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Abstract We discuss in detail the constraints on the partial
compositeness coming from flavour and CP violation in the
leptonic sector. In the first part we present a formulation of
partial compositeness in terms of a flavour symmetry group
and a set of spurions, whose background values specify the
symmetry breaking pattern. In such a framework we con-
struct the complete set of dimension-six operators describing
lepton flavour violation and CP violation. By exploiting the
existing bounds, we derive limits on the compositeness scale
in different scenarios, characterised by increasing restrictions
on the spurion properties. We confirm that in the most general
case the compositeness scale should lie well above 10 TeV.
However, if in the composite sector the mass parameters and
Yukawa couplings are universal, such a bound can be sig-
nificantly lowered, without necessarily reproducing the case
of minimal flavour violation. The most sensitive processes
are decays of charged leptons either of radiative type or into
three charged leptons, μ → e conversion in nuclei and the
electric dipole moment of the electron. In the second part
we explicitly compute the Wilson coefficients of the rele-
vant dimension-six operators in the so-called two-site model,
embodying the symmetry breaking pattern discussed in our
first part, and we compare the results with those of the general
spurion analysis.

1 Introduction

If the solution to the gauge hierarchy problem is based on
a new symmetry and not on anthropic considerations (for a
review see [1]) or on special evolutions of the scalar sec-
tor in the early universe [2], new physics at the TeV scale
is expected. In most of the existing models new degrees of
freedom carrying flavour quantum numbers are present at the
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TeV scale, representing potential sources of flavour changing
neutral currents (FCNC) and CP violation. So far both direct
searches at the LHC and indirect searches in the context of
precision tests and flavour physics have brought no conclu-
sive evidence of new physics at the TeV scale. The negative
outcome of the search for new physics in the flavour sector
is particularly intriguing. Indeed a scale of new physics �NP

as large as 105 TeV [3] is required by an effective operator
analysis to preserve the good agreement between observa-
tions and theory predictions, unless the new flavour sector
is highly non-generic and involves specific mechanisms to
suppress FCNC and CP violation at the desired level.

The latter possibility is empirically supported by the
huge hierarchies among fermion masses and fermion mixing
angles, which can only be explained by some special dynam-
ics. An effective mechanism suppressing FCNC and CP vio-
lation can be introduced by observing that in the electroweak
theory the symmetry of the flavour sector is broken only by
the Yukawa interactions. Minimal flavour violation (MFV)
[4] is defined by the assumption that, even including new
physics contributions, Yukawa couplings are the only source
of such symmetry breaking. In MFV flavour effects from new
physics are controlled and damped by the smallness of the
fermion masses and mixing angles. In this framework data
allow �NP to be considerably smaller, close to the TeV scale.
MFV provides a useful benchmark for the discussion of the
flavour sector, but it does not emerge as a unique framework
from the known mechanisms aiming to explain the observed
fermion spectrum (for a review see [5]), or from the known
models providing a solution to the gauge hierarchy problem.

In this paper we reconsider the possibility that both the
origin of fermion masses and the suppression of FCNC and
CP violation are due to the mechanism of partial composite-
ness (PC) [6], as realised in the context of composite Higgs
models (for reviews see [7,8]), and we perform a detailed
analysis of flavour and CP violations in the leptonic sector.
According to PC there are no direct couplings between the
elementary fermions and the Higgs doublet. The Higgs dou-
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blet has potentially strong couplings to a composite sector,
including, in the simplest case, a set of vector-like fermions
with masses of the order of the compositeness scale. The SM
fermions are mostly elementary and get their masses through
mixing terms with operators of the composite sector, often
modelled by vector-like fermions.

An appealing realisation of this idea involves anarchic
Yukawa couplings in the composite sector. In this case the
observed hierarchies between SM fermion masses and mix-
ing angles are entirely due to the elementary–composite mix-
ing terms. This is of particular interest, especially for the lep-
ton sector, since the known pattern of neutrino masses and
mixing angles as extracted from neutrino oscillation experi-
ments [9] seems to support the idea of an underlying anarchic
dynamics [10,11]. Higher-dimensional operators describing
low-energy FCNC and CP violations are depleted by both
inverse powers of the compositeness scale and by the mix-
ing terms, thus realising an efficient suppression mechanism
known as RS-GIM [12]. Quantitative studies in concrete
models show that in the anarchic scenario limits from CP
violation in the quark sector lead to �NP > 10 TeV [8],
while the existing bound on the rate of μ → eγ results in
�NP > 25 TeV [8]. This strongly disfavours the anarchic
scenario when the compositeness scale is of the order of 1
TeV. It is also known that PC at the TeV scale can satisfy
the bound from flavour physics if Yukawa couplings in the
composite sector are non-generic. For instance if we assume
that such couplings are universal and, at the same time, that
the only irreducible sources of flavour symmetry breaking
are proportional to the SM Yukawa couplings, we reproduce
exactly the MFV scheme [13].

In this paper we focus on the lepton sector. Several stud-
ies of lepton flavour violation (LFV) and CP violation in
the lepton sector of composite Higgs models have been
realised. Most of the analysis have been performed in the con-
text of five-dimensional (5D) models with a warped space-
time metric, weakly coupled duals to strongly coupled four-
dimensional conformal theories, believed to provide a calcu-
lable framework for composite Higgs models. Explicit com-
putations with anarchic Yukawa couplings have been carried
out in Refs. [14–20]. They get a lower bound on the masses of
the first Kaluza–Klein modes of order 10 TeV. These bounds
can be relaxed by requiring discrete [21–24] or continuous
[25–27] flavour symmetries. The original motivation for dis-
crete symmetries, tailored to approximately reproduce the
tri-bimaximal mixing pattern in the lepton sector, has weaken
after the precise measurement of the θ13 angle and the mod-
els considered in [21–24] require considerable corrections
now. Continuous non-abelian symmetries in the composite
sector, broken by the elementary–composite mixing terms
have been analysed in detail, especially in relation to FCNC
and CP violation in the quark sector [28–32]. A review on
flavour physics in 5D models with warped space-time metric

can be found in Ref. [33]. LFV and CP violation in the lep-
ton sector have been investigated also in SM extensions with
extra vector-like heavy leptons [34,35] that can mimic the
PC scenario, at least as far as the contributions from heavy
fermions is concerned.

In the present work we recast the framework of PC in terms
of a generalised flavour symmetry and a suitable set of rele-
vant spurions, much along the lines of Refs. [12,28,32,36].
This involves a certain degree of model dependence, since
both the flavour symmetry and the spurions are determined
by the specific set of composite leptons that we choose by fol-
lowing the criterion of minimality. In particular we work in
the limit of vanishing neutrino masses, turning off the poten-
tial effects related to massive neutrinos. It is well known that
within PC, LFV and CP violation in the lepton sector are
present also in the limit of massless neutrinos. By assum-
ing that the set of adopted spurions are the only irreducible
sources of flavour and CP violation, we can construct an
exhaustive list of Wilson coefficients related to dimension
six operators describing LFV and CP-violating processes.
At variance with the previous studies, we include for the first
time all Wilson coefficients containing up to four powers
of the spurions describing the elementary–composite mixing
and we discuss their role in deriving the bounds on the com-
positeness scale. We also provide a complete list of the LFV
Wilson coefficients that can be constructed in the limit of van-
ishing “wrong” Yukawa couplings. “Wrong” Yukawas in the
composite sector are allowed by gauge symmetry, but they
do not contribute to SM lepton masses, at the leading order.
They directly contribute to the dipole operators describing
radiative decays of the charged leptons and setting such
Yukawas to zero can relax the bounds on the compositeness
scale.

The general scope of our analysis is to check whether there
are alternative solutions, beyond MFV, to reconcile PC at the
TeV scale with the existing bounds on LFV and CP violation.
We also wish to verify if the anarchic scenario is completely
ruled out or not. By exploiting the effective Lagrangian of our
construction and the existing experimental bounds we esti-
mate the limits on the new physics scale in several scenarios,
where our spurions are subjected to a series of increasingly
restrictive conditions. We confirm that in general the anar-
chic scenario is not compatible with new physics at the TeV
scale and we provide examples of how PC can be realised at
the TeV scale, without necessarily resorting to MFV.

In the second part of our paper we consider as an explicit
model realisation of the flavour symmetry and its breaking
pattern the so-called two-site model, first introduced in Ref.
[37]. Such a realisation contains explicitly vector-like lep-
tons, implementing partial compositness in the lepton sector,
as well as a set of spin-one resonances. By integrating out
the states at the compositness scale, we evaluate the Wilson
coefficients of the relevant LFV and CP-violating dimension
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six operators and we compare the results with those of the
general spurion analysis.

Our paper has the following plan. In Sect. 2 we define the
flavour symmetry and the set of spurions of our setup and
we characterise the Wilson coefficients of the dimension-
six operators relevant to LFV and CP violation in the lepton
sector. In Sect. 3 we perform a phenomenological analysis
and we study the bounds on the new physics scale obtained
by making different types of assumptions on the available
spurions. In Sect. 4 we recall the main aspects of the two-
site model, which explicitly incorporates the features of the
flavour symmetry breaking defined in Sect. 2. In Sect. 5 we
collect our results on the dimension six operators obtained
from the model by integrating out heavy fermions and heavy
gauge vector bosons. In Sect. 6 we present a phenomenolog-
ical analysis of LFV in the two-site model. Finally we draw
our conclusion. In Appendix B we show the result of our
computation of the full one-loop contribution to the electro-
magnetic dipole operator in the two-site model.

2 Effective field theory for lepton flavour violation

As a first step, we have to choose the flavour symmetry group
of our effective theory and its breaking terms. Throughout
this paper we will work in the limit of massless neutrinos.
The leptons are those of the SM, that is, three copies of SU(2)

doublets � and singlets ẽ. In MFV the flavour symmetry group
of the leptonic sector is SU(3)� × SU(3)ẽ, corresponding to
independent transformations made on � and ẽ. In our anal-
ysis we will instead assume a PC scenario. Charged leptons
have no direct coupling to the Higgs doublet and acquire
masses via mixing with vector-like heavy fermions. In this
framework it is natural to assume as flavour symmetry group
(focussing only on the non-Abelian part):

G f = SU(3)6

= SU(3)� × SU(3)ẽ × SU(3)LL × SU(3)LR

× SU(3)ẼL
× SU(3)ẼR

, (1)

under which the lepton fields rotate in generation space in
the following way:

�Li → (V�)i j�L j , ẽRi → (Vẽ)i j ẽR j , (2)

where V� and Vẽ are elements of SU(3)� and SU(3)ẽ, respec-
tively. In other words, the SM leptons only transform under
the SU(3)�×SU(3)ẽ component of the flavour groupG f , and
they are invariant under the remaining SU(3)4 factor. Such a
factor will be used to specify the spurions of our effective field
theory. We introduce three sets of spurions. We need spurions
(�, �̃) that mix SM leptons with heavy fermions. Moreover,
we allow for spurions (m, m̃) describing the masses of the

heavy fermions in the limit of unbroken electroweak sym-
metry. Finally the heavy fermion sector can interact with the
Higgs doublet and this implies additional spurions (Y ∗

L , Y ∗
R).

Notice that this set of spurions is the most general one com-
patible with our flavour group G f and with the assumption
that the SM Higgs doublet directly couples only to the heavy
sector. From these considerations the following transforma-
tion properties for our spurions can be deduced:

m → VLLmV †
LR

,

m̃ → VẼL
m̃V †

ẼR
,

� → V��V †
LR

,

�̃ → Vẽ�̃V †
ẼL

,

Y ∗
R → VLL Y

∗
RV

†
ẼR

,

Y ∗
L → VLRY

∗
LV

†
ẼL

,

(3)

where it is evident from our notation which SU(3) fac-
tors of G f are involved in each transformation. An equiv-
alent set of spurions is obtained by replacing the dimen-
sionful quantities (�, �̃) with dimensionless combinations
(X, X̃) = (�m−1, �̃m̃−1†) transforming as

X → V�XV
†
LL

,

X̃ → Vẽ X̃V
†
ẼR

. (4)

In such a case at the leading order (LO) SM charged lepton
masses are generated by the operator

O(0)
M = (�Lϕ)X Y ∗

R X̃†ẽR, (5)

where ϕ is the Higgs electroweak doublet.
It is well known that, if all the spurions (X, X̃), (Y ∗

L , Y ∗
R)

and (m, m̃) are present at the same time and if the Yukawa
couplings (Y ∗

L ,Y ∗
R) are anarchic, a severe bound on the new

physics scale applies. Indeed in concrete models belonging to
the general class we are considering, the one-loop exchange
of Higgs and heavy fermions leads to the following electro-
magnetic dipole operator:

1

16π2 (�Lϕ)(σ · F)X Y ∗
Rm̃

−1Y ∗
L

†m−1Y ∗
R X̃†ẽR . (6)

If such a contribution is present, and the Yukawa couplings
(Y ∗

L ,Y ∗
R) are assumed to be anarchic of O(1), then the elec-

tromagnetic dipole operator and the mass operator are not
aligned in flavour space and the heavy fermion scale is
bounded to be heavier than about 30 TeV, to respect the bound
on BR(μ → eγ ). One way to eliminate this dangerous con-
tribution, while maintaining non-vanishing lepton masses, is
to assume Y ∗

L = 0. We will come back to this assumption
later in this section. For the moment we will adopt it as a
working hypothesis. Our purpose is to analyse the flavour-
violating contributions surviving in this limit and to estimate
the corresponding bounds on the new physics scale.

At variance with MFV, spurions with the dimension of a
mass are present in our setup and some additional prescrip-
tions are needed:
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• First of all we require that our operators are local in the
spurions (X, X̃). These are mixing parameters that are
generically treated as small and provide one set of expan-
sion parameters for our spurion analysis.

• We also assume that the operators are local in the Yukawa
couplings Y ∗

R , which we restrict in the range 1 ≤ |Y ∗
R | ≤

4π .
• Each power ofY ∗

R occurs accompanied either by an Higgs
electroweak doublet ϕ or by a factor 1/4π .

• Masses of the composite sector are described by the spu-
rions (m, m̃) to which we add an additional parameter
M , singlet under the flavour symmetry group, to describe
masses of other composite particles, such as for instance
a new set of vector boson resonances. These additional
states are coupled to the Higgs doublet and to the heavy
fermions with a strong coupling constant g∗, in the range
1 ≤ g∗ ≤ 4π .

• In our operators masses will always appear in negative
powers, to allow for decoupling of all the operators with
the scale of new physics.

With this set of assumptions, the LO operator describing
charged lepton masses is still OM in Eq. (5). We stress that
this operator provides the definition of the spurion Y ∗

R . Any
polynomial of the type

Y ∗
R

[
1 + c1

16π2 (Y ∗
R

†Y ∗
R) + c2

(16π2)2 (Y ∗
R

†Y ∗
R)2 + · · ·

]
(7)

could replace Y ∗
R in OM . With no loss of generality we can

redefine asY ∗
R the particular combination of Eq. (7) occurring

in OM .
The physical processes we are interested in concern lepton

flavour violation in the charged lepton sector as well as the
magnetic dipole moments and the electric dipole moments
(EDM) of the charged leptons. To this purpose it is conve-
nient to adopt an effective field theory description where the
SM Lagrangian is extended by an appropriate set of gauge
invariant operators depending on the SM fields [38]:

L = LSM + 1

�2

∑
i

Ci Qi + · · · (8)

where we have restricted our attention to the lowest-
dimensional operators relevant to the processes we are inter-
ested in, namely those of dimension six. Dots denote higher-
dimensional operators. We list below a complete set of
dimension six operators depending on lepton fields and on the
scalar electroweak doublet ϕ [39]. We start with the dipole
operators

(QeW )i j = (�̄Liσ
μν ẽR j )τ

IϕW I
μν,

(QeB)i j = (�̄Liσ
μν ẽR j )ϕBμν. (9)

W I
μν and Bμν are the field strengths for the gauge vector

bosons of SU(2) andU (1), respectively. The flavour structure
of these two operators is the same and we will focus on the
combinations

(Qeγ )i j = cos θW (QeB)i j − sin θW (QeW3)i j ,

(QeZ )i j = sin θW (QeB)i j + cos θW (QeW3)i j , (10)

where θW is the weak mixing angle and QeW3 denotes the
contribution to QeW obtained setting to zero W 1,2

μν . The elec-
tromagnetic dipole operator Qeγ is the only operator that
gives a tree-level contribution to the radiative decays of
charged leptons, when i �= j . The diagonal elements, i = j ,
contribute to the anomalous magnetic moments and to the
EDM of the charged leptons. We have operators bilinear in
the Higgs doublet

(Q(1)
ϕl )i j = (ϕ†i

↔
Dμ ϕ)(�̄Liγ

μ�L j ),

(Q(3)
ϕl )i j = (ϕ†i

↔
D I

μ ϕ)(�̄Liτ
Iγ μ�L j ),

(Qϕe)i j = (ϕ†i
↔
Dμ ϕ)(ẽRiγ

μẽR j ). (11)

After the breaking of the electroweak symmetry these oper-
ators modify the couplings of the Z boson to leptons, poten-
tially violating both universality, through the diagonal terms,
and lepton flavour, through the non-diagonal ones. There is
a unique operator trilinear in the Higgs doublet

(Qeϕ)i j = (ϕ†ϕ)(�̄Li ẽR jϕ), (12)

which contributes, with a different weight, to both the masses
and the Higgs couplings of the charged leptons. Finally, we
have the four-lepton operators

(Qll)i jmn = (�̄Liγμ�L j )(�̄Lmγ μ�Ln),

(Qee)i jmn = (ẽRiγμẽR j )(ẽRmγ μẽRn),

(Qle)i jmn = (�̄Liγμ�L j )(ẽRmγ μẽRn), (13)

which can contribute to muon and tau decays into three
charged leptons. We also consider dimension-six operators
of the type llqq that can contribute to μ → e conversion in
nuclei:1

(Q(u)
�q )i j = (�̄Liγμ�L j )(ūLmγ μuLn)

(Q(d)
�q )i j = (�̄Liγμ�L j )(d̄Lmγ μdLn)

(Q�u,d )i j = (�̄Liγμ�L j )(ū Rmγ μuRn), (�̄Liγμ�L j )(d̄Rmγ μdRn),

(Qeq )i j = (ẽRiγμẽR j )(q̄Lmγ μqLn) q = (u, d),

(Qeu,d )i j = (ẽRiγμẽR j )(ū Rmγ μuRn), (ẽRiγμẽR j )(d̄Rmγ μdRn).
(14)

1 The operators (Q(u)
�q )i j and (Q(d)

�q )i j are linear combinations of the

operators (Q(1)
�q )i j and (Q(3)

�q )i j of Ref. [39].
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There are other three independent operators of this type [39],
but the chosen subset is sufficiently general for the purposes
of the present discussion. Notice that each operator carries
flavour indices. Hermiticity of the effective Lagrangian is
guaranteed either by appropriate symmetry properties of the
Wilson coefficients under transposition of the family indices
or by addition of the hermitian conjugate operator.

Our aim is to estimate the Wilson coefficients of these
operators, by expressing them in terms of the spurions using
the set of rules described above. We expand each Wilson coef-
ficient in powers of the mixings (X, X̃) and the Yukawa cou-
pling Y ∗

R . Since the spurions (X, X̃) control lepton masses,
they are expected to be small, of order (0.1/Y ∗

R) at most.2

We will stop the expansion in (X, X̃) at the fourth order. In
the expansion we will go up to the third order in Y ∗

R , since
in the anarchic scenario trilinear combinations of Yukawa
couplings are in general misaligned with respect to linear
ones. Higher orders in Yukawa couplings do not bring any
new qualitative feature in our analysis. Finally the correct
dimension is provided by negative powers of M or (m, m̃).
Since the operators under study have dimension six, in prac-
tice we have two classes of operators, those suppressed by
1/M2 and those suppressed by the heavy fermion masses.
Each of these two classes refers to a specific decoupling limit.
When M � |m|, |m̃|, the heavy bosons decouple first and
the operators are suppressed by negative powers of (m, m̃).
We call this the heavy boson (HB) case. In the opposite limit,
M � |m|, |m̃|, we have a fast heavy fermion decoupling and
the operators are suppressed by the smaller scale M . We call
this the heavy fermion (HF) case. When the two scales M
and (m, m̃) are comparable, the Wilson coefficient can be a
generic function of the ratio of the two scales. For the present
discussion the two limiting cases are sufficient to capture the
behaviour of the system. For our spurion analysis it is con-
venient to rewrite the mass matrices m, m̃ in this way

m = m0 c, m̃ = m0 c̃, (15)

wherem0 is a flavour-independent mass parameter, while the
flavour dependence is carried by the dimensionless matrices
c, c̃.

Concerning the dependence of the operators on the strong
coupling constant g∗, we observe that g∗ is flavour blind;
it only affects the overall strength of the operators and can
be absorbed in a redefinition of the NP scale. Therefore we
will simply set g∗ = 1 for the rest of this model-independent
analysis. In the specific model discussed in Sect. 4, we will
focus on the LO contributions to the relevant operators, aris-

2 Actually, it is possible to elude such conclusion in particular sce-
narios, where one of the two fermion chiralities has a large degree of
compositeness. In these cases, the perturbative expansion in either X or
X̃ breaks down. In this paper, we will mainly focus on the anarchical
scenario, assuming that both X and X̃ are small.

Table 1 Spurion combination CL̄R , in a matrix notation, for the lepton
bilinear �̄Li (CL̄R)i j ẽR j . NY and NX are the orders of the expansion in
Y ∗
R and (X, X̃), respectively. We restrict the list to NY ≤ 3 and NX ≤ 4.

For convenience we distinguish spurion combinations depending on
composite fermion matrices c and c̃ (column HB) from combinations
not involving c and c̃ (column HF)

NY NX HF HB

1 2 XY ∗
R X̃

† XY ∗
R(c̃†c̃)−1 X̃†

X (cc†)−1Y ∗
R X̃

†

1 4 XY ∗
R X̃

† X̃ X̃† X (cc†)−1Y ∗
R X̃

† X̃ X̃†

XX†XY ∗
R X̃

† XY ∗
R(c̃†c̃)−1 X̃† X̃ X̃†

XY ∗
R X̃

† X̃(c̃†c̃)−1 X̃†

X (cc†)−1X†XY ∗
R X̃

†

XX†X (cc†)−1Y ∗
R X̃

†

XX†XY ∗
R(c̃†c̃)−1 X̃†

3 2 XY ∗
RY

∗
R

†Y ∗
R X̃

† X (cc†)−1Y ∗
RY

∗
R

†Y ∗
R X̃

†

XY ∗
R(c̃†c̃)−1Y ∗

R
†Y ∗

R X̃
†

XY ∗
RY

∗
R

†(cc†)−1Y ∗
R X̃

†

XY ∗
RY

∗
R

†Y ∗
R(c̃†c̃)−1 X̃†

3 4 XY ∗
R X̃

† X̃Y ∗
R

†Y ∗
R X̃

† X (cc†)−1Y ∗
R X̃

† X̃Y ∗
R

†Y ∗
R X̃

†

XY ∗
RY

∗
R

†X†XY ∗
R X̃

† ...

XY ∗
RY

∗
R

†Y ∗
R X̃

† X̃ X̃† X (cc†)−1Y ∗
RY

∗
R

†X†XY ∗
R X̃

†

XX†XY ∗
RY

∗
R

†Y ∗
R X̃

† ...

ing either at tree level or at one loop, and we will keep explicit
track of such a dependence.

To facilitate the identification of the relevant Wilson coef-
ficients, it is useful to identify the combinations of spurions
that fit the lepton bilinears

�̄Li (CL̄R)i j ẽR j , �̄Li (CL̄L)i j�L j , ẽRi (CR̄R)i j ẽR j . (16)

In Tables 1, 2 and 3 we collect such combinations, con-
structed with the rules outlined above.

2.1 Dipole operators

The dipole operators in Eq. (9) involve the lepton bilinear
�̄Li (CL̄R)i j ẽR j and their possible Wilson coefficients are the
(CL̄R)i j combinations listed in Table 1. We expect that the
dipole operators are loop generated in perturbation theory.
The naive loop suppression factor 1/(16π2) is not present in
Table 1 and should be included in the Wilson coefficient,

(Ceγ,Z )i j = 1

16π2 (CL̄R)i j . (17)

The new physics scale � associated to dipole operators is
M in the HF case (M � |m|, |m̃|) and m0 in the HB one
(M � |m|, |m̃|).

The first important outcome of our analysis is that there
is a large set of potentially lepton flavour-violating combi-
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Table 2 Spurion combination CL̄L , in a matrix notation, for the lepton
bilinear �̄Li (CL̄L )i j�L j . NY and NX are the orders of the expansion in
Y ∗
R and (X, X̃), respectively. We restrict the list to NY ≤ 2 and NX ≤ 4.

For convenience we distinguish spurion combinations depending on
composite fermion matrices c and c̃ (column HB) from combinations
not involving c and c̃ (column HF)

NY NX HF HB

0 0 l 1

0 2 XX† X (cc†)−1X†

0 4 XX†XX† X (cc†)−1X†XX†

XX†X (cc†)−1X†

2 2 XY ∗
RY

∗
R

†X† X (cc†)−1Y ∗
RY

∗
R

†X†

XY ∗
R(c̃†c̃)−1Y ∗

R
†X†

XY ∗
RY

∗
R

†(cc†)−1X†

2 4 XY ∗
R X̃

† X̃Y ∗
R

†X† X (cc†)−1Y ∗
R X̃

† X̃Y ∗
R

†X†

XY ∗
RY

∗
R

†X†XX† ...

XX†XY ∗
RY

∗
R

†X† X (cc†)−1Y ∗
RY

∗
R

†X†XX†

...

Table 3 Spurion combination CR̄R , in a matrix notation, for the lepton
bilinear ẽRi (CR̄R)i j ẽR j . NY and NX are the orders of the expansion in
Y ∗
R and (X, X̃), respectively. We restrict the list to NY ≤ 2 and NX ≤ 4.

For convenience we distinguish spurion combinations depending on
composite fermion matrices c and c̃ (column HB) from combinations
not involving c and c̃ (column HF)

NY NX HF HB

0 0 1 1

0 2 X̃ X̃† X̃(c̃†c̃)−1 X̃†

0 4 X̃ X̃† X̃ X̃† X̃(c̃†c̃)−1 X̃† X̃ X̃†

X̃ X̃† X̃(c̃†c̃)−1 X̃†

2 2 X̃Y ∗
R

†Y ∗
R X̃

† X̃(c̃†c̃)−1Y ∗
R

†Y ∗
R X̃

†

X̃Y ∗
R

†(cc†)−1Y ∗
R X̃

†

X̃Y ∗
R

†Y ∗
R(c̃†c̃)−1 X̃†

2 4 X̃Y ∗
R

†X†XY ∗
R X̃

† X̃(c̃†c̃)−1Y ∗
R

†X†XY ∗
R X̃

†

X̃Y ∗
R

†Y ∗
R X̃

† X̃ X̃† ...

X̃ X̃† X̃Y ∗
R

†Y ∗
R X̃

† X̃(c̃†c̃)−1Y ∗
R

†Y ∗
R X̃

† X̃ X̃†

...

nations, beyond that of Eq. (6). The actual appearance of
these combinations in concrete models containing our set of
spurions will depend on the specific dynamics of the model
under consideration. We will discuss the phenomenological
implications of the new structures for the Wilson coefficients
(Ceγ,Z )i j in Sect. 3.

2.2 Scalar operator

The scalar operator (Qeϕ)i j = (ϕ†ϕ)(�̄Li ẽR jϕ) has exactly
the same flavour structure of the dipole operators and we can

directly read from Table 1 the list of possible Wilson coef-
ficients, provided we have at least three Yukawa couplings,
NY ≥ 3, since this operator contains three Higgs doublets.
Up to an overall flavour-independent coefficient, which is
expected to be of order one, we have

(Ceϕ)i j = (CL̄R)i j (NY ≥ 3). (18)

Notice that there is no loop suppression in this case, since
this operator can be generated at tree level. As for the dipole
operators, the scale of new physics � is M in the HF case
and m0 in the HB one.

This operator, together with the mass operator of Eq. (5),
contributes to both masses and Yukawa couplings of charged
leptons. If the Wilson coefficients are not exactly aligned in
flavour space, we have flavour-violating decays of the Higgs.
Even in the case where there is a perfect alignment among
all Wilson coefficients, the overall strength of Yukawa cou-
plings is altered compared to the case of the SM, where it is
completely fixed by the fermion mass and by the electroweak
VEV. We will discuss the impact of these modifications in
Sect. 3.

2.3 Vector operators

In the operators (Q(1,3)
ϕl )i j , (Qϕe)i j of Eq. (11) new flavour

structures arise. The corresponding Wilson coefficients can
be read from Table 2, for (Q(1,3)

ϕl )i j and Table 3, for (Qϕe)i j ,
but excluding the case NY = 0, since the vector operators
are bilinear in the Higgs doublets and this requires at least
two powers of the Yukawa couplings. We have

(C1,3
ϕl )i j = (CL̄L)i j , (Cϕe)i j = (CR̄R)i j , (NY ≥ 2).

(19)

There is no loop suppression, in general, and the new physics
scale is identified as for the previous operators. We see that,
in general, the Wilson coefficients for the vector operators
are not diagonal in the mass basis. This leads to violation of
flavour in the couplings of the Z boson, with consequences
that we discuss in Sect. 3.

2.4 Contact operators

Finally we consider the contact operators (Qll)i jmn ,
(Qee)i jmn and (Qle)i jmn given in Eq. (13). In these operators
we recognise combinations of the flavour structures already
discussed. We expect the following possible factorisations:

(Cll)i jmn =
{

(CL̄L)i j × (CL̄L)mn

(CL̄L)in × (CL̄L)mj
, (20)

(Cee)i jmn =
{

(CR̄R)i j × (CR̄R)mn

(CR̄R)in × (CR̄R)mj
, (21)
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(Cle)i jmn =
{

(CL̄L)i j × (CR̄R)mn

(CL̄R)in × (C†
L̄ R

)mj
. (22)

Since the contact terms contain no Higgs doublets, we have
no restrictions on NY . For the same reason, each bilinear
in the Yukawa coupling should be accompanied by a loop
suppression factor 1/(16π2).3 Concerning the new physics
scale �, when the two factors C come from the HF column
we have � = M . When one the factors comes from the HF
column and the other from the HB column, we have � = m0.
Similarly, for the llqq operators we have

(C (u,d)
�q )i j = (CL̄L)i j , (C�u,d)i j = (CL̄L)i j , (23)

(Ceq)i j = (CR̄R)i j , (Qeu,d)i j = (CR̄R)i j . (24)

with no restrictions on NY .

2.5 Stability of the solution Y ∗
L = 0

Since we are interested in the scenario whereY ∗
L is nearly van-

ishing, a legitimate question is whether and to which extent
such a limit is stable under quantum corrections. To this pur-
pose it is better to distinguish the two regimes v � m0 � M
and v � M � m0. When v � m0 � M , we can consider
the following spurion combinations:

m2
0

M2 c†Y ∗
Rc̃

†,
m2

0

M2 c†Y ∗
RY

∗
R

†Y ∗
R c̃†, (25)

that behave as effective Yukawas of type Y ∗
L since they have

the same transformation properties as Y ∗
L . We expect that

terms like those in (25) arise, in perturbation theory, through
threshold corrections induced by the one-loop exchange of
heavy gauge bosons and heavy fermions, from which we
estimate

Y ∗
L ≈ g2∗

16π2

m2
0

M2 c†Y ∗
Rc̃

†, Y ∗
L ≈ k

g2∗
16π2

m2
0

M2 c†Y ∗
RY

∗
R

†Y ∗
R c̃† ,

(26)

where g∗ is a coupling constant of the strong sector and k
is either an additional loop factor 1/16π2 stemming from a
Higgs loop, or a factor coming from the electroweak VEV,
v2/M2, if the two Yukawas are attached to external Higgs
legs. The contributions of Eq. (26) are small if there is an
hierarchy between heavy fermions and heavy gauge boson
masses. They are also suppressed in the semi-perturbative
regime g∗,Y ∗

R ≈ 1. Similarly, exchange of ordinary gauge
bosons and heavy fermions lead to effective Y ∗

L couplings of
the type

3 If contact terms originate from dimension eight operators, the loop
factor can be effectively replaced by v2/�2.

Y ∗
L ≈ g2

16π2

m2
W,Z

m2
0

c−1Y ∗
Rc̃

−1,

Y ∗
L ≈ k

g2

16π2

m2
W,Z

m2
0

c−1Y ∗
RY

∗
R

†Y ∗
R c̃−1. (27)

These contributions are naturally suppressed by the ratio
m2

W,Z/m2
0 and can easily be kept at the percent level.

In the other regime, v � M � m0, beyond the combina-
tions of Eq. (27), we can also consider

M2

m2
0

c−1Y ∗
Rc̃

−1,
M2

m2
0

c−1Y ∗
RY

∗
R

†Y ∗
R c̃−1, (28)

which also transform as the spurion Y ∗
L . These combinations

formally decouple in the limit of infinitely large m0. There
are, however, also combinations that do not decouple, such
as

c−1Y ∗
Rc̃

†, c−1Y ∗
RY

∗
R

†Y ∗
R c̃†. (29)

We have checked, through the one-loop computation in the
two-site model that we will consider in Sect. 4, that this kind
of contributions are generated. They cannot be parametrically
suppressed by mass ratios and the corresponding Y ∗

L can be
depleted only in the semi-perturbative regime g∗,Y ∗

R ≈ 1.
Notice that for m0 ≈ M , the effective Yukawa couplings

arising from Eqs. (26) and (28), are insensitive to the over-
all mass scale. In summary, in the regime of heavy gauge
bosons much heavier than heavy fermions, the effective Y ∗

L
can remain close to the percent level even in a strongly
coupled regime, while in the opposite regime the solution
Y ∗
L ≈ 0 is typically stable under quantum corrections (up to

the % level) only if we assume the semi-perturbative regime
g∗,Y ∗

R ≈ 1.

3 Model-independent bounds on the scale of new
physics

Model-independent studies of LFV processes have already
been done in the literature [53–55]. In this section we collect
the bounds on the Wilson coefficients of the Lagrangian of
Eq. (8) and discuss their impact on our spurion analysis. The
main bounds on the coefficients of the dipole operators Oeγ

and OeZ are given in Table 5, showing the results obtained
in Refs. [54,55] and derived from Ref. [56] in the case of
μ−Au → e−Au. They come from the present limits reported
in Table 4.

The amplitudes for these processes get a tree-level contri-
bution from the off-diagonal elements of the electromagnetic
dipole operator Oi j

eγ , while Oi j
eZ contributes at one loop. Each

bound has been derived by assuming a single non-vanishing
Wilson coefficient at the time. This also applies to all the
bounds discussed in this section. The bounds on the coef-
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Table 4 Present and future experimental sensitivities for relevant low-
energy observables

LFV process Present bound Future sensitivity

μ → eγ 5.7 × 10−13 [40] ≈6 × 10−14 [41]

μ → 3e 1.0 × 10−12 [42] ≈10−16 [43]

μ−Au → e−Au 7.0 × 10−13 [44] ?

μ−Ti → e−Ti 4.3 × 10−12 [45] ?

μ−Al → e−Al − ≈10−16 [46,47]

τ → eγ 3.3 × 10−8 [48] ∼10−8–10−9 [49]

τ → μγ 4.4 × 10−8 [48] ∼10−8–10−9 [49]

τ → 3e 2.7 × 10−8 [50] ∼10−9–10−10 [49]

τ → 3μ 2.1 × 10−8 [50] ∼10−9–10−10 [49]

Lepton EDM Present bound Future sensitivity

de(e cm) 8.7 × 10−29 [51] ?

dμ(e cm) 1.9 × 10−19 [52] ?

Table 5 The bounds on off-diagonal Wilson coefficients Ci j
eγ /�2 and

Ci j
eZ/�2 from Refs. [54,55]. The bounds from μ−Au → e−Au have

been derived from Ref. [56]. In the second column we list the upper
bound on |Ci j

eγ,Z | assuming � = 1 TeV, while in the third column we

fix |Ci j
eγ,Z | = 1 and we list the corresponding lower bound on �, in

TeV. The bounds on the coefficients C ji
eγ,Z are equal to the bounds on

the coefficients Ci j
eγ,Z

|C | (� = 1 TeV) � (TeV) (|C | = 1) LFV process

Cμe
eγ 2.5 × 10−10 6.3 × 104 μ → eγ

Cμe
eγ 4.0 × 10−9 1.6 × 104 μ → 3e

Cμe
eγ 5.2 × 10−9 1.4 × 104 μ−Au → e−Au

Cτe
eγ 2.4 × 10−6 6.5 × 102 τ → eγ

Cτμ
eγ 2.7 × 10−6 6.1 × 102 τ → μγ

Cμe
eZ 1.4 × 10−7 2.7 × 103 μ → eγ [1-loop]

Cτe
eZ 1.3 × 10−3 28 τ → eγ [1-loop]

Cτμ
eZ 1.5 × 10−3 26 τ → μγ [1-loop]

ficients C ji
eγ,Z are equal to the bounds on the coefficients

Ci j
eγ,Z .
The diagonal elements of the dipole operators contribute

to electric and magnetic dipole moments of the charged lep-
tons. From the present bounds reported in Table 4 we have
[54]

Im(Cee
eγ )

(
1 TeV

�

)2

< 3.9 × 10−12,

Im(Cμμ
eγ )

(
1 TeV

�

)2

< 8.4 × 10−3. (30)

Given the current deviation �aμ = aEXP
μ −aSM

μ in the muon
anomalous magnetic moment aμ = (g − 2)μ/2 [57,58]

�aμ = (29 ± 9) × 10−10, (31)

we would need

Re(Cμμ
eγ )

(
1 TeV

�

)2

= 1.2 × 10−5 (32)

to account for the central value of the discrepancy.
Also the scalar operator Oeϕ is mostly bounded by the

limits on radiative lepton decays [54,55,59–61]. The scalar
operator contributes to lepton masses and to higgs couplings
with a different weight:

LY = Mi j ēLi ẽR j + Yi j h ēLi ẽR j + h.c., (33)

where

Mi j =
[
−ySMi j + v2

2�2 (Ceϕ)i j

]
v√
2
,

Yi j = 1√
2

[
−ySMi j + 3v2

2�2 (Ceϕ)i j

]
, (34)

and ySMi j are the Standard Model Yukawa couplings. Radia-
tive charged lepton decays constrain the off-diagonal ele-
ments of Yi j in the basis where the mass matrix Mi j is diag-
onal. To convert these constraints in bounds on the Wilson
coefficients (Ceϕ)i j it is convenient to work in the basis where
the SM couplings ySMi j are diagonal and expand the unitary

matrices that diagonalise M in powers of v2/�2. We found
that, to first order in this parameter, the off-diagonal elements
Yi j (i �= j) in the lepton mass basis are given by:

Yi j = v2

√
2�2

(Ceϕ)i j (i �= j). (35)

By translating the bounds on Yi j (i �= j) given in Refs. [59–
61] into bounds on (Ceϕ)i j , we get the results shown in Table
6. The bounds on the coefficients (Ceϕ) j i are equal those on
the coefficients (Ceϕ)i j . These bounds are dominated by two-
loop contributions of the corresponding operator to the radia-
tive lepton decay, through Barr-Zee type diagrams, assuming
that the top Yukawa coupling is as in the SM. One-loop con-
tributions to charged lepton radiative decays and tree-level
contributions to � → 3�′ decays lead to less severe bounds
than the ones given in Table 6.

Table 6 The bounds on off-diagonal Wilson coefficients (Ceϕ)i j from

Refs. [59–61]. In the second column we list the upper bound on |Ci j
eϕ |

assuming � = 1 TeV, while in the third column we fix |Ci j
eϕ | = 1 and

we list the corresponding lower bound on �, in TeV. The bounds on the
coefficients C ji

eϕ are equal to the bounds on the coefficients Ci j
eϕ

|C | (� = 1 TeV) � (TeV) (|C | = 1) LFV process

Cμe
eϕ 8.4 × 10−5 109 μ → eγ [2-loop]

Cτe
eϕ 0.33 1.7 τ → eγ [2-loop]

Cτμ
eϕ 0.37 1.6 τ → μγ [2-loop]
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Coming to the vector operators (Q(1,3)
ϕl )i j , (Qϕe)i j , they

lead to lepton flavour-violating Z decays, but the correspond-
ing limits on the Wilson coefficients, assuming � = 1 TeV,
are of order 10 % [54]. Through one-loop diagrams they also
contribute to radiative decays of the charged leptons [54,55].
It turns out that the most restrictive bounds come from the
processes μ−Au → e−Au and � → 3�′ whose branching
ratios satisfy the experimental limits of Table 4.

We collect the corresponding bounds in Table 7. Also the
contact operators can contribute to μ−Au → e−Au, � → 3�′
and, through one-loop diagrams, to the radiative decays of
the charged leptons. The most significant bounds are given
in Table 8.

We can translate the bounds collected in Tables 5, 6, 7 and
8 into limits on the masses M andm0 of our spurion analysis.
To do this we should determine or make some assumptions on
the parameters c, c̃, X , X̃ , Y ∗

R and Y ∗
L , through which we can

express all the Wilson coefficients, as explained in Sect. 2.
By exploiting the flavour symmetry of our setup, we see that
it is not restrictive to work in the basis where the mixing
matrices X and X̃ are diagonal, real and non-negative and
we will adopt this choice, unless otherwise stated. The LO
mass matrix of the charged fermions

ml = X Y ∗
R X̃† v√

2
, (36)

is diagonalised by a bi-unitary transformation

(L ml R
†)i j = miδi j . (37)

Assuming that Y ∗
R is anarchic, it is straightforward to find

that

L ≈
⎛
⎝ 1 X1/X2 X1/X3

X1/X2 1 X2/X3

X1/X3 X2/X3 1

⎞
⎠ ,

R ≈
⎛
⎝ 1 X̃1/X̃2 X̃1/X̃3

X̃1/X̃2 1 X̃2/X̃3

X̃1/X̃3 X̃2/X̃3 1

⎞
⎠ , (38)

where factors of order one have been omitted from the matrix
elements. Similarly the lepton masses are approximately
given by

mi ≈ Xi (Y
∗
R)i i X̃i

v√
2
. (39)

The most favorable scenario to minimise FCNC effects is
realised when Xi = X̃i , which we assume, for the time being.
We have

Xi = X̃i =
[ √

2mi

v(Y ∗
R)i i

]1/2

, (40)

which will be used in our estimates.

Table 7 The bounds on off-diagonal Wilson coefficients (C (1,3)
ϕl )i j and

Ci j
ϕe from Refs. [54,55]. The bounds from μ−Au → e−Au have been

derived from Ref. [56]. In the second column we list the upper bound
on the Wilson coefficients assuming � = 1 TeV, while in the third
column we set to unity the coefficients and we list the corresponding
lower bound on �, in TeV

|C | (� = 1 TeV) � (TeV) (|C | = 1) LFV process

(C (1,3)
ϕl )μe 3.7 × 10−5 164 μ → 3e

(C (1,3)
ϕl )μe 5.0 × 10−6 447 μ−Au → e−Au

(C (1,3)
ϕl )τe 1.5 × 10−2 8.3 τ → 3e

(C (1,3)
ϕl )τμ 1.2 × 10−2 9.0 τ → 3μ

Cμe
ϕe 3.9 × 10−5 160 μ → 3e

Cμe
ϕe 5.0 × 10−6 447 μ−Au → e−Au

Cτe
ϕe 1.5 × 10−2 8.1 τ → 3e

Cτμ
ϕe 1.3 × 10−2 8.8 τ → 3μ

Table 8 The bounds on coefficientsCi jkl
ll,ee,le from Ref. [54]. The bounds

from μ−Au → e−Au have been derived from Ref. [56]. In the second
column we list the upper bound on the Wilson coefficients assuming
� = 1 TeV, while in the third column we set to unity the coefficients
and we list the corresponding lower bound on �, in TeV

|C | (� = 1 TeV)� (TeV) (|C | = 1) LFV process

Cμeee
ll,ee 2.3 × 10−5 207 μ → 3e

Ceτee
ll,ee 9.2 × 10−3 10.4 τ → 3e

Cμτμμ
ll,ee 7.8 × 10−3 11.3 τ → 3μ

Cμeee,eeμe
le 3.3 × 10−5 174 μ → 3e

Cμμμe,eμμμ
le 2.1 × 10−4 69 μ → eγ [1-loop]

Cμττe,eττμ
le 1.2 × 10−5 289 μ → eγ [1-loop]

Ceτee,eeeτ
le 1.3 × 10−2 8.8 τ → 3e

Cμτμμ,μμμτ
le 1.1 × 10−2 9.5 τ → 3μ

C (u)eμ
�q 2.0 × 10−6 707 μ−Au → e−Au

C (d)eμ
�q 1.8 × 10−6 745 μ−Au → e−Au

Ceμ
eq 9.2 × 10−7 1.0 × 103 μ−Au → e−Au

Ceμ
�u,eu 2.0 × 10−6 707 μ−Au → e−Au

Ceμ
�d,ed 1.8 × 10−6 745 μ−Au → e−Au

If c, c̃, Y ∗
R and Y ∗

L are all generic matrices, the dipole
operator, Eq. (6), leads to the well-known limit

m0
〈c〉
〈Y 〉 > 33 TeV, (41)

where 〈Y 〉 denotes a suitable average of the Y ∗
L ,R couplings

and similarly for 〈c〉. Such a bound can be evaded only if spe-
cial features of the flavour parameters c, c̃, X , X̃ , Y ∗

R and Y ∗
L

are adopted. One possibility is to recover the framework of
minimal flavour violation (MFV), as proposed in Ref. [13].
This can be done by assuming c, c̃, X , X̃ , Y ∗

R and Y ∗
L all

proportional to the identity matrix, except either X (right-
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handed compositeness) or X̃ (left-handed compositeness). In
this case, when neutrino masses are neglected, the only spu-
rion that breaks the flavour symmetry becomes proportional
to the charged lepton Yukawa couplings, exactly as in MFV.
A choice of basis where such a spurion is diagonal is always
possible and LFV is only present when neutrino masses are
turned on. In the latter case one can reconcile LFV with a
scale of new physics close to the TeV scale, however, we
think it is interesting to explore other options allowing for a
TeV scale �.

We start by taking Y ∗
L = 0. To guarantee the stability

of this condition we should also assume either a perturba-
tive regime, where |Y ∗

R | ≤ 1, or the hierarchy M � m0,
as explained in Sect. 2.5. In this case the dipole operator is
dominated by the contribution (NY , NX ) = (1, 2) (see Table
1)

Ceγ

�2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

XY ∗
R(c̃†c̃)−1 X̃†

m2
0

X (cc†)−1Y ∗
R X̃

†

m2
0

(42)

and the bound on μ → eγ leads to m0〈c〉 > 33 TeV. As
a next step we consider the case of Y ∗

L = 0 and univer-
sal heavy fermion masses, namely c and c̃ proportional to
the unit matrix. With this assumption the Wilson coefficients
(NY , NX ) = (1, 2) of the dipole operator are diagonal in the
mass basis, to LO. This, however, is not the case, in general,
for the coefficients (NY , NX ) = (3, 2), which are compara-
ble in size to those of Eq. (6). Therefore, even working in the
limit of vanishing “wrong” Yukawa coupling Y ∗

L , and univer-
sal heavy fermion masses, we expect that with anarchic Y ∗

R
the bound of Eq. (41) still applies. To allow for a lower new
physics scale �, we are lead to postulate that also the Yukawa
couplings Y ∗

R are universal. More precisely we define a new
scenario, which we call intermediate flavour violation (IFV),
by the following assumption:

IFV scenario:
The Yukawa couplings Y ∗

L are negligible and a choice
of basis exists where c, c̃ and Y ∗

R are simultaneously
proportional to the identity matrix.

From the discussion in Sect. 2.5, we know that a non-
vanishing Y ∗

L can be generated. Since such a Y ∗
L will only

depend on c, c̃ and Y ∗
R , it will be universal too. Admitting

a universal Y ∗
L would not change our conclusions and, for

simplicity, we keep the assumption Y ∗
L = 0. Moreover, from

now on we set to unity the matrices c and c̃, absorbing their
effect in the overall scale m0 of the heavy fermion masses.
The remaining couplingY ∗

R is described by a single parameter
y:

Y ∗
R = y l. (43)

At variance with MFV, in IFV the sources of flavour break-
ing are both X and X̃ . In the basis defining IFV the mixing
matrices X and X̃ are not diagonal, in general. They are
generic complex matrices. At the LO, the lepton mass matrix
is proportional to the product X X̃†. When we move to the
charged lepton mass basis, in general, only the product X X̃†

becomes diagonal, not X and X̃ individually and they both
can lead to LFV.

By exploiting the freedom related to our flavour symmetry,
we can provide an alternative, but equivalent, description of
the IFV scenario. We can choose a basis where X and X̃ are
diagonal, real and non-negative. In this case by means of the
symmetry transformations of Eqs. (3) and (4) we can still
maintain c and c̃ proportional to the identity, but the matrix
Y ∗
R becomes a generic unitary matrix. In such a basis the

lepton mass matrix XY ∗
R X̃

† is non-diagonal and LFV is now
ascribed to the interplay between Y ∗

R and X , X̃ .
Within IFV the special case X = X̃ , which was previously

assumed to minimise FCNC effects, forbids any LFV effect.
Indeed, if X = X̃ , there exist a basis where both X and the
mass matrix XY ∗

R X̃
† are diagonal at the same time. As long as

neutrino masses are neglected there is no source of LFV and
all the Wilson coefficients are diagonal in flavour space. The
only difference with respect to MFV is that the spurion X is
not proportional to the charged lepton Yukawa couplings, but
to their square root. Therefore in discussing IFV we consider
the general case where X and X̃ are not equal.

In IFV no LFV is generated from the Wilson coefficients
of the dipole and scalar operators with NX = 2, to LO. These
coefficients are of the type X AX̃†, where A is any combi-
nation of c, c̃ and Y ∗

R , and they are automatically aligned
to the charged lepton mass matrix, to LO. To estimate the
other Wilson coefficients we should specify the choice of X
and X̃ . Rather than scanning for the most general possibility,
here we provide an example. We assume that, in the basis
where X and X̃ are diagonal, their elements are given, up to
coefficients of order one, by

X = 1√
y
diag(λ4, λ3, λ3), X̃ = 1√

y
diag(λ5, λ2, 1),

(44)

where λ ≈ 0.22 is a small parameter of the order of the
Cabibbo angle. The choice of elements of nearly the same
order of magnitude for X is motivated by a possible role
that the matrix X can play in describing large lepton mixing
angles, once neutrino masses are turned on [5]. The value
λ3 ÷ λ4 is chosen here for convenience, to adequately sup-
press LFV. The choice for the elements of X̃ is fixed, at the
level of orders of magnitude, by the relation (39). The trans-
formations needed to diagonalise the lepton mass matrix are
given in Eq. (38).
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Now we can complete our discussion concerning the Wil-
son coefficients that are bilinear in the spurions X , X̃ . Coef-
ficients (NX , NY ) = (2, 2) of the vector operators are of the
type X AX† or X̃ Ã X̃† where A depends on c, c̃ and Y ∗

R . From
Tables 2 and 3, we see that Y ∗

R enters A only in the combina-
tionsY ∗

RY
∗
R

† orY ∗
R

†Y ∗
R . Therefore, up to an overall coefficient

of order one, in the basis where X and X̃ are diagonal and
real we have

(C (1,3)
ϕl )i j = y2X2

i δi j , (Cϕe)i j = y2 X̃2
i δi j . (45)

When we move to the charged lepton mass basis, we get

(C (1,3)
ϕl )i j ≈ y2Xi X j , (Cϕe)i j ≈ y2 X̃i X̃ j . (46)

The most stringent limits of Table 7 arise from μ−Au →
e−Au and require

y2 XμXe

�2 ≈ y2 X̃μ X̃e

�2 ≈ y
λ7

�2 < 5.0 × 10−6 TeV−2, (47)

which translate, respectively, into � >
√
y 2.2 TeV.

Here and in the rest of this section � stands for either M
or m0. The limit on the decay τ → 3μ gives rise to a similar
bound:

y2 X̃τ X̃μ

�2 ≈ y
λ2

�2 < 1.3 × 10−2 TeV−2, (48)

resulting in � >
√
y 1.9 TeV. Coefficients of the type

(NX , NY ) = (2, 0) can arise for the contact operators of
the type llqq and we expect, in the mass basis:

(C (u,d)
�q )i j , (C�u,d)i j ≈ Xi X j , (Ceq)i j , (Ceu,d)i j ≈ X̃i X̃ j .

(49)

The limits of Table 8 from μ−Au → e−Au require

XμXe

�2 ≈ X̃μ X̃e

�2 ≈ λ7

y�2 < 1.0 × 10−6 TeV−2, (50)

and we get � > 5.0/
√
y TeV, respectively.

We are left with the coefficients that are quadrilinear in
X , X̃ . In the IFV scenario the off-diagonal elements of the
dipole operator (Qeγ )i j are dominated by the coefficients

(Ceγ )i j = 1

16π2 (XY ∗
R X̃

† X̃ X̃†)i j ,

(Ceγ )i j = 1

16π2 (XX†XY ∗
R X̃

†)i j , (51)

which, in the lepton mass basis are approximately given by

(Ceγ )i j ≈ 1

16π2

√
2mi

v
X̃i X̃ j , (Ceγ )i j ≈ 1

16π2 Xi X j

√
2m j

v
.

(52)

The limit

(Ceγ )eμ,μe

�2 < 2.5 × 10−10 TeV−2 (53)

corresponds to a bound � > (0.6/
√
y) TeV. Similarly, from

(Ceγ )τμ,μτ

�2 < 2.7 × 10−6 TeV−2 (54)

we get � > (1.1/
√
y) TeV. We have checked that all the

other limits listed in Tables 5, 6, 7 and 8 do not lead to more
restrictive bounds on �. For instance, the bound on the con-
tact operators,

Ceττμ
le

�2 < 1.2 × 10−5 TeV−2, (55)

produces the bound � > (0.3/y) TeV. The bounds from the
vector operators scale as

√
y, while those from the dipole

or contact operators scale as 1/y or 1/
√
y. Therefore a new

physics scale � around few TeV is still acceptable provided
the Yukawa coupling y is close to one.

A new physics scale � ≈ 1 TeV is too large to allow,
in the present framework, for an explanation of the central
value of the �aμ anomaly. Indeed, in the lepton mass basis
we have

Re(Cμμ
eγ ) ≈ 1

16π2

√
2mμ

v
= 3.8 × 10−6 (56)

and to match the required value, Eq. (32), we need � =
0.56 TeV. Since the contribution to �aμ scales with the
inverse square of �, choosing � = 1 TeV gives �aμ =
9 × 10−10, less than one third of the central value of the cur-
rent anomaly. Concerning the electron EDM, we assume as
in MFV that the sources of CP violation and LFV are the
same. Since the Wilson coefficients of the dipole operators
with NX = 2 are aligned in flavour space with the mass oper-
ator, we identify in (51) the dominant coefficients that can
contain non-trivial phases. We estimate

Im(Cee
eγ ) ≈ 1

16π2 XeXe

√
2me

v
, (57)

which, for � > (0.16/
√
y) TeV, respects the bound of

Eq. (30).
In summary, even in the limit of “wrong” Yukawa cou-

pling negligibly small, an anarchic Y ∗
R requires a scale of

new physics well above 10 TeV. One way to lower this bound
consists in mimicking the case of MFV, where there is a sin-
gle non-universal spurion, either X or X̃ . In this case, when
neutrino masses are neglected, LFV is absent. By discussing
a large class of possible LFV effects, we have shown that
MFV is not the only possibility to reconcile LFV bounds
with a new physics scale around few TeV. In the example
analyzed here, both X and X̃ are non-universal and represent
potential sources of LFV, which is allowed also in the limit
of vanishing neutrino masses. The corresponding bounds on
� approach the TeV scale, provided the Yukawa couplings
Y ∗
R are close to one.
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Table 9 Gauge subgroups and their associated generators, boson fields
and couplings. The normalisation of the Bcomp and B̃comp generators
has been chosen to match the SO(10) GUT normalisation of the hyper-

charge, YGUT =
√

3
5Y

Subgroup Generator(s) Field(s) Coupling

el SU(2)L T aL , el, a = 1, 2, 3 Wa, el
μ gel

1

U (1)Y Y Bel
μ gel

2

comp SU(2)L T aL , comp, a = 1, 2, 3 Wa, comp
μ gcomp

1

SU(2)R ×U (1)X

√
3
5

(
T 3R, comp +

√
2
3 X
)
Bcomp

μ gcomp
2

T 1R, comp, T 2R, comp W̃ 1,2, comp
μ gcomp

2√
3
5

(
T 3R, comp −

√
2
3 X
)
B̃comp

μ gcomp
2

4 Two-site model

In the previous sections, we focussed on PC scenarios for
charged leptons from a general perspective, exploiting a
spurionic analysis. Now, instead, we consider a specific
simplified composite Higgs model, the so-called two-site
model [37]. Its relevant features are:

(i) The gauge group is Ggauge = Gel × Gcomp where

Gel = [SU(2)L ×U (1)Y ]el,

Gcomp = [SU(2)L × SU(2)R ×U (1)X ]comp. (58)

In Table 9 is summarised our notation for generators,
boson fields and coupling constants associated with
each simple subgroup. The group for Gcomp has been
chosen in order to provide a custodial symmetry. PC
is assumed to arise from an unknown dynamical spon-
taneous symmetry breaking mechanism, which takes
place at higher energies and which breaks Gel ×Gcomp

into the diagonal group (which can be recognised as the
electroweak gauge group). This spontaneous symmetry
breaking mechanism, which in turns triggers the PC sce-
nario, will be effectively described by linear couplings
between elementary and composite bosons.

(ii) The fermionic sector of the model includes three fam-
ilies of chiral fermions charged under Gel and three
families of vector-like fermions charged under Gcomp.
PC for fermions is realised through linear mass-mixing
terms between elementary and composite fermions.

(iii) The Higgs sector consists of a real bidoublet (ϕ̃, ϕ)

charged under [SU(2)L × SU(2)R]comp, which will be
identified with the composite Higgs field, interacting
only with the composite fermions.
Table 10 summarises the quantum numbers for fermions
and Higgs doublet.

Table 10 Particle content and quantum numbers of the two-site min-
imal model. The index i = 1, 2, 3 runs over three families for each
representation. Lower case letters denote elementary fields, capital let-
ters denote composite fields. The ‘tilde’ apex denotes SU(2)L singlets,
in order to distinguish them from the doublets

Elementary Composite

SU(2)L U (1)Y SU(2)L SU(2)R U (1)X

�Li 2 − 1
2 1 1 0

ẽRi 1 −1 1 1 0

Li 1 0 2 1 − 1
2 ·
√

3
2

Ẽi 1 0 1 1 −1 ·
√

3
2

(ϕ̃, ϕ) 1 0 2 2 0

We are ready now to introduce the Lagrangian of the two-
site model:

L = Lel + Lcomp + Lmix, (59)

with

Lel = − 1

4
(Fa

μν)
2 +

3∑
i=1

(�̄Li i/D�Li + ¯̃eRi i/DẽRi ), (60)

Lcomp = −1

4
(ρa

μν)
2 + |Dμϕ|2 − V (ϕ)

+
3∑

i=1

(L̄i (i/D − mi )Li + ¯̃Ei (i/D − m̃i )Ẽi )

−
3∑

i, j=1

(Y ∗
L i j L̄ Riϕ ẼL j + Y ∗

Ri j L̄ Liϕ ẼR j ) + h.c.,

(61)

Lmix = M2∗
2

(ρa
μ)2 − M2∗

gel

gcomp A
μρ∗

μ + M2∗
2

(
gel

gcomp Aμ

)2

−
3∑

i, j=1

(
�i j �̄Li L R j + �̃i j ¯̃eRi ẼL j

)
+ h.c., (62)

where lower (upper) case letters denote elementary (com-
posite) fields and the ‘tilde’ denotes SU(2)L singlets. More-
over, among the heavy vector bosons, we distinguish between
those mixing with the SM gauge bosons, ρ∗

μ = {W ∗
μ, B∗

μ},
and those that do not, ρ̃μ = {W̃μ, B̃μ}.

In Lel we can recognise a SM-like Lagrangian (with Fa
μν

collectively denoting the field strength tensors for the ele-
mentary gauge bosons) without the Higgs doublet, which
is now a composite particle. Lcomp contains mass terms
for composite leptons, kinetic terms for composite leptons
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and bosons (we have collectively denoted the field strength
tensors with ρa

μν), their interactions, the Higgs sector and
Yukawa interactions. We have allowed the Yukawa couplings
to explicitly break the SU(2)R symmetry, which applies to
the bosonic part of the composite sector and protects the
model against large contributions to the ρ parameter. Such
more general Yukawa interactions are technically acceptable,
since the cutoff-dependent, loop-induced contributions to the
ρ parameter from heavy fermion exchange are negligible, at
least in the perturbative regime, as explicitly shown in [37].
Finally, Lmix contains linear mass-mixing terms among ele-
mentary and composite particles. We have also included in
Lmix a mass terms for composite vector bosons. Lmix explic-
itly breaks Gel ×Gcomp down to the diagonal subgroup, and
it effectively reproduces the mechanism of PC.

From the above Lagrangian we can easily recognise the
flavour symmetry group of Eq. (1) and convince ourselves
that promoting Y ∗

L , Y ∗
R , m, m̃, � and �̃ to spurions with the

transformation properties of Eq. (3) we actually restore G f .
The Lagrangians of Eqs. (60)–(62) are expressed in the

elementary/composite basis. For the bosons, in order to
switch to the mass basis (before EWSB), we diagonalise the
mass mixings in Lmix by the following field transformations:

(
Aμ

ρ∗
μ

)
→
(

cos θ − sin θ

sin θ cos θ

)(
Aμ

ρ∗
μ

)
tan θ = gel

gcomp ,

ρ̃μ → ρ̃μ, (63)

At this stage the fields Aμ are massless, while ρ∗
μ and ρ̃μ

have masses of order M∗. Taking into account EWSB, the
diagonalisation of the mass terms becomes rather involved.
To a good approximation, Eq. (63) still diagonalises the
boson fields, while the mass matrices for the fermions read

ẽR ER ẼR

ME =
⎛
⎝ 0 � 0

⎞
⎠eL

0 m v√
2
Y ∗
R EL

�̃† v√
2
Y ∗
L

† m̃ ẼL

,

NR

MN =
(

�
)

νL
m NL

. (64)

With this notation, one can then perform a suitable rotation
that transforms to the mass basis:

⎛
⎝ eL

EL

ẼL

⎞
⎠ → V †

L

⎛
⎝ eL

EL

ẼL

⎞
⎠ ,

⎛
⎝ ẽR

ER

ẼR

⎞
⎠ → V †

R

⎛
⎝ ẽR

ER

ẼR

⎞
⎠ ,

(
νL
NL

)
→ U †

L

(
νL
NL

)
, NR → URNR,

(65)

where VL ,R,UL ,R are defined in order to have V †
L MEVR and

U †
LMNUR diagonal.

Using the rotations (63) and (65) one can recast the
Lagrangian (59) in terms of lepton mass eigenstates. Using an
approximate expression for the rotation matricesVL ,R,UL ,R ,
assuming universal masses for the heavy leptons, (mi =
m, m̃i = m̃), and retaining the leading terms relevant for
FC neutral-current (FCNC), one gets

LFCNC = h√
2
((XY ∗

R)i j ēLi ẼR j + (Y ∗
R X̃

†)i j ĒLi ẽR j ) + h.c.

× h√
2

(
v2

2m̃2 XY
∗
RY

∗
R

†X†ySM� + v2

2m2 y
SM
� X̃Y ∗

R
†

×Y ∗
R X̃

†− v2

mm̃
XY ∗

RY
∗
L

†Y ∗
R X̃

†
)
i j
ēLi ẽR j + h.c.

+ 1

2
√

2

g

cW
Zμ

( v

m̃
(XY ∗

R)i j ēLiγ
μ ẼL j

− v

m
(Y ∗

R X̃
†)i j ĒRiγ

μẽR j
)

+ h.c.

+ 1

4

g

cW
Zμ

(
v2

m̃2 (XY ∗
RY

∗
R

†X†)i j ēLiγ
μeL j

− v2

m2 (X̃Y ∗
R

†Y ∗
R X̃

†)i j ¯̃eRiγ μẽR j

)

− g∗
2

(B∗
μ − B̃μ + W ∗, 3

μ ) (XX†)i j ēLiγ
μeL j

+ g∗(B∗
μ − B̃μ) (X̃ X̃†)i j ¯̃eRiγ μẽR j

+ g∗
2

(B∗
μ − B̃μ + W ∗, 3

μ ) Xi j ēLiγ
μELj + h.c.

+ g∗(B∗
μ − B̃μ) X̃i j ¯̃eRiγ μ ẼR j + h.c. (66)

From Lagrangian (66) one can easily read some of the
most relevant features of FCNC in this class of models:

• The first line of Eq. (66) accounts for FCNC interactions
among light and heavy leptons and the Higgs. They con-
tribute to low-energy processes such as �i → � jγ at loop
level.

• The second line of Eq. (66) refers to FCNC interac-
tions among light leptons and the Higgs. As we know
from previous sections, FCNC effects can arise in this
case through the dimension six operator (Qeϕ)i j =
(ϕ†ϕ)(�̄Li ẽR jϕ) and this explains the appearance of the
factors v2/m̃2, v2/m2 and v2/mm̃ after EW symme-
try breaking. Such Yukawa interactions generate FCNC
Higgs decays like ϕ → τμ, tree-level contributions to
processes sensitive to four fermion operators such as
μ → 3e and μN → eN and loop induced effects on
�i → � jγ .

• The third line of Eq. (66) describes the interactions among
light and heavy leptons and the Z boson. Since the oper-
ators ēLi/Z ẼL j and ĒRi/ZẽR j are not SU(2)L invariant,
they can be generated only after the EW symmetry break-
ing through the SU(2)L invariant dimension five opera-
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tors �̄Li/Z ẼL jϕ and L̄ Ri/ZẽR jϕ. This explains the factors
of v/m̃ and v/m. These interactions will contribute to
�i → � jγ at loop level.

• The fourth line of Eq. (66) contains FCNC interactions
among light leptons and the Z bosons. As discussed in
previous sections, such effects can arise by means of
dimension six operators bilinear in the Higgs doublet like

(Qϕe)i j = (ϕ†i
↔
Dμ ϕ)( ¯̃eRiγ μẽR j ). As a result, after EW

symmetry breaking, we generate the operators ēLi/ZeL j
and ¯̃eRi/ZẽR j , which are suppressed by v2/m2 and v2/m̃2

factors, respectively. The leading effects induced by these
terms are the tree-level FCNC decay modes Z → �i� j

as well as �i → 3� j and μN → eN .
• The fifth line of Eq. (66) describes SU(2)L invariant inter-

actions between heavy gauge bosons and light-fermions.
Also in this case we can induce FCNC processes at tree
level such as �i → 3� j and μN → eN and loop induced
effects on �i → � jγ .

• The sixth line of Eq. (66) refers to FC interactions among
heavy gauge bosons, heavy and light leptons. Effects on
low-energy observables are induced by the loop exchange
of heavy gauge bosons and leptons. If the heavy leptons
of different generations were degenerate, FCNC effects
would vanish according to the GIM-mechanism. How-
ever, the GIM cancellation is broken by non-universal
mass splittings of order X†X and X̃† X̃ . The latter point
has been overlooked in the literature so far.

Concerning the flavour structure of the various interaction
terms, we remember that each Higgs electroweak doublet ϕ

or its vacuum expectation value v occur accompanied by a
power of Y ∗

R or Y ∗
L , while the lepton fields eL and ẽR come

with X and X̃ , respectively.
Before discussing LFV in this model we comment on the

issues of renormalizability, gauge-invariance and UV sensi-
tivity. The two-site model is a non-renormalizable effective
theory and therefore it is valid only up to energies of the order
of an UV cut-off �UV. Such a cut-off has been estimated in
Ref. [37], where it has been found that �UV ≈ 8πM∗/g∗,
by analysing self-interactions in the composite sector. The
non-renormalizability is a consequence of the explicit break-
ing of the gauge symmetry Gel ×Gcomp, by the heavy vector
boson masses, by the Yukawa couplings Y ∗

L and Y ∗
R in the

composite sector and by the mixing between elementary and
composite fermions � and �̃.

This explicit breaking raises the question of the reliabil-
ity and consistency of our results. We can always promote
our effective Lagrangian to a gauge-invariant theory by inter-
preting the sources of gauge symmetry breaking as spurions.
Providing the spurions with suitable transformation proper-
ties under the gauge group we can recover the gauge invari-
ance under the full local group Gel × Gcomp. Once we treat

the spurions as dynamical fields, this procedure defines a
(non-unique) embedding of the effective theory in a possible
UV completion. The spurions include two types of degrees
of freedom: the would-be Goldstone bosons, eaten by the
heavy gauge vector bosons of the composite sector through
the Higgs mechanism, and physical scalars �i . By working
in the unitary gauge, which we adopt in our computations, a
generic amplitude comprises two separate contributions: one
coming only from the exchange of the physical polarisations
of the gauge vector bosons and one including the exchange
of some physical scalar degrees of freedom �i . Clearly our
computation retains only the first one, while the second is
missing and makes our results sensitive to the details of the
UV completion. If the masses of the extra scalars �i are close
the cut-off scale �UV, we expect that the contributions we
are neglecting in our estimates of the Wilson coefficients are
generically of order (M/�UV)2 and/or (m, m̃/�UV)2.

The embedding of the model in a UV completion also
shows that it is not consistent to deal with the HF case,
within the effective theory. Indeed to keep the masses of
the elementary leptons non-vanishing in the HF limit, we
have to consider at the same time large (�, �̃), such that
the ratios (X, X̃) remain constant. In a UV completion �, �̃

are proportional to VEVs that break the gauge symmetry
Gel ×Gcomp and contribute to the masses of the heavy gauge
vector bosons of the composite sector. Therefore, barring
tuning of the parameters, we cannot make m, m̃ � M .

5 Lepton flavour violation in the two-site model

In this section we will present our results for the Wilson coef-
ficients of the various LFV operators considered in Sect. 2,
in the context of the two-site model introduced above. We
work at the leading order in the loop expansion and we pay
particular attention to the spurionic structure of the coeffi-
cients. Throughout this section we assume universal masses
for the heavy leptons: mi = m and m̃i = m̃.

5.1 Dipole operators

Dipole operators are among the most important operators in
the leptonic sector as they generate LFV radiative decays
such as μ → eγ , leptonic EDMs and (g − 2)s. We will con-
sider the one-loop contribution to dipole operators in the two-
site model, assuming the validity of the perturbative expan-
sion. The result of our computation of the full one-loop con-
tribution to the electromagnetic dipole operator is shown in
Appendix B. Given the fact that the composite Higgs scenario
is naturally characterised by a strongly interacting regime, the
use of perturbation theory can be questioned. Here we will
restrict ourselves to the portion of the parameter space that is
compatible with perturbation theory. This allows us to con-
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eL

h, ϕZ, ϕ±

X Y ∗
R Y ∗

L
† Y ∗

R X̃†

ẽR

γ

B∗, B̃, W ∗

eL

X Y ∗
R,L X̃†

ẽR

γ

Fig. 1 Feynman diagrams for LO contributions to �i → � jγ with loop exchange of SM bosons h, Z ,W and heavy fermions (left) and heavy
gauge bosons and heavy fermions (right)

sider moderately large coupling constants of the composite
sector, with loop factors still providing a sizeable suppres-
sion. The same considerations apply to processes receiving
non-vanishing contributions already at the tree level. Within
the two-site model, dipole amplitudes receive leading con-
tributions from the virtual exchange of (i) light SM bosons
(h, Z ,W ) and heavy fermions and (ii) heavy gauge bosons
and heavy fermions. Examples of diagrams for the above
classes of contributions are shown in Fig. 1.

In particular, summing over the h, Z and W amplitudes,
we find that the dominant effects for class (i) are given by

(Ceγ )h+Z+W

�2 = e

64π2

1

mm̃
XY ∗

RY
∗
L

†Y ∗
R X̃

†, (67)

in agreement with the result of Refs. [35,62]. As we can
see, the amplitude of Eq. (67) has precisely the same spuri-
onic structure as the one of Eq. (6). In particular, according
to our spurionic classification of Sect. 2, it turns out that
(Ceγ )h+Z+W is of order (NY , NX ) = (3, 2), where NY and
NX are the orders of the expansion in (Y ∗

R,Y ∗
L ) and (X, X̃),

respectively. Interestingly, we observe that contributions of
order (NY , NX ) = (3, 2) containing only the Yukawa Y ∗

R ,
which would be allowed by the flavour symmetries of our
model, are absent, to one-loop order.

The leading effects for class (ii) start from the order
(NY , NX ) = (1, 2) and read

(Ceγ )B̃+B∗

�2 = e

256π2

g2∗
M2 [XY ∗

R X̃
† f B1 (y, z) + XY ∗

L X̃
† f B2 (y, z)],

(68)

(Ceγ )W ∗

�2 = − e

256π2

g2∗
M2 XY ∗

R X̃
† f W

∗
1 (y), (69)

where M stands for a common heavy boson mass, y =
m2/M2, z = m̃2/M2 and the loop functions are defined
in the appendix. Notice that the first term of (Ceγ )B̃+B∗
and (Ceγ )W ∗ are aligned with the mass operator as long as
m, m̃ ∝ 1, at least. Therefore, as already pointed out in the
literature [12], they cannot induce neither flavour nor CP-
violating effects after switching to the mass basis for the SM
leptons. Yet, we stress that they contribute to the leptonic

g − 2. However, we point out here that the second term of
(Ceγ )B̃+B∗ , not discussed in the literature to our knowledge,
is not aligned with the mass operator and therefore generates
flavour and CP-violating effects.

From Eq. (67) one can easily find that, in the anar-
chic scenario, the bound from BR(μ → eγ ) imposes that√
mm̃/〈Y 〉 � 10 TeV. In order to relax such a strong bound

while keeping Y ∗
R anarchic, we analyze here in great detail

the solution with Y ∗
L = 0, as already done in the model-

independent analysis of Sect. 2.
Setting Y ∗

L = 0, the NLO effects stemming from class (i)
are given by:

(Ceγ )h

�2 = − e

256π2

[
f h1 (x)

m̃2 XY ∗
RY

∗
R

†X†XY ∗
R X̃

†

+ f h1 (x−1)

m2 XY ∗
R X̃

† X̃Y ∗
R

†Y ∗
R X̃

† + v2

(m2 − m̃2)2

XY ∗
RY

∗
R

†Y ∗
RY

∗
R

†Y ∗
R X̃

†
]
, (70)

(Ceγ )Z

�2 = − e

256π2

[
f Z1 (x)

m̃2 XY ∗
RY

∗
R

†X†XY ∗
R X̃

†

+ f Z2 (x)

m2 XY ∗
R X̃

† X̃Y ∗
R

†Y ∗
R X̃

†

+ v2

(m2 − m̃2)2 XY
∗
RY

∗
R

†Y ∗
RY

∗
R

†Y ∗
R X̃

†

+ 8 XY ∗
RY

∗
R

†Y ∗
R X̃

† M2
Z

m2m̃2

]
, (71)

(Ceγ )W

�2 = e

256π2

(
20

3m̃2 XY
∗
RY

∗
R

†X†XY ∗
R X̃

†

+ 4

3m2 XY
∗
R X̃

† X̃Y ∗
R

†Y ∗
R X̃

†
)

. (72)

where x = m2/m̃2. The first (second) terms of (Ceγ )h,

(Ceγ )Z and (Ceγ )W arise from diagrams such as those shown
in the left (right) plot of Fig. 2. These contributions are of
order (NY , NX ) = (3, 4) and occur through a chirality flip
implemented in the internal heavy-fermion line (left plot) and
external light-fermion line (right plot). On the other hand, the
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eL ẽR

h, ϕZ, ϕ±

X Y ∗
R Y ∗

R
† X† X Y ∗

R X̃†

γ

eL ẽR

h, ϕZ, ϕ±

X Y ∗
R X̃† X̃ Y ∗

R
† Y ∗

R X̃†

γ

Fig. 2 NLO Feynman diagrams for �i → � jγ of order (NY , NX ) = (3, 4) with loop exchange of h, Z ,W and heavy fermions

eL ẽR

h, ϕZ

X Y ∗
R Y ∗

R
† Y ∗

R Y ∗
R

† Y ∗
R X̃†

γ

Z, B∗, B̃, W ∗

eL ẽR

X Y ∗
R Y ∗

R
† Y ∗

R X̃†

γ

Fig. 3 NLO Feynman diagrams for �i → � jγ arising from dim-8 operators. The diagram on the left is of order (NY , NX ) = (5, 2), the one on
the right of order (NY , NX ) = (3, 2)

last term of (Ceγ )h as well as the third terms of (Ceγ )Z stem
from dimension eight operators such as

ϕ†ϕ

16π2 (�Lϕ)(σ · F)X Y ∗
R(m̃†m̃)−2Y ∗

R
†Y ∗

RY
∗
R

†Y ∗
R X̃†ẽR,

(73)

and the corresponding diagrams are shown in the left plot of
Fig. 3. Such contributions are of order (NY , NX ) = (5, 2)

and turn out to be suppressed by a factor of v2/m̃2 com-
pared to dimension six contributions. As a result, the para-
metric ratio between dimension six and dimension eight
operators is of order X2m̃2/Y ∗

R
2v2 showing that both kind

of operators might provide the dominant effects depending
on the model parameters. Let us stress that contributions
of order (NY , NX ) = (5, 2) can arise also at dimension
six level if the extra Higgses of Eq. (73) close in a loop
instead of getting a vacuum expectation value. Therefore,
we expect that one-loop induced dimension eight operators
with (NY , NX ) = (5, 2) dominate over two-loop induced
dimension six operators with (NY , NX ) = (5, 2) provided
v2/m̃2 � 1/16π2. The last term of (Ceγ )Z stems from
dimension eight operators of the form

g2 ϕ†ϕ

16π2 (�Lϕ)(σ · F)X Y ∗
R(m̃†m̃)−2Y ∗

R
†Y ∗

R X̃†ẽR, (74)

and the relevant diagram is shown in the right plot of Fig. 3.
Finally, we observe that there are not effects for (Ceγ )W from
dimension eight operators since our model doesn’t include
heavy right-handed neutrinos.

We discuss now NLO effects arising from class (ii) which
are given by:

(Ceγ )B̃+B∗

�2 = − e

256π2

g2∗
M2

[
f B3 (y, z) XX†XY ∗

R X̃
†

+ f B4 (y, z) XY ∗
R X̃

† X̃ X̃†

+ f B5 (y, z)
v2

M2 XY
∗
RY

∗
R

†Y ∗
R X̃

†
]
, (75)

(Ceγ )W ∗

�2 = − e

256π2

g2∗
M2

[
f W

∗
2 (y, z)XX†XY ∗

R X̃
†

+ f W
∗

3 (y, z)XY ∗
R X̃

† X̃ X̃†

+ f W
∗

4 (y, z)
v2

M2 XY
∗
RY

∗
R

†Y ∗
R X̃

†
]
. (76)

The first two terms of (Ceγ )B̃+B∗ and (Ceγ )W ∗ are of order
(NY , NX )= (1, 4) and arise from the one-loop exchange of
heavy fermions and bosons. The relevant Feynman diagrams
are shown in Fig. 4. On the other hand, the last contributions
to (Ceγ )B̃+B∗ and (Ceγ )W ∗ are of order (NY , NX ) = (3, 2)

and stem from dimension eight operators such as, for exam-
ple,

g2∗
M2

ϕ†ϕ

16π2 (�Lϕ)(σ · F)X Y ∗
R(m̃†m̃)−1Y ∗

R
†Y ∗

R X̃†ẽR . (77)

The relevant Feynman diagrams are shown in the right
plot of Fig. 3.

5.2 Scalar operator

The Yukawa interactions for charged leptons are modified
after we integrate out at tree level the heavy fermions. Setting
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eL ẽR

B∗, B̃, W ∗

X Y ∗
R X̃† X̃ X̃†

γ

ẽReL

B∗, B̃, W ∗

X X† X Y ∗
R X̃†

γ

Fig. 4 NLO Feynman diagrams for �i → � jγ of order (NY , NX ) = (1, 4) with loop exchange of heavy gauge bosons and heavy fermions

Y ∗
L = 0, we find that:

−LY = h√
2
ēL y� eR + h.c., (78)

where in the mass basis for the charged leptons we have

y� = ySM� − v2

2m̃2 XY ∗
RY

∗
R

†X†ySM�

− v2

2m2 ySM� X̃Y ∗
R

†Y ∗
R X̃

†, (79)

with

ySM� = XY ∗
R X̃

†. (80)

Therefore, the coefficient Ceϕ of the dimension six oper-
ator Qeϕ = Ceϕ(ϕ†ϕ)(�̄LeRϕ) reads

Ceϕ

�2 = 1

2m̃2 XY
∗
RY

∗
R

†X†ySM� + ySM�

1

2m2 X̃Y
∗
R

†Y ∗
R X̃

†.

(81)

Notice that for Y ∗
L = 0 the corrections to ySM� are pro-

portional to ySM� itself, as in scenarios where the Higgs is a
pseudo-Goldstone boson [63–65].

5.3 Vector operators

The Z boson interactions with charged leptons are also mod-
ified after we integrate out at tree level the heavy fermions.
In particular, we find that

LZ = g

cW
ē ( gL PL + gR PR ) /Ze, (82)

where gL and gR are defined as follows:

gL = −1

2
+ s2

W + v2

4m̃2 XY ∗
RY

∗
R

†X†,

gR = s2
W − v2

4m2 X̃Y ∗
R

†Y ∗
R X̃

†. (83)

Switching to the coefficients C (1)
ϕl , C (3)

ϕl and Cϕe we find
that:

C (1)
ϕl

�2 = − 1

2m̃2 XY
∗
RY

∗
R

†X†,C (3)
ϕl = 0,

Cϕe

�2 = 1

2m2 X̃Y
∗
R

†Y ∗
R X̃

†. (84)

5.4 Contact operators

Contact operators induced by the exchange of heavy gauge
bosons can be easily derived starting from the coefficients
C (ρ)
LL and C (ρ)

RR entering the interaction Lagrangian of heavy
gauge bosons and SM leptons which we report in the
appendix. Integrating out the heavy gauge bosons at tree
level, we find that

(Cll)eμee

�2 = (XX†)eμ

(
g2

1

4M2
B∗

+ g2
2

4M2
W ∗

3

)
,

(Cee)eμee

�2 = (X̃ X̃†)eμ

(
g2

1

M2
B∗

)
,

(Cle)eμee

�2 = (XX†)eμ

(
g2

1

2M2
B∗

)
,

(Cle)eeeμ

�2 = (X̃ X̃†)eμ

(
g2

1

2M2
B∗

)
, (85)

and

(C (u)
�q )eμ

�2 = −1

4
(XX†)eμ

(
g2

1

3M2
B∗

+ g2
2

M2
W ∗

3

)
,

(C (d)
�q )eμ

�2 = −1

4
(XX†)eμ

(
g2

1

3M2
B∗

− g2
2

M2
W ∗

3

)
,

(Ceu)eμ

�2 = −(X̃ X̃†)eμ

(
2g2

1

3M2
B∗

)
,

(Ced)eμ

�2 = (X̃ X̃†)eμ

(
g2

1

3M2
B∗

)
,

(C�u)eμ

�2 = −(XX†)eμ

(
g2

1

3M2
B∗

)
,
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(C�d)eμ

�2 = (XX†)eμ

(
g2

1

6M2
B∗

)
,

(Ceq)eμ

�2 = −(X̃ X̃†)eμ

(
g2

1

6M2
B∗

)
, (86)

where higher-order effects suppressed by additional factors
of (gSM/g∗)2, v2/m2(m̃2) and X2(X̃2) have been neglected.

6 Phenomenological analysis

In this section, we evaluate the most relevant low-energy pro-
cesses in the charged lepton sector in the context of the two-
site model by making use of the Wilson coefficients derived
in the previous section. One of the most interesting features
of the two-site model is the absence of the Wilson coefficients
(NY , NX ) = (3, 2) from dimension six dipole operators, at
least in the one-loop approximation. Such coefficients are
particularly dangerous for LFV. As we saw in Sect. 3, their
presence is not compatible with anarchic Yukawas Y ∗

R if the
compositeness scale is close to 1 TeV. We do not know if this
feature of the model is an accident of the one-loop approx-
imation or if it persists at higher loop orders. In the follow-
ing we will neglect the (NY , NX ) = (3, 2) contribution to
dimension six dipole operators, assuming that higher loops
provide a sufficient suppression. Our purpose is to check if
under these conditions anarchic Yukawas are still viable or
not when we consider a compositeness scale around 1 TeV.

Among the most interesting LFV channels are μ → eγ ,
μ → 3e, μ → e conversion in nuclei as well as τ LFV pro-
cesses. However, hereafter, we focus on processes with an
underlying μ → e transition since they are the best probes
of composite Higgs models with anarchic Y ∗

R . Concerning
flavour-conserving processes, we are interested in the elec-
tron EDM and the muon g− 2. The current status and future
experimental sensitivities for the above processes are col-
lected in Table 4. As recalled in Sect. 3, there is a ∼3.5σ

discrepancy between the SM prediction and the experimental
value of the muon g − 2.

6.1 �i → � jγ

The dipole transition �i → � jγ is responsible for both LFV
radiative decays (when i �= j) like μ → eγ and flavour-
conserving processes like the electron EDM and the muon
g−2 when i = j = e or μ, respectively. The branching ratio
for the process μ → eγ can be written as

BR(μ → eγ )= 24π2

G2
F�4

(
v2

m2
μ

)(∣∣∣Ceμ
eγ

∣∣∣2+
∣∣∣Cμe

eγ

∣∣∣2
)

. (87)

Radiative LFV transitions are tightly related to the mag-
netic and electric leptonic dipole moments, which are also
extremely sensitive probes of new physics. In particular, one
can find that

de=−√
2

v

�2 Im
(
Cee
eγ

)
, aμ = 2

√
2

e

mμv

�2 Re
(
Cμμ
eγ

)
.

(88)

In concrete scenarios as our two-site model, �a�, d� and
BR(� → �′γ ) are expected to be correlated. However, such
correlations depend on the flavour and CP structure of the
couplings which are unknown. In our discussion, we assume
order one CP-violating phases and anarchic Y ∗

R .
Here we provide the dominant contribution to μ → eγ

which arises from dimension eight operators. Focussing on
the HB scenario (M � m, m̃) with anarchic Y ∗

R and X = X̃ ,
it turns out that

BR(μ → eγ ) ≈ 3αem

64π

v8|Y ∗
R |8

(m2 − m̃2)4

me

mμ

, (89)

where we made use of Eq. (40) to eliminate X, X̃ and where
Y ∗
R now stands for an average element of the anarchic matrix

Y ∗
Ri j . Notice that the above expression is valid only in the

mass insertion approximation which requires thatm, m̃, |m−
m̃| � vY ∗

R . As an example, if |m2 − m̃2| ≈ m2, one can find

BR(μ → eγ ) ≈ 3 × 10−13
(

1.5 TeV

m

)8

|Y ∗
R |8, (90)

implying that μ → eγ saturates its current experimental
bound for m ≈ 1.5 TeV and Y ∗

R ≈ 1.
This is confirmed by our numerical results shown in Fig. 5

where we have reported the predictions for BR(μ → eγ ) as
a function of the heavy fermion mass m. In Fig. 5, as well as
in all other plots, we have assumed anarchic Y ∗

R and Y ∗
L and

X = X̃ so that the relevant flavour mixing angles entering
μ → e transitions are Xe/Xμ = X̃e/X̃μ ∼ √

me/mμ. The
lower (upper) red line in the left plot refers to the case where
Y ∗
R = Y ∗

L = 1 (Y ∗
R = Y ∗

L = 2) while the lower (upper) black
line corresponds to Y ∗

L = 0 and Y ∗
R = 1 (Y ∗

R = 2). The most
prominent features emerging by this plot are: (i) in the case
of Y ∗

L = 0 (Y ∗
L �= 0), the bound on μ → eγ is satisfied for

m ≥ 1 TeV (m ≥ 10 TeV), (ii) for Y ∗
L = 0, BR(μ → eγ ) ∼

Y ∗
R

8/m8 while for Y ∗
L �= 0, BR(μ → eγ ) ∼ Y ∗

L
2Y ∗

R
2/m4

and this explains the different growth with Y ∗
R,Y ∗

L and the
decoupling properties with m of the various curves. In the
right plot of Fig. 5 we show the branching ratio of μ → eγ
as a function of the heavy fermion mass m for Y ∗

L = 0 and
various values of Y ∗

R .
A quite similar behaviour is expected for the electron

EDM. Indeed, if Y ∗
L �= 0 and assuming O(1) CP-violating

phases, it turns out that

123



Eur. Phys. J. C (2015) 75 :579 Page 19 of 26 579

Fig. 5 Branching ratio of μ → eγ as a function of the heavy fermion mass m

Fig. 6 Electron EDM de as a function of the heavy fermion mass m

|de|
e

≈ me

32π2

Y ∗
RY

∗
L

mm̃
≈ 8 × 10−29 cm

(
20 TeV√

mm̃

)2

Y ∗
RY

∗
L ,

(91)

and therefore the electron EDM poses a severe constraint
on the heavy fermion scale at the same level of μ → eγ .
SettingY ∗

L = 0, the EDM bound is satisfied with much lighter
masses. In particular, we find that

|de|
e

≈ me

64π2

v2Y ∗
R

4

(m2 − m̃2)2 ≈ 10−28 cm

(
3 TeV

m

)4

Y ∗
R

4
,

(92)

where in the last equality we have assumed that |m2 − m̃2| ≈
m2.

In Fig. 6 we show our numerical results for de. Indeed,
Fig. 6 represents the analogous of Fig. 5 for the electron
EDM case and similar conclusions drawn for μ → eγ apply
here too.

6.2 μ → 3e

The process μ → 3e receives more contributions than μ →
eγ as it is sensitive also to four-fermion operators. In par-
ticular, starting from the general expression of Refs. [53,66]
and neglecting scalar and non-dipole photonic contributions
which are negligible in our model, we find the following
expression for its branching ratio:
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Fig. 7 Branching ratio of μ → 3e (left) and μ−Au → e−Au (right) as a function of the heavy fermion mass m

BR(μ → 3e)

= 1

8�4G2
F

[
2|CVLL|2 + 2|CVRR|2 + |CVLR|2 + |CVRL|2

+ 8ve√
2mμ

Re((2CVLL+CVLR)Ceμ�
eγ +(2CVRR+CVRL)Cμe

eγ )

+ 16 e2

(
v2

m2
μ

)(
log

m2
μ

m2
e

− 11

4

)
(|Ceμ

eγ |2 + |Cμe
eγ |2)

]
, (93)

where

CVLL =(2s2
W −1)C (1)eμ

ϕ� +Ceμee
�� , CVRR =2s2

WCeμ
ϕe +Ceμee

ee ,

CVLR =2s2
WC (1)eμ

ϕ� +Ceμee
�e , CVRL =(2s2

W −1)Ceμ
ϕe +Ceeeμ

�e ,

(94)

and the explicit expression for the Wilson coefficients Cab

can be found in Sect. 5. In the above equations, we have
neglected scalar four-fermion operators, since they are very
suppressed in our model. We remind the reader that, when-
ever the dipole operator is dominant in μ → 3e, there exists
a model-independent correlation between the branching ratio
of μ → 3e and μ → eγ given by

BR(μ → 3e)

BR(μ → eγ )
� αel

3π

(
log

m2
μ

m2
e
−11

4

)
≈6.6 × 10−3. (95)

As a result, the current MEG bound BR(μ → eγ ) ≤
5.7×10−13 already implies that BR(μ → 3e) � 3.8×10−15.
However, as shown in our numerical analysis and illustrated
in Fig. 8, μ → 3e turns out to be dominated by non-dipole
operators and the correlation of Eq. (95) is significantly vio-
lated. This is a relevant result, as within composite Higgs
models with Y ∗

L �= 0, as well as in supersymmetric scenar-
ios, Eq. (95) holds to an excellent approximation. Therefore,

the two-site model with Y ∗
L = 0 can be disentangled among

other models if both μ → 3e and μ → eγ will be observed.
In particular, in the HB scenario (M � m, m̃) with anar-

chic Y ∗
R , m = m̃ and X = X̃ , we find

BR(μ → 3e) � 3

16G2
F

|Y ∗
R |2
m4

(memμ

v2

)
(4s4

W + (2s2
W −1)2)

≈ 5 × 10−13
(

1 TeV

m

)4

|Y ∗
R |2, (96)

implying that μ → 3e saturates its current experimental
bound for m ≈ 1 TeV and Y ∗

R ≈ 1. This result is well repro-
duced by our numerical analysis shown in the left plot of
Fig. 7 where the behaviour of BR(μ → 3e) as a function
of the heavy fermion mass m is shown for different values
of Y ∗

R . Notice that BR(μ → 3e) ∼ Y ∗
R

2/m4 and therefore it
has a much milder growth with Y ∗

R and a slower decoupling
with m compared to BR(μ → eγ ) ∼ Y ∗

R
8/m8 (in the case

of Y ∗
L = 0).

6.3 μN → eN

As the last process governed by an underlying μ → e tran-
sition we consider μ − e conversion in nuclei. As in the
μ → 3e case, this process receives effects from both dipole
and four-fermion operators. In particular, the μ − e conver-
sion branching ratio is defined as

BR(μ−N → e−N ) ≡ ωconv

ωcapt
, (97)

where ωcapt is the muon capture rate while ωconv is given by
the expression
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Table 11 Overlap integrals from Ref. [56]

Nucleus D V (p) V (n) ωcapt (106 s−1)

Au 0.189 0.0974 0.146 13.07

Ti 0.0870 0.0399 0.0495 2.59

Al 0.0362 0.0161 0.0173 0.7054

ωconv = m5
μ

�4 (|A∗
RD + g(p)

LV V
(p) + g(n)

LV V
(n)|2

+|A∗
L D + g(p)

RV V
(p) + g(n)

RV V
(n)|2), (98)

which we have obtained starting from the general expression
of Ref. [56] and setting to zero the scalar and non-dipole
operator contributions which are negligible in our model.
The coupling constants AL , AR , g(p,n)

LV and g(p,n)
RV in Eq. (98)

are defined as

AR = − 1

2
√

2

v

mμ

Ceμ∗
eγ , (99)

AL =− 1

2
√

2

v

mμ

Cμe
eγ , (100)

g(p)
LV =C (1)eμ

ϕ� (4s2
W −1)−2(C (u)

�q

eμ+Ceμ
�u )−(C (d)

�q

eμ+Ceμ
�d ),

(101)

g(p)
RV = Ceμ

ϕe (4s2
W − 1) − 2(Ceμ

eq + Ceμ
eu )−(Ceμ

eq + Ceμ
ed ),

(102)

g(n)
LV = C (1)eμ

ϕ� − (C (u)
�q

eμ + Ceμ
�u )−2(C (d)

�q

eμ + Ceμ
�d ),

(103)

g(n)
RV = Ceμ

ϕe − (Ceμ
eq + Ceμ

eu )−2(Ceμ
eq + Ceμ

ed ). (104)

The flavour-conserving interactions of the heavy vector
resonances with the light quarks have been derived from the
respective couplings with the light leptons simply rescaling
them according to the different charges of the quarks under Y
and T3. Finally, the quantities D and V p,n refer to the overlap
integrals between the wave functions and the nucleon densi-
ties [56] which we report for few relevant nuclei in Table 11.

An inspection of Eqs. (97), (98) and Table 11 shows that
at present μ−Au → e−Au is the most sensitive probe of
new physics among the various μ − e conversion in nuclei
processes. In scenarios with dipole dominance, the following
model-independent relation holds:

BR(μ−Au → e−Au)

BR(μ → eγ )
= D2

192π2

m5
μG

2
F

ωcapt
≈ 3.8 × 10−3

(105)

and therefore BR(μ−Au → e−Au) � 2.2 × 10−15 after
imposing the bound BR(μ → eγ ) ≤ 5.7×10−13. However,
as in the case of μ → 3e, in turns out that in our model
BR(μ−Au → e−Au) is dominated by non-dipole operators

and the correlation of Eq. (105) is not at work. This is shown
in Fig. 8. In particular, in the HB scenario (M � m, m̃) with
anarchic Y ∗

R , m = m̃ and X = X̃ , we find

BR(μ−Au→e−Au)� m5
μ |Y ∗

R |2
m4 ωcapt

(memμ

v2

)
|V (n)|2

≈4×10−13
(

3 TeV

m

)4

|Y ∗
R |2, (106)

and therefore the current experimental bound is saturated for
m ≈ 3 TeV and Y ∗

R ≈ 1.
These expectations are fully confirmed numerically as

shown by the right plot of Fig. 7 where we report
BR(μ−Au → e−Au) as a function of the heavy fermion
mass m for different values of Y ∗

R . Since both
BR(μ−Au → e−Au) and BR(μ → 3e) are proportional
to Y ∗

R
2/m4, the consideration done for the case of μ →

3e hold here too. However, we point out that in our
model BR(μ−Au → e−Au) is much enhanced with respect
to BR(μ → 3e) as opposite to scenarios with dipole-
dominance where BR(μ−Au → e−Au) ≈ 0.6 × BR(μ →
3e). As a result, the simultaneous observation of these pro-
cesses would enable us to disentangle among the underlying
theory at work.

7 Conclusion

We have reanalysed the bounds on the compositeness scale
derived from LFV and CP violation in the lepton sector,
in the framework of PC. In the generic case of anarchic
Yukawa couplings, such bounds are known to be quite severe,
stronger than the analogous bounds from the quark sec-
tor and requiring a compositeness scale above 30 TeV. In
this work we focussed on the case of vanishing neutrino
masses and vanishing “wrong” Yukawa couplings, in the
hope of minimising FCNC and CP-violating effects. We per-
formed a general effective operator analysis, where the Wil-
son coefficients of the relevant dimension-six operators are
determined by a flavour symmetry group and by a set of
spurions. We have considered all lowest-dimensional oper-
ators leading to LFV violation and CP violation that can
be constructed with the Higgs doublet and the SM leptons.
We have formally expanded the Wilson coefficients in pow-
ers of the Yukawa couplings of the composite sector and
in powers of the elementary–composite mixing terms. Our
expansion includes, for the first time, terms quadrilinear in
the elementary–composite mixing (X, X̃). By exploiting the
known limits on the Wilson coefficients we have shown that,
even in the case of vanishing “wrong” Yukawa couplings,
the anarchic scenario is not compatible with a compositeness
scale of 1 TeV, barring accidental cancellations not incorpo-
rated in our general spurion analysis. We have also shown
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Fig. 8 Branching ratio of μ → 3e (left) and μ−Au → e−Au (right) versus the branching ratio of μ → eγ for Y ∗
L = 0. The case of dominance

of the dipole operator is shown in yellow

that there are schemes where a TeV scale can be accommo-
dated, without necessarily reproducing the case of MFV. In
the example we have provided this is achieved in a semi-
perturbative regime, where the universal Yukawa coupling y
of the composite sector is close to unity. In this respect it is
interesting to note that while the bound on �NP coming from
operators bilinear in (X, X̃) scales with

√
y, the limit from

the operators quadrilinear in (X, X̃) scales with 1/y, thus
making essentially impossible to lower �NP below the TeV.
This also shows the importance of keeping terms quadrilinear
in the mixing in the expansion of the Wilson coefficients.

We have also derived the low-energy effective Lagrangian
relevant to LFV and CP violation in the lepton sector in the
two-site model, that includes heavy vector-like fermions as
well as heavy spin-one particles. We focussed on the case
Y ∗
L = 0, finding a strong suppression of LFV effects com-

pared to a generic composite Higgs scenario where Y ∗
L �= 0.

In a perturbative analysis where we evaluated the relevant
amplitudes at the LO, we found that the μ → eγ transition
is dominated by dimension eight operators, at variance with
our spurion analysis where the most important contribution
comes from operators of dimension six. As a result the best
probes of our scenario are μ → e conversion in nuclei and
the electron EDM. Al least in that portion of the parameter
space where perturbation theory is applicable, LFV allows
a compositeness scale close to the TeV, even in the case of
anarchic Yukawas. In this regime there are interesting rela-
tions among the various LFV transitions, which allow one to
disentangle the model from other possibilities.
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A Contact operators

In the following, we provide the full results for the coeffi-
cients C (ρ)

L̄ L
and C (ρ)

R̄R
entering the interaction Lagrangian of

heavy gauge bosons and SM leptons,

L = ρμ �̄γ μ(C (ρ)

L̄ L
PL + C (ρ)

R̄R
PR)�, (107)

with ρμ = {B∗, B̃,W ∗
3 }. For the CL̄L coefficient, we find

C (B∗)
L̄ L

= g∗
2

(
tan(θ2)

2 − (tan(θ2)
2 + 1)XX†

+ (tan(θ2)
2 + 1)XX†XX†

− 1

4
(tan(θ2)

2 + 2)
v2

m̃2 XY
∗
RY

∗
R

†X† + h.c.

− 1

2
(tan(θ2)

2 + 1)
v2

mm̃
XY ∗

RY
∗
L

†X† + h.c.

)
, (108)

C (B̃)

L̄ L
= g∗

2 cos θ2

(
XX†(1−XX†)
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+v2

m̃2 XY
∗
RY

∗
R

†X†+
(

1

2

v2

mm̃
XY ∗

RY
∗
L

†X†+h.c.

))
,

(109)

C
(W ∗

3 )

L̄ L
= −g∗

2

(
− tan(θ1)

2 + (tan(θ1)
2 + 1)XX†

− (tan(θ1)
2 + 1)XX†XX†

+ 1

4
tan(θ1)

2 v2

m̃2 XY
∗
RY

∗
R

†X† + h.c.

+ 1

2
(tan(θ1)

2 + 1)
v2

mm̃
XY ∗

RY
∗
L

†X† + h.c.

)
.

(110)

For the CR̄R coefficient, we find

C (B∗)
R̄R

= g∗
(

tan(θ2)
2 − (tan(θ2)

2 + 1)X̃ X̃†

+ (tan(θ2)
2 + 1)X̃ X̃† X̃ X̃†

− 1

8
(2 tan(θ2)

2 + 1)
v2

m2 X̃Y
∗
R

†Y ∗
R X̃

† + h.c.

− 1

2
(tan(θ2)

2 + 1)
v2

mm̃
X̃Y ∗

R
†Y ∗

L X̃
†+h.c.

)
, (111)

C (B̃)

R̄R
= g∗

cos θ2

(
X̃ X̃†− X̃ X̃† X̃ X̃†+ 1

4

v2

m2 X̃Y
∗
R

†Y ∗
R X̃

†

+
(

1

2

v2

mm̃
XY ∗

RY
∗
L

†X†+h.c.

))
, (112)

C
(W ∗

3 )

R̄R
= −g∗

4

v2

m2 X̃Y
∗
R

†Y ∗
R X̃

†. (113)

B One-loop contributions to the dipole operator

In the following, all lepton fields are assumed to be in the
mass basis. We introduce a compact notation to collectively
denote such fields, using an upper case Latin index to distin-
guish among them:

(EL )A=
{
�L , EL , ẼL

}
, (ER)A=

{
ẽR, ER, ẼR

}
, A=1, 2, 3,

(114)

(NL )B = {νL , NL } , NR = NR, B = 1, 2.

(115)

The flavour index, when necessary, will be made explicit
with a lower case Latin letter. For most of the expressions,
however, this index will be omitted to simplify the notation.
In those cases one should interpret the expressions as 3x3
matrices in flavour space.

In Fig. 9 we see the different kinds of loop diagrams con-
tributing to Ci j

eγ . From the Lagrangian (59), after perform-
ing the rotations (63) and (64) to the mass basis, one can
read the Feynman rules of interest for these computations.

We summarise them in Fig. 10, where the expressions for
ϒ,�

ρ
L ,R, �

(∗)
L ,R are

�R =
[

0 0
0 U†

R

] [
0 0 0
0 1 0

]
VR,

�L = U†
L

[
1 0 0
0 1 0

]
VL , (116)

�∗
R =

[
0 0
0 U†

R

] [
0 0 0
0 cot θ1 0

]
VR,

�∗
L = U†

L

[− tan θ1 0 0
0 cot θ1 0

]
VL , (117)

�Z
R = g

cW
s2
W − V †

R

⎡
⎣ 0

g
2cW

0

⎤
⎦ VR,

�Z
L = g

cW

(
s2
W − 1

2

)
+ V †

L

⎡
⎣ 0

0
g

2cW

⎤
⎦ VL , (118)

�B∗
R = g′∗V

†
R

⎡
⎣ tan2 θ2

− 1
2 −1

⎤
⎦ VR,

�B∗
L = g′∗V

†
L

⎡
⎣

1
2 tan2 θ2

− 1
2 −1

⎤
⎦ VL , (119)

�B̃
R = g′∗ sec θ2 V †

R

⎡
⎣ 0

1
2

1

⎤
⎦ VR,

�B̃
L = g′∗ sec θ2 V

†
L

⎡
⎣ 0

1
2

1

⎤
⎦ VL , (120)

�W ∗,3

R = g∗
2

V †
R

⎡
⎣ 0

−1
0

⎤
⎦ VR,

�W ∗,3

L = g∗
2

V †
L

⎡
⎣ tan2 θ1

−1
0

⎤
⎦ VL , (121)

ϒ = V †
L

⎡
⎣ 0 0 0

0 0 Y ∗
R

0 Y ∗
L

† 0

⎤
⎦ VR . (122)

where g∗ = g cot θ1 and g′∗ = g′ cot θ2. Remember that
this is a compact notation in which the flavour indices are
omitted. Then each element of the above matrices is really a
3x3 matrix in flavour space (such as Y ∗

R,Y ∗
L ).

We can now summarise the leading results for the different

loop diagrams. In these expressions, terms of order
m2

�

v2 or
m2

�

�2

(where � is either an heavy lepton or boson mass) have been
neglected. The final results are

1

�2 (Ch
eγ )i j = − e

32
√

2π2v

(
1

2
ϒ12

1

m
ϒ21 + 1

2
ϒ13

1

m̃
ϒ31

+ mSM
i

12
ϒ12

1

m2 ϒ
†
21 + mSM

i

12
ϒ13

1

m̃2 ϒ
†
31

+ mSM
j

12
ϒ

†
12

1

m2 ϒ21 + mSM
j

12
ϒ

†
13

1

m̃2 ϒ31

)
i j

, (123)
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ei ejEA

γ

h

(1)

ei ejEA

γ

Z,B∗, B̃,W ∗,3

(2)

ei ejNB

γ
W±, W ∗, ±

(3)

Fig. 9 One-loop diagrams contributing to the dipole operator in our model. In diagrams (1) and (2) we have A = 1, 2, 3, in diagram (3) we have
B = 1, 2

EA

EC

h
= − i√

2
(ΥPR + Υ†PL)CA ,

EA

EC

ρ

μ
= iγμ(Λρ

LPL + Λρ
RPR)CA

,

EA

NB

W±, W ∗,±

μ
= i

g√
2
γμ(Σ(∗)

L PL + Σ(∗)
R PR)BA ,

NA

EB

W±, W ∗,±

μ
= i

g√
2
γμ(Σ(∗)†

L PL + Σ(∗)†
R PR)BA ,

Fig. 10 Feynman rules needed for the computations. Here A,C = 1, 2, 3 and B = 1, 2, while ρ = {Z , B∗, B̃,W ∗,3}. The expressions for
ϒ,�

ρ
L ,R, �

(∗)
L ,R can be found in the appendix

1

�2 (CZ
eγ )i j = − e

16
√

2π2v

g2

c2
W

1

M2
Z

×
[

2�Z
L 11m

SM�Z
R 11+ 1

2
�Z

L 12

(
m+4

M2
Z

m

)
�Z

R 21

+ 1

2
�Z

L 13

(
m̃ + 4

M2
Z

m̃

)
�Z

R 31 − mSM
i

(
2

3
�Z

L 11�
Z
L 11

+ 5

6
�Z

L 12

(
1

2
+ M2

Z

m2

)
�Z

L 21 + 5

6
�Z

L 13

(
1

2
+ M2

Z

m̃2

)

×�Z
L 31

)
− mSM

j

(
2

3
�Z

R 11�
Z
R 11 + 5

6
�Z

R 12

(
1

2
+ M2

Z

m2

)

× �Z
R 21 + 5

6
�Z

R 13

(
1

2
+ M2

Z

m̃2

)
�Z

R 31

)]
i j

, (124)

1

�2 (CW
eγ )i j = − e

32
√

2π2v

g2

M2
W

×
[

− 2 �
†
L 11m

SM�R 11 + 1

2
�

†
L 12

×
(

−m + 3
M2

W

m

(
3 + 2 log

M2
W

m

))
�R 21

+ mSM
i

(
5

6
�

†
L 11�L 11 + �

†
L 12

(
1

3

− M2
W

m2

(
11

4
+ 3

2
log

M2
W

m

))
�L 21

)

+ mSM
j

(
5

6
�

†
R 11�R 11 + �

†
R 12

(
1

3
− M2

W

m2

(
11

4

+ 3

2
log

M2
W

m

))
�R 21

)]
i j

, (125)

1

�2 (Cρ′
eγ )i j = − 1

16
√

2π2v

1

M2
ρ′

(
2�

ρ′
L 11m

SM�
ρ′
R 11

+ �
ρ′
L 12m f H1 (y)�ρ′

R 21 + �
ρ′
L 13m̃ f H1 (z)�ρ′

R 31 + mSM
i

×
(

− 2

3
�

ρ′
L 11�

ρ′
L 11 + �

ρ′
L 12m f H2 (y)�ρ′

L 21

+�
ρ′
L 13m̃ f H2 (z)�ρ′

L 31

)

+ mSM
j

(
− 2

3
�

ρ′
L 11�

ρ′
L 11 + �

ρ′
L 12m f H2 (y)�ρ′

L 21

+�
ρ′
L 13m̃ f H2 (z)�ρ′

L 31

))
i j

, (126)

1

�2 (CW ∗
eγ )i j = − 1

32
√

2π2v

g2∗
M2

H

[
− 2 �

∗ †
L 11m

SM�∗
R 11

+ 1

2
�

∗ †
L 12m f H3 (y)�∗

R 21

+mSM
i

(
5

6
�

∗ †
L 11�

∗
L 11+�

∗ †
L 12m f H4 (y)�∗

L 21

)

+ mSM
j

(
5

6
�

∗ †
R 11�

∗
R 11 + �

∗ †
R 12m f H4 (y)�∗

R 21

)]
i j

,

(127)

where y = m2

M2
ρ′

, z = m̃2

M2
ρ′

, while in Eq. (126) ρ′ =
{B∗, B̃,W ∗,3} and the expression is the same for the three
heavy bosons. Notice that the result is expressed in a block
matrix notation. For example, taking Eq. (123) and recall-
ing that ϒ is a 9 × 9 matrix, ϒ12 should be read as
the 3 × 3 block of ϒ in position (1, 2). In this notation,
the expression (ϒ12

1
mϒ21)i j stands for the matrix element:∑3

k=1(ϒ12)ik(1/mk)(ϒ12)k j .
The expressions for the loop functions used in Eqs. (126)

and (127) are
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f H1 (x) = 4 − 3x − x3 + 6x log x

(1 − x)3 , (128)

f H2 (x) = −8 + 38x − 39x2 + 14x3 − 5x4 + 18x2 log x

(1 − x)4 , (129)

f H3 (x) = −4 + 15x − 12x2 + x3 + 6x2 log x

2(1 − x)3 , (130)

f H4 (x) = 10 − 43x + 78x2 − 49x3 + 4x4 + 18x3 log x

12(1 − x)4 . (131)

Loop functions

The loop functions for dipoles at the LO read

f B1 (y, z) = 2(y + z)(−4 + 3y + y3 − 6y log y)

(1 − y)3(y − z)

+ 4(z − 2y)(−4 + 3z + z3 − 6z log z)

(1 − z)3(y − z)
,

(132)

f B2 (y, z) =
√
yz

(y − z)

(
4 − 3z − z3 + 6z log z

(1 − z)3 − (y ↔ z)

)
,

(133)

f W
∗

1 (y) = 4 − 27y + 24y2 − y3 − 6y(1 + 2y) log y

(1 − y)3 .

(134)

The loop functions for dipoles at the next-to-leading order
read

f h1 (x) = 4 − 7x

3(1 − x)
, (135)

f Z1 (x) = −8 + 16s2
W (−1 + x) + 11x

3(1 − x)
, (136)

f Z2 (x) = 19 + 16s2
W (−1 + x) − 16x

3(1 − x)
, (137)

f B3 (y, z) = − y4(79 + 58z + 7z2) + 2z(32 − 37z + 23z2) + 3y2(74 + 41z + 14z2 + 3z3)

3(1 − y)3(y − z)(1 − z)2

+2y(20 + 53z + 5z2 + 12z3) + y3(279 + 85z + 19z2 + 13z3)

3(1 − y)3(y − z)(−1 + z)2

+6y(5y3 + 2y2(−2 + z) + 4z2 − yz(4 + 3z))

(1 − y)4(y − z)2 log y + 12z(4y2 − 3yz + z2)

(1 − z)3(y − z)2 log z, (138)

f B4 (y, z) = −5y4(1 − z)2 + 4z2(1 + 7z − 2z2) − y3(−5 + 52z + 19z2 + 6z3)

2(1 − y)2(y − z)3(1 − z)2

+−yz(24 + 95z − 10z2 + 11z3) + y2(20 + 62z + 45z2 + 40z3 + z4)

2(1 − y)2(y − z)3(1 − z)2

−3y(5y2 + 6yz − 3z2)

(1 − y)3(y − z)3 log y + 12(3y − z)z2

(1 − z)3(y − z)3 log z, (139)

f B5 (y, z) = −4z(31 − 33z + 36z2 − 16z3) + y3 − 157 + 15z + 45z2 + 25z3

3(1 − y)2(y − z)(1 − z)3

− y2(323 + 58z − 60z2 − 86z3 − 19z4) + y(−148 − 233z + 75z2 + 97z3 − 7z4)

3(1 − y)2(y − z)(1 − z)3

− 6(y3 − 5yz2)

(1 − y)3(y − z)2 log y − 24z(y(7z − 5z2) + (−2 + z)z2 + y2(−4 + 3z))

(1 − z)4(y − z)2 log z, (140)

f W
∗

2 (y, z) = −3(4 − 36y + 55y2 − 24y3 + y4 + 2y(−4 − 5y + 6y2) log y)

2(1 − y)4 , (141)

f W
∗

3 (y, z) = −4 + 27y − 24y2 + y3 + 6y(1 + 2y) log y

2(1 − y)3 , (142)

f W
∗

4 (y, z) = 4 + y2(−1 + z)2 + 10z − 2z2 + y(1 − 8z − 5z2)

4(1 − y)2(y − z)(1 − z)2

+ 3y(y + z)

2(1 − y)2(y − z)2 log(y) − 3z2

(y − z)2(1 − z)3 log(z). (143)
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