a linear stage controlled using a virtual-internal-model
control (VIM) was utilized in order to make the operator feel
precise reaction force.

In what follows, computation of virtual pendulum
motion with force input is mentioned briefly, because a
numerical model is required to explain the later analysis
in Section 6. Motion equations of a standard linear-type
pendulum adopted in this research are given as

(
J +mpl

2
)
θ̈ +mpl · cθẍc

= h1, h1 := −cpθ̇ +mpgl · sθ,
(1)

mpl · cθθ̈ +
(
mc +mp

)
ẍc

= h2, h2 := −ccẋc +mpl · sθθ̇2 + f̃h,
(2)

where J (kgm2), mp,mc (kg), cp (Nms/rad), cc (Ns/m),
2l (m), and g (m/s2) are the inertia of the pendulum
around the center of gravity, masses of the pendulum-
link and the cart, viscous coefficients of the pendulum and
the cart, total length of the link, and gravity acceleration,

respectively. Variables θ, xc, and f̃h are the inclination angle
of the pendulum link, the position of the cart, and the virtual
exogenous force computed from the measured force fh. The
notations of cθ and sθ are abbreviations for cos θ and sin θ,
respectively. For a real-time computation, (1) and (2) are
modified as

T · ξ̇ = h, (3)

T :=

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 mpl · cθ J +mpl2

0 0 mc +mp mpl · cθ

⎤
⎥⎥⎥⎦,

h :=
[
ẋc, θ̇,h1,h2

]T
,

ξ :=
[
xc, θ, ẋc, θ̇

]T
.

(4)

Since (3) yields ξ̇(t) = T(ξ)−1·h(ξ, f̃h), values of the variables
ξ are obtained as follows by Euler integration:

ξ(t + dt) = ξ(t) + ξ̇(t) · dt, (5)

where dt is a sampling interval. Using ξ computed by (5), the
posture of the CG-pendulum was drawn using the Direct-3D
library, and the motion picture was displayed via a projector.
In the experiment, the parameters of the pendulum were
chosen as mc = mp = 1.6 g, l = 1 m, b = 5 · 10−5 Nms/rad,



4 Advances in Human-Computer Interaction

Modalities/items

Restrictions imposed
on the subject

Spatial resolution

Deep brain
measurement

Measuring object

15 mm 2 mm 5–15 mm 20 mm

Good Good Fair or poor Impossible

PET
(positron emission

tomography)

• Injection or
inhalation of
radioactivity

• Complete rest
supine or prone
in the tunnel
during
measurement

fMRI
(functional magnetic
resonance imaging)

• Complete rest
supine or prone in
the tunnel during
measurement

• Acoustic noise

MEG
(magneto-

encephalography)

Complete rest
during

measurement

NIRS
(optical

topography)

Small motion is
admitted during

measurement

Tracers in blood
and its metabolite

Paramagnetism of
deoxy-hemoglobin

Magnetic flux of
neuron-current

Light absorption
by oxy- and

deoxy-
hemoglobin

Figure 1: Comparison of noninvasive brain measurement methods.
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Figure 2: Experimental setup (a) and the head probe of the NIRS system (b).

and cc = 0.0275 Ns/m so as to simulate a light pendulum.
As the scale factor α was chosen as α = 60, the participant
could virtually feel the reaction force of the 100 g (= mpα)
pendulum.

2.2. Haptic Interface Controlled by VIM. The haptic device is
a one degree-of-freedom slider driven by a linear direct drive
motor, produced by NSK corporation, and the maximum
force is 560 N and the accuracy of positioning is 0.3 μm. The
VIM control was used to move the slider like the cart of
the virtual pendulum. The dynamic equation of the slider is
expressed as

msẍs + csẋs = fh + fs, (6)

where ms, cs, xs, fh, and fs are the mass, viscous coefficient,
position of the slider, direct force added by the participant,
and force generated by the motor, respectively. Because the
movable range of the slider was limited to ±60 mm, scale
relations between the actual slider and the virtual cart were
converted using the scale factor α as

αxs −→ xc,
fh
α
−→ f̃h. (7)

Defining the error between the actual slider position and
the virtual cart position as es := xc/α− xs, (2) and (6) yield

d

dt
e = Ae + Bu, (8)
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where

A :=

⎡
⎢⎢⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎦, B :=

⎡
⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎦, e :=

⎡
⎢⎢⎢⎣

∫
es

es

ės

⎤
⎥⎥⎥⎦,

u := h2 −mplcθθ̈

α
(
mc +mp

) − fh + fs − csẋs
ms

.

(9)

Using matrices A and B, the adequate positive definite
weighting matrix Q, and semidefinite R, the feedback gain
F ∈ R1×3 is computed by the popular LQR method, and the
final form of the control law is obtained as follows:

fs = −msF · e + csẋs +

⎛
⎝ ms

α2
(
mc +mp

) − 1

⎞
⎠ fh

+
ms

(
mpl

(
sθθ̇2 − cθθ̈

)
− ccẋc

)

α
(
mc +mp

) .

(10)

The block diagram of the control scheme is summarized in
Figure 3. The force was measured using a 6 DoF force/torque
sensor (IFS-70M35A25-M50B, NITTA Corporation, Osaka,
Japan. The maximum measuring load is 98 N.) and the one
horizontal direction force was used. The measurement noise
was eliminated by LPF whose cut-off frequency was 31.25 Hz.
Control interval of the VIM was 2 ms.

2.3. Brain Monitoring and Analysis for Voluntary Motion.
Functions of the brain are differentiated roughly into local
areas. The brain map shown in Figure 4(a) explains this
localization. The primary motor cortex (MsI) and the
primary somatosensory cortex (SmI) are important for
voluntary motion, and the movements of most muscles in
the body are controlled by local regions in these cortices.
The correspondence relationship is known as the motor and
sensor homunculus (see Figure 4(b)). The fold that separates
the parietal lobe from the frontal lobe is called the central
sulcus. Figure 4(b) shows a cross-section of the brain at the
central sulcus. In neuroscience, five hierarchical structures
describe the mechanisms of the motor control system [39],
as shown in Figure 5. An intention of motion is generated
from the cerebral limbic system and from the rear side of
the parietal cortex. The generated intention is transferred to
the basal ganglion and to the corresponding projected area in
the frontal cortex. The latter area includes the supplementary
motor area (SMA) and the premotor cortex (PMC). The
third-level layer is a descending motor pathway involving two
paths of a pyramidal tract and an extrapyramidal tract. The
former pyramidal tract has its origin in the PMC and the
SmI.

Since various areas relate to the voluntary motion as
mentioned above, ideally all areas should be monitored for
the analysis. The NIRS can, however, measure only cortices
that lie on the surface of the brain; hence, SMP, PMC MsI,
and SmI, that lie in the cortex and relate to voluntary
motion, were monitored simultaneously in the present study.

To monitor the large area covering these regions, a long
sideways probe cap was used in the NIRS measurement,
as shown on the right in Figure 2. The International 10–
20 measurement system, which is an application method
that uses the electrodes of an electroencephalogram and is
based on the distance between the nasion and the inion of
the scalp, was used to determine the position of the probe.
Changes in the concentration of total hemoglobin (sum of
oxy- and deoxy-hemoglobin) were measured using an ETG-
4000 system (Hitachi Medical Corporation, Tokyo, Japan).
Reflections of lasers in the near-infrared were measured
10 times during each sampling interval, and the measured
data was output every 100 milliseconds by averaging these
reflections to attenuate noise effect.

By means of PCA, 48ch data of total-Hb measured by
NIRS were analyzed. PCA is a kind of analysis of multivariate
data, and it can identify subsets of variables that contain the
main features of all the data [40]. PCA transforms a number
of correlated signals into a smaller number of uncorrelated
variables. Because this method yields a correlation pattern
for the signals, the brain activation patterns that indicate
mutual relations of the brain’s local areas can be investigated
[41]. Another advantage for PCA is its robustness against
measurement noise, because the method is a statistical
computation based on covariance of the signals. PCA is
explained in more detail below.

From an n-multivariable sampled data set x(t) ∈ Rn×N ,
an interval covariance matrix V at time of t is computed by

V = 1
M

M∑

i=1

x(t − i + 1) · x(t − i + 1)T , (11)

where N and M(< N) are the total length of the sampled
data and the length of interval for PCA analysis, respectively.
Singular Value Decomposition (SVD) of V is computed as

V0(:= V) = U0Σ0U
T
0 , Σ0 = diag

(
σ (0)

1 · · · σ (0)
n

)
, (12)

where σ (0)
1 ≥ · · · ≥ σ (0)

n . If unitary matrix U0 is denoted as

U = [u(0)
1 · · ·u(0)

n ], V0 can be decomposed as

V0 = σ (0)
1 u(0)

1 u(0)T
1 + σ (0)

2 u(0)
2 u(0)T

2 + · · · + σ (0)
n u(0)

n u(0)T
n .

(13)

Computing next SVD for V1 := V0 − σ (0)
1 u(0)

1 u(0)T
1 gives

V1 = U1Σ1U
T
1

=
[
u(1)

1 · · ·u(1)
n

]
· diag

(
σ (1)

1 · · · σ (1)
n

)
·
[
u(1)T

1 · · ·u(1)T
n

]T
.

(14)

Here, σ (1)
2 is a second principal component. Repeating the

computation in the same manner, the strength sequence for

the decomposed mode {σ (0)
1 , σ (1)

2 , . . .}, and the corresponding

distribution vectors {u(0)
1 ,u(1)

2 , . . .} are obtained. Visualiza-
tion of these components in u(i)

i+1 (i = 0, . . . ,n) in a 2D-
geometric map of the brain yields a topographic map of the
ith decomposed mode.
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2.4. Methods of Examination. Analysis for novices in the stick
balancing can be very difficult [38], and a skill level for
the same person dynamically changes [42]. In short, it is
difficult in the middle of training to find an expert; hence,
all participants had been monitored during all training.
Nine right-handed volunteers were tested. They comprised
five males aged 22 to 23 years and four females who were
21, 22, 52, and 55 years of age; none had a history of
neurological deficits. Written consent and ethical approval
were obtained before the examinations. At least 10 trials
a day were organized for each participant basically. The
training period was selected such that they were consecutive
weekdays. For the brain monitoring, 90-second rest periods
were allowed between trials. During the rest period, the
participant was instructed to close his/her eyes so as not to
receive any visual stimulation. Because of the necessity of the
rest time, the total time of the training became long even
if continuance of successful balancing was short; hence, the

training was stopped so as to avoid any influence of fatigue
of the participant if the total time exceeded 30 minutes.
As the primary objective of the experiment was to obtain
data regarding the skilled operator, training for more than
four days was conducted for those participants who showed
potential as skilled balancers. For this reason, the number of
days of training differs between the participants

3. Experimental Results

Three days after the start of the training, one participant
could not continue the training because of discomfort
caused by the head gear used for the brain monitoring,
and valid data were obtained from total eight participants.
Each participant began manipulating the haptic device for
stabilizing the virtual pendulum from the moment that
the pendulum was inverted vertically. Continuance of the
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stabilization was counted from the starting moment to the
time when the pendulum-link slanted more than 45 degrees.
Figure 6 shows the improvement of the continuance of all
participants. The x-axis is the number of the trial days. The
maximum, average, and raw data of all continuances of each
day were drawn using a solid line, dotted line, and dots,
respectively. It was found that participants E and G succeeded
in stabilizing the pendulum for more than 200 seconds
on the final day; they were thus categorized into a group
named the high-performance (HP) group. Participants B,
D, F, and H could not stabilize the pendulum for more
than 30 seconds, and the average was less than 10 seconds.
Although participant A could stabilize it over 90 seconds only
once on the fourth and fifth days, the averages were low as
20 seconds. As the progress of participants A, B, D, F, and
H were comprehensively low, they grouped into the low-
performance (LP) category. The performance of participant
C was not as good as that in the HP-group and was therefore
the sole member of the moderate-performance (MP) group.

4. Accreditation of Expert

In this section, first, the satisfactoriness of analysis conditions
for PCA is discussed, and the most expert in the virtual
stick balancing is then identified by utilizing the PCA results.
Finally, a highly skilled operator is certificated by checking
the characteristics that were discussed in Section 1.

4.1. Confirmation of Validity of PCA. Because it is preferable
that PCA is applied to nontransition signals because of the
necessity of covariance computation, the data for the analysis
needs to be extracted from the whole of the measured data
to obtain the steady-state situation period. Investigating the

transition of the topographic map using the raw measured
data as a preliminary analysis, it was found that the data
of successful stabilization was comparatively steady state.
(Conversely, other data of the trial-and-error phase was
nonsteady.) By considering the time-constant of change
in the hemoglobin concentration, the period of moving
computation for PCA was specified as 10 seconds (the data
points were N = 100) so as to prevent loss of the PCA
computational results. To verify whether the PCA works
well under these conditions, the strength of the decomposed
modes was investigated by applying it to the data obtained
from participants in HP, MP, and LP groups. Concerning
the LP group, participant A was chosen since only this
participant could stabilize the pendulum for more than 10
seconds, which is a requirement of the above-mentioned
PCA data condition. Participant C was the sole member
of the MP group and was therefore automatically selected
as this group’s representative. Concerning the HP group,
participant G was chosen as the representative through con-
sideration of comparisons with participant G and participant
E. (The reason for this will be explained in a later section.)
Figure 7 shows the change of the decomposed modes σi (i =
1 ∼ 48) for the first 400 seconds of data on each final
day for HP, MP, and LP group. In all three cases, the first
modes were strongest, and the 2nd–48th modes were almost
zero. This shows that investigating the first mode alone is
sufficient for checking brain status; hence only the first mode
was investigated. In checking the strength of the modes of
the three participants, HP was the strongest and MP was
the second strongest. Further, the strength of HP increased
monotonically, although that of the other group was almost
constant after about 200 seconds. Because the data measured
by NIRS does not yield an absolute value, this comparison
between participants is not strictly valid; however, it appears
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Figure 6: Transition of the continuance. (The maximum, average, and raw data of all continuances of each day were drawn using a solid
line, dotted line, and dots, resp. Numbers inside parenthesis indicate the number of trials of each day.)

that this continuously strong activation is characteristic of a
skilled operator.

Next, potential for expertise was checked for participants
E and G of the HP group. The data of the first trial on the
final day and of the longest successful trial were chosen for
PCA, because the participant had mastered stabilization and

was still not fatigued. In short, the second (185 s) and third
trials (311 s) on the fifth day were chosen for participant E,
and the second (75 s) and fifth trials (903 s) on the sixth day
were chosen for participant G.

Topographical images obtained by PCA are shown in
Figure 8. The grayscale pattern of all images shows the
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Figure 7: Intensity variation of modes decomposed by PCA.

relative strength of each decomposed distribution of topo-
graphic patterns. The black areas show strongly activated
areas, and the white areas weakly activated areas. In these
images, the brain functional areas were labeled by referring to
the homunculus of Figure 4. In Figure 8, the patterns of the
upper and lower maps in each participant did not change,
in short, they showed steady state. Comparison of the two
participants, however, shows that the map for participant
E is covered with large white areas and the other map
of participant G has large dark areas that indicate strong
activation. Concerning the strength of their decomposed
modes, participant G maintained a level as high as 50 after
400 seconds, as shown on the upper graph in Figure 7. On
the other hand, participant E was as low as 20 after 100
seconds (the graph is omitted due to limitations of space).
This tendency resembles cases of MP and LP indicated in
Figure 7. From these results, the participant G was assumed
to be a potential expert. To investigate participant G more
closely, additional analysis was applied, as described in the
next section.

4.2. Skill Analysis of the Motion of the Controlled Pendulum.
In the previous section, participant G was elected as a
candidate for expert from the viewpoint of the length of
stabilizing time and the strength of the brain activity. In
this section, possibility of a true expert for this participant
is investigated based on the findings of Cabrera and Milton
[20–22]. Since truncation of the Lévy distribution of change
in the hand velocity is a hallmark of a skilled stick balancer,
the distributions of the velocity changes were computed.
Next, the power spectrum of height perturbation of the stick
was computed to know whether an intermittency control
was performed or not. Since the slider used in the present
experiment has one DoF, the change in the hand velocity
is the same as an acceleration of the slider except the

difference of the scale factor α. From the data of the longest
successful trial on the final day, a distribution probability
of the acceleration was computed, where the bin width of
the histogram to make the distribution was set as 5 mm/s2.
The probability distributions for the HP (participant G), MP
(participant C), and LP (participant A) groups were drawn
in same graph, as shown in Figure 9. It was confirmed that
the tails of the distribution for the HP (and MP) became
broader than those for the LP. Hence, it was found that the
participant G had characteristics of a skilled balancer similar
to that reported by Cabrera and Milton regarding a skilled
stick balancer [21].

The next investigation was a power spectrum analysis
of height perturbation (= 1 − cos θ =: z) of the stabilized
pendulum. For all groups, the number of data points was
specified as N = 44800 (about 90 seconds) by considering
the shortest survival time of the LP among them, and 214-
point DFTs were computed. The power spectrums for the
three participants are shown in Figure 10. Two power laws
were found in Figure 10(a) for the HP. The power law in the
range of 0.1–1.5 Hz shows an exponent of−1.5, and the other
law higher than 1.5 Hz shows an exponent of −5. The cut-off
frequency 1.5 Hz is almost the same as the case of the direct
stick balancing (=1 Hz) presented in [21]. These values of
exponents, however, differ from finding known as −0.5 and
−2.4 [22]. In other case of a virtual stick-balancing task on
a computer screen using a mouse-pointer, it was reported
that the power laws had −0.7 and −2.1 [43]. The reason of
the difference between our case and other reports appears
to be due to the use of the haptic interface device, that is,
the dynamics controlled by local compensator using the VIM
control might influence motion of the virtual pendulum
beyond the machine interface. Therefore, an existence of
the on-off intermittency control cannot be proven directly
from results of the present analysis. On-off intermittency-
like control, however, can be admitted in the present case
since two power laws in the spectrum were considered as a
hallmark of the on-off intermittency control [26]. Figure 10
shows that the spectrum for the LP is governed by a single
power law, unlike the case of HS; hence, it can be confirmed
that the HP had particular property which the LP did not
have.

Figure 11 shows the power spectrums of the force for
the three participants. Same conditions above were used for
this DFT computation. Figure 11(a) for the HS indicates two
peaks at 0.5 and 4 Hz, and a notch at 1.5 Hz. Monotonic
tendency for the LS shown in Figure 11(c) is similar to
Figure 10(c). This frequency property can be interpreted
as an appearance of the on-off intermittency control, that
is, these peaks at 0.5 and 4 Hz correspond to slow-drift
movement and fast-correct action, respectively.

Analyses mentioned above support the opinion that
participant G has the potential to be an expert stick-balancer.
Both truncation in the Lévy distribution and an appearance
of two power laws in the power spectrum confirmed an
existence of the on-off intermittency-like control in case of
the use of an input device. Considering the long continuance
of the stabilization and the PCA results, it can be concluded
that the participant G did indeed become the most skilled
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Figure 8: Topographical map of the two participants of HP group (left: second and fifth trials of participant G; right: second and third trials
of participant E).
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operator. To make explanation simple in later sections, the
participant G is called simply “expert”.

5. Brain Function Analysis on an Expert

Treating participant G as the most expert, further analysis
is described in this section. First, investigating the PCA
topographical image of the expert by comparing it with
others for the MP (participant C) and LP (participant A),
characteristic activation in the cortex area for the HP was
found. Next, functions corresponding to the found areas
are identified by referring a relation drawn in Figure 4, and
interpretation of the brain activation was derived. To satisfy
the PCA condition, the trial with longest continuance on
the final day was chosen. Because the brain activity pattern
changed rapidly after a participant failed to stabilize the
pendulum, the last 10-second data before failure of the
stabilization were removed from the master data for PCA.
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Figure 11: Power spectrums of hand force.

That is, periods of t = 1851–1861 for HP, of t = 244–254
for MP, and of t = 180–190 seconds for LP were analyzed by
PCA, and these topographical images were then obtained, as
shown in Figure 12.

As mentioned in the previous section, the NIRS cannot
show the absolute strength of brain activation. However,
high-activated areas of HP participant were sufficiently
stronger than the other areas of the LP and the MP
participants, because an intensity level for the HP group

was about five times larger than that of the LP and the MP
groups, as shown in the first graph in Figure 7. Therefore,
this fact and a result shown in Figure 12 lead to the following
suppositions about the expert by considering locations of the
brain functions shown in Figure 4.

(a1) Activation over a wide range involving torso, hip,
elbow, and arm in the primary somatosensory cortex
(SmI) was strong.

(a2) The left and right of the premotor cortices (PMC)
were activated strongly.

(a3) Activation of the right and left regions corresponding
to the eyeball in the primary motor cortex (MsI)
could be recognized.

(a4) Activation in the right arm and hand regions (that
are located at MsI in the left hemisphere (the left
(right) hemisphere cortex receives signals from the
right (left) side of body) was not strong.

Areas concerning the above-mentioned suppositions (a1)–
(a4) were labeled using the same characteristic in the
topographical images, as shown in Figure 12(a). Supposition
(a1) suggests that the expert utilized sensory information
from over a wide areas of the body, although the participant
moved the hand mainly to manipulate the slider. This fact
is also supported by considering that strong activations for
the MP and LP participants were found in the narrow areas
of the torso and hip (the corresponding areas are labeled
using (b1) and (c1) on images (b) and (c) in Figure 12).
Concerning supposition (a2), it appears that the expert
enhanced observation of the pendulum motion more than
controlling of the arm, because the PMC that is related to
ocular motor movement [39] was strongly activated. This
is also supported by the fact that the strength of the PMC
activations in the case of the LP and MP groups was weaker
than in the case of the HP group. There is, however, an
opinion that the monitoring of PMC by NIRS is difficult
because the bone of the parietal region is thick. In view
of this, (a2) may not be reliable; however, supposition (a3)
is fairly reliable with no problems of the measurement. In
particular, participant E, who was the other member of the
HP group, showed comparatively strong activation around
PMC, as shown in the right of Figure 8. For these reasons, it
would be appropriate to think that activation of the ocular
motor area is a common characteristic of the HP group.
This phenomenon appears to have relation with the delay-
compensation in visual sensory system and/or enhancement
of attention for on-off intermittent switching.

Eye movement on manipulation by watching a com-
puter screen predominantly consists of smooth-pursuit since
vergence eye movement is not required for watching the
screen located at a constant distance from participants. The
smooth-pursuit eye movement is relevant with wide area
of the brain cortex. Specifically, velocity information of the
visual-target on the retina is transmitted to two areas, and
one of them is the back part of the frontal eye fields (FEF)
in frontal cortex [44]. It was reported that the smooth-
pursuit eye movement region in the frontal pursuit area (that
corresponds to human FEF) of a monkey brain enhanced
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Figure 12: Topographical images.

the response to visual target motion [45]; hence, it can
be expected that activation of the FEF is relevant with the
present task of the virtual stick balancing. Unfortunately,
since the probe used in the present NIRS experiment did
not cover FEF, it was impossible to investigate FEF directly
from the measured data. If priori argument is permitted here,
strong activation in the SMA and PMC shown in Figure 12(a)
might indicate other strong activation of FEF because the
back part of FEF neighbors the SMA and PMC by their
front sides. Also this hypothesis appears to be associated with
supposition (a3), and it might become additional evidence
for an enhancement of observation in the skilled operator.

On the other hand, it was expected that the arm-
hand area in MsI would be activated strongly since the
operators used the hand to manipulate the haptic device.
This phenomenon was observed in the LP and MP, but was
not observed in the HP group. (Compare the weak area
(a4) for the HP with the same areas of the MP and LP in

Figure 12) As pointed out by the supposition (a4), motor
cortex concerning the arm motion had small involvement in
case of the expert.

6. Analysis of Control Law for the Expert

Time-delay and nonlinearity are indispensable for the con-
sideration of human control characteristics, as mentioned
in the introduction. In case of the manual stick balancing,
it was reported that a linear model with time-delay could
express human behavior [12]. Therefore, the present authors
tried to identify the human control model using a simple
liner formation including the time shifts. Generally, for the
stabilization of a pendulum, an integral compensation is not
important [1]; hence, the state variables of the pendulum
were chosen from x, θ, ẋ, and θ̇ for the input of the human
controller. The data of the fifth trial on the sixth day for the
expert was used for subsequent analyses, because the period
was sufficiently long at 230 seconds.

As the simplest strategy is a feedback control using
the angle information of the pendulum link, the following
control law was assumed at first:

fh(t) = a1θ(t − Δ1) + b1, (15)

where a1 corresponds to a proportional gain, Δ1 is a time
shift, and b1 is a constant for the bias existing in the actual
system. The notation of (t) is a simplified description of
discrete time and expresses a discrete counter value that is the
closest to actual time t. Here, a1, b1, and Δ1 were estimated
from actual logging data {θ(t), fh(t)}, t ∈ [0, 230] by the
least-squares method. To find suitable parameters, multiple

pairs of the estimated coefficients â1, b̂1 were computed by
changing Δ1 from −3 to 3 at 0.01 second intervals. Next,
the best pair was found by searching for the minimum
error e1 that was computed by averaging the estimation

error | fh(t) − f̂h(t)|, where f̂h(t) was computed as f̂h(t) :=
â1θ(t − Δ1) + b̂1 by using the identified coefficients â1 and

b̂1. The results are shown in Figure 13. The x-axis is the
time shift parameter Δ1 for the search, and the y-axes are
the identified parameters a1, b1, the error index e1, and the
correlation coefficient |r1|, respectively. The third and fourth
graphs indicate that the minimum of e1 was given with the
largest correlation coefficient when Δ1 = 0.24 s. With this Δ1,
a1 was the largest, and the bias b1(= 0.02) was sufficiently
small compared with the value of a1(= 5.1). The value of
Δ1 is reasonable because it was close to that of the delay
in visual-voluntary motion (in general, the delay is known
to be 0.05 ∼ 0.2 s [9]). Therefore, it appears that the basic
equation (15) is comparatively adequate for expressing the
human control law. The maximum correlation coefficient
r1(= 0.53) is, however, not sufficiently close to 1. Therefore,
it was surmised that proportional control was not a main
factor.

Next, similar analysis was applied to the following
formation based on the angular velocity information

fh(t) = a2θ̇(t − Δ2) + b2, (16)
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Figure 13: Change of estimated parameters for the angle feedback
control model (15) against time shift.

where a2 is a derivative gain, Δ2 is the time shift, and b2 is a
bias constant. Figure 14 shows the result of the identification.
The third graph indicates that the error index e2 is smallest
when Δ2 = −0.03. This negative sign of Δ2 is interpreted as
the prediction based on the measured velocity information.
Future information cannot be obtained solely by observation
of an object by reason of causality; hence, the expert appears
to predict the velocity of the pendulum by using an internal
dynamics model mastered through training. Moreover, the
maximum correlation coefficient r2(=0.93) was larger than
the maximum of r1(=0.53), which proves that the model (16)
is more suitable for describing the expert. In other words, the
expert utilized velocity information more strongly than the
static posture information.

As it is naturally expected that the expert uses both
posture and velocity information, the following combined
formulation is considered

fh(t) = kθ · θ(t − Δθ) + kθ̇ · θ̇
(
t − Δθ̇

)
+ kd, (17)

where kθ and kθ̇ are constant gains to be estimated. Here,
Δθ and Δθ̇ are time shifts, and kd is the drift term. To
search for the best values of the time shifts, the error index
e computed by averaging the identification error | fh(t)− f h|
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Figure 14: Change in estimated parameters for the angular velocity
feedback control model (16) against time shift.

was checked, where f h is the estimated force, which was
similarly computed using the identified parameters kθ , kθ̇ ,
and kd. The best combination of Δθ and Δθ̇ was determined
by changing them to Δθ = −1 ∼ 1 and Δθ̇ = −1 ∼ 1
in similar way to the former analyses. Figure 15 shows the
strength distribution of the identified coefficients kθ , kθ̇ , kd,
and e. The vertical and horizontal axes on each graph are Δθ
and Δθ̇ , respectively. The white (black) area in each graph
indicates the large (small) value.

As the drift term kd is sufficiently smaller than any of
|kθ| or |kθ̇|, (17) appears to be appropriate as the form
of the control law of the expert. Moreover, the magnitude
of |kθ̇ · θ̇| was larger than that of the other terms; hence,
it transpired that the expert was paying attention to the
change in velocity more than posture information. Moreover,
Figure 15 shows that the error index in the vertical axis is
the smallest when Δθ = 0.18 and that the error index in the
horizontal axis is the smallest whenΔθ̇ = −0.04. These values
are almost the same as the former results that were obtained
separately. In conclusion, the expert recognized the posture
of the controlled object about 0.18 seconds after observation
and predicted the velocity about 0.04 seconds before by using
one’s internal model.
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Figure 15: Strength distribution of the identified coefficient: (a) kθ , (b) kθ̇ , (c) kd , and (d) e.

The above results are summarized as follows.

(i) It is surmised that the delay (0.18–0.24 seconds),
appeared in the angular control term, occurred
from visual processing, and that the lead (0.03–0.04
seconds) in the angular velocity term came from pre-
diction based on an internal model of the controlled
object.

(ii) The predictive control was dominant because the
fitting ratio to the velocity control including the time-
lead was larger than the other ratio to the positional
control with time-delay.

7. Conclusion and Discussion

Using a force-feedback haptic device with the balancing task
of a virtual inverted pendulum, participants were asked to
master a stabilization task, and the learning process was
monitored. Participants were classified into three groups
according to the length of continuance of the stabilization.
The most expert was elected as the best performing operator
by comparing the members of the three groups using the
analysis of the distribution probability of change in the
slider velocity and the frequency analysis of the pendulum

movement. Moreover, the brain activation and the control
law for the most expert were investigated, and the following
results were deduced.

(R0) Similar hallmark of skills to the direct stick
balancing was confirmed on virtual balancing
through the interface device operation. And, on-
off intermittency-like control appeared in the skilled
operator who manipulated the haptic device.

(R1) System identification analysis using the operational
force illustrated that the visuomotor control was
performed based on the delayed posture perception
and the predictive velocity control.

(R2) It was found that consideration of two types of time-
shifts for the perception delay and prediction lead
enabled precise identification of the skilled operator’s
control characteristics with a linear model.

(R3) In the cerebral cortex of the skilled operator, there
were strong activations in areas associated with the
ocular motor control and the visual processing.

(R4) On the other hand, participation of the motor control
area in the cortex for the arm was small.
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Result (R0) showing an existence of the intermittency
control may seemingly contradict result (R2) ensuring the
high fitting to the linear control law, because the on-off
intermittency control belongs to nonlinear control class and
it seems difficult to be approximated by a linear model.
However, as mentioned before, a previous study also showed
that a linear model with one type of time-delay could approx-
imate human control law adequately (e.g., the correlation
factor was r = 0.85–0.91 in [12]); hence, there is a strong
possibility that result (R2) is general. And, result (R3) that
mentions strong activation concerning the ocular motor
control in the cortex and result (R1) that indicates a velocity-
based prediction control conclude that an enhancement
of observation sensitive to the velocity information is a
strategy for skilled operation. This strategy might be effective
to increase attention for adequate switching in the on-off
intermittency control.

These results suggest several ideas or hints for design of
better man-machine systems involving visuomotor control.
For instance, from results (R1) and (R2), system perfor-
mance would be improved if its controller is redesigned
using a new human model with two types of time-shift.
In past research by the present authors, an assistive control
based on an on-line identification of the voluntary motion
was proposed [46], and a human control model that was
treated in the present study would be effective to enhance
the assist control. With the deduction from results (R2)
and (R3), a visual-interface that enables a user to perceive
the velocity of the controlled object is desirable. These
ideas remain a matter of speculation, and further study is
required.

In addition, various kinds of switching control like
the on-off intermittency control have been studied in the
control engineering field. It is surmised that minimum
attention control [47], sliding sector variable structure
control [48], and event-based control [49] have a relation
with human on-off intermittency control. Such systems
engineering approach will be useful for a practical stage
of controller designs in human-machine systems. The
present authors would like to realize these ideas for an
advanced mechatronics and human-computer systems in the
future.
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