
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

ACCESS CONTROL SYSTEM FOR THE EPIDEMIC
MARKETPLACE

Carlos André Galinha Jorge dos Santos

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

2013

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

ACCESS CONTROL SYSTEM FOR THE EPIDEMIC
MARKETPLACE

Carlos André Galinha Jorge dos Santos

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

Dissertação orientada pela Prof. Doutora Maria Dulce Pedroso Domingos
e pelo Prof. Doutor Mário Jorge Gaspar da Silva

2013

Agradecimentos

Ao longo destes nove meses deparei-me com vários problemas, muitos dos quais
nunca teria sido capaz de resolver sozinho. Estes problemas não foram só relaciona-
dos com o meu trabalho mas também problemas pessoais e por isso agradeço aqui a todos
os que me ajudaram e que me deram força durante este perı́odo.

Quero dar um agradecimento especial à Dulce pela orientação e pelo seu pragmatismo
que me trouxeram aqui onde estou, mostrando-se sempre disponı́vel para me esclarecer.
Quero agradecer ao Mário, ao Zamite, e ao Paulo Graça pela ajuda que me deram ao
longo deste percurso.

Quero agradecer ao Comité Europeu pelo apoio financeiro ao EPIWORK sob o Se-
venth Framework Programme (Bolsa #231807), e à FCT pelo apoio financeiro do Pro-
grama de Financiamento Multianual.

Quero agradecer à minha famı́lia, principalmente ao meu pai e à minha mãe pelo su-
porte moral incondicional e pelos valores morais que desde novo me embutiram.

Quero agradecer também a um conjunto de amigos que ao longo do meu percurso
académico me proporcionaram momentos inesquecı́veis. Quero agradecer ao Cabaço, ao
Pedro Marquês, ao Reis, ao Monteiro, ao Faria, ao Faı́sca, ao Telmo, ao Marcos, ao Guns,
ao Antunes, ao Tareco, ao JP e ao Francisco Cunha. Quero também deixar um agrade-
cimento especial ao Eduardo Matos, ao Saraiva, ao Eduardo Ferreira e ao Alexandre da
Cunha.

Por último mas de forma nenhuma menos importante quero agradecer à minha namo-
rada Tânia que me apoiou incondicionalmente e sempre com um sorriso.

A todos estes e aos demais agradeço por tudo, obrigado.

iii

À Maria e à Margarida.

Resumo

A Epidemic Marketplace (EM) é uma plataforma de integração e partilha de dados
epidemiológicos. As questões da privacidade constituem sempre um aspecto muito deli-
cado nos repositórios de plataformas desta natureza, já que envolvem a partilha de dados
sensı́veis. Os utilizadores requerem que lhes seja assegurado o acesso aos seus dados
de acordo com polı́ticas de acesso bem definidas. Para suportar tal requisito, o modelo
de controlo de acesso suportado pela EM é baseado em grupos (GBAC). Numa primeira
versão da plataforma, os recursos apenas podiam ser partilhados com grupos estáticos,
o que limitava a expressividade das especificações. Além disso, a plataforma tinha pro-
blemas de desempenho que derivavam de uma implementação inicial, não escalável, do
sistema de controlo de acesso. Neste trabalho, apresentam-se as soluções desenvolvidas
para aumento da escalabilidade da EM e fornecimento de mecanismos mais expressivos
para a partilha de recursos através da especificação de grupos dinâmicos.

Dada a popularidade das redes sociais, a utilização dos grupos dinâmicos foi estendida
para possibilitar a sua integração com estas redes, permitindo que os utilizadores da EM
criem grupos baseados em ligações das redes sociais.

A EM foi desenvolvida no âmbito do projecto Europeu Epiwork, que teve como objec-
tivos monitorar surtos epidemiológicos, guardar os dados recolhidos e utilizá-los em mo-
delos matemáticos destinados a simular e a melhor entender a disseminação de doenças.

Palavras-chave: Epidemiologia, Controlo de Acesso, Controlo de Acesso Baseado em
Grupos, Redes Sociais, Serviços Web, Partilha de Informação

vii

Resumo estendido

A Epidemic Marketplace (EM) é uma plataforma de integração e partilha de dados
epidemiológicos. Contudo, os donos dos dados não os partilham facilmente devido à sen-
sibilidade / confidencialidade de alguns destes dados, mas sobretudo, devido ao seu valor
cientı́fico que lhes garante a singularidade do seu trabalho. Para suportar tal requisito,
o modelo de controlo de acesso suportado pela EM é baseado em grupos (GBAC). No
entanto, quer o modelo, quer a sua implementação encontram-se numa fase embrionária.

A EM tem como base um repositório Fedora Commons e um motor de indexação
Solr, o Fedora comunica com o Solr através do Fedora Generic Search service (GSearch).
Sobre esta camada encontra-se a camada dos serviços web, esta camada está exposta à
internet e serve de intermediário entre a camada interior e clientes HTTP, aplicações do
Epiwork, e outros fornecedores de dados. Ambas as camadas do repositório e dos serviços
web comunicam com um servidor LDAP onde são guardados os utilizadores e os grupos
da EM. As aplicações do EM assim como o site da EM comunicam também com o servi-
dor LDAP.

O modelo de controlo de acesso da EM é baseado em grupos, estes grupos têm três
tipos de visibilidade: Privada, em que apenas o criador do grupo consegue ver o grupo;
Visibilidade para o Grupo, em que todos os membros do grupo conseguem ver o grupo
e partilhar recursos com aquele grupo; e Pública, em que todos os utilizadores do repo-
sitório podem ver o grupo e partilhar recursos com ele. Além disto, os utilizadores da EM
podem ainda partilhar com os seus grupos colecções de recursos.

Os recursos da EM são guardados no repositório Fedora e contêm vários datastre-
ams, dos quais nós distinguimos dados de metadados. Metadados são os datastreams que
contêm informação sobre os dados. Nomeadamente os datastreams ’EM’, ’RELS-EXT’,
’Request’, ’DC’, ’FESLPOLICY’ são considerados metadados pois contêm informação
sobre o recurso e sobre os seus dados.

ix

O sistema de controlo de acesso da EM baseia-se nas polı́ticas de acesso definidas
no repositório. Estas polı́ticas encontram-se na linguagem XACML. Uma polı́tica em
XACML possui dois componentes importantes: o alvo, onde se podem definir pedidos de
decisão para o recurso identificado (sendo que neste caso o recurso é um termo genérico);
e a regra, que é composta por um alvo, um efeito e uma condição.

Na segunda versão da EM (EMv2), era possı́vel encontrar algumas lacunas na implementação
e alguns problemas de desempenho. Além disso também não era possı́vel partilhar recur-
sos com utilizadores sem ser pelo intermediário de um grupo. Além disto, os grupos eram
estáticos e por isso os seus membros tinham de ser definidos individualmente. Todos estes
aspectos motivaram uma evolução do modelo e do sistema de controlo de acesso.

Comecei por estender o modelo de controlo de acesso para permitir a partilha de re-
cursos com utilizadores individualmente. Alterei a estrutura dos nós no servidor LDAP de
forma a resolver alguns problemas, alterei a forma como as polı́ticas de controlo de acesso
eram guardadas no Fedora melhorando bastante o desempenho dos serviços web de acesso
aos recursos da EM, criei indı́ces de alguns atributos do LDAP que eram utilizados nas
buscas de utilizadores em grupos melhorando bastante o desempenho dos serviços de con-
trolo de acesso e de acesso aos recursos, e normalizei os formatos e conteúdo de entrada
/ saı́da dos serviços web. Ainda relativamente aos serviços web, melhorei o serviço de
upload através da utilização de threads melhorando bastante também o seu desempenho.
Criei ainda serviços web como o upload binário que permite ao utilizador carregar datas-
treams para um recurso da EM, e resolvi problemas de segurança no serviço de criação
de grupos. Consolidei também o sistema de controlo de acesso da EM, adicionando fun-
cionalidades para gerir grupos, tais como a adição e remoção de membros de grupos, e
ainda as funcionalidades de criação / remoção de grupos.

De modo a flexibilizar a definição de grupos, estendemos o modelo de controlo de
acesso da EM com grupos dinâmicos. Ao contrário do que acontece com grupos estáticos
onde os membros são enumerados individualmente, o conjunto dos membros destes gru-
pos é definido com regras. Dada a popularidade das redes sociais, a utilização dos grupos
dinâmicos foi estendida para possibilitar a sua integração com estas redes, permitindo que
os utilizadores da EM criem grupos baseados em ligações das redes sociais.

x

A EM foi desenvolvida no âmbito do projecto Epiwork, que teve como objectivos
monitorizar surtos epidemiológicos, guardar os dados recolhidos e utilizá-los em modelos
matemáticos destinados a simular e a melhor entender a disseminação de doenças.

Palavras-chave: Epidemiologia, Controlo de Acesso, Controlo de Acesso Baseado em
Grupos, Redes Sociais, Serviços Web, Partilha de Informação

xi

Abstract

The Epidemic Marketplace (EM) is a platform for integrating and sharing epidemi-
ological data. Privacy issues are always a delicate matter when users intend to store
sensitive data in such repositories. The users require assurance that their data access will
always be in compliance with defined policies. The access control model of the EM uses
Group-Based Access Control (GBAC). However, in an initial version of the platform re-
sources could only be shared with static groups, leading to a lack of expressiveness. In
addition, the EM platform had performance limitations that derived from using a non-
scalable access control system implementation which could only perform simple access
control changes. This work reports how performance issues with the platform have been
solved and its scalability improved. In addition, EM users have the possibility of sharing
their resources with dynamic groups, which, being rule based, provide more expressive
mechanisms to share data. Given the current popularity of Social Networks, dynamic
groups have been integrated with Social Networks, enabling EM users to create groups
based on Social connections, obtained from Social Networks. Such groups rely on user
approval for granting EM access to Social Network data. The EM has been developed
in part within the EU-funded Epiwork project, whose main concerns include monitoring
epidemiological outbreaks, storing that data and feeding it to mathematical models for
simulating and better understanding the dissemination of diseases.

Keywords: Epidemiology, Access Control, Group Based Access Control, Social
Networks, Web Services, Information Sharing

xiii

Contents

List of Figures xix

List of Listings xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives and Approach . 2
1.3 Contributions . 4
1.4 Document Structure . 5

2 Epidemic Marketplace 7
2.1 Application Architecture . 7

2.1.1 LDAP . 7
2.1.2 Layer1 . 9
2.1.3 Layer2 . 12
2.1.4 Layer3 . 13

2.2 EMv2 Access Control Model limitations 14
2.3 EM’s Access Control Model . 14

2.3.1 Access Control Models . 14
2.3.2 Concepts . 15

2.4 EM’s Access Control System . 17
2.4.1 XACML . 17
2.4.2 EM’s Access Control Architecture 21
2.4.3 Web Services . 22

3 EM Access Control Consolidation 27
3.1 Model extensions . 27
3.2 Access Control System Changes . 27

3.2.1 LDAP’s Structure . 27
3.2.2 Fedora Policies . 29
3.2.3 LDAP indexes . 33
3.2.4 Web Services normalization . 36

xv

3.3 Access Control System Extensions . 36
3.3.1 Upload . 36
3.3.2 Binary Upload . 37
3.3.3 Group Manager . 37
3.3.4 Access Control . 38

4 Dynamic Groups 41
4.1 Model . 41
4.2 Dynamic Groups with LDAP attributes 42

4.2.1 Interface . 42
4.2.2 Web Services . 43

4.3 Dynamic Groups with Social Networks’ attributes 44
4.3.1 Subscription . 44
4.3.2 Work-flows . 45
4.3.3 Interface . 47

5 Conclusion 49

A Rule templates 51
A.1 Group create template . 51
A.2 Group meta rule template . 52
A.3 Public meta rule template . 53
A.4 Public data rule template . 53

Appendices 56

References 58

Index 59

xvi

xviii

List of Figures

2.1 EM’s application architecture . 7
2.2 LDAP user example . 8
2.3 Collection usage example . 16
2.4 OASIS data-flow diagram . 20
2.5 EMv2’s FeSL data-flow . 22
2.6 LDAP group example . 24

3.1 LDAP’s old entry structure . 28
3.2 EMv2’s Access Control Implementation 29
3.3 EMv3’s Access Control Implementation 30
3.4 LDAP’s response time with/without indexes 34
3.5 Web Services response time without LDAP indexes 34
3.6 Web Services response time with LDAP indexes 35
3.7 Web Services with indexes response time (with testUser5 and testUser6) . 35

4.1 Dynamic Group UML . 41
4.2 Creating a dynamic group . 42
4.3 Social Group Creation . 45
4.4 Social Group Work-flow . 46
4.5 Sharing a resource with a social group 47

xix

Listings

2.1 EM’s datastream example . 10
2.2 XACML rule example . 18

xxi

Chapter 1

Introduction

In scientific collaborative repositories access control has always been a sensitive matter,
in the Epidemic Marketplace (EM) this is no exception. The EM is part of the Epiwork
project, which is divided into seven Work Packages (WPs). The EM belongs to the WP3
and its purpose is to store epidemiological data. Access to this data has to be restricted by
access control policies.

The EM uses a Discretionary Group-Based Access Control (GBAC) to ensure to its
users that accesses to their data always follows the policies they define. It is very impor-
tant to create a trust relation with our users by ensuring both that their data is secure from
unauthorized access and that they are always in control of the policies that define access
to their data.

Despite the EM being an integration and epidemiological data sharing platform, data
owners will not share their data easily given its sensibility / confidentiality, but mostly
because of the scientific value which grants them the singularity of their work.

This first chapter has the objective of presenting the motivation and the objectives
of the project which originated this dissertation . I also present the contributions that
resulted from our work, ending with the listing of the structure of the next chapters.

1.1 Motivation

The EM uses a GBAC model in order to provide its users with the ability to share their
resources with each other. The GBAC model has shown its value in the EM. In scientific
repositories it is necessary to promote information sharing and the GBAC model fits this
need because it provides the users with effective means to share the resources they own
with other users.

1

Chapter 1. Introduction 2

In a first phase the EM began by having a discretionary GBAC. In its second version
/ release, the Epidemic Marketplace version 2 (EMv2), it evolved into a decentralized
discretionary GBAC. However, while the number of rules and resources increased, the
performance decreased. Particularly the access control related web services, which were
very slow. This problem had to do with the architecture of the Access Control approach
at that time. For each resource shared in the EM, multiple resources had to be created to
store access control rules. These rules define the policies of the resource being shared.
This lead to a non-scalable Access Control system and motivated an evolution on the EM
AC model.

Also, the platform’s abstract character suggests the use of an access control model
that eases the sharing of information while taking advantage of the ever growing use of
Social Networks. This could increase the EM’s expressiveness when it comes to sharing
resources. The EMv2 provides their users with effective means to share resources, how-
ever they could be enhanced. The sum of all these enhancements was released in EM
version 3 (EMv3).

1.2 Objectives and Approach

The objective of this work is to create an access control system that ensures data owners
the privacy of their data while easing and promoting its sharing in a controlled environ-
ment.

Next I present the specific objectives that originated this dissertation, the challenges
they present and the methods to approach each one of them.

1. Solve the EM performance issues: the EM presented performance issues in sev-
eral services. Challenges:

• Identify the source of the performance issues.

• Identify the changes that need to be implemented in the services that are af-
fecting the perfomance.

• Implement the changes that need to be made.

Approach:

• I began by measuring response times in our web services, after this step I
was able to identify the Fedora Commons repository and the LDAP server as

Chapter 1. Introduction 3

the backend services that were affecting the performance of the EM. Then I
analyzed those services to identify the source of the problems and fixed them.

2. Consolidate the decentralized GBAC model of the EM: it should allow users to
manage the groups they create. Challenges:

• Develop web services to allow users to edit and to remove groups.

• Develop web services to allow users to add and remove members from the
groups.

• Develop the web interfaces for these web services and integrate them in the
front-end.

Approach:

• I began by modeling the format of the inputs and outputs of the web services.
Then I designed the process and at last developed the modeled web services.

3. Extend the access control system of the EM to allow the share of resources with
single users: it should allow users to share resources they own with single users
without having to create groups. Challenges:

• Study current access control approaches based on sharing with single users.

• Choose an approach that fits the requirements of the EM.

• Implement that feature, extending the EM access control model.

Approach:

• I began by searching for approaches that are currently used in such cases and
identified one that suited the EM. Then I implemented this feature.

4. Extend the GBAC model of the EM to allow users to share resources with dy-
namic groups: it should allow users to create groups whose membership is defined
by rules. Challenges:

• Study current access control approaches based on sharing with dynamic groups.

• Choose an approach that fits the requirements of the EM.

• Implement that feature, extending the EM access control system.

Approach:

• I began by searching for approaches that are currently used in such cases and
identified one that suited the EM. After identifying an LDAP-based solution
that seemed to satisfy this objective.

Chapter 1. Introduction 4

5. Extend the GBAC system of the EM to allow users to share resources with So-
cial Network groups: it should allow users to share their resources with dynamic
groups whose membership is based in their social networks connections. Chal-
lenges:

• Study current access control approaches based on dynamic groups with social
information.

• Study the current approaches to integrate social networks with other platforms.

• Identify the approaches that make sense in the context of the EM.

• Develop a social network dynamic group approach for the EM.

• Implement that solution in the EM.

Approach:

• I began by searching for current access control approaches based on dynamic
groups with social information, then I identified the necessary tools to perform
such integration. After this I identified an approach that made sense in the
EM’s context, developed a solution based on my approach and implemented
it in the EM.

In order to achieve such objective I will enhance the expressiveness of the access control
system by extending the current EM model to include dynamic groups.

With this objective in mind we intend to integrate Social Networks concepts in a dis-
cretionary access control system based in groups.

1.3 Contributions

In this work, I identified the drawbacks that were affecting the EM’s performance. I’ve
done this by implementing a new access control structure that dealt better with the growth
of workload. This changes were made in the web services by creating a new access con-
trol web service, at the Fedora repository by changing the organization of the resources
policies, and in the LDAP server by changing its structure.

In a first iteration of enhancements to the access control system, I consolidated the
EM’s GBAC by implementing the features that were missing. After being satisfied with
the performance and behavior of the newly added features, I moved on to the second it-
eration, on which I enhanced the EM’s expressiveness by allowing EM users to create
dynamic groups, groups whose membership is defined by rules. In a third and last iter-
ation, I extended the EM’s access control system to allow users to share their resources

Chapter 1. Introduction 5

with their Social Connections (connections from their Social Networks).

In addition, I developed new web services such as the binary upload which allowed
EM Users to upload datastreams to the EM. This was an important feature for the inte-
gration with the Gleamviz team. I developed the tag cloud web service which returned
the epidemiological terms that had more occurrences in the EM’s resources, this web ser-
vice was later discontinued. I also developed the Epimarketplace Crawler (EMCrawler),
which crawls the web for articles of interest in order to add them to the EM’s repository.

1.4 Document Structure

This document is organized as follows:

• Chapter 2 (Epidemic Marketplace) – In this chapter I present the Application Archi-
tecture of the EM; the Access Control Model and some useful concepts and terms
for the full understanding of the Epidemic Marketplace Platform; the Access Con-
trol System with a brief introduction to XACML and an extended overview of the
EM’s Access Control Architecture. Also I present some of the work regarding the
access control model that was developed prior to my integration in the EM, namely
the second instance of its access control.

• Chapter 3 (Consolidation) – In this chapter I present the extensions I added to the
EM’s Access Control Model; the Access Control System Changes regarding the
LDAP’s structure, the Fedora policies, the LDAP indexes and the Web Services
normalization; I also present the Access Control Extensions and explain how they
improved the EM’s performance.

• Chapter 4 (Dynamic Groups) – Here I present the access control enhancements
that I developed regarding dynamic groups, the generic dynamic group model; the
definition of dynamic groups with LDAP attributes; and the definition of dynamic
groups with Social attributes.

• Chapter 5 (Conclusion) – In the conclusion I will make an overview of my work
and criticize it with a very pragmatic approach.

Chapter 2

Epidemic Marketplace

In this chapter I present the Application Architecture of the EM, the EM’s Access Control
model and other important access control models, the EM’s Access Control System, and
the access control model of the EMv2 which were developed prior to my integration in
the project.

2.1 Application Architecture

The Epidemic Marketplace’s architecture has to ensure to its users that their data is kept
safe and undisclosed. The EM’s application architecture is divided into three layers, in
which, all interact directly with the LDAP server. The EM’s application architecture is
shown in Figure 2.1.

Figure 2.1: EM’s application architecture

2.1.1 LDAP

LDAP is a directory oriented service. In an LDAP server, entries are stored hierarchi-
cally following a tree model. Each entry consists in a set of attributes with values. En-
tries can refer to people, organizations, groups of people, etc.. Two important terms in
the LDAP domain are the DN (Distinguished Name), which is the full path of the entry
(eg: cn=csantos,ou=EM users,dc=ldap,dc=epiwork,dc=eu), and the CN (Common Name)

7

Chapter 2. Epidemic Marketplace 8

which is the common designator of the name and unlike the DN is not required to be
unique.

Figure 2.2: LDAP user example

A typical Client-LDAP work-flow begins with the Client binding with the LDAP

Chapter 2. Epidemic Marketplace 9

server. Then the Client performs a set of operations (such as modify, delete, search)
and then the Client unbinds with the LDAP server completing the work-flow.

EM users are stored in an LDAP server. In Figure 2.2 we can see the users’ repre-
sentation in LDAP. Users have ten fields, the CN (Common Name) which is used both
internally and at the web services level; the eduPersonAffiliation, where the user can add
its affiliations (e.g. FFCUL); the givenName which is the name used at the interface level,
it’s this name that is used in the front-end; the labeledURI field which allows the user
to associate a URI with his account; the mail where the user can store his email; the ob-
jectClass which defines the entry’s type; the ou (Organizational Unit) which is used to
categorize entries, in this case the ou represents the EM-Users; the sn (surname); the User
Name; and at last the userPassword.

2.1.2 Layer1

In this layer there are three applications: a Fedora server, which is where the resources
are stored; the fedora generic search application, which is responsible for communicating
with the last application of this layer: the Solr search engine. The Solr search engine
provides a powerful set of tools for high performance searches. In this section I detail
these three applications.

Fedora Repository

EM uses a Fedora Commons [2] solution integrated with LDAP. Fedora Commons is our
back-end repository, where resources are stored and managed. User related information,
such as authentication credentials, as well as groups are stored in the LDAP server. Fe-
dora uses a Digital Object Model to store the data.

The Fedora’s Digital Objects are composed as follows:
- Persistent ID (PID) - The Digital Object Identifier.
- Object Properties - System properties to manage and track the object.
- Datastream(s) - Content Item(s).

An EM resource is an abstraction which is represented as one Fedora Digital Object.
Each EM resource has a set of mandatory Datastreams. Fedora reserves five Datastream
Identifiers for itself: ‘DC’, ‘AUDIT’, ‘RELS-EXT’, ‘RELS-INT’ and ‘FESLPOLICY’.
On top of those Datastreams, EM resources have another two reserved Datastream Iden-
tifiers: ’EM’ and ’Request’, which contain the resource’s metadata.

Chapter 2. Epidemic Marketplace 10

Every EM resource has one EM datastream, this is the datastream on which we keep
the resources’s metadata. Not all resources have a Request Datastream, only those that
are requests for resources (I will elaborate this concept later on). The contents of EM
datastreams are in eXtensive Markup Language (XML). One example is shown bellow:

Listing 2.1: EM’s datastream example
<?xml version="1.0" encoding="UTF-8"?>
<em:em xmlns:em="http://epiwork.di.fc.ul.pt/metadata/" em:

version="2.0">
<em:title>My test resource</em:title>
<em:identifier>empid:1053</em:identifier>
<em:generalDescription>

<em:abstract>Small abstract text</em:abstract>
<em:citation>citation text</em:citation>
<em:description>description text</em:description>
<em:DOI>DOI</em:DOI>
<em:format>Format</em:format>
<em:ISBN>978-3-16-148410-0</em:ISBN>
<em:ISSN>ISSN</em:ISSN>
<em:language>en</em:language>
<em:pubmedID>is PubmedID</em:pubmedID>
<em:subject>Meta-Information</em:subject>
<em:type>Mobility data</em:type>
<em:URL>http://fc.ul.pt</em:URL>
<em:version>1.0</em:version>

</em:generalDescription>
<em:date>2012-07-17T00:00:00Z</em:date>
<em:dateSubmitted>2012-07-17T14:54:56Z</em:dateSubmitted>
<em:creator>

<em:name>Paulo</em:name>
<em:organisation>FFCUL</em:organisation>
<em:URL>http://fc.ul.pt</em:URL>

</em:creator>
<em:organisation>

<em:name>is Organisation Name</em:name>
<em:URL>http://www.fc.ul.pt</em:URL>

</em:organisation>
<em:uploader>

<em:name>Paulo Graa</em:name>
<em:organisation>FFCUL</em:organisation>

</em:uploader>
<em:time>

<em:from>1982-01-01T00:00:00Z</em:from>
<em:to>1983-01-01T00:00:00Z</em:to>
<em:moment />

</em:time>
<em:source>

<em:name>source name</em:name>

Chapter 2. Epidemic Marketplace 11

<em:URL>http://www.fc.ul.pt</em:URL>
<em:description>source description</em:description>

</em:source>
<em:biologicalInformation>

<em:diagnosticMethod>http://ncicb.nci.nih.gov/xml/owl/EVS/
Thesaurus.owl#C64382</em:diagnosticMethod>

<em:disease>http://purl.obolibrary.org/obo/DOID_0050143</em:
disease>

<em:symptom>http://purl.obolibrary.org/obo/SYMP_0000249</em:
symptom>

<em:drug>http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#
C74599</em:drug>

<em:host>http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#
C74505</em:host>

<em:pathogen>http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.
owl#C74505</em:pathogen>

<em:transmission>http://purl.obolibrary.org/obo/
TRANS_0000008</em:transmission>

<em:vaccine>http://purl.obolibrary.org/obo/VO_0012214</em:
vaccine>

<em:vector>http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.
owl#C74505</em:vector>

</em:biologicalInformation>
<em:environment>http://purl.obolibrary.org/obo/ENVO_00000275</

em:environment>
<em:demography>http://purl.obolibrary.org/obo/OMRSE_00000002</

em:demography>
<em:socioEconomicCondition>http://ncicb.nci.nih.gov/xml/owl/

EVS/Thesaurus.owl#C100743</em:socioEconomicCondition>
<em:location>

<em:country>PT</em:country>
<em:place>Lisbon</em:place>
<em:URI />

</em:location>
<em:bibliographicCitation>

<em:citation>is citation</em:citation>
<em:DOI>DOI</em:DOI>
<em:PubmedID>pubmed id bibliographic</em:PubmedID>

</em:bibliographicCitation>
<em:rights>

<em:rightsHolder>is rights holder</em:rightsHolder>
<em:copyright>is copyright</em:copyright>
<em:disclaimer>is disclaimer</em:disclaimer>
<em:license>My license</em:license>

</em:rights>
</em:em>

The Fedora Security Layer (FeSL) is the Fedora’s authorization and authentication sys-
tem. FeSL authentication is built on the Java Authentication and Authorization Service

Chapter 2. Epidemic Marketplace 12

(JAAS) [5], which authenticates EM’s users against their LDAP credentials. FeSL ex-
tends and improves the OASIS XACML (see the XACML section 2.3.1).

Whenever Fedora receives a request for accessing a Digital Object’s data, it binds
with the LDAP server application to see if the requester belongs to any of the groups that
the resource is shared with (if any). Then, using the Fedora Security Layer (FeSL), au-
thorization might or might not be given for that user to access that Digital Object.

In order to fetch Digital Objects from Fedora, it provides a basic search engine which
allows searching and browsing its repository. Even though this basic search is provided,
the EM uses the Fedora Generic Search Service (GSearch) which is used as a middleware
between the Fedora repository and the Solr [9] search engine.

GSearch and Solr

The Fedora Generic Search service (GSearch) makes searching digital contents in Fedora
relatively easier. GSearch comes with a Solr plugin which interacts with this last. Solr is
then used to power-up the EM’s search feature.

Solr is a powerful open-source software developed by the Apache Lucene project.
Some of the features Solr has that meet the EM’s needs are a powerful full-text search,
faceted search and highlighting.

Solr provides user friendly indexation with the aid of XML schema files (XSD) where
one can easily define the fields to index and the type of those fields.

2.1.3 Layer2

This is the web services layer, the EM’s Web Services are a critical feature of the Epi-
demic Marketplace. They are the middleware layer that intermediates between the Fedora
Repository and the outer layer. Every request that is made to the Fedora Repository has
to pass through the web services layer. The web services were developed in Python.

Web Services

The Web Services are RESTful, they use HTTP methods explicitly, are stateless, their
API is hypertext driven, expose directory structured-like URIs, and transfer XML, JavaScript
Object Notation (JSON), or both thus following the SOAP specification.

The Web Services are responsible for intermediating with HTTP Clients, Epiwork
Applications and other data suppliers:

Chapter 2. Epidemic Marketplace 13

• HTTP Clients - These are the user applications that insert/retrieve epidemiological
data in/from our platform.

• Epiwork Applications - Applications such as the Simple EM Client and the Gleamviz
Client.

• Other data suppliers - Tools such as online news, RSS feeds, ProMED Mail, and
other event generators.

2.1.4 Layer3

The third layer includes the EM’s Drupal-based front-end which provides EM’s users
with a user friendly User Interface (UI), the Simple EM Client which is a Python tool that
allows users to bypass the EM’s UI, and the GLEaMviz Client whose simulations rely on
the availability and behavior of the EM’s web services.

Drupal front-end

EM provides a Drupal-based user interface front-end for interactive upload and manipu-
lation of resources. The front-end is Drupal-based because it allows a modular develop-
ment, which accelerated the development of the EM. Whenever we updated some soft-
ware that interacted with Drupal, we just had to update the module (sometimes this wasn’t
even needed).

The website uses many modules, some are contrib (modules developed by other peers
that were made available in the community), but most are custom modules that we devel-
oped in order to deal with our platform specific needs.

Simple EM Client

The Simple EM Client is a tool that enables an advanced user to bypass the Drupal front-
end without having to deal directly with the Web Services. The Simple EM Client is built
in Python and communicates with the EM through HTTP requests.

GLEaMviz Client

GLEaMviz [3] is a client-server software system that can model the world-wide spread of
epidemics for human transmissible diseases like influenza like illnesses (ILI), offering ex-
tensive flexibility in the design of the compartmental model and scenario setup, including
computationally-optimized numerical simulations based on high-resolution global demo-
graphic and mobility data. GLEaMviz uses the EM’s web services to store/retrieve its
simulations.

Chapter 2. Epidemic Marketplace 14

2.2 EMv2 Access Control Model limitations

In this section I describe the EMv2’s group-based discretionary access control model. In
this model, users assign permissions to groups of users over their own resources. How-
ever, the model wasn’t fully implemented. Some of the features were missing, there was
no feature for editing a group once it was created. Also resources could only be shared be
shared with groups, a resource couldn’t be shared directly with a user.

Also the model lacks of expressiveness because users could only share resources with
static groups where they have to define all the members individually.

2.3 EM’s Access Control Model

In this section I present two main access control models, the Discretionary Access Control
(DAC) and the Role Based Access Control (RBAC) models and their variations. Also, I
present the Access Control Model of the EM and the underlying concepts.

2.3.1 Access Control Models

An access control model implies the use of access control policies in order to define the
system’s behavior. Access control models define the formal representation of the access
control policies and their working behavior. Access control languages allow to express
access control policies. Regarding the definition of access control models for information
platforms and scientific repositories we consider two main access control models:

• the DAC is based on the user identification and on authorizations (permissions as-
signed to that user) [20]. In this model resources have owners associated with them.
In the Ownership DAC model, resource owners have the ability to set permissions
over their resources. On the Decentralized DAC model, the owners have the power
to delegate the ability to set permissions to other users.
The traditional Group-Based Access Control [4] model is an evolution of the DAC
model on which users can share resources which they own with groups of users.

– Group-Based Access Control (centralized) The Centralized Group-Based
Access Control approach allows users to share their resources with groups of
users, however they rely on administrators for the creation and maintenance
of those groups.

– Group-Based Access Control (decentralized) On the other hand, a Decen-
tralized Group-Based Access Control allows users to define groups to share
the resources they own, thus achieving the same granularity as the traditional
GBAC with better efficiency. There is no need for administrators intervention.

Chapter 2. Epidemic Marketplace 15

• on the RBAC model, the concept of Role is introduced. This is a widely-accepted
approach [10] where each role has a set of permissions associated with it, then roles
are assigned to users, and so the users use the set of permissions associated with the
role(s) assigned to them.
In this case, when access is solicited by an user or process, the user/process will use
the permissions that are assigned to all the roles that are associated with him/it.

2.3.2 Concepts

Datastream is a component of a Fedora digital object. In the EM’s perspective there are
two sets of datastreams: data and metadata.

Metadata datastreams are finite and well defined: EM, DC, Request, RELS-EXT and
FESLPOLICY are metadata datastreams. These datastreams are managed by the EM, EM
users can’t interact directly with them.

The data datastreams are all other datastreams, datastreams that the user uploads to
their resources.

A Principal represents a user or a group of the repository.

An Object represents an entity a user may or may not have access to perform ac-
tions on, including collections, resources and their metadata.

Groups are categories of principals.

Actions are the types of access that users can perform on objects. In this model we
consider the actions: read, write, create and delete. Object owners are granted all actions
for their owned objects. The read action allows read-only accesses to objects such as:

1. Read action for a collection authorizes users to list the collection, and to view the
contained metadata and resources.

2. Read action for a resource enables users to view the resource content and its meta-
data.

3. Read action for metadata enables users to view the metadata.

The write action is used to edit the contents of existing collections and resources:

1. Write action for a collection authorizes users to edit the collection, i.e. the contained
metadata and resources.

2. Write action for a resource authorizes users to edit that resource content and its
metadata.

Chapter 2. Epidemic Marketplace 16

3. Write action for metadata authorizes users to edit the metadata of an object.

The create action allows users to upload data datastreams to objects.
The delete action allows users to remove any object. In addition contained objects are
also removed when the container object is deleted.

Group Management is decentralized and discretionary. Group owners have permis-
sions to edit and delete his created groups. Furthermore, we define that groups have three
types of visibility: Private, where only the group creator is able to see the group; Group
Visible, where all the members of a group can see the group and share resources with
that group; and Public, where everyone in the repository sees the group and can share
resources with that group.

A Permission is defined by an action and an object, the action can be each one of
the following: read, update, create or delete. The permission can be described by the pair
(action, object).

Authorization is the process of enforcing permissions over principals[17].

Figure 2.3: Collection usage example

Take the following scenario as an example: A team of experts is hired to create a set
of simulations for a public health institution. Alice, a member of the team of simulation
experts creates a group SimulationExperts = {Alice,Carl,David} which consists of the
members of the team. Alice then creates a collection named RequestedSimulations and

Chapter 2. Epidemic Marketplace 17

grants read and insert permissions to the SimulationExperts group, enabling them to read
and create simulations inside the collection. Each of the experts creates a simulation re-
source inside the collection (see Figure 2.3). Because collection access rights are implicit
for contained resources, Alice also has all access control rights over the created simula-
tions.

Because our model is owner centered, Alice, the owner of the collection, can then set
further access control permissions for her collection. Because the public health institu-
tion requires that the simulations be shared with them privately, Alice simply creates a
new group PHIUsers = {Bob, Frank} which consists of members of the public health
institution (or simply use a pre-existing group if the institution created one) and gives
them read access to her collection. Because container access rights are implicit on con-
tained objects, Bob and Frank have read permissions over the contained resources without
having to request them individually.

2.4 EM’s Access Control System

In this section I present the Access Control System with an introduction to XACML and
an overview of the EM’s Access Control Architecture.

2.4.1 XACML

Policy languages have been studied for a long time. There are also some languages that
can express access control policies such as XACML (eXtensible Access Control Markup
Language)[11], X-RBAC (XML Role-Based Access Control)[15], KAoS(Knowledge-
able Agent-oriented System)[14], Rei[16] and Ponder[18]. Among them, XACML is
the current OASIS standard specification.

The OASIS eXtensible Access Control Markup Language (XACML) describes both
a policy language and an access control decision request/response language. XACML
defines an access control policy language implemented in XML which enables the formu-
lation of queries to determine whether or not a given action should be allowed to a subject
over a resource. The XACML format consists of two major components:

• Target: The set of decision requests, identified by definitions for resource, subject
and action, that a rule, policy or policy set is intended to evaluate.

• Rule(s): A target, an effect and a condition. A component of a policy.

All the policies in the EM are permissive, they only contain positive rules. By default,
everything that isn’t explicitly permitted is forbidden. Bellow is a XACML rule example

Chapter 2. Epidemic Marketplace 18

that gives read access to the metadata of the resource to the group testgroup-267 and to
the user csantos.

Listing 2.2: XACML rule example

<Rule Effect="Permit" RuleId="group@testgroup-267,user@csantos;
meta;r">

<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and

">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<ResourceAttributeDesignator AttributeId="urn:fedora:

names:fedora:2.1:resource:datastream:id" DataType="
http://www.w3.org/2001/XMLSchema#string"></
ResourceAttributeDesignator>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:
string-bag">

<AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">EM</AttributeValue>

<AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">DC</AttributeValue>

<AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">Request</AttributeValue>

<AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">RELS-EXT</AttributeValue>

</Apply>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<ActionAttributeDesignator AttributeId="urn:fedora:names:

fedora:2.1:action:id" DataType="http://www.w3.org
/2001/XMLSchema#string"></ActionAttributeDesignator>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:
string-bag">

<AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">readds</AttributeValue>

</Apply>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

or">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<SubjectAttributeDesignator AttributeId="memberOf"

DataType="http://www.w3.org/2001/XMLSchema#string"></
SubjectAttributeDesignator>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:
string-bag">

<AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">testgroup-267</AttributeValue>

Chapter 2. Epidemic Marketplace 19

</Apply>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<SubjectAttributeDesignator AttributeId="urn:oasis:names:

tc:xacml:1.0:subject:subject-id" DataType="http://www.
w3.org/2001/XMLSchema#string"/>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:
string-bag">

<AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">csantos</AttributeValue>

</Apply>
</Apply>
</Apply>

</Apply>
</Condition>

</Rule>

The major actors in the XACML domain are the PEP, the context handler, the PDP
and the PAP.

• The policy enforcement point (PEP) is the entity that performs access control, by
making decision requests and enforcing authorization decisions.

• The context handler is the entity that converts decision requests in the native re-
quest format to the XACML canonical form and converts authorization decisions
in the XACML canonical form to the native response format.

• The policy decision point (PDP) is the entity that evaluates applicable policy and
renders an authorization decision.

Chapter 2. Epidemic Marketplace 20

Figure 2.4: OASIS data-flow diagram

• The policy information point (PIP) is the entity that acts as a source of attribute
values.

• The policy administration point (PAP) is the entity that creates a policy or policy
set.

The major actors in the XACML domain are shown in Figure 2.4.
The data-flow operates by the following steps:

1. PAPs write policies and policy sets and make them available to the PDP. These
policies or policy sets represent the complete policy for a specified target.

2. The access requester sends a request for access to the PEP.

3. The PEP sends the request for access to the context handler in its native request
format, optionally including attributes of the subjects, resource, action and envi-
ronment.

Chapter 2. Epidemic Marketplace 21

4. The context handler constructs an XACML request context and sends it to the
PDP.

5. The PDP requests any additional subject, resource, action and environment at-
tributes from the context handler.

6. The context handler requests the attributes from a PIP.

7. The PIP obtains the requested attributes.

8. The PIP returns the requested attributes to the context handler.

9. Optionally, the context handler includes the resource in the context.

10. The context handler sends the requested attributes and (optionally) the resource
to the PDP. The PDP evaluates the policy.

11. The PDP returns the response context (including the authorization decision) to
the context handler.

12. The context handler translates the response context to the native response format
of the PEP. The context handler returns the response to the PEP.

13. The PEP fulfills the obligations.

14. (Not shown) If access is permitted, then the PEP permits access to the resource;
otherwise, it denies access.

2.4.2 EM’s Access Control Architecture

In this subsection I explain how and where access control policies and EM groups are
stored.

Fedora Policies

The policies that define access to EM resources are kept in Fedora inside the resources’
FESLPOLICY datastreams. Each resource has one FESLPOLICY datastream. This
datastream is considered metadata and as stated above about these types of datastreams,
it cannot be managed directly by the users of the EM. Users must use the web services
that the API of the EM provides to them.

These policies are composed of a target, which specifies the target resource, and a
set of rules that define access to that resource.

Chapter 2. Epidemic Marketplace 22

Figure 2.5: EMv2’s FeSL data-flow

The authorization process begins with a request, then the request will hold at the
Policy Enforcement Point (PEP). The PEP will form a XACML request based on the re-
quester’s attributes, the resource, the action and other information. The PEP will then
send this request to the Policy Decision Point (PDP). It’s the PDP that will determine
whether or not access should be granted. Then the answer is returned to the PEP which
will then allow or deny the requester’s access to the resource. In Figure 2.5 it is shown
the EMv2’s FeSL data-flow.

2.4.3 Web Services

When a client wants to access a resource’s datastream he/it can make a specific call to the
API (eg: api.epimarketplace.net/rawfetch/pid/empid:xxx/datastream/EM) or he/it can use
our Drupal-based front-end (eg: https://www.epimarketplace.net/resource/empid xxx) which
calls the same API web service. Both this calls will return either the requested datastream
if access is approved or an access error otherwise.

However, for a better understanding of its permissions and to avoid interpretation er-
rors, we also supply a web service api.epimarketplace.net/accesscontrol/listpolicies/empid:xxx
which specifically requests for the policies of a resource. This enables us to provide an
interface based on the client permissions (eg: showing only the actions he/it can perform).

The access control is enforced in this two approaches:

• Case1: A direct access to a resource’s datastream.
(eg. api.epimarketplace.net/rawfetch/pid/empid:xxx/datastream/EM)

• Case2: A request that specifically asks for the policies of a resource.
(eg. api.epimarketplace.net/accesscontrol/listpolicies/empid:xxx)

Chapter 2. Epidemic Marketplace 23

In case1 the request goes from the client to the API. Then the API forms a fedora re-
quest based on the user attributes and forwards the request to Fedora. Fedora then decides
whether or not the user has access to the resource, returning the datastream if permission
is granted.

In case2 the resource’s permissions are specifically requested. This information is
only return to clients that have the privilege to access that data (such as resource owners,
users that were granted access to the resource and administrators). This is used to know if
the user has or has not access to the resource prior to actually trying to access it on fedora.
This is useful for the Drupal-based interface in order to be able to show/ hide the options
the user can perform over a resource.

EM Groups

EM Groups are stored in the LDAP server. All authenticated users can create groups in
the EM. After the creation of the groups, users can share their resources with them, thus
delegating the permissions to the members of those groups.

Chapter 2. Epidemic Marketplace 24

Figure 2.6: LDAP group example

In Figure 2.6 we can see how a group is stored in LDAP. Groups have six fields, the
CN (Common Name) which is used both internally and at the web services level; the
groupname which is the name used at the user level, its this name that is used in the front-
end; the member field which is where membership is kept, the identifiers are the user
DNs; the objectClass which defines the entry’s type; the owner which is the DN of the
owner of the group; and at last the visibility of the group.

Chapter 2. Epidemic Marketplace 26

Chapter 3

EM Access Control Consolidation

In this chapter I will discuss the model extensions performed on the EM access control
model, the changes on the access control system, and the extensions performed on the
access control system.

3.1 Model extensions

One of the limitations of the EMv2 access control model was that in order to share a re-
source one must first create a group. If the owner wants to share the resource with only
one user it’s not logical to infer that he must first create a group with that user as member.

In order to overcome this limitation I extended the EMv2 access control model to
include the user sharing feature. This extension was made available in the EMv3 AC
model.

3.2 Access Control System Changes

The access control evolution from EMv2 to EMv3 implied many changes, in this section
I will present them.

3.2.1 LDAP’s Structure

LDAP is a service commonly used for user authentication. It profits from its non-relational
architecture, unlike other relational services such as SQL-based, LDAP has an hierarchi-
cal organization providing a better performance with large amounts of data. The EM’s
groups are stored in in the LDAP server.

EM Groups

In the first EM’s LDAP architecture the group visibility was an LDAP entry (Figure 3.1).

27

Chapter 3. EM Access Control Consolidation 28

Figure 3.1: LDAP’s old entry structure

This architecture presented some issues regarding the arrangement of the entries. This
was due to the fact that the group visibility was an LADP entry. Because the group itself
was inside the group visibility entry, one must first know the visibility of the group in
order to know its DN. Knowing the DN of a group is the only effective mean to fetch its
information.

Another problem caused by the fact that group visibility was an entry was that ev-
ery time the visibility had to be changed, the group was being deleted and created again
in the entry corresponding to the new visibility.

Also, because groups with different visibilities were stored in different entries (ac-
cording to the visibility of the group) it was possible for two groups to have the same
name. If by any reason at a certain point in time they have the same visibility then the
behavior will be undefined. Take the following scenario as an example:

Alice creates a group with the name mygroup and with Private visibility. In the ldap
the DN of the group will be dc=ldap,dc=epiwork,dc=eu, ou=EM-Groups, ou=Private,
ou=mygroup. Later, Bob also creates a group named mygroup but with Public visibility.
At this point Bob can only see his group, but Alice sees two groups named mygroup and
can’t distinguish them. However bad the situation might be it can get worse: now Al-
ice decides to make her group Public. This means that LDAP will change the group from
dc=ldap,dc=epiwork,dc=eu, ou=EM-Groups, ou=Private to dc=ldap,dc=epiwork,dc=eu,
ou=EM-Groups, ou=Public, however there is already a group named mygroup in dc=ldap,
dc=epiwork,dc=eu, ou=EM-Groups, ou=Public (Bob’s group), and because in LDAP the
DN is the identifier of an entry Alice’s group will replace Bob’s.

Chapter 3. EM Access Control Consolidation 29

In order to solve these problems I changed the group visibility to become an attribute
of a group instead of an entry.

3.2.2 Fedora Policies

Regarding the Fedora digital library, we had the concept of policy resources. These were
resources whose only purpose was to hold policies that would apply to the relevant EM’s
resources. Shown in Figure 3.2 is the Fedora access control implementation, where the
resource empid:xxx has n policy resources whose purpose is to hold FESLPOLICY datas-
treams with rules that apply to it.

Figure 3.2: EMv2’s Access Control Implementation

In this first phase of the EM access control it could take up to thirty seconds to access a
resource which was by far unacceptable. However when we turned off the access control
layer times decreased to acceptable values. I performed some tests to find the origin of
this time difference and traced the problem back to these policy resources.

These policy resources were in most cases in greater number than the actual resources.
This happened because each FESLPOLICY datastream had only one XACML rule. This
approach raised limitations regarding the scalability of the marketplace.

Chapter 3. EM Access Control Consolidation 30

In EMv3’s access control (Figure 3.3), we abandoned the policy resource concept
and though about a new and better way to manage access control. The solution was to
put all the rules that apply to a resource inside that same resource, in a FESLPOLICY
datastream.

The number of objects in the Fedora repository hugely decreased, also it improved
performance substantially. A request that previously took about thirty seconds now takes
about half a second and most importantly, the response time doesn’t increase as the re-
source gets shared with more and more users/groups.

Figure 3.3: EMv3’s Access Control Implementation

Rule templates

As I said before, the XACML policies are formed by a set of rules which combined form
a policy that is ready to be inserted into a FESLPOLICY datastream. To ease the process
of creating a policy, I created five templates of rules.

I use these rule templates to form FESLPOLICY datastreams, for that I replace %sub-
jects by a set of subjects separated by a comma; %actionAb is replaced by the abbreviate
of the action to grant; %action is replaced by the action to be granted; %groupAttribute-
Values is replaced by a set of groups in compliance with the XACML format; %subjec-
tAttributeValues is replaced by a set of users in the XACML format.

Group data rule template This template is meant for granting to a set of groups and/or
users permission to access the data-datastreams of a resource (all datastreams except for
those five listed in the example: EM, DC, Request, RELS-EXT and FESLPOLICY). Be-
cause this rule template is aimed at data datastreams, we begin by denying access to the
metadata datastreams (EM, DC, Request, RELS-EXT, FESLPOLICY). These datastreams
can only be accessed if meta access is granted, except for the FESLPOLICY which can
never be directly accessed. Then we specify the set of actions we are granting {readds,
createds, updateds, deleteds}. After, there is a function that grants access to a set of

Chapter 3. EM Access Control Consolidation 31

groups. At last, there is a function that grants access to a set of users. The group data rule
template is shown bellow:

<?xml version="1.0" encoding="UTF-8"?>
<Rule Effect="Permit" RuleId="%subjects;data;%actionAb">

<Condition>
core of my work
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and

">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

not">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-at-least-one-member-of">
<ResourceAttributeDesignator AttributeId="urn:fedora:

names:fedora:2.1:resource:datastream:id" DataType=
"http://www.w3.org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">EM</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">DC</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">Request</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">RELS-EXT</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">FESLPOLICY</AttributeValue>
</Apply>

</Apply>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<ActionAttributeDesignator AttributeId="urn:fedora:

names:fedora:2.1:action:id" DataType="http://www.w3.
org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">%action</Apply>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

or">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-at-least-one-member-of">
<SubjectAttributeDesignator AttributeId="memberOf"

DataType="http://www.w3.org/2001/XMLSchema\#string
" />

Chapter 3. EM Access Control Consolidation 32

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">%groupAttributeValues</Apply>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-at-least-one-member-of">
<SubjectAttributeDesignator AttributeId="urn:oasis:

names:tc:xacml:1.0:subject:subject-id" DataType="
http://www.w3.org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">%subjectAttributeValues</
Apply>

</Apply>
</Apply>

</Apply>
</Condition>

</Rule>

Group create template This template is meant for granting to a set of groups and/or
users permission to create a datastream in a resource. First we define the action which in
this case is createds. After, there is a function that grants create access to a set of groups.
At last there is a function that grants create access to a set of users.

This template is available in the Appendices section (A.1).

Group meta rule template This template is meant for granting to a set of groups and/or
users permission to access the metadata datastreams of a resource. Because this rule
template is aimed at metadata datastreams, we begin by giving access to a subset of the
metadata datastreams (EM, DC, Request, RELS-EXT). In this case the FESLPOLICY isn’t
included because we do not allow direct changes or access to this datastream. Then we
specify the set of actions we are granting {readds, createds, updateds, deleteds}. After,
there is a function that grants access to a set of groups. At last, there is a function that
grants access to a set of users.

This template is available in the Appendices section (A.2).

Public meta rule template This template is very similar to the group meta rule tem-
plate. The difference is that because this rule aims to the Public user we do not need to
specify any user/group. In the XACML syntax by omitting the subject we are granting
permission to everyone.

This template is available in the Appendices section (A.3).

Public data rule template This template is very similar to the group data rule template.
The difference, as before, is that because this rule aims to the Public user we do not need

Chapter 3. EM Access Control Consolidation 33

to specify any user/group.
This template is available in the Appendices section (A.4).

3.2.3 LDAP indexes

Solr has both resources information and access control information indexed. Regarding
the resources, Solr indexes the main fields of the resources. Regarding the access control
information, for each resource, Solr indexes the groups that can access it.

When user Alice requests access to the resource resourceA, the web services query
LDAP for all the groups of Alice, then they send Solr the groups returned from LDAP,
Solr matches them against the groups that have access to resourceA and gives the web
service a response that defines if access should or shouldn’t be authorized. LDAP does
this search by running through all the groups membership to see if Alice is a member.

When the number of groups is relatively small, the membership search LDAP executes
doesn’t take too much time to finish. However when the number of groups increases, this
becomes a very slow process with a very poor performance with LDAP response times
increasing exponentially.

I ran performance tests on LDAP using Jmeter [6]. I ran the tests from my machine
which was connected to the LDAP server through a VPN connection, I was connected to
the Internet through eduroam (University wireless connection). The objective of the tests
was to determine the LDAP throughput when searching for the groups a user belongs to.
Based on the results of the tests I was able to determine the source of the problem, which
was the lack of attribute indexes.

There are several attributes that LDAP searches for when evaluating membership.
By indexing the LDAP attributes that were searched in these queries I solved this perfor-
mance issue. I indexed the following attributes: “member”, “visibility” and “owner”.

As a result of the indexed fields the response times improved significantly. In Figure
3.4 I present an example of a resource that was shared with a diverse number of groups.
The first time the LDAP wasn’t using indexes while at the second time it was. While
with the aid of LDAP indexes, the response time (y-axis) averages at 40ms. Without it, as
the number of groups (x-axis) increases the response time increases exponentially as the
trend line shows.

Chapter 3. EM Access Control Consolidation 34

Figure 3.4: LDAP’s response time with/without indexes

Because the web services are the main connection between the users/clients that use
our platform, I ran tests to measure the group related web services throughput.

I started by creating four different test users in LDAP, later I created two more. The
users were named testUser1, testUser2, testUser3 and testUser4 respectively. I assigned
a percentage to all of them, 0% for testUser1, 25% for testUser2, 75% for testUser3 and
100% for testUser4. This percentages represented the number of groups each of the users
belonged (in the total number of groups that existed in LDAP).

I started with a total of 20 groups, this way testUser1 was in 0 groups, testUser2
in 5, testUser3 in 15 and testUser4 in all of the 20. The results are shown in Figure 3.5.

Figure 3.5: Web Services response time without LDAP indexes

Chapter 3. EM Access Control Consolidation 35

In Figure 3.6 we can see the same requests that was made in the first case study
but now with the aid of the LDAP indexed fields. We can see major improvements.
For the users that don’t belong to a big number of groups, the response time decreased
significantly.

Figure 3.6: Web Services response time with LDAP indexes

On the other hand, the response time for the users that are on a relatively large number
of groups still grows as the number of groups increases. This happens because even
though the user’s membership is indexed, all those groups must be fetch by LDAP and
returned to the web services. In these cases indexes do not improve performance.

Figure 3.7: Web Services with indexes response time (with testUser5 and testUser6)

Chapter 3. EM Access Control Consolidation 36

In a more realistic approach, we will find that users such as testUser1, testUser2, tes-
tUser5 and testUser6 are more likely to exist (because they belong to fewer groups) rather
than users such as testUser3 and testUser4 that belong to a large number of groups. The
following graphic (Figure 3.7) shows the response times for users that belong to a rela-
tively small amount of groups when compared to the complete universe of groups. This
test shows that with this users we can achieve acceptable response times while dealing
with a big number of groups.

3.2.4 Web Services normalization

The web services are publicly available on the internet and can be used by any HTTP
client. They operate over the LDAP server and are directly dependent on it’s performance.

In the EMv2, the web-services weren’t normalized and each had its own input/output
format. Some returned XML, others returned HTTP. Even when the return type was the
same the output was structured differently.

I began by changing the web-services output so that all of them returned XML. Later
I added the possibility for the user to choose the output format. Then I normalized the
internal output by returning a triple in each of them: status, result and message. The
status could have two values: 0 for OK and 1 for NOK(Not-OK); the result was the re-
sult of that specific function; finally, the message was a message that was related with
the status (mostly used when there were errors with the functions). This way I manage
to simplify the relation between the front-end and the web-services, for instance how the
error messages were processed.

3.3 Access Control System Extensions

It is only logical to discuss access control when there are resources on which access
control can be applied. In order to get resources into the EM’s repository we must first
provide for the means to upload them. Because of this it is very important to foster the
upload of resources, for this it is very important that the upload web services be efficient.

3.3.1 Upload

In the second release of the EM, EMv2, the upload web service took an average of 15
second to complete. This response time was far beyond acceptable. After discarding the
front-end as the source of this problem I analyzed the upload web service.

I noticed that all resources were being indexed in Solr in a synchronized call. So I
changed the web service and moved this indexation to a separate thread. This way, the

Chapter 3. EM Access Control Consolidation 37

user would get the upload response faster even though the resource was still being in-
dexed. After this change, the upload went from the average 15 seconds to an average of
10 seconds.

After further analysis I noticed as well that the process of validation of the em:type
and em:subject fields was calling the rawfetch web service twice to fetch the datastreams
where all the allowed types and subjects were stored. To avoid this, I made a cache mech-
anism which fastened the web service significantly. With this cache mechanism the results
were stored in cache which reduced the calls to the rawfetch web-service in the upload
process.

Another issue that was slowing this web service was the creation of the owner policies.
I did the same as I did with the indexation of the resource in Solr, I moved the creation of
the policies to a different thread.

After all this changes the web service went from an average of 15 seconds to an
average of 1 second.

3.3.2 Binary Upload

This web service enables users / applications to update or add new content to a resource
in the Repository. To execute this, the resource must already exist. In the EMv2 this
web-service didn’t existed and there were no means for a user to upload any datastreams.

In response to this limitation I developed the binary upload web-service which al-
lowed for a user / application to upload a binary file regardless of its format / content.
This feature was crucial for the integration with the Gleamviz team because their simula-
tions needed to be uploaded to the EM.

3.3.3 Group Manager

In a first phase, all the group related data was sent to the web services through HTTP
GET. This presented not only a security issue (e.g.; users changing administrator groups)
but also a huge inconvenient regarding the page indexing by search engines (e.g.: Google
indexes a page that creates a group).

I solved this problem by changing the web services HTTP methods from GET to
POST and by passing the sensitive information in variables instead of using the URL.
This solved both the security and the indexation related problems as well.

Chapter 3. EM Access Control Consolidation 38

In order to create a group creation interface that was intuitive I had to integrate the
drupal-based front-end with the group manager web services. Also I had to do this in a
simple way with the few amount of steps possible.

To do this I used ”state of the art” auto-complete boxes in the front-end that searched
LDAP for EM users as the user typed the letters in the text box. For this to work I used
Ajax. In the group manager module I created a web-service that received a string and
return all the users and groups whose names matched partially or totally with that string.
Then a list of possible matches was presented to the user and he only had to chose the user
/ group he wanted to share its resource with and click the share button. This automatically
gives that user / group read access to that resource’s data and metadata.

3.3.4 Access Control

As said before, the access control model in the EM went through many changes. At first
EM used a centralized GBAC model; in a second phase we evolved it into a decentral-
ized GBAC model; then we added the possibility of sharing resources with single users
(without the need of the creation of a group); at last and in order to enhance EM’s expres-
siveness we added a dynamic groups that allowed users to share their resources based on
rules, also we allow users to use Social Network connections to share their resources.

These changes in the Access Control model was reflected in the Access Control mod-
ule in the web-services. Beginning in the EMv2 Access Control system, I made some
changes to the share with group feature; I implemented the public resource feature (allow
a resource to be seen by every visitor of the EM website); then I added the share with user
feature; then I implemented the share with dynamic group feature; at last I implemented
the share with social group.

Chapter 3. EM Access Control Consolidation 40

Chapter 4

Dynamic Groups

Contrary to static groups, dynamic groups members aren’t defined statically. Instead, its
members are defined by one or more rules. When the members of such group are solicited,
an interpreter runs the rule(s) and the result is the membership of that group.

4.1 Model

The traditional dynamic group model is one in which the group membership is defined
by a rule or a set of rules instead of a set of users. In Figure 4.1 we can see the UML
representation of a Dynamic Group where a user belongs to n groups, a group can have n
users and the users that belong to a group are identified by one or more rules.

pic/concepts/dynamic_group_uml.png

Figure 4.1: Dynamic Group UML

41

Chapter 4. Dynamic Groups 42

4.2 Dynamic Groups with LDAP attributes

Regarding the LDAP server, the membership of a dynamic group is defined by an LDAP
search[1]. The dynamic group uses the structural objectclass groupOfURLs (or auxiliary
objectclass ibm-dynamicGroup) and the attribute, memberURL to define the search us-
ing a simplified LDAP URL syntax. The syntax of the rule is as follows:

ldap:///<base DN of search> ? ? <scope of search> ? <searchfilter>

To further enhance the expressiveness of the access control model, users may also
create dynamically defined groups. Instead of providing a static set of users, group own-
ers can specify a rule that dynamically defines the group. The memberURL value of
an example of one EM dynamic group is shown bellow:

ldap:///ou=EM-Groups??base?affiliation=FFCUL

4.2.1 Interface

In the figure below I present the interface users use to create dynamic groups. The name
and visibility attributes of the group are the same as in a normal group but instead of
defining individual users/groups, rules are used to define the group membership.

Figure 4.2: Creating a dynamic group

Chapter 4. Dynamic Groups 43

4.2.2 Web Services

To cope with the Dynamic Groups several web services were made. The most important
are the ones that follow:

a) https://api.epimarketplace.net/groups/create/dynamic
Request Example:
Create a xml file containing the following data:

<?xml version="1.0" encoding="UTF-8"?>
<createGroup>

<groupType>dynamic</groupType>
<name>FCCUL group</name>
<visibilityType>Private</visibilityType>
<rules>

<rule>
<attribute>affiliation</attribute>
<logicoperand>=</logicoperand>
<rulestring>FFCUL</rulestring>

</rule>
</rules>

</createGroup>

Then, to create the group, you just need to call the web service and send the metadata.
In this example we will use cURL:
curl -v -H ”Accept: application/xml” -X POST -d ”@request.xml” -u login:password
https://api.epimarketplace.net/groups/create/dynamic

b) https://api.epimarketplace.net/groups/[group id]/addrule
Request Example:
Create a xml file containing the following data:

<?xml version="1.0" encoding="UTF-8"?>
<rule>

<attribute>affiliation</attribute>
<logicoperand>=</logicoperand>
<rulestring>FFCUL</rulestring>

</rule>

Then, to create the group, you just need to call the web service and send the metadata.
In this example we will use cURL:
curl -v -H ”Accept: application/xml” -X POST -d ”@request.xml” -u login:password
https://api.epimarketplace.net/groups/[group id]/addrule

c) https://api.epimarketplace.net/groups/[group id]/remrule
Request Example:

Chapter 4. Dynamic Groups 44

Create a xml file containing the following data:

<?xml version="1.0" encoding="UTF-8"?>
<rule>

<attribute>affiliation</attribute>
<logicoperand>!</logicoperand>
<rulestring>FFCUL</rulestring>

</rule>

Then, to create the group, you just need to call the web service and send the metadata.
In this example we will use cURL:
curl -v -H ”Accept: application/xml” -X POST -d ”@request.xml” -u login:password
https://api.epimarketplace.net/groups/[group id]/remrule

4.3 Dynamic Groups with Social Networks’ attributes

The EM provides means to use social information for the specification of access re-
strictions. Open Social provides the mechanisms for this integration.

Open Social [8] is a public specification that defines a component hosting environ-
ment (container) and a set of common application programming interfaces (APIs) for
web-based applications. It was in developed 2007 to integrate Web2.0 network applica-
tions so that developers could build collaborative network environments easily.

This enables epidemiologists to easily share resources with their professional con-
nections (e.g. Linkedin connections) without the requirement of re-introducing collabo-
rators information in the EM website.

Social Groups are suggested to EM users when sharing their resources. The EM
asks the Social Network for the connected users and matches them with locally registered
users.

An Open Social and XACML based group authorization framework is an effective
mean to provide a fine-grained user controlled resource access control mechanism[13].

4.3.1 Subscription

In order to have access to a resource through a “social share” a user must subscribe to this
service. This subscription can be done in two separate ways:

1. in the register form by checking the “I give the EM permission to fetch profile data
in <Social Network>” checkbox

Chapter 4. Dynamic Groups 45

2. at any time by editing its privacy settings and checking the same check box

This subscription allows the EM to fetch the user’s Social identification. I also consid-
ered another alternative where subscription wasn’t needed to use share and access EM
resources through Social Sharing. In this alternative instead of the Social identification,
the EM uses emails to identify users.

Take the following scenario as an example: Bob is a connection of Alice (this rela-
tion is bi-directional and mutual) in Social Network SN, both Bob and Alice are users of
the EM. Bob shares the resource resourceA with its SN connections (this means he grants
the EM privileges to access its SN information); Alice then tries to access resourceA, so
the EM queries SN for Bob’s connections, fetches their emails queries LDAP for Alice’s
email and checks for a match.

The email approach was discarded because nowadays it became common for a person
to have multiple emails for multiple purposes, and the probability of a person registering
different emails in different web sites is high. So, if the email Alice provided to SN is
different from the one she provided to the EM then the social share is inefficient.

With the id approach it doesn’t matter if Alice registered a different emails in the
EM and in the SN. This way we will use the Alice’s id in SN which unique. The drawback
of this approach is that prior to be able to access Socially shared resources Alice has to
give the EM permission to access her Social data in SN.

4.3.2 Work-flows

Sharing with a Social Group

In figure 4.3 I present the process of sharing a resource with a social group.

Figure 4.3: Social Group Creation

The Social Group sharing works as follows:

Chapter 4. Dynamic Groups 46

1. The user goes to the share-resource interface, types a string / substring that corre-
sponds to the name of a social network supported by the EM and saves the changes.

2. The EM prompts the user to grant access for it to access the user’s information in
that Social Network, the user accepts the conditions.

3. The web services communicate with the Fedora Commons repository and save the
new access changes in the FESLPOLICY datastream of the resource.

Accessing a Social Group

Figure 4.4: Social Group Work-flow

The Social Group access works as follows:

1. User Alice tries to access a resource resource1.

2. The interface communicates with the web services and the web services query the
Fedora Commons server for the policies of resource resource1.

3. If the resource is shared with a social group then the web services will query the So-
cial Network API for the friends of the owner of the resource in that social network.
This operation will return their identifications.

4. The web services queries the LDAP server for the list of users that correspond to
the identifications retrieved by the WS.

Chapter 4. Dynamic Groups 47

5. If the identification of user Alice is in the identification list returned by LDAP then
access to resource resource1 is granted. Access to resource resource1 is denied
otherwise.

4.3.3 Interface

In the figure below we can observe how the users can share a resource with a social group,
with his Linkedin connections in this specific case.

Figure 4.5: Sharing a resource with a social group

Chapter 5

Conclusion

In this dissertation I presented the final specification of the EM’s access control model,
resulting from the 9 months I was in the EPIWORK project. I have fulfilled the goal of en-
hancing the EM’s access control model expressiveness and solved the EM’s performance
issues.

Throughout the development of this dissertation I evaluated the access control system
which was implemented in the EM and enhanced it in order to promote the information
sharing while protecting it. I implemented a decentralized GBAC, then I added dynamic
sharing competences to the EM’s access control model by allowing the users to create
dynamic groups based in LDAP searches. Furthermore I extended the model to use social
network connections which strongly enhanced the EM’s expressiveness.

I also changed the organization of the policies in the Fedora repository. This change
was performed due to the access control performance issues in the previous EM access
control model.

To further facilitate the collaborative behavior we provided at the web services layer
the separation of metadata from data allowing for a resourced to be searchable while pro-
tecting its data which can be shared with a more restricted group of users.

The EM began by having a GBAC model, I added the possibility of sharing resources
with dynamic groups based on LDAP searches and with dynamic groups based on Social
Networks connections. Also, now resources can be shared with single users. All these
changes combined raised the EM’s access control system to a new level where resources’
privacy is ensured while at the same time their sharing is fostered by a multiple set of
simple and intuitive sharing options.

In its current access control version, it is not possible to create collections of col-

49

Chapter 5. Conclusion 50

lections. This feature would enhance the expressiveness of the access control system
of the EM because as resources inherit collections permissions, other child collections
would inherit the permissions of the parent collections, however this feature was not im-
plemented. Another feature that could be made in order to attract more users into the
EM is the possibility of trading resources. In this scenario a user would give another user
access to some resource only if the other user gave him back access to one resource of his
own. Once both users reached a consensus, they would grant each other access to their
resources.

Also, there is still the need for evaluating the performance of LDAP with the dynamic
groups scenario and to increase the number of Social Networks currently supported by the
EM Social Network groups, currently only LinkedIn is supported. Another feature that
could foster the share of information in the platform is the ability of users to give admin
permission over their resources to other users, this way other users would also be able to
share that resource.

Appendix A

Rule templates

A.1 Group create template

<Rule Effect="Permit" RuleId="%subjects;data;c">
<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and
">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<ActionAttributeDesignator AttributeId="urn:fedora:

names:fedora:2.1:action:id" DataType="http://www.w3.
org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">createds</AttributeValue>
</Apply>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

or">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-at-least-one-member-of">
<SubjectAttributeDesignator AttributeId="memberOf"

DataType="http://www.w3.org/2001/XMLSchema\#string
" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">%groupAttributeValues</Apply>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-at-least-one-member-of">
<SubjectAttributeDesignator AttributeId="urn:oasis:

names:tc:xacml:1.0:subject:subject-id" DataType="
http://www.w3.org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">%subjectAttributeValues</
Apply>

51

Appendix A. Rule templates 52

</Apply>
</Apply>

</Apply>
</Condition>

</Rule>

A.2 Group meta rule template

<Rule Effect="Permit" RuleId="%subjects;meta;%actionAb">
<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and
">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<ResourceAttributeDesignator AttributeId="urn:fedora:

names:fedora:2.1:resource:datastream:id" DataType="
http://www.w3.org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">EM</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">DC</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">Request</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">RELS-EXT</AttributeValue>
</Apply>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<ActionAttributeDesignator AttributeId="urn:fedora:

names:fedora:2.1:action:id" DataType="http://www.w3.
org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">%action</Apply>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

or">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-at-least-one-member-of">
<SubjectAttributeDesignator AttributeId="memberOf"

DataType="http://www.w3.org/2001/XMLSchema\#string
" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">%groupAttributeValues</Apply>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-at-least-one-member-of">

Appendix A. Rule templates 53

<SubjectAttributeDesignator AttributeId="urn:oasis:
names:tc:xacml:1.0:subject:subject-id" DataType="
http://www.w3.org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">%subjectAttributeValues</
Apply>

</Apply>
</Apply>

</Apply>
</Condition>

</Rule>

A.3 Public meta rule template

<Rule Effect="Permit" RuleId="public@Public;meta;%actions">
<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and
">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<ResourceAttributeDesignator AttributeId="urn:fedora:

names:fedora:2.1:resource:datastream:id" DataType="
http://www.w3.org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">EM</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">DC</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">Request</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">RELS-EXT</AttributeValue>
</Apply>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<ActionAttributeDesignator AttributeId="urn:fedora:

names:fedora:2.1:action:id" DataType="http://www.w3.
org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">%actionValues</Apply>

</Apply>
</Apply>

</Condition>
</Rule>

A.4 Public data rule template

Appendix A. Rule templates 54

<Rule Effect="Permit" RuleId="public@Public;data;%actions">
<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and
">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

not">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-at-least-one-member-of">
<ResourceAttributeDesignator AttributeId="urn:fedora:

names:fedora:2.1:resource:datastream:id" DataType=
"http://www.w3.org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">EM</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">DC</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">Request</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">RELS-EXT</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema\#string">FESLPOLICY</AttributeValue>
</Apply>

</Apply>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-at-least-one-member-of">
<ActionAttributeDesignator AttributeId="urn:fedora:

names:fedora:2.1:action:id" DataType="http://www.w3.
org/2001/XMLSchema\#string" />

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-bag">%actionValues</Apply>

</Apply>
</Apply>

</Condition>
</Rule>

Bibliography

[1] Dynamic groups. http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?
topic=%2Frzahy%2Frzahydynamicgp.htm. Accessed August, 2013.

[2] Fedora commons. http://www.fedora-commons.org/about. Accessed September,
2013.

[3] Gleamviz. http://www.gleamviz.org/. Accessed September, 2013.

[4] Group based access control. http://www.mediawiki.org/w/index.php?title=
Extension:Group Based Access Control&oldid=514587. Accessed September,
2013.

[5] Jaas. http://en.wikipedia.org/wiki/Java Authentication and Authorization Service.
Accessed September, 2013.

[6] Jmeter. http://jmeter.apache.org. Accessed September, 2013.

[7] Ldap rule-bac. http://infolib.lotus.com/resources/portal/8.0.0/doc/nl NL/
PT800ACD002/admin/rbug.html. Accessed September, 2013.

[8] Open social. http://opensocial.org/. Accessed August, 2013.

[9] Solr. http://lucene.apache.org/solr/. Accessed September, 2013.

[10] S. Gavrila D. Kuhn D. Ferraiolo, R. Sandhu and R. Chandramouli. ”proposed nist
standard for role-based access control,”. In ACM Transactions on Information and
System Security (TISSEC), volume 4, no. 3, pages 224 – 274, 2001.

[11] T. Moses et al. ”extensible access control markup language (xacml) version 2.0,”.
In Oasis Standard, volume 02, 2005.

[12] C. Francisco S. Mário F. João, P. Cátia. ”bringing epidemiology into the semantic
web. international conference on biomedical ontologies (icbo)”. 2012.

[13] Z. Li H. Zhang and W. Wu. ”open social and xacml based group authorization
framework”. 2012.

57

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=%2Frzahy%2Frzahydynamicgp.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=%2Frzahy%2Frzahydynamicgp.htm
http://www.fedora-commons.org/about
http://www.gleamviz.org/
http://www.mediawiki.org/w/index.php?title=Extension:Group_Based_Access_Control&oldid=514587
http://www.mediawiki.org/w/index.php?title=Extension:Group_Based_Access_Control&oldid=514587
http://en.wikipedia.org/wiki/Java_Authentication_and_Authorization_Service
http://jmeter.apache.org
http://infolib.lotus.com/resources/portal/8.0.0/doc/nl_NL/PT800ACD002/admin/rbug.html
http://infolib.lotus.com/resources/portal/8.0.0/doc/nl_NL/PT800ACD002/admin/rbug.html
http://opensocial.org/
http://lucene.apache.org/solr/

Bibliography 58

[14] P. Benoit J. M. Bradshaw, S. Dutfield and J. D. Woolley. ”kaos: Toward an industrial-
strength. open agent architecture”. pages 375 – 418, 1997.

[15] J.B.D Joshi. ”access-control language for multidomain environments. internet com-
puting, ieee”. volume 8, pages 40 – 50, 2004.

[16] L. Kagal. Rei ontology specifications, ver 2.0. http://www.cs.umbc.edu/∼lkagal1/
rei/. Accessed December, 2012.

[17] J. Moffett. ”specification of management policies and discretionary access control”.
In Network and distributed systems management, page chapter17, 1994.

[18] E. Lupu N. Damianou, N. Dulay and M. Sloman. ”the ponder policy specification
language”. 2001.

[19] J. Sermersheim. ”rfc4511: Lightweight directory access protocol (ldap): The proto-
col”. 2006.

[20] D. Tcsec. ”trusted computer system evaluation criteria,” technical report 5200.28-
std. In US Department of Defense, Tech. Rep., 1985.

http://www.cs.umbc.edu/~lkagal1/rei/
http://www.cs.umbc.edu/~lkagal1/rei/

	List of Figures
	List of Listings
	Introduction
	Motivation
	Objectives and Approach
	Contributions
	Document Structure

	Epidemic Marketplace
	Application Architecture
	LDAP
	Layer1
	Layer2
	Layer3

	EMv2 Access Control Model limitations
	EM's Access Control Model
	Access Control Models
	Concepts

	EM's Access Control System
	XACML
	EM's Access Control Architecture
	Web Services

	EM Access Control Consolidation
	Model extensions
	Access Control System Changes
	LDAP's Structure
	Fedora Policies
	LDAP indexes
	Web Services normalization

	Access Control System Extensions
	Upload
	Binary Upload
	Group Manager
	Access Control

	Dynamic Groups
	Model
	Dynamic Groups with LDAP attributes
	Interface
	Web Services

	Dynamic Groups with Social Networks' attributes
	Subscription
	Work-flows
	Interface

	Conclusion
	Rule templates
	Group create template
	Group meta rule template
	Public meta rule template
	Public data rule template

	Appendices
	References
	Index

