
Hindawi Publishing Corporation
International Journal of Optics
Volume 2010, Article ID 201305, 10 pages
doi:10.1155/2010/201305

Research Article

Mirror Prescription Regression: A Differential
Interferometric Technique

Brian M. Robinson, Patrick J. Reardon, and Joseph M. Geary

Center for Applied Optics, University of Alabama in Huntsville, 301 Sparkman Drive Huntsville, AL 35899, USA

Correspondence should be addressed to Brian M. Robinson, brian.robinson@uah.edu

Received 9 September 2010; Accepted 21 November 2010

Academic Editor: A. Beléndez

Copyright © 2010 Brian M. Robinson et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We present a remote, differential method for measuring the prescription of aspheric mirrors using null interferometry in the
center-of-curvature configuration. The method requires no equipment beyond that used in a basic interferometery setup (i.e.,
there are no shearing elements or absolute distance meters). We chose this configuration because of its widespread use. However,
the method is generalizable to other configurations with an adjustment of the governing equation. The method involves taking a
series of interferograms before and after small, known misalignments are applied to the mirror in the interferometry setup and
calculating the prescription (e.g., radius of curvature and conic constant) of the mirror, based on these differential measurements,
using a nonlinear regression. We apply this method successfully to the testing of a Space Optics Research Lab off-axis parabola
with a known focal length of 152.4 mm, a diameter of 76.2 mm, and an off-axis angle of 12◦.

1. Introduction

An important problem in the realm of optical testing con-
cerns the ability to remotely measure radius of curvature and
conic constant of large reflective optical surfaces. Primary
mirrors destined for space applications require cryogenic
testing on the ground, during which their radii of curvature
and conic constant can vary significantly and must be
monitored. In such situations, the metrology instruments
are located in a separate environment from the test mirror
behind an optical window. Such remote measurements
should be achievable with little or no equipment auxiliary
to that normally used in interferometric figure testing. The
radius of curvature and conic constant of large aperture
optical surfaces in spaceborne instruments must also be
monitored. In this situation as well, there is often a need to
conduct an nonintrusive test of these shape parameters.

Methods currently exist for measuring the shapes of
three-dimensional diffuse and specular objects in general
[1] and of optical mirrors in particular [2]. But none of
these methods answers the need for a simple, full-aperture,
remote measurement technique that requires little more
than the setup already used to do basic figure testing. Our
approach is a differential method that involves deliberately

misaligning the mirror in known magnitude and direction,
measuring the effect via the interferogram, and regressing the
parameters (e.g., conic constant and radius of curvature) that
determine the mirror prescription, based on these effects. It
is very important for the reader to note that, since this is a
differential method, it is insensitive to residual misalignment
and figure errors in the null optics, since they are subtracted
out in the difference measurement. This paper begins in
Section 2 by developing the theory based on the governing
physical relationships. Then in Section 3, the nonlinear
prescription regression is explained. Next in Section 4, the
paper discusses experimental results obtained from testing
an off-axis paraboloid using a null assembled from COTS
optics, which introduces small but not insignificant wave-
front errors, showing that the method works and is robust to
null errors. Finally in Section 5, we conclude with a summary
and a brief discussion of future directions.

2. Development of the Model Functions

In this section, building on earlier work by the authors
[3], we first review the theory that explains the effects that
misalignments have on the interferogram and how this
depends on the mirror’s prescription. Then, based on this
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theory, we develop the linear model that will be used in
each iteration of the the regression algorithm by making a
first-order expansion. Next, we will consider the effects that
errors in the orientation of the translation axes themselves
have on our model. The axes along which we translate the
mirror may not be coincident with the parent axes of the
mirror itself and may be skewed with respect to each other.
We will develop adjustments to the model which could be
used to take this into account.

2.1. Misalignment-Induced Optical Path Difference (OPD). A
mathematical surface describing the mirror, with its explicit
dependence on shape parameters, is written as the level
surface

F
(
x, y, z

) = f
(
x, y; θ1, θ2, . . . , θp

)
− z = 0, (1)

where z = f (x, y; θ1, θ2, ..., θp) is the altitude function
describing the two-dimensional surface, x and y are the pupil
coordinates, and θ = (θ1, θ2, ..., θp) is the vector of free shape
parameters (e.g. radius of curvature and conic constant for
the case of a conic surface). The unit surface normal is given
in terms of the gradient of the level surface

n̂
(
x, y; θ

) = ∇F(x, y, z
)

∣∣∇F(x, y, z
)∣∣ , (2)

and the optical path difference (OPD) δWcaused by a rigid
body displacement δr of the mirror is given by [3]

δW
(
x, y; θ

) = δr
(
x, y

) · n̂
(
x, y; θ

)
. (3)

Equation (3) says that the OPD incurred at the point
(x, y) due to a small displacement of the surface is equal to
the component of the displacement that is normal to the
surface at that point. Translations in x, y, and z are denoted
by εx, εy , and εz, and rotations about the x, y, and z axes are
denoted by the small angles φx, φy , and φz, respectively. In
this limit, all the operations of translation and rotation are
commutative, and the vector δr can be written

⎡

⎢
⎢
⎢
⎣

δrx

δry

δrz

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

εx − φz y + φyz

εy − φxz + φzx

εz − φyx + φx y

⎤

⎥
⎥
⎥
⎦
. (4)

The measurements in our test consist of arrays of OPD
values (i.e., interferograms from a phase-shifting intefer-
ometer), one for each pixel of the interferometer detector.
We will now perform a decomposition of δW , in which
the parameters θ remain free. For mirrors with circular
pupils, like the one we tested, a decomposition of the OPD
function in terms of the orthonormal Zernike polynomials is
convenient. Whatever the shape of the pupil, there will exist
a complete orthonormal basis for functions defined on that
pupil. One can derive such an orthonormal set via Gram-
Schmidt procedures [4]. If we denote our set of orthonormal
basis functions as {Pi(x, y)} and the set of coefficients in the
expansion of the OPD function as {bi}, we can expand (3) as

δW
(
x, y; θ

) =
∑

i

bi(θ)Pi
(
x, y

)
, (5)

where the coefficients in the expansion, owing to their
orthonormality, are given by

bi(θ) =
∫

pupil
Pi
(
x, y

)
δW

(
x, y; θ

)
dx dy = (Pi, δW). (6)

Using (3), (4), (5), and (6), we obtain the coefficients

bi(θ) = εx(Pi,nx) + εy
(
Pi,ny

)
+ εz(Pi,nz)

+ φx(Pi, lx) + φy
(
Pi, ly

)
+ φz(Pi, lz)

= miεx (θ)εx +miεy (θ)εy +miεz (θ)εz

+miφx (θ)φx +miφy (θ)φy +miφz (θ)φz,

(7)

where lx is the x-component of the normal moment r × n̂
and miεx (θ) is the slope of the ith OPD expansion coefficient
with respect to small translations of the mirror along the x-
axis (where the dependence on the mirror shape parameters
θ is made explicit). Other quantities are defined similarly. We
gather coefficients {bi} in a vector b and the translational and
rotational displacements in the vector δ and write (7) as a
matrix equation

b(δ; θ) = M(θ)δ. (8)

2.2. Linearization of the Model with Respect to Shape Parame-
ters. Our regression of the shape of the mirror, embodied in
the parameters θ, requires us to have a model that is linear in
these parameters. We linearize the components of the matrix
M(θ) with respect to the shape parameters by expanding
the surface normals nx, ny , and nz in to first order in the
parameters θ. For example, the component nx is linearized
about some value θ = θ0 as follows:

nx
(
x, y; θ

) ≈ nx
(
x, y; θ0

)
+ ∇θnx|θ=θ0

· δθ

= n(0)
x +

∂nx
∂θ1

∣
∣
∣∣
θ=θ0

· δθ1 +
∂nx
∂θ2

∣
∣
∣∣
θ=θ0

· δθ2 + · · · +
∂nx
∂θp

∣∣
∣
∣
∣
θ=θ0

· δθp

= n(0)
x

(
x, y

)
+ α1x

(
x, y

)
δθ1

+ α2x
(
x, y

)
δθ2 + · · · + αpx

(
x, y

)
δθp.

(9)

Now the slope of the ith coefficient with respect to transla-
tions in the x direction is approximated as

mix(θ) = (Pi
(
x, y

)
,nx
(
x, y; θ

))

≈
(
Pi,n(0)

x

)
+ (Pi,α1x)δθ1 + (Pi,α2x)δθ2

+ · · · +
(
Pi,αpx

)
δθp

= m(0)
ix + δmix.

(10)
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We do this because, in the nonlinear regression of the
shape parameters, the model OPD coefficients must be
expanded about a starting value θ0 upon each iteration of
the regression.

The matrix M can now be approximated to first order and
the change in the OPD can be written as

b ≈ [M(θ0) + ΔM(δθ)]δ =
[

M(0) + ΔM
]
δ. (11)

2.3. Translation-Induced OPD. In our test, we apply only
translations, and not rotations, to misalign the mirror under
test. Under these conditions, the equation which relates
translations of the mirror to the OPD function, reduces to

δW
(
x, y; θ

) = εxnx
(
x, y; θ

)
+ εyny

(
x, y; θ

)
+ εznz

(
x, y; θ

)
.

(12)

If we let t = [εx εy εz]
T and n̂ = [nx ny nz]

T , then
OPD expansion coefficients are given by

b = Mt =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(P1,nx)
(
P1,ny

)
(P1,nz)

...
...

...

(P2,nx)
(
P2,ny

)
(P2,nz)

(PM ,nx)
(
PM ,ny

)
(PM ,nz)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

εx

εy

εz

⎤

⎥
⎥
⎥
⎦

≈
[

M(0) + ΔM
]

t.

(13)

Note that the double-pass factor of two for the center-of-
curvature null test is still implicit in these relations.

2.4. Errors in Orientation of the Translation Axes. The orien-
tation of the mirror’s native coordinate system, with respect
to the axes along which we apply misalignments during our
testing, will contain small uncertainties that lead to some
small measurement errors. One can attempt to account for
these errors by introducing more free parameters though
the addition of more free parameters generally reduces the
precision to which all parameters can be calculated. We have
approached this by developing two more detailed models,
in addition to (11), which allow us to try and account
for these displacements of the translation axes. The first
model considers the possibility that the translation axes are
mutually orthogonal, but that they are displaced from with
mirror coordinate axes as a whole, whereas the second model
represents the more general case in which the translation
axes’ errors are independent of one another.

In the first model, rotations of the orthogonal system of
translation axes about the x, y, and z axes of the mirror are
described by the small angles α, β, and γ, respectively. In the
small angle approximation, these rotations are commutative
and the small angular displacements are described by the

linear transformation

T1 =

⎡

⎢
⎢
⎢
⎣

1 −γ β

γ 1 −α
−β α 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

0 −γ β

γ 0 −α
−β α 0

⎤

⎥
⎥
⎥
⎦

= I + Δ1,

(14)

where I is the identity matrix andΔ1 describes the small angle
displacement of the orthogonal translation axes with respect
to the mirror axes. For this case, (11) for the translation-
induced change in the OPD coefficients becomes

b =
(

M(0) + ΔM
)

t′

=
(

M(0) + ΔM
)

(I + Δ1)t

≈
(

M(0) + ΔM + M(0)Δ1

)
t,

(15)

where we have neglected the second-order term ΔMΔ1.
In the second model, independent rotations of each of the

three translation stage axes about the x, y, and z axes of the
mirror coordinates are described by the small angles αy , αz,
βx, βz, γx, and γy , where, for example, αy denotes rotation of
the y translation axis about the x mirror axis and so forth.
Then, the small independent angular displacements of the
stage axes are described by the matrix

T2 =

⎡

⎢
⎢
⎢
⎣

1 −γy βz

γx 1 −αz
−βx αy 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

0 −γy βz

γx 0 −αz
−βx αy 0

⎤

⎥
⎥
⎥
⎦

= I + Δ2,

(16)

where I again is the identity matrix andΔ2 describes the small
independent rotations of the translation axes with respect to
the mirror’s native coordinate axes. Equation (11), for this
second case, becomes

b ≈
(

M(0) + ΔM + M(0)Δ2

)
t. (17)

We now have three models, represented, in order of com-
plexity, by (11), (15), and (17). The first model does not
take into account errors in the directions in which we apply
misalignments to the mirror and the last two models attempt
to take this possibility into account via the introduction of
new free parameters to represent these errors. Now we can
use these models to regress the mirror shape prescription.
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3. Regression of Mirror Prescription

A single inteferometric difference measurement in our test
(i.e., the difference between the OPD measured before
a controlled misalignment is introduced and the OPD
measured in the misaligned state) results in the recording
of a number of coefficients with correlated errors. This
multiplicity of responses from each measurement and their
mutual correlations imply that a simple linear least squares
regression does not deliver the most likely values for the
shape parameters. It is a different quantity that must be
minimized in order to find the probabilistically best answers.
A detailed derivation of the multiresponse optimization
criterion can be found in [5–10].

3.1. Multiresponse Regression. To recap, we are going to apply
known translational misalignments to our mirror while it
is nearly nulled in a center-of-curvature null test, and we
are going to record the interferograms both before and after
misalignments are introduced. Each measurement that we
perform for a particular experimental setting yields several
responses. These responses will comprise the several coeffi-
cients in the expansion of the interferometrically measured,
misalignment-induced OPD. We are performing this Zernike
expansion and only using the first few terms in order to
reduce the amount of data and the complexity involved in the
calculations. Each of these responses (the low-order Zernike
terms) will, in general, be a function of the experimental
settings and the shape parameters. To perform the regression
of the mirror shape, the measured responses are arrayed
in an N × M matrix Y, where each row corresponds to
a different interferogram, or OPD map, and each column
corresponds to a particular coefficient in the decomposition
of the measured OPD functions. The theoretical responses,
linearized according to (11), (15), and (17) and defined only
up to the set of free shape parameters θ, are arrayed in
another N ×M matrix, the expectation matrix H

Hnm = bm(δn; θ), (18)
where n indexes the measurements and m indexes the
responses (Zernike coefficients) within each measurement.
The residuals in each measurement, between the measured
responses and the theoretical responses, now take form of the
N ×M matrix

Z = Y−H. (19)

We assume that the residuals are normally distributed
with zero mean, and we assume that the errors in each
response for a single measurement (i.e., a single experimental
setting) are correlated, but that the errors in the responses
in one measurement are not correlated to those in any
other measurement. These assumptions are summarized as
follows:

E[Znm] = 0, E[ZnmZlk] = σ2
mkδnl = {Σ}mkδnl. (20)

In this multiresponse situation, the most likely values of
the parameters are thus obtained by minimizing the quantity

Δ2 =
∣
∣
∣ZTZ

∣
∣
∣, (21)

by varying the values of the shape parameters θ.

Parameter
guess values

Measured OPD
coefficients

Linearize chosen
model

Form residual
matrix

Apple one G-N
cycle

Linearize about
new params.

New parameter
values

Final parameter
values

< tol ?

Yes

No

Figure 1: Flowchart for the multiresponse regression algorithm.

A heuristic explanation for this final result is that |ZTZ| is
the square of the volume of theM-dimensional parallelpiped
defined by the column vectors in the residual matrix Z.
Minimization of this “error box” corresponds to a simulta-
neous minimization of the residuals and maximization of
the probability that we have found the correct values for the
physical parameters θ.

To minimize the error measure Δ2 and hence determine
the most likely shape of the mirror, we employed an
iterative generalized Guass-Newtom optimization that starts
with guess values for the mirror shape parameters (radius
of curvature and conic constant) and iteratively finds the
minimum value of Δ2. This algorithm requires Z to be
linearized anew during each iteration of the regression about
the values of the shape parameters θ found during the
previous iteration. This is accomplished via the linear models
of (11), (15), and (17) which are arrayed as in (18) in the
expectation matrix H.

3.2. Construction of the Residual Matrix Z. Since our regres-
sion will proceed iteratively, we will use the linear models
developed above. We perform three different regressions
on our data, each based on the three models embodied
in (11), (15), and (17). Recall the three models differ in
how we treat possible misalignment of the mirror parent
axes from the translation axes. First, we have to specify
the experimental settings, or the translational misalignments
that we introduce during each measurement. Then, we
construct an expectation matrix H (the matrix of theoretical
OPD coefficients specified up to the free shape parameters)
according to model Equation (11), (15), or (17), depending
on whether and how we treat small angle displacements of
the translation axes with respect to the mirror axes.
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Experimental settings {xn} will consist of the set of
known translations {tn = [εxn εyn εzn]T} applied to
the test mirror in its aligned state. These settings are
arrayed in a 3 × N matrix X in which the three rows
correspond to translation directions x, y, and z and the N
columns correspond to theN measurements performed. The
expectation matrix H is then constructed via the linearized
models of (11), (15), and (17) and application of the matrix
of experimential translation settings X. Equation (22) below
corresponds to the case in which the translation axes are
assumed to be orthogonal and coincident with the canonical
axes of the mirror. The case in which the translation axes
are assumed orthogonal but are allowed to displace, by small
angles, from the lab axes is embodied in (23). Equation (24)
governs the case in which the translation axes are allowed to
displace independently from the lab coordinate axes

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bT1

bT2
...

bTn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[(

M(0) + ΔM
)

X
]T

, (22)

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bT1

bT2
...

bTn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[(

M(0) + ΔM + M(0)Δ1

)
X
]T

, (23)

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bT1

bT2
...

bTn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[(

M(0) + ΔM + M(0)Δ2

)
X
]T
. (24)

The quantities measured under each of the N experi-
mental settings will be the M coefficients in the expansion
of the OPD, or translation-induced optical path difference,
δW(x, y).

During measurement, the matrix X of translations is
applied to the mirror and the resulting changes in the
interferogram, in terms of the coefficients {b′n} in the
expansions of the OPD functions {δWn(x, y)}, are recorded.
In practice, for the nth measurement, an interferogram is
recorded in the aligned state, then the translation tn is
applied, another interferogram is taken, and the difference
in the two phase functions is calculated. This results in the
difference OPD function δWn(x, y). The M responses, or
the coefficients in the Mth-order expansion of the OPD, are
arrayed in the N rows of the N ×M measurement matrix Y:

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′T1

b′T2
...

b′Tn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (25)

Note that the number of responses for each measurement is
equal to the number of OPD expansion coefficients we wish
to consider in our regression. If we had instead chosen to
retain OPD data sets in the form of the raw interferometer
output, then our measurements would each contain some
tens of thousands of responses, one for each detector in the
camera, and we would have to deal with this large data set at
each iteration of the regression.

To begin the regression, we form the residual, matrix
Z = Y − H. It is this residual matrix that represents the
difference between the OPD coefficients that we measure and
the theoretical coefficients which contain the free parameters.
The estimated values for the true surface parameters θ will
be obtained by minimizing, in the manner described above
in Section 3.2, the residuals, according to the determinant
criterion Δ2 = |ZTZ| of (21). That is, in each of the three
cases embodied in (22), (23), (24), the free parameters are
varied until the expectation functions fit the data optimally,
so that the parameter estimation criterion Δ2 is minimized.

The optimization algorithm is illustrated in the flowchart
of Figure 1.

4. Application of Measurement
Method to an Off-Axis Parabola

We tested our method using an off-axis parabola with known
radius of curvature R = 304.8 mm, diameter D = 76.18 mm,
and pupil offset s = −89.40 mm.

4.1. Experimental Setup. For our measurements, we used
a WYKO 400 phase shifting interferometer with an f /3.4
transmission sphere and an inexpensive refractive null cor-
rector we designed using COTS lenses. Translational motion
was provided by three Newport DM-13 series manual
differential micrometers with a resolution of 0.5 μm.

The mirror was mounted so that its parent optical axis
coincided with the optical axis of the null corrector and the
axes of translation coincided nominally with the home axes
of the parent parabola. That is, the plane defined by the x
and y axes of translation was parallel to the plane tangent to
the parent vertex of the parabola and the z axis of translation
was normal to the same plane. The image was centered on the
detector plane of the interferometer by rotating about the test
point as shown in Figure 2.

4.2. Model Functions. The surface altitude function from
which we derived the model functions is the general conic
of rotation with pupil offset s,

f
(
x, y

) = (x + s)2 + y2

R +
√

R2 − (K + 1)
[

(x + s)2 + y2
] . (26)

From this function, the components nx(x, y), ny(x, y), and
nz(x, y) of the surface normals are calculated and linearized
about the nominal values R = 304.8 mm, K = −1, and
s = −89.40 mm. The pupil coordinates are normalized to
the pupil radius of 38.09 mm. Integrations are performed,
using the orthonormal standard Zernikes as a basis, to obtain
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the OPD expansion coefficients and produce the matrix M,
which transforms the vector t = [εx εy εz]

T of trans-
lational components into the vector b of OPD expansion
coefficients as described in (13). For these nominal values,
considering the first five Zernike terms (excluding piston),
the zeroth order matrix M(0), in units of waves per micron,
was calculated to be

M(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1739 0 −0.0505

0 0.1887 0

0.0034 0 0.0055

0.0023 0 −0.0010

0 0.0026 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (27)

In this matrix, the first, second, and third columns cor-
respond to translations in the x, y, and z directions,
respectively. Rows correspond to the first five standard
Zernikes, beginning with x tilt (piston is excluded).

The presence of zero elements in the matrix M(0) is
due to the bilateral symmetry of the mirror about the
x-z plane. Translations parallel to a plane of symmetry
only produce aberrations with the same symmetry, and
translations normal to a plane of symmetry do not produce
any aberrations that are symmetric about that plane.

4.3. Imaging Distortion Compensation. The circular pupil of
the off-axis parabola was distorted by the null corrector
in such a way that it appeared oblong at the image plane
of the interferometer. This presented a problem for the
measurement, since the theory on which the regression is
based requires that the OPD recorded by each detector in the
array be associated with its true pupil coordinate. If we had
not corrected for the distortion and just applied a circular
analysis mask, then the Zernike decomposition would be
distorted and the model functions would be inaccurate.

To correct for pupil image distortion, a procedure was
employed which the authors have elaborated in a previously
published paper [11]. In this procedure, fiducial mask
features, whose locations in the physical pupil coordinates of
the mirror are known beforehand, are imaged by the optical
train comprising the interferometer and null corrector. Then
a transformation is calculated that carries the pixel addresses
of data points in the interferometer output into physical
coordinates in the pupil of the mirror.

4.4. Zernike Decomposition. At each iteration of the mul-
tiresponse regression, the Zernike decomposition of the
linearized model functions is performed numerically. In
contrast, the raw data supplied by the interferometer need
only to be decomposed into Zernike components once,
at the beginning of the regression. This decomposition is
accomplished by minimizing the variance between the data
and a linear combination of sampled basis functions.

To take a measurement, we recorded an interferogram
with the mirror aligned, and let its Zernike decomposition be
bM , and record another with the mirror in a translated posi-
tion, and call its decomposition b′M . The difference b′M − bM

WYKO
Fizeau

Test point

Null
optics

Test
surface

Figure 2: Setup for testing the off-axis parabola.

is the Zernike decomposition of the OPD function δW(x, y).
This difference vector comprises the multiresponse result of
a single measurement and forms one row of the data matrix
Y.

We took five sets of measurements, each set containing
three series of data, one for x translations, one for y
translations and one for z translations. Each series involved
translating the mirror in the corresponding direction from
5 μm to 50 μm in steps of 5 μm and from −5 μm to −50 μm
in steps of −5 μm, for a total of twenty translations. Each
measurement set, therefore, consisted of a total of 60
measurements, so that 300 measurements were taken in total.

Two sample OPD maps are shown below in Figure 3.
Figure 3(a) depicts the phase difference between the test
mirror and the reference with the mirror in the aligned state
and indicates null errors of about 1.528 waves. Figure 3(b)
shows the interferogram when the mirror is translated
25 μm in the positive x direction (horizontal in the plots).
The peak-to-valley phase difference in this state is 8.379
waves. The difference in the OPD coefficient vectors of the
two maps comprises a single measurement. Figure 4 shows
sample results for measurement of x tilt, y tilt, and focus
components of the OPD as functions of x and y translations.

We see in the above figures that the mirror symmetry
has had its predicted effect, however, the contribution to the
translation induced wavefront aberration from components
that should be zero, by symmetry arguments, is not quite
zero due to mechanical errors. It is also important to note
that the maximum displacement introduced to the mirror
was kept within certain bounds (calculated based on a
relationship derived in earlier, published work by the authors
[3]) in order to prevent retrace error from confounding
the measurements. The tell-tale sign of retrace errors would
be a nonlinearity in the OPD coefficients as a function of
displacement, which does not show up here.

4.5. Regression of R and K . After data are Zernike decom-
posed and the data matrix H is formed, the result is fed
into the regression algorithm, the output of which consists
of values for the radius of curvature R and conic constant
K . We performed our regression using Matlab. The iteration
proceeds until the magnitude of the increment vector δθ was
less than 0.001.

In performing the regression, we found that the algo-
rithm was most stable when we only considered the tilt and
focus coefficients (i.e., coefficients one through three) in the
Zernike expansions of the OPD. The other coefficients were
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(a) (b)

Figure 3: OPD Maps for (a) an aligned state and (b) for εx equal to 25 μm.

−4

−3

−2

−1

ti
lt

(w
av

es
),
x

ci
rc

le
s,
y

di
am

on
ds

0

1

2

3

4

5

−0.05−0.04−0.03−0.02−0.01 0

x and y tilt versus x-displacement, set A

Displacement (microns)

0.01 0.02 0.03 0.04 0.05

(a)

−0.1

−0.08

−0.06

−0.04

Fo
cu

s
(w

av
es

)

−0.02

0

0.02

0.04

0.06

0.08

0.1

−0.05−0.04−0.03−0.02−0.01 0

Focus versus x-displacement, set A

Displacement (microns)

0.01 0.02 0.03 0.04 0.05

(b)

−4

−2

0

2

Fo
cu

s
(w

av
es

)

4

6

8

10

12

14
×10−3

−0.05−0.04−0.03−0.02−0.01 0

Focus versus y-displacement, set B

Displacement (microns)

0.01 0.02 0.03 0.04 0.05

(c)
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Table 1: Results of measurement.

Algorithm Data removed? Symmetry zeroing? Average R/K RMS R/K % Diff. R/K

1 N N 304.3/−1.030 1.0/0.028 0.16/3.00

2 N N 304.5/−1.023 1.7/0.040 0.10/2.30

3 N N 316.2/−0.743 1.3/0.061 3.74/25.7

1 Y N 304.1/−1.031 1.0/0.027 0.23/3.10

2 Y N 304.6/−1.026 1.6/0.042 0.07/2.60

3 Y N 314.5/−0.762 2.5/0.074 3.18/23.8

1 Y Y 305.3/−1.025 2.7/0.032 0.16/2.50

2 Y Y 305.3/−1.024 2.7/0.040 0.16/2.40

3 Y Y 317.1/−0.659 6.9/0.271 4.04/34.1

small enough, that, when we retained them, the residual
matrix was badly scaled. In other words, the columns of the
residual matrix corresponding to the higher order Zernike
polynomials were very small (close to zero) compared to the
lower order columns. The more Zernike terms we included,
the closer the residual matrix came to column rank deficiency
and the more unstable the algorithm became. As discussed
below, this simplification, in addition to being necessary,
supplied reasonable, stable answers, and so it is justified on
the grounds of correctness and economy. The reader can also
be assured based on earlier work by Young and Dente [12]
that the tilt coefficients as a function of translations of the
mirror are indeed sensitive to conic constant.

4.6. Measurement Results. We applied the three regression
algorithms corresponding to three models to three different
cases, for a total of nine final measurement results. The three
cases to which we applied the regression corresponded to
three different ways that the data were conditioned before
being sent to the regression algorithm. In the first case,
all three hundred data points were used; in the second
case, five aberrant data points were first removed; and in
the third case, the aberrant data points were excluded and,
in addition, the OPD coefficients that should have been
zero, by the symmetry arguments presented in Section 4.2,
were artificially zero. The argument for the validity of
conditioning the data in the latter way is that the small
angle dislocation of a translation axis will not affect the
magnitude of the translation along the original, undisplaced
axis. Therefore, it is valid to only consider OPD coefficients
that should arise from translations along the undisplaced axis
and to ignore OPD coefficients that should remain zero.

The results of our measurement are listed in Table 1
below. All the regressions supplied reasonable answers,
except those in which the x and z axes were allowed to
skew independently. In those cases, the vertex radius of
curvature is found to be larger than the value specified by the
manufacturer by around a centimeter, and the conic is found
to be significantly closer to zero than its nominal value of−1.
The angular displacements of the translation axes calculated
using the second algorithm, where these axes are assumed
orthogonal, were usually on the order of milliradians and in
only a couple of cases were as large as one-hundredth radian.

The third algorithm, on the other hand, always calculated a
large value (negative one-fifth radian or ∼11 degrees) for the
angular displacement of the x translation axis about the y
axis. This constitutes an unreasonably large skewing of the x
and z axes and accounts for the departures of the calculated
R and K for this case from reasonable values. Apparently,
in these cases the algorithm is rather unstable and sees the
mirror as a slower, less eccentric surface being translated
along skewed axes.

The results that were closest to the specifications given
by the manufacturer of R = 304.8 mm and K = −1 are
obtained via the second algorithm, in which the orientation
of the stage coordinate system is allowed to vary while the
stage axes remain orthogonal. With the five aberrant data
points removed, the answer for the vertex radius of curvature
is slightly closer to 304.8, while the answer for the conic is
slightly farther from its nominal value. In all cases, the values
calculated for R are more precise (when the RMS deviation is
normalized) than those calculated for K .

To examine the effect that different starting values
have on the outcome of the regression, and to allay any
concern that the algorithm trivially reproduces the guess
values, we started with the values 335 mm for R and −1.1
for K , and only considered the cases, as shown below in
Table 2, in which neither symmetry zeroing nor independent
displacements of the translation axes were considered. For
the two cases in which no displacements of the translation
axes were considered at all, the answers were exactly the
same for these new starting points. For the two in which the
axes were allowed to displace as a whole while remaining
orthogonal, the answers were slightly different with the
answers for R departing more from the previous answers
than the answers for K . The sensitivity of the algorithm to
the starting points is low, especially considering that these
starting points are far from reasonable, as they are a full 10%
different from the nominal mirror parameters.

4.7. Errors. If, as in (9) and (10), we expand the slopes of the
OPD expansion coefficients to first order in R and K , we find
that the K coefficients are always an order of magnitude or
more larger than the R coefficients for our parabolic mirror.
This indicates that the measured OPD is more sensitive to
changes in K than to changes in R and that, inversely, K is
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Table 2: Results of measurement using different starting values for R and K .

Algorithm Data removed? Zeroing? Avg. R/K RMS R/K %Diff. R/K

1 N N 304.3/−1.030 1.0/0.029 0.16/3.00

2 N N 304.7/−1.022 1.7/0.039 0.03/2.30

1 Y N 304.1/−1.031 1.0/0.027 0.23/3.10

2 Y N 305.1/−1.027 1.3/0.041 0.10/2.70

less sensitive to errors in measurements of OPD than is R.
The results of measurement bear this out, as the numerical
values for the standard deviations and absolute errors are
much smaller for K than for R. However, when the RMS is
normalized to the nominal values of R and K , we find that
the relative precision is much better for R than for K , since
the nominal value of R is larger by a factor of about 300 than
the magnitude of the nominal conic constant. The percent
difference from the manufacturer’s metrology shows that the
relative agreement in the measured value of R is indeed closer
to the manufacturer’s values than is the measured value of
K . The manufactured tolerance for R is +/−0.1% and the
tolerance on K (calculated from the slope error tolerance)
is 0.01%.

The precision and accuracy in the answers supplied
by algorithms two and three suffer from the inclusion
of more free parameters. This imprecision is minimal for
algorithm two, but algorithm three drives the errors to
intolerable levels. Merely removing five bad data points
out of three hundred causes a large change in the answers
and in the errors produced by the third algorithm. This
demonstrates the numerical instability introduced by the
included additional parameters in algorithm three.

Possible sources of error are errors in magnitudes of
displacement as well as unaccounted for rotations due
to moments applied to the stage when the micrometer
knobs are turned. The random departure of the relationship
between OPD and displacement from linearity indicates
errors of the former kind, while the presence of significant
Zernike components that should be disallowed by mirror
symmetries indicates errors of the second kind.

To analyze errors introduced by coupling between trans-
lations and rotations, we examined the calculated radius
and conic values for the case in which the orientation of
the translation axes was allowed to vary, yet it remains
orthogonal. The results for this case included, in addition
to radius and conic values, the estimated rotations of the
mirror coordinate system about the x,y, and z axes. We
calculated the difference in regressed radius and conic values
between the baseline case (with no presumed dislocation of
the translation axes) and the aforementioned case, for all
five measurement runs. (Note that the baseline case and the
displaced case use, as they must, the same raw measurement
data and only differ in the regression used to calculate
radius and conic.) This resulted in an overdetermined system
of equation from which the best fit error gains (which
relate magnitudes of x, y, and z rotations of the system of
translation axes to variations in regressed radius and conic
values) were calculated via the pseudoinverse. Sensitivities of

radius and conic to each type of mirror coordinate frame
rotation are represented by these results. The error gains
for rotations of the system of translation axes about the
x, y, and z axes with respect to the calculated radius of
curvature were −77, 39, and 102 (mm/radian), respectively.
The corresponding gains for the conic constant were −0.76,
−2.23, and 2.02 (radian−1). These results suggest that
measurement of the radius of curvature with this method is
most sensitive to rotations of the system of translation axes
about the x and z axes, whereas the conic measurement is
most sensitive to rotations about the y and z axes.

Another possible source of error comes from the imaging
distortion produced by the interferometer-null combination.
The measured Zernikes coefficients and, therefore, the
regressed radius and conic values are subject to errors in reg-
istration of the pixels of OPD data to coordinates in physical
space. A thorough, quantitative study of this relationship will
be left for future work for the sake of brevity but it should
be noted that this distortion compensation process was fully
reported in an earlier paper in this journal [11]. In that
work, we concluded that our distortion correction method
produced mapping errors that were less than a single pixel
in the interferogram. For this reason, we consider the errors
introduced here by the imaging distortion to be negligible
compared to those introduced by the mechanical errors.

Since this method requires data being taken at a number
of alignment positions, it is likely that significant OPD
may be induced. In some intereferometers, and especially in
combination with null optics, retrace error may confound
the measurements by producing alignment sensitive errors
in the measurement. This error can be ameliorated by
empirical measurement of the retrace error sensitivity of
the interferometric system, modeling of the null system
according to previously published work by the coauthors
[13], and by constraining the alignments to ranges which
contribute sufficiently small errors. However, in precision
optical testing, especially of large, lightweight mirrors that
suffer significant gravity sag, these issues are typically already
monitored and documented. Thus, this method does not
require significant modifications or additions to standard
interferometric testing procedures of hardware. The intro-
duction of significant retrace error begins when the linearity
of the approximate governing relationship of (3) breaks
down. We have thoroughly analyzed these limits, based on
the accuracy of the interferometer and the geometry of this
particular test mirror, in another journal article [3] and
used this analysis to bound the magnitude of displacements
introduced during our test to 50 μm. Given the lack of
systematic departure from linearity in the data and the
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thorough upfront analysis of the proper bounds for the
mechanical displacements, we do not consider retrace error
to be significant in this test, even though the OPD that we
were able to induce is significant (several waves).

Environmental and instrumental errors such as air
turbulence (which was mitigated by the placement of a
cardboard box over the airpath) and errors introduced by
finite accuracy of the interferometer are likely overwhelmed
by the mechanical contributions to error that were discussed
above. The OPD measurement accuracy of the WYKO 400
interferometer is on the order of λ/100, which is very small
compared to the variations in measured OPD values.

It is important to note one source of error to which our
method is highly insensitive: null errors. Since our method
is differential in nature, the mild errors in the null are
subtracted out during each measurement.

5. Summary and Conclusion

We have presented an elegant, flexible method for measuring
the prescription of mirrors of any nominal shape, which is
insensitive to null wavefront and alignment errors. Develop-
ment of this method involved identifying the fundamental
requirement that the testing be performed in a differential
interferometric modality; realizing that the most elegant
way to implement this differential measurement scheme was
by introducing rigid body motions through a mechanical
support that is already common in interferometric test setups
and, perhaps most importantly, developing a sophisticated
yet economical regression algorithm, based on the correct
assumptions about the statistics of the measurement errors.
We have successfully employed a method for measuring
the prescription of an aspheric mirror using only the usual
equipment necessary for performing interferometric figure
tests. The method is suited to arbitrary mirror prescriptions
and can be used in the conjugate null and center-of-
curvature null test configuration. Such a method is suitable
for the profile testing of reflective optics in a cryogenic testing
situation, such as that encountered in James Webb Space
Telescope testing, since it is a remote method and requires
no more equipment than is necessary in making basic figure
measurements.

With our setup, we were able to achieve vertex radius of
curvature measurement accuracy of better than 0.1% and
conic constant accuracy of better than 3% relative to the
manufacturers measured values on an off-axis paraboloid
with over X waves of deformation from a sphere, using a null
assembled from COTS lenses.

The accuracy of our measurement technique would no
doubt be greatly improved by enhancing the mechanical
support for the mirror and using more accurate motion
control. An electronically controlled translation stage, like
those used in most cryogenic tests, would reduce the
amount of extraneous mechanical movements of the mirror
and would provide better translation accuracy and relief
from backlash, especially if the magnitudes of the trans-
lations were monitored with distance measuring interfer-
ometers. Future work toward improving this method of
shape measurement should concentrate on two general

areas: improvement of mechanical support and motion
induction and improvement of data acquisition. More accu-
rately controlled movement, via, for example, the introduc-
tion of distance measuring interferometers to the translation
stage, would reduce the amount of data that would have
to be taken in order to achieve good accuracy and would
reduce measurement time through automation. For in situ
measurement of shape of a large optical surface in space, it
would, of course, be necessary to move the interferometer
head instead of the optic itself to obtain the differential
measurements.
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