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Resumo

A combinação de lógicas de descrição e programas baseados em regras tem sido
bastante estudada nos últimos anos.

As lógicas de descrição são uma família de linguagens formais que servem para
representar conhecimento. Estas são bastante usadas na Web Semântica para exprimir
ontologias, como o OWL (Web Ontology Language), ou bases de conhecimento. As lógicas
de descrição são utilizadas para representar conceitos e as relações entre eles num dado
domínio, e também para raciocinar sobre os mesmos.

Diversos sistemas foram propostos, de onde se destacam os programas da lógica de
descrição ou programas-dl. Ao longo destes útimos anos, estes programas têm ganho
força na comunidade da Web Semântica. A sintaxe dos programas-dl facilita a interação
entre uma ontologia, expressa em lógica de descrição, e um programa baseado em regras,
que pode conter átomos-DL. Este tipo de átomos é utilizado para construir as chamadas
regras-DL. A interação entre estes dois componentes é conseguida através destas regras
que permitem fazer consultas à base de conhecimento, possibilitando ainda a extensão
da base de conhecimento com factos do programa em lógica antes da consulta ser feita.
Esta extensão da base de conhecimento é apenas local a esta consulta, não tendo, por isso,
um efeito global na ontologia. Desta forma é possível enriquecer o programa em lógica
original com conhecimento proveniente da ontologia.

A definição original de um programa-dl foi estendida com a capacidade de combi-
nar várias bases de conhecimento em lógica de descrição. Nestes Multi-programas-DL
(programas-Mdl), um programa em lógica representa o “condutor” que “coordena” as
bases de conhecimento, que são completamente independentes umas das outras, podendo
estar fisicamente separadas ou serem geridas independentemente. Em particular, um
programa-dl pode ser visto como um programa-Mdl com apenas uma ontologia. Desta
forma, podemos dizer que os programas-Mdl generalizam a definição dos programas-dl.
Nesta dissertação podemos ver que uma das principais vantagens dos programas-Mdl é a
sua simplicidade. Desta forma, estes programas podem ser extremamente adequados para
raciocinar na Web Semântica, onde uma grande parte do esforço é colocada em desenvolver
ontologias reutilizáveis.

Nesta dissertação mostramos como uma implementação de programas-dl já existente,
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o DL-plugin para a ferramenta dlvhex, pode ser estendida para trabalhar com programas-
Mdl, onde se consegue raciocinar com mais que uma ontologia.

Os programas-Mdl podem ser estendidos com novas construções sintáticas, os observa-
dores, que permitem estender conceitos ou relações da base de conhecimento (do ponto
de vista do programa sobre aquela base de conhecimento) com todas as instâncias de um
predicado do programa em lógica, e reciprocamente.

Esta construção sintática também foi implementada no DL-plugin como anotações no
programa em lógica. Estas anotações são processadas por um novo módulo, traduzindo,
assim, um programa-Mdl com observadores num programa-Mdl normal.

Nesta dissertação fornecemos uma análise de performance onde podemos concluir
que um programa-Mdl com observadores tem praticamente a mesma performance que um
programa-Mdl similar. Programas-Mdl com observadores têm a vantagem de serem mais
pequenos e simples. Estes programas são mais robustos em relação a futuras mudanças,
pois com observadores é garantido que cada extensão à ontologia seja feita de forma
adequada; sem observadores, isto teria que ser garantido à mão.

Esta dissertação providencia vários casos de estudo que foram utilizados para ilus-
trar em detalhe as novas construções. Estes casos de estudo utilizam ontologias reais
disponíveis livremente na internet.

Palavras-chave: Lógicas de descrição, programas-dl, ontologias, semântica de
conjunto-resposta
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Abstract

The combination of description logics and rule-based reasoning systems has been
widely studied in last years, with the proposal of several different systems that achieve this
goal.

Description logic programs (dl-programs) were introduced a few years ago as a mecha-
nism to combine a description logic knowledge base with a logic program that can access
and dynamically change its view of the knowledge base.

The original definition of a dl-program was later extended with the capability of
combining several description logic knowledge bases. In Multi description logic programs
(Mdl-programs) the logic programming represents the “conductor” that “coordinates” the
several knowledge bases, which can be physically separated or independently maintained.

In this dissertation we show how a current implementation of dl-programs, the DL-
plugin for dlvhex, can be extended to work with Mdl-programs, where one can work with
more than one ontology, keeping them completely separated.

Mdl-programs can be extended by new syntactic constructions – observers – allowing to
extend concepts or roles from a knowledge base (in the program’s view of that knowledge
base) automatically with all instances of a predicate in the logic program or reciprocally.
This syntactic construction also was implemented in the DL-plugin as annotations in the
logic program.

We provide a performance analysis from which we can conclude that an Mdl-program
with observers has practically the same performance as a similar Mdl-program. One Mdl-
program with observers is shorter and more legible just because all global observations are
clearly marked.

This dissertation also provides some case-studies to illustrate the constructions detailed
above, using real-life ontologies freely available on the internet.

Keywords: Description logics, dl-programs, ontologies, answer-set semantics
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Chapter 1

Introduction

This thesis is on the subject of combining logic programs and description logic knowledge
bases. This first chapter presents our motivation in this subject. In the second section, we
describe the context in which this work is included. In the third section, we present the
main goal of this dissertation. Finally, we provide an overview of the thesis’ structure.

1.1 Motivation

The combination of logic programs and description logic knowledge bases has been widely
studied in the last years, with several approaches to achieve this goal proposed for semantic
web reasoning, e.g. description logic programs [10, 11], multi-context systems [4] and
HEX-programs [12], among others.

Ontologies are expressed through decidable fragments of function-free first-order logic
with equality, offering a very good ratio expressiveness/complexity of reasoning [2]. The
addition of some kind of rule capability in order to be able to express more powerful queries
together with non-monotonic features (in particular, the negation-as-failure operator not)
is achieved by joining ontologies and logic programming, resulting in a very powerful
framework for semantic web reasoning. Moreover, in the last few years, there has been a
major development of free-access ontologies over the internet. In this way, these knowledge
bases can be used for semantic web reasoning and reused in different reasoning contexts.
However, the combination of information from different sources brings a set of practical
problems, especially in terms of sharing and consistency.

Description logic programs, dl-programs for short, are an already well established
framework for coupling description logic knowledge bases with rule-based reasoning.
Although they are an interesting framework, dl-programs are not expressive enough for
many practical purposes. Can we modify dl-programs to make them more powerful or
flexible, and what could be changed or added to make them more versatile?

1



Chapter 1. Introduction 2

1.2 Context

This project falls within the scope of the work of the ITSWeb group, composed of two
researchers – Prof. Isabel Nunes and Prof. Graça Gaspar – from Departamento de
Informática da Faculdade de Ciências da Universidade de Lisboa –, two researchers – Prof.
Luís Cruz-Filipe and Prof. Patrícia Engrácia – from another institution, Escola Superior
Náutica Infante D. Henrique – and one undergraduate student – Daniel Santos – in Applied
Mathematics from Faculdade de Ciências da Universidade de Lisboa.

The research directions within ITSWeb lie in understanding and developing languages
and tools for the semantic web. The group has three main working directions: dl-programs
and their variants, integration with other programming paradigms, and integrity problems.

There was a need to put into practice all the complex work already developed by the
group this far. In this way, my role on ITSWeb was to bring a practical view, implementing
some of the new syntactic constructions proposed by the group. By implementing these
constructions which were only theoretically illustrated, we can check that they truly
work, and we can evaluate and compare with similar constructions. Also, it is important
for ITSWeb to have an available tool, where the case-studies can be tested and new
constructions can be implemented.

The work took place in the facilities of LabMAg, a multi-disciplinary research unit.

1.3 Goals

The main goals of this work are:

• to explore available tools that combine logic programs with description logic knowl-
edge bases, from a practical perspective;

• to choose a tool to extend with the new syntactic constructions defined by the
ITSWeb group;

• to implement these new constructions, to test the implementation with some new
case-studies and to analyse the performance; and

• to solve technical issues that may appear during the implementation or the testing
phase.

1.4 Document structure

This document is organized as follows:

• Chapter 2 (Background) presents the background. It is divided in three main sections.
In the first section we present Description Logics, a formal basis for ontology
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languages, that have been used to express ontologies in the Semantic Web, as
the Web Ontology Language (OWL). This section also presents the syntax and
the semantics of description logics. These are a component of description logic
programs (dl-programs), which combine ontologies, based on description logics,
with logic programs. Finally we provide a survey of tools that support working with
dl-programs and we explain why the DL-plugin for dlvhex was the chosen tool to
extend.

• Chapter 3 (The DL-plugin for dlvhex) describes the DL-plugin for the dlvhex tool.
We show how to write a dl-program for this plugin, regarding the concrete syntax for
a dl-atom. The DL-plugin converts a dl-program to an HEX-program using some
external atoms provided by the plugin, described in Section 3.2. Due to the lack
of documentation of these tools, it was necessary to perform reverse engineering,
analysing both components. This chapter summarizes the information obtained from
this process.

• Chapter 4 (Multi Description Logic programs (Mdl-programs)) presents Mdl-programs,
a generalization of dl-programs, proposed by the ITSWeb group. Mdl-programs
allow working with several description logic knowledge bases, while keeping them
separate. In the first section of this chapter, we explain the motivation to define
Mdl-programs. This chapter also introduces a useful syntactic construction for
Mdl-programs – the observers – allowing one to extend (globally) concepts or roles
with instances of a predicate in the program, and reciprocally.

• Chapter 5 (Mdl-programs in the DL-plugin for dlvhex) describes how Mdl-programs
were implemented in the DL-plugin for dlvhex. This extension allows the use of
multiple ontologies and provides syntactical support for observers. The first two
sections present the implementation details. The following section describes some
technical issues that arose during the implementation and the solutions adopted. We
also have integrated an addition mechanism for the original dl-programs – lifting,
which achieves a complete two-way integration between a knowledge base and
a program. In the remainder of this chapter we compare the performance of an
Mdl-program and an Mdl-program with observers.

• Chapter 6 (Conclusions) presents a summary of the developed work, as well as our
contributions.





Chapter 2

Background

This chapter introduces description logics as a formal basis for ontology languages, in
particular the Web Ontology Language (OWL), presenting the syntax and the semantics
of description logics. Then, description logic programs (dl-programs) are presented as
one approach of combining ontologies with logic programs under answer-set semantics.
The last section of this chapter provides a survey of tools for dl-programs, describing each
one and explaining why the DL-plugin for dlvhex was the chosen tool to extend with
Mdl-programs.

2.1 Description Logics

Description logics (DLs) are decidable fragments of first-order logic (FOL), or extension
thereof, that have been extensively used to express ontologies in the Semantic Web.

The term “Description Logics” has its roots in the 1970s [2], when two distinct
trends appeared in knowledge representation: logic-based formalisms, which use predicate
calculus to draw implicit conclusions from explicitly represented knowledge, and non-
logic-based representations, which build on cognitive notions. For example, network
structures and rule-base representations were built deriving from experiments on recall
from human memory and human execution of tasks as mathematical puzzle solving. This
approach led to development of frames and semantic networks, where a network structure
represents sets of individuals and their relationships.

One important step was the recognition that frames can be given a semantics that
is based on first-order logic, by unary predicates representing sets of individuals and
binary predicates representing relationships between them [17]. From this, it turns out
that semantic networks and frames require only a fragment of first-order predicate logic,
instead of relying on full first-order theorem provers. This way, specialized reasoning
techniques were suitable to carry out reasoning in these formalisms.

In order to provide some intuition about description logics, Figure 2.1 shows a network
representation, where the elements of the network are nodes and links. Nodes denote

5
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Person

Course

Professor
teaches

1 .. n

Student
attends

1 .. n

MScStudent
hasSupervisor

1

Figure 2.1: An example network.

concepts, i.e., classes of individuals, and links characterize relationships among them. The
figure represents knowledge concerning persons, students, professors, etc. Its structure
is referred as a terminology. A specific type of link is the “IS-A” relationship, which
defines a hierarchy between concepts, like the link between Student or Professor
and Person. A characteristic of Description Logics is the ability to represent other kinds
of properties, namely binary relationships, which are called “roles”. The figure shows
that the concept Student has a property labelled attends, which relates this concept
with Course. This role has a “value restriction”, which expresses a limitation on the
range of types that can fill that role. For example, the role hasSupervisor with a 1

as value-restriction means that “each MScStudent must have exactly one supervisor”.
Relationships of this kind are inherited from concepts to their subconcepts.

A DL models concepts, roles and individuals, and their relationships. The fundamental
modelling concept of a DL is the axiom, which is a logical statement relating roles and/or
concepts. Description logics use different terminology than the first-order logic. For
example, in FOL we have classes, predicates or properties and objects, whereas DLs have
concepts, roles and individuals, respectively. The Ontology Web Language (OWL) uses
FOL terminology, in spite of being an implementation of a description logic.

There are a variety of different description logics formalisms, each with specific
complexity and offering a distinct set of language constructs. SHOIN (D) and SHIF(D)

are two of them, which are the underpinning of Semantic Web ontology languages and the
basis of the dl-programs, that will be presented in Section 2.2.

The naming scheme of specific description logics corresponds to the constructors
they allow, in addition to the basic ones like concept union, concept intersection, etc.
SHOIN (D) provides additional operators for role transitivity (S), role hierarchy (H),
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nominals or “one-of” constructor (O), role inverses (I), unqualified number restrictions
(N ), and datatypes (D). The SHIF(D) DL is less expressive, with (F) standing for
functionality, which is a restricted form of number restriction (≤ 1R). F is subsumed
by N of SHOIN (D). Therefore, SHIF(D) is a restriction of SHOIN (D). These
description logics are the formal counterparts of languages of the Web Ontology Language
OWL, which will be discussed in Section 2.1.2.

2.1.1 Syntax and Semantics

First we introduce some notational conventions: A and B represent atomic concepts, C
and D are concept descriptions. For roles we use R and S; in number restrictions, non
negative integers are denoted by n and m, and individuals by a and b.

Atomic concepts and atomic roles are elementary descriptions. Complex ones can
be built from atomic ones inductively with concept constructors (Table 2.1) and role
constructors (Table 2.2).

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I (the domain of the
interpretation) and an interpretation function ·I , which assigns to every atomic concept A
a set AI ⊆ ∆I and to every atomic role R a binary relation RI ⊆ ∆I ×∆I .

Concept constructors take concept and/or role descriptions and transform them into
more complex concept descriptions. Table 2.1 shows the syntax and semantics of common
concept constructors.

Name Syntax Semantics

Universal concept > ∆I

Bottom concept ⊥ ∅
Negation ¬C ∆I \ CI
Intersection C uD CI ∩DI
Value restriction ∀R.C {a ∈ ∆I | ∀b.((a, b) ∈ RI → b ∈ CI)}
Existential quan-
tification

∃R.C {a ∈ ∆I | ∃b.((a, b) ∈ RI ∧ b ∈ CI)}

Limited existential
quantification

∃R.> {a ∈ ∆I | ∃b.(a, b) ∈ RI}

Unqualified > n R {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI}| ≥ n}
number restriction 6 n R {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI}| ≤ n}

= n R {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI}| = n}
Qualified number > n R.C {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| ≥ n}
restriction 6 n R.C {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| ≤ n}

= n R.C {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| = n}

Table 2.1: Description Logic concept constructors.

Role constructors take role and/or concept descriptions and transform them into more
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complex role descriptions. Table 2.2 shows the syntax and semantics of common role
constructors. The last two constructors are not first-order, so description logics allowing
these operations are no longer fragments of first-order logic.

Name Syntax Semantics

Universal role U ∆I ×∆I

Intersection R u S RI ∩ SI
Union R t S RI ∪ SI
Complement ¬R (∆I ×∆I) \RI
Inverse R− {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI}
Composition R ◦ S {(a, c) | ∃b.(a, b) ∈ RI ∧ (b, c) ∈ SI}
Transitive closure R+

⋃
n≥1 (RI)n

Reflexive-transitive closure R∗
⋃

n≥0 (RI)n

Table 2.2: Description Logic roles constructors.

A description logic knowledge base consists of a set of terminological axioms (often
called a TBox) and a set of assertional axioms or assertions (often called an ABox).
Table 2.3 shows the syntax and semantics of these axioms. An equality whose left side
is an atomic concept (resp. role) is called a concept (resp. role) definition. A finite set of
definitions is a terminology if they are unambiguous, that is, no atomic concept occurs
more than once on the left side. Axioms of the form C v D for a complex description
C are called general inclusion axioms. A set of axioms of the form R v S where both R
and S are atomic is called a role hierarchy. Such a hierarchy imposes restrictions on the
interpretation of roles.

Name Syntax Semantics

Concept inclusion C v D CI ⊆ DI

Role inclusion R v S RI ⊆ SI

Concept equality C ≡ D CI = DI

Role equality R ≡ S RI = SI

Concept assertion C(a) aI ∈ CI
Role assertion R(a, b) (aI , bI) ∈ RI

Table 2.3: Terminological and assertional axioms.

The satisfaction of a description logic axiom F in the interpretation I = (∆I , ·I),
denoted I |= F , is defined with the help of Table 2.3. For example, I |= C v D iff
CI ⊆ DI .

An interpretation I satisfies an axiom F , or I is a model of F , iff I |= F . The
interpretation I satisfies a knowledge base L, or I is a model of L, denoted I |= L, iff
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I |= F for all F ∈ L. We say that L is satisfiable (resp. unsatisfiable), iff L has a model
(resp. no model). An axiom F is a logical consequence of L, denoted L |= F , iff every
model of L satisfies F . A negated axiom ¬F is a logical consequence of L, denoted
L |= ¬F , iff every model of L does not satisfy F .

A small example is shown below, illustrating simple ideas about description logics.

Example 1. Consider the following description logic knowledge base L with simple
knowledge about parenthood relationships:

Child v (∃hasFather .Father) u (∃hasMother .Mother) (1)

hasFather v hasParent (2)

> v ≤1 hasFather (3)

hasMother v hasParent (4)

hasMother ≡ isMotherOf − (5)

> v ≤1 isMotherOf − (6)

Child(Katty) (7)

hasFather(Katty , John) (8)

isMotherOf (Susan,Katty) (9)

The axioms (1 – 6) form the TBox of L; the assertions (7 – 9) are the ABox of L.
The axiom (1) says that all children have some father (of concept Father ) and also

some mother (of concept Mother ). The role hierarchy is achieved by the axioms (2) and
(4), where hasFather and hasMother are subroles of hasParent . The axiom (3) indicates
that hasFather has at most one value (0 or 1), for each individual. The axiom (5) declares
that hasMother has an inverse role called isMotherOf and the axiom (6) indicates that the
inverse role of isMotherOf , that is hasMother , has at most one value for each individual.
Assertions (7 – 9) declares that Katty is a child, John is her father and Susan is her mother.

We now can reason about this family knowledge. We can infer that John is a father,
i.e., L |= Father(John) and also that Susan is a mother, i.e., L |= Mother(Susan).
Furthermore, we can infer hasParent(Katty , Susan), hasParent(Katty , John) and also
hasMother(Katty , Susan).

2.1.2 Web Ontology Language (OWL)

Ontologies play an important role in the Semantic Web. They define the concepts and
relationships in a certain domain. The reuse of ontologies is a key technology for the
feasibility of the Semantic Web. Also, ontologies are considered a convenient tool for
specifying knowledge in interdisciplinary sciences.

The Web Ontology Language (OWL) [3] was developed by the World Wide Web
Consortium (W3C) Web Ontology Working Group. This language emerged from its
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predecessors Simple HTML Ontology Extensions (SHOE) [18], an extension of HTML with
semantic markup to represent ontologies in hypertext documents, and DAML+OIL [24], an
RDF-Schema based ontology language and itself was a combination of Ontology Inference
Layer (OIL) [15] and DARPA Agent Modelling Language (DAML) [19]. One design goal
for OWL was to maintain as much compatibility to these preceding formalisms as possible.
OWL became a W3C Recommendation in February 2004 and is considered the standard
language for specifying ontologies on Semantic Web.

OWL consists of three sublanguages with increasing expressivity: OWL Lite, OWL DL
and OWL Full. OWL Lite and OWL DL semantics are based on description logics, namely,
SHIF(D) and SHOIN (D), respectively. OWL Full does not have some specific
restrictions of OWL Lite and OWL DL, so reasoning in OWL Full is undecidable [25].

Syntax and semantics of OWL DL is presented in [33] and summarized in the tables in
the Appendix B, which are from [26].

OWL ontologies are in general RDF graphs and can also be represented by RDF triples,
but the usual syntactic form to denote OWL ontologies is RDF/XML, which is not designed
for human-readability but for machine communication.

Example 2. To give an example for an OWL ontology, we translate the DL knowledge
base L in Example 1 into OWL abstract syntax, accordingly to the tables from Appendix B.

Class( Child partial

restriction( hasFather someValuesFrom(Father))

restriction( hasMother someValuesFrom(Mother)) )

ObjectProperty( hasFather super(hasParent) Functional)

ObjectProperty( hasMother super(hasParent)

inverseOf(isMotherOf))

ObjectProperty( isMotherOf InverseFunctional)

Individual( Katty type(Child) value(hasFather John))

Individual( Susan value(isMotherOf Katty))

The concrete syntax of OWL in RDF/XML is much more verbose, for instance, the first
axiom in Example 1 has the following scheme:

<owl:Class rdf:about="#Child">

<rdfs:subClassOf>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:onProperty rdf:resource="#hasFather"/>

<owl:someValuesFrom rdf:resource="#Father"/>

</owl:Restriction>
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<owl:Restriction>

<owl:onProperty rdf:resource="#hasMother"/>

<owl:someValuesFrom rdf:resource="#Mother"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</rdfs:subClassOf>

</owl:Class>

The full OWL concrete syntax of this example can be found in Appendix B.

2.2 Description Logic Programs

This section presents an approach to combining terminological reasoning in the form of
ontologies, which are based on Description Logics, with logic programs under answer-set
semantics.

A description logic program (dl-program) [10, 11] consists of a description logic
knowledge base L and a generalized normal logic program P , which may contain queries
to L. In a query one asks if a given description logic formula or its negation follows from
L or not.

2.2.1 Syntax of dl-programs

A dl-program is a pair KB = (L, P ), where L is a description logic knowledge base and
P is a generalized logic program, that is a finite set of description logic rules (or dl-rules).
Such dl-rules are similar to rules in logic programs with negation as failure, but may also
contain queries to L in their bodies, written as special atoms – dl-atoms.

We first define dl-queries and dl-atoms, which are used to express queries to the
description logic knowledge base L. A dl-query Q(t) is either:

• a concept inclusion axiom F or its negation ¬F , or

• of the forms C(t) or ¬C(t), where C is a concept and t is a term, or

• of the forms R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.

A dl-atom is an atom of the form:

DL[S1op1p1, . . . , Smopmpm;Q](t), m ≥ 0

where:

• each Si is either a concept or a role;
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• opi ∈ {], ∪- , ∩- };

• pi is a unary (resp. binary) predicate symbol if Si is a concept (resp. role) ;

• Q(t) is a dl-query.

The sequence S1op1p1, . . . , Smopmpm is the input context of the dl-atom.
The operators ], ∪- and ∩- are used to extend the program P view of the description

logic knowledge base L in the (local) context of the current dl-query. Intuitively, opi = ]
(resp. opi = ∪- ) increases Si (resp. ¬Si) by the extension of pi before evaluating the query,
while opi = ∩- constrains Si to pi. This does not change L, only affecting P ’s current view
of L, and only locally in the scope of the specific dl-atom.

Finally, a dl-rule r has the form:

a← b1, . . . , bn,not bn+1, . . . ,not bm

where a is a logic atom and any literal b1, . . . , bm ∈ B(r) may be a dl-atom, as well
as a regular one. We define H(r) = a, where H(r) is the head of rule r, and B(r) =

B+(r) ∪ B−(r), where B(r) is the body of rule r, B+(r) = {b1, . . . , bn} and B−(r) =

{bn+1, . . . , bm}. If B(r) = ∅, then r is a fact.
The two components of a dl-program – the description logic knowledge base and the

logic program – are kept independent, communicating only through dl-atoms. So, although
these components function separately, giving modularity properties to dl-programs, there
is a bidirectional flow of information via dl-atoms.

The following examples illustrate the main ideas about dl-programs; the first example
will be used in the next sections.

Example 3. (People Management [23])
Based on certain information about papers, persons and work positions, we want to

know who is a good manager and who is overloaded. Consider the following description
logic knowledge base LR, which contains some knowledge about papers and people
management:

(≥2paperToReview) v Overloaded

Overloaded v ∀supervises+.Overloaded

{(a, b)} ∪ {(b, c)} v supervises

Here, the first axiom defines the concept Overloaded by putting a cardinality constraint
on paperToReview ; in other words, this axiom indicates that someone who has more than
two papers to review is overloaded.

The second axiom, where supervises+ is the transitive closure of the role supervises ,
indicates that an overloaded person causes all her supervised persons to be overloaded as
well.
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The last axiom, which is equivalent to the assertions supervises(a, b) and supervises(b, c),
defines the supervision hierarchy.

Consider now the dl-program KBR = (LR, PR), with LR as above and PR given as
follows:

goodManager(X)← DL[; supervises ](X, Y ),

not DL[paperToReview ] paper ;Overloaded ](Y ). (r1)

overloaded(X)← not goodManager(X). (r2)

paper(b, p1). (r3)

paper(b, p2). (r4)

Rule r1 intuitively says that X is a good manager, if X , according to LR, supervises
someone who is not overloaded, where the extensional part of the paperToReview role in
LR (which is known to influence Overloaded ) is augmented by the facts r3 and r4 of the
binary predicate paper . Rule r2 specifies that whoever is not a good manager is overloaded.
In this case, overloaded from PR is not directly related with the concept Overloaded form
LR. Rules r3 and r4 are facts of the binary predicate paper .

Example 4. (Reviewer Selection [11])
Suppose that we want to assign reviewers to papers, based on certain information

about the papers and available persons, using a description logic knowledge base LS

containing knowledge about scientific publications. More concretely, LS classifies papers
into research areas, stored in a concept Area, depending on keyword information. The
roles keywords and inArea associate with each paper its relevant keywords and the areas
that it is classified into, respectively; a paper is in an area if it is associated with a keyword
of that area. Furthermore, a role expert relates persons to their areas of expertise; for
simplicity, a person is an expert in an area if he or she wrote a paper in that area. The
concept Referee contains all referees. Eventually, a role topicOf associates with a cluster
of similar keywords all its members.

Consider then the following dl-program PS:

paper(p1). (r1)

paper(p2). (r2)

kw(p1, Semantic_Web). (r3)

kw(p2,Bioinformatics). (r4)

kw(p2,Answer_Set_Programming). (r5)

kw(P,K2)← kw(P,K1), DL[; topicOf ](S,K1), DL[; topicOf ](S,K2). (r6)

paperArea(P,A)← DL[keywords ] kw; inArea](P,A). (r7)

candidate(X,P )← paperArea(P,A), DL[;Referee](X), DL[; expert ](X,A). (r8)

assign(X,P )← candidate(X,P ),not nonAssign(X,P ). (r9)
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nonAssign(Y, P )← candidate(X,P ), assign(X,P ), X 6= Y. (r10)

a(P )← assign(X,P ). (r11)

error(P )← paper(P ), not a(P ). (r12)

Intuitively, facts r1 – r5 specify the keyword information (by the predicate kw) of two
papers, p1 and p2, which should be assigned to reviewers. The rule r6 allows for retrieving
keyword information from LS . The predicate kw is augmented via dl-atoms by those
keywords in LS that share the same topic.

Rule r7 intuitively says that paper P is in area A if P is in A according to LS , where
the extensional part of the role keyword in LS (which is known to influence inArea) is
augmented by the facts of the binary predicate kw from the program. In other words, this
rule queries the augmented LS to retrieve the areas each paper is classified into.

Rule r8 defines reviewers candidates for a given paper. A reviewer X is candidate to
review the paper P , if the paper is in area A and X is known in LS to be a Referee and an
expert in the area A.

Rules r9 and r10 pick one of the candidate reviewers for a paper (multiple reviewers
can be selected similarly). Finally, r11 and r12 check if each paper is assigned; if not, an
error is flagged. In view of rules r6 – r8, information flows in both directions between the
description logic knowledge base LS and the knowledge represented by the dl-program.

To illustrate the use of∩- , imagine one wants to define a unary predicate possibleReferees
in PS , and to add “Referee ∩- possibleReferees” in the first dl-atom of r8. The effect of
this modification would be to add to LS negative assertions ¬Referee(r) for all the r such
that possibleReferees does not hold, thus constraining the possible referees to the domain
of possibleReferees .

The dl-rule below, which defines a new predicate expert , shows in particular how
dl-rules can be used to encode certain qualified number restrictions (represented by the
letter Q), which are not available in SHOIN (D). Here, the term “qualified” means that
we do not express restrictions on the overall number of values of a property, but only on
the number of values of a certain type. The dl-rule defines an expert as an author of at
least three papers of the same area:

expert(X,A)←DL[; isAuthorOf ](X,P1), DL[; isArea](P1, A),

DL[; isAuthorOf ](X,P2), DL[; isArea](P2, A),

DL[; isAuthorOf ](X,P3), DL[; isArea](P3, A),

P1 6= P2, P2 6= P3, P3 6= P1.

Even though this formula represents a qualified number restriction, it defines a role, so we
could not define it, even if we added Q to SHOIN (D).
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2.2.2 Semantics of dl-programs

This section formalizes the semantics of dl-programs. Let KB = (L, P ) be a dl-program.
The Herbrand base of P , denoted by HBP , is the set of all ground atoms consisting of
predicate symbols and terms that occur in P .

An interpretation I relative to P is a consistent1 subset of HBP . I is a model of
b ∈ HBP under L, or I satisfies b under L, denoted I |=L b, if b ∈ I . I is a model of a
ground dl-atom a = DL[S1op1p1, . . . , Smopmpm;Q](c) under L, or I satisfies a under L,
denoted I |=L a, if L ∪

⋃m
i=1Ai(I) |= Q(c), where

• Ai(I) = {Si(e) | pi(e) ∈ I}, for opi = ];

• Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = ∪- ;

• Ai(I) = {¬Si(e) | pi(e) 6∈ I}, for opi = ∩- .

An interpretation I is a model of a ground dl-rule r iff I |=L b for all b ∈ B+(r) and
I 6|=L b for all b ∈ B−(r) implies I |=L H(r), where H(r), B+(r) and B−(r) are the
head, the positive and the negative part of the body of rule r, respectively. I is a model
of a dl-program KB = (L, P ), or I satisfies KB , denoted I |= KB , if I |=L r for all
r ∈ ground(P ). So, KB is satisfiable if it has a model, otherwise KB is unsatisfiable.

Example 5. (People Management, continued) Given the dl-program KBR of Example 3,
its Herbrand base contains all ground atoms built from applying goodManager , overloaded
and paper not only to the constants of PR – b, p1 and p2 – but also to all individuals of LR

– a, b and c. Thus, its Herbrand base will be

HBKBR
= {goodManager(t), overloaded(t), paper(t1, t2) | t, t1, t2 ∈ {a, b, c, p1, p2}}

This may seem a little odd, since e.g. paper(a, c) or overloaded(p2) does not fit well with
the intended interpretation of the predicates paper and overloaded ; but this is a well-known
side-effect of the absence of types in logic programming.

Examples of interpretations for KBR are:

I1 =∅
I2 ={paper(b, p1), paper(b, p2), overloaded(a)}
I3 ={paper(a, c), goodManager(p2), overloaded(b)}
I4 ={paper(b, p1), paper(b, p2), overloaded(a), overloaded(b), overloaded(c),

overloaded(p1), overloaded(p2)}

It is easy to verify that only I4 is a model of KBR. I1 and I3 are not models of KBR

since they do not satisfy rules r3 and r4. The interpretation I2 does not satisfy rule r2 with
X = b.

1In the sense that I does not contain a literal and its negation.
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A dl-program is positive if the rules in P do not contain negations. Positive dl-programs
have the same usual properties of positive logic programs, as they have a unique least
model MKB that can be constructed by computing the least fixed-point of the Herbrand
transformation TKB , defined as the usual Herbrand transformation for logic programs but
using L to evaluate dl-atoms.

A ground dl-atom a is monotonic relative to KB = (L, P ) provided that I |=L a

implies I ′ |=L a, for I ⊆ I ′ ⊆ HBP . A dl-program KB = (L, P ) is positive if

(i) P is “not”-free, i.e., for all r ∈ P, B−(r) = ∅, and

(ii) every ground dl-atom occurring in ground(P ) is monotonic relative to KB .

Notice that while dl-atoms containing only ] and ∪- are always monotonic, a dl-atom
containing ∩- may fail to be monotonic, since an increasing set of pi(e) in P results in a
reduction of ¬Si(e) in L. The dl-program KBR in Example 3 is not a positive dl-program
because of rules r1 and r2.

For any dl-program KB = (L, P ), one denotes by DLP the set of all ground dl-atoms
that occur in ground(P ). It is assumed that KB has an associated set DL+

P ⊆ DLP of
ground dl-atoms which are known to be monotonic, and one denotes by DL?

P = DLP \DL+
P

the set of all other dl-atoms.

Answer-Set Semantics The answer-set semantics of dl-programs is defined in analogy to
that of logic programs. There are two possible generalizations: strong and weak answer-set
semantics.

Strong answer-set semantics Given a dl-program KB = (L, P ), we can obtain a
positive dl-program by replacing P with its strong dl-transformation sP I

L of P relative to
L and a interpretation I ⊆ HBP . This is obtained by grounding every rule in P and then

(i) deleting every dl-rule r such that either I 6|=L a for some a ∈ B+(r) ∩ DL?
P , or

I |=L b for some b ∈ B−(r), and

(ii) deleting from each remaining dl-rule r all literals in B−(r) ∪ (B+(r) ∩ DL?
P ), in

other words, deleting the negative body from each remaining dl-rule.

This is a generalization of the Gelfond-Lifschitz reduct. Note that KB I = (L, sP I
L) is a

positive dl-program, which has a unique least model MKBI if it is satisfiable. I ⊆ HBP is
called a strong answer set of KB iff it is the least model MKBI of KB I .

Example 6. (People Management, continued) Consider again the dl-program KBR from
Example 3 and the interpretations I1, I2, I3 and I4 defined in Example 5. We can verify
that I4 is a strong answer set for KBR.
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First, we compute sP I4
LR

. Consider all ground instances of r1; there are only two
cases when I4 |= DL[; supervises ](X ,Y ) : when X is a and Y is b, and when X is b
and Y is c, so all the other ground instances of r1 will be removed from sP I4

LR
. More-

over, I4 |= DL[paperToReview ] paper ;Overloaded ](b) by the first axiom from LR, and
I4 |= DL[paperToReview ] paper ;Overloaded ](c) by the second and third axioms. So,
sP I4

LR
does not contain ground instances of r1. Regarding r2, since I4 does not contain

goodManager(t) for any t, all its ground instances will be included in sP I4
LR

with their
body removed (ii). Lastly, r3 and r4 are grounded rules with no negative literals in their
bodies, so they are copied to sP I4

LR
unchanged. Therefore, sP I4

LR
is the following program:

overloaded(a) overloaded(b) overloaded(c)

overloaded(p1) overloaded(p2) paper(b, p1) paper(b, p2)

As sP I4
LR

contains only facts, it is easy to compute the least model of KB
I4
R and check that

it coincides with I4. So, I4 is an answer set for KBR.
For comparison purposes, consider the interpretation I2. It is easy to verify that sP I2

LR

coincides with the sP I4
LR

, since in this case the construction of the reduct just depends on
the instances included in the interpretation. So, the least model of KB I2

R is I4, and thus I2

is not an answer set for KBR. The interpretation I4 is actually the only strong answer set
for this dl-program.

Weak answer-set semantics The weak dl-transformation of P relative to L and to
an interpretation I ⊆ HBP , denoted wP I

L, is the ordinary positive program obtained from
ground(P ) by

(i) deleting all dl-rules r where either I 6|=L a for some dl-atom a ∈ B+(r), or I |=L b

for some b ∈ B−(r), and

(ii) deleting from every remaining dl-rule r all the dl-atoms in B+(r) and all the literals
in B−(r).

Weak answer sets associate a larger set of models than strong answer sets. Notice that
strong answer sets of KB are weak answer sets of KB , but not vice versa in general.

For any positive dl-program P , both the strong reduct as well as the weak reduct
coincide with the usual Gelfond-Lifschitz reduct (used in logic programs semantics), and
thus the weak and the strong answer sets coincide with the standard answer sets of P .

We do not illustrate the weak answer-set semantics with an example, because it will
not be used in this dissertation.

Well-founded Semantics This semantics will not be used in this dissertation, but will
be presented for completeness purposes. The well-founded semantics represents another
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widely used semantics for ordinary non-monotonic logic programs, which generalizes
well-founded semantics for logic programs.

There are several equivalent ways to define this semantics. We define the well-founded
semantics of a dl-program KB = (L, P ) by means of the operator γKB , such that γKB(I)

is the least model of the positive dl-program KB I defined above.
This operator is anti-monotonic (if I ⊆ J , then γKB(I) ⊇ γKB(J)), so γ2

KB is mono-
tonic and therefore it has a least and a greatest fixpoint, denoted lfp(γ2

KB) and gfp(γ2
KB),

respectively. An atom a ∈ HBP is well-founded if a ∈ lfp(γ2
KB) and unfounded if

a 6∈ gfp(γ2
KB). The well founded semantics of KB is the set containing all well-founded

atoms and the negations of all unfounded atoms. Intuitively, well-founded atoms are true
in every model of P , wheras unfounded atoms are always false.

2.3 Tools

This section provides a survey of tools that calculate the semantics of the dl-programs,
describing each one of these available reasoners. In the remainder of this section we
explain why the second tool was the chosen reasoner for dl-programs to be extended with
Mdl-programs.

2.3.1 NLP-DL

NLP-DL (Nonmonotonic Logic Programming with Description Logics) is a reasoner
for dl-programs that can operate under different semantics [14]. This tool, which is
available through a Web interface, has been developed by coupling the two state-of-the-art
solvers DLV [29], for nonmonotonic logic programs, and RacerPro [16], for description
logics. Due to this integration, NLP-DL is a powerful platform for expressive knowledge
representation and reasoning, such as ontologies, rules under negation as failure, strong
negation besides negation as failure, and constraints.

The system’s architecture integrates the external DLV and RacerPro engines and
is composed of several modules implemented in the PHP scripting language, such as a
caching module, a well-founded semantics module, an answer-set semantics module, a
preprocessing module, and a postprocessing module.

It can be used either to compute the model of a given dl-program or to perform
reasoning, both according to a previously selected semantics, which can be chosen between
the strong answer-set semantics and the well-founded semantics. The reasoning mode
requires the specification of one or more query atoms as input from the user; in the case of
answer-set semantics, another choice between brave and cautious reasoning is available2.
Furthermore, the result can be filtered by specific predicate names.

2In cautious reasoning, the result only includes the atoms that are in all answer sets; in brave reasoning,
the result includes all atoms that appear in any answer set.
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This tool accepts dl-programs as input, given by an ontology in OWL-DL (as processed
by RacerPro) and a set of dl-rules in the syntax described in section 2.2.1, where←, ], ∪- ,
and ∩- are written as “:-”, “+=”, “-=”, and “?=”, respectively. In this tool, a dl-atom without
input context does not have “;” as shown in Figure 2.2.

On choosing the “Evaluate” option, the computation procedure is started, interactively
calling DLV and RacerPro. If the model generation task is selected, the answer set(s) or
the well-founded model found by the program are shown upon termination. If the query
evaluation task is selected, the corresponding query answer is given. If query answering
under the answer-set semantics is chosen, one can additionally decide between brave and
cautious reasoning.

Figure 2.2: NLP-DL Web prototype

Figure 2.2 shows the task selection part of the Web prototype and the answer set result
for the wine example available on this Web page. Two progress bars are also shown to the
user, displaying the time spent by each of the external applications: DLV and RacerPro.
Below these bars, a status message informs about the currently executed subtask and
additionally indicates that the system is in a running state.

2.3.2 dlvhex

Another available tool is dlvhex [13], an application for computing the models of so-called
HEX-programs [12], that is, higher-order logic programs with external atoms, which are
an extension of answer-set programs integrating external computation sources.
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HEX-programs are a more general logic programming framework that is still based
on answer-set semantics and can be considered as successor to the dl-programs. This
new formalism generalizes dl-programs in two levels: the dl-atoms for querying external
description logic knowledge bases have been abstracted to accommodate a universal
interface for arbitrary sources of external computation, and meta-reasoning has been
introduced through higher-order atoms. Intuitively, a higher-order atom allows one to
quantify values over predicate names and to exchange predicate symbols with constant
symbols freely.

This tool has been implemented in the C++ language as a command-line application that
only works for now in operating systems based on UNIX. The dlvhex tool conservatively
extends DLV [29], so that dlvhex behaves equally to DLV for any ordinary answer-set
program. This was a principal design goal of dlvhex: integrating and reusing existing
reasoning applications instead of writing them from scratch. Other design goals followed a
modular approach concerning the integration of external atom evaluation and exploiting
the object-oriented principles for extensibility and maintainability.

A feature of dlvhex is the integration of external sources of computation, therefore
this tool provides a way to build plugins that guarantee extensibility and flexibility, trying
to keep the interface lean and making external atoms easy to implement by the user. A
plugin is represented by a shared library that is linked to dlvhex at runtime and provides
one or more external atoms and their evaluation functions. Some plugins are available at
the website of dlvhex, such as the DL-plugin.

DL-plugin for dlvhex

The Description Logic plugin (DL-plugin) for dlvhex simulates the behaviour of dl-
programs within the more general framework of HEX-programs. It was developed to
model dl-programs in terms of HEX-programs.

The DL-plugin supports various external atoms for querying concepts and roles to a
description logic knowledge base and extending the latter, before submitting a query, by
means of atoms input parameters, in accord to the syntax of dl-programs.

Additionally, the DL-plugin provides a converter that processes the syntax of dl-atoms
as presented in Section 2.2.1 and transforms it into external atoms of HEX-programs,
allowing the use of the dlvhex directly as a reasoner for dl-programs.

This plugin is implemented in the C++ language as well as dlvhex and uses Rac-
erPro [16] as a DL reasoning engine, being able to process OWL DL ontologies as
description logic knowledge bases in the language SHOIN (D).

These two tools are from the same developers. The dlvhex framework and the DL-
plugin are newer than the NLP-DL web prototype. Moreover, the developers guarantee
full support, because the dlvhex and its plugins are a work in progress.
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So, DL-plugin for dlvhex is the chosen tool to extending with the generalization of
dl-programs – Mdl-programs – proposed by the ITSWeb group and described in Chapter 4.
In the following chapter, an overview of the DL-plugin is shown, as well as how this plugin
transforms dl-programs into HEX-programs.
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The DL-plugin for dlvhex

In this chapter we describe how the dl-programs are written in the DL-plugin, indicating
the concrete syntax for the dl-atoms, as well as illustrating this syntax with an example.
These dl-programs are converted to HEX-programs using some external atoms provided by
this tool. Section 3.2 provides a detailed explanation of all external atoms available in the
DL-plugin with some examples. There is a lack of documentation about these tools. With
the purpose of understand them it was needed to do reverse engineering, by analysing the
structure and the source code of both tools. The last section of this chapter gives a global
view of the dlvhex and its plugin, describing some components, use cases provided by the
DL-plugin, and showing the interaction between the dlvhex and its plugins.

3.1 Writing dl-programs in the DL-plugin

A dl-program, as defined in Section 2.2, can be evaluated using dlvhex and the DL-plugin.
To process dl-programs with this plugin, the concrete syntax for dl-atoms is

DL[S1op1p1, . . . , Smopmpm; Q](X1, . . . , Xn)

where Q(X1, . . . , Xn) is a dl-query and opi is "+=" and "-=" for opi = ] and ∪- , respec-
tively.1 In this way DL-plugin accepts dl-rules in the syntax described in Section 2.2.1,
where ← is written as ":-", the symbol ¬ as "-" and dl-atoms as above. A dl-atom
without input context does not have “;” as illustrated in the following example.

Example 7. (Example 3, continued). To illustrate the concrete syntax of dl-programs in
the DL-plugin the PR from Example 3, with the differences described above, is written as:

goodManager(X) :- DL[supervises](X,Y),

not DL[papersToReview += paper; Overloaded](Y).

overloaded(X) :- not goodManager(X).

1The third operator ∩- was removed by the authors in the implementation of the DL-plugin, as it can be
defined as an abbreviation of the other two.

23
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paper(b,p1).

paper(b,p2).

This program is in the file overloaded.dlp and the file overloaded.owl contains
the ontology in OWL-DL, which is described in Example 3.

To run this dl-program in the DL-plugin for dlvhex, the command is:

$ dlvhex --ontology=overloaded.owl overloaded.dlp

where -ontology=URL is the option to encode the ontology in the program and URL
can be a file or a URL to an OWL Ontology.

The output shows the computed answer set:

{overloaded("c"),overloaded("b"),overloaded("a"),

overloaded("p1"),overloaded("p2"),paper(b,p2),paper(b,p1)}

Interestingly, this dl-program does not run on the original version of dlvhex because this
tool performs a safety check over the input and this process fails. In this case, the second
rule is not dl-safe. In Section 5.3.3 we clarify this issue and explain how it was solved.

This concrete syntax is transformed into HEX-syntax, using some external atoms
provided by the DL-plugin. The HEX CONVERTER module allows one to use dl-atoms
in the plugin and ensures the correct transformation to HEX-syntax before evaluation by
dlvhex.

3.2 DL-plugin atoms

DL-plugin atoms are external atoms provided by the DL-plugin that allow one to extend a
description logic knowledge base by means of input parameters and then submit a query to
this extension.

One can see external atoms as a foreign function interface for accessing services
provided by other programming languages or reasoning facilities. In this case, these
external atoms allow the communication between the logic program P and the description
logic knowledge base L.

A detailed explanation of all external atoms available in the DL-plugin with examples
is the subject of the remainder of this section.

Concept Queries A query to a concept is carried out by the &dlC external atom in the
following way:
&dlC[KB,a,b,c,d,Q](X)

with the following input parameters:

KB constant string denoting the URI or the file path of the OWL-DL ontology, e.g.,
http://www.example.org/food.owl
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a name of a binary predicate used to extend a concept. For instance, specifying a

to be the predicate addPerson together with an interpretation that includes the
facts addPerson(“Person”,“Alice”) and addPerson(“Person”,“Bob”) will extend
the DL-concept Person by the individuals Alice and Bob.

b name of a binary predicate used to extend the complement of a concept. This works
as above, but affecting the negation of the concept.

c name of a ternary predicate used to extend a role. For example, using a predicate
foo while having an interpretation including the fact foo(“knows”, “Bob”, “Alice”)
will add the pair (“Bob”, “Alice”) to the role knows from the ontology.

d name of a ternary predicate used to extend the complement of a role. This works as
above, but affecting the negation of the role.

Q constant string that denotes the concept to be queried;

and with the following output:

X individuals of concept Q, possibly including those added by the input parameters, in
the scope of this dl-query. If the external atom has a non-ground output, i.e., X is
a variable, then it retrieves all known members of concept Q; otherwise, if X is an
individual, then it holds iff X is an instance of concept Q.

For a simple query, only the first and the last input arguments are required.

wine(X) :- &dlC["wine.rdf",a,b,c,d,"Wine"](X).

Provided that a, b, c and d do not occur elsewhere in the dl-program, this rule would do
nothing else but add all members of the concept Wine of the ontology wine.rdf [32]
into the predicate wine.

The term Wine is expressed in RDF and has thus an XML namespace attached to it.
Since, in this case, the concept Wine uses the default namespace name

http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#,

we simply refer to the concepts of all wines as Wine. If Wine were in the scope of a
different namespace than the default namespace, this would not be possible. So, if we have
an ontology where the concept of all wines is defined as:

<owl:Class rdf:ID="vin:Wine"/>,

where the term Wine is bound to the XML namespace vin, to refer to the concept
vin:Wine, which is the short for the fully expanded RDF/XML URI

http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#Wine,
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we may use two different methods for doing this: (1) we can use the fully expanded concept
name in the query part of the external atoms, or (2) we can add a namespace declaration to
the logic program. This is accomplished by adding:

#namespace(vin, "http://www.w3.org/TR/2003/PR-owl-guide-

20031209/wine#")

wine(X) :- &dlC["wine.rdf",a,b,c,d,"vin:Wine"](X).

Example 8. Imagine that we have an ontology with some knowledge about an university
and the simple query:

student(X) :- &dlC["univ.owl",a,b,c,d,"Student"](X).

If we want to extend the concept Freshman by “Bob Smith” before querying Student,
we can do:

student(X) :- &dlC["univ.owl",a,b,c,d,"Student"](X).

a(Freshman, "Bob Smith").

At the second position of its input list, the external atom expects a binary predicate, whose
first argument denotes the concept to be extended and the second the actual individuals to
be added to the concept. So, this can become very versatile:

student(X) :- &dlC["univ.owl",a,b,c,d,"Student"](X).

a(Freshman,X) :- attends(X,Y), firstyearcourse(Y).

Adding roles works analogously:

student(X) :- &dlC["univ.owl",a,b,c,d,"Student"](X).

c(enrolled,X,Y) :- person(X), studies(X,Y).

These extensions of concepts or roles are local and only extend the knowledge base for the
purpose of that specific query.

Role Queries A query for pairs of a role (object property in OWL) is facilitated by the
&dlR external atom in the following way:

&dlR[KB,a,b,c,d,Q](X,Y)

This second atom follows the same input mechanism, but queries a role, hence here the
result is binary.

Example 9. This example retrieves all the students enrolled in Computer Science, since the
external atom retrieves all pairs (X,ComputerScience) from the role enrolled.

studentComputerScience(X) :-

&dlC["univ.owl",a,b,c,d,enrolled](X,"ComputerScience").
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Datatype Role Queries A query for pairs of a datatype role (datatype property in OWL)
is facilitated by the &dlDR atom in the following way:

&dlDR[KB,a,b,c,d,Q](X,Y)

Datatype roles are properties with literal values as fillers. In OWL, they are distin-
guished from object roles and therefore also need a separate query. From the point of view
of description logics, datatype roles are simply roles.

Consistency Check The atom &dlConsistent tests the given description logic
knowledge base for consistency under the specified extensions:

&dlConsistent[KB,a,b,c,d].

If KB is consistent after possible augmention of the A-Box according to the input list,
the atom evaluates to true, otherwise it evaluates to false.

Example 10. The program

a("Freshman", "Bob Smith").

:- &dlConsistent["univ.owl",a,a,c,d].

has no answer set, since we augment the ABox of univ.owl by the axioms Freshman
("Bob Smith") and ¬Freshman("Bob Smith").

For all DL-plugin external atoms, when no input to the description logic knowledge
base is given, a, b, c and d serve as dummy predicates.

Conjunctive Queries The atom &dlCQ is more general and flexible than the atomic
ones presented above. This atom allows any conjunction of concepts (resp. roles) in the
query:

&dlCQ[KB,a,b,c,d,q](X)

Here, X represents a tuple of arbitrary arity, reflecting the free variables in the conjuntion
q. Conjunctive queries provide a versatile interface to DL-reasoner. Multiple queries can
be joined into a single one, reducing the number of interactions between dlvhex and the
DL-reasoner.

However, the conjunction of two queries might not necessarily yield the same result as
their join outside the description logic KB.
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Example 11. This example from [34] illustrates the use of the external atom &dlCQ.
Let KBN = (LN , PN) be a dl-program with LN :

Zebra v Animal

Lion v Animal

Lion v ∃eats.Zebra

and PN :

add("Lion","Bob").

carnivore(X):-&dlCQ["L",add,b,c,d,"eats(X,Y),Animal(Y)"](X).

Since Bob is added to the concept Lion, he must also occur in the relation eats together
with a Zebra. That is, even if we don’t know any specific Zebra, Bob will certainly eat
one and thus, because each Zebra is also an Animal, be returned for X in the conjunctive
query. Let us replace the second rule by the following one:

carnivore(X):- &dlR["L",add,b,c,d,"eats(X,Y)"](X,Y),

&dlC["L",add,b,c,d,"Animal(Y)"](Y).

Here, one uses role and concept queries and joins their result only in the logic program.
Given that no explicit tuple occurs in eats, the result of the the first query is empty and so
is the extension of carnivore.

As we mentioned at the end of the previous section, dl-programs are transformed into
HEX-syntax, through the external atoms shown previously. This transformation is achieved
by the HEX CONVERTER module, translating the dl-atoms in the corresponding external
atoms.

Example 12. (Example 3, continued). We now illustrate the transformation that occurs in
the DL-plugin and that is completely invisible to the user, translating the dl-program KBR

from the Example 7 to the corresponding HEX-program with external atoms.

goodManager(X) :-

&dlR["overloaded.owl",a,b,c,d,"supervises"](X,Y),

not &dlC["overloaded.owl",a,b,plusR,d,"Overloaded"](Y).

plusR("papersToReview",X,Y) :- paper(X,Y).

overloaded(X) :- not goodManager(X).

paper(b,p1).

paper(b,p2).

All queries in this program use the ontology overloaded.owl, which contains the
description logic knowledge base LR. The first rule queries the role supervises without
any input parameters and queries the concept Overloaded with an input parameter that
extends the role papersToReview with the predicate paper.
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The generality of an external atom in the HEX-syntax results in the inconvenient
of having to specify the extension of the description logic knowledge base by these
four predicates. In contrast, dl-atoms, having the only purpose of interacting with an
ontology, are more intuitive by allowing for a list of mappings of arbitrary length. The
HEX CONVERTER module allows to use dl-atoms in a program and ensures the correct
transformation to HEX-syntax before the evaluation of dlvhex.

3.3 Overview of dlvhex and the DL-plugin

The dlvhex plugin architecture is divided in three parts: (1) initialization, (2) program
rewriting and (3) external atoms. In the first part, dlvhex initializes all the plugins; in the
second part, dlvhex calls the converters of each plugin, in order to transform the special
syntax or syntactic sugar of a program specially designed for a particular plugin into the
HEX-syntax. In the third part, dlvhex asks queries to external atoms, defined in the plugin,
during the program evaluation.

The plugin API of dlvhex defines some interfaces as PluginInterface, Plugin
Atom, PluginConverter and PluginOptimizer, to be implemented by the plu-
gins. In the DL-plugin case, it implements these interfaces in the components: Racer
Interface, RacerExtAtom, HEXConverter and DLOptimizer.

A brief overview of the structure of the DL-plugin is depicted in Figure 3.1. The
initialization phase is processed by dlvhex, which receives the dl-program as input, and by
RacerInterface, the plugin interface of DL-plugin, which instantiates and maintains
the network connection with the RacerPro reasoner, instantiates the DLCache and tells
dlvhex which external atoms are available in the DL-plugin.

In the program rewriting phase, the input program is translated to HEX-syntax by the
HEXConverter in the HEX CONVERTER module.

In the last phase, dlvhex delegates to the RacerExtAtom component of the DL-
plugin the processing of the external atoms. This component uses the QueryDirector
component, which delegates the query creation to RacerBuilder and the answer parser
to RacerParser. Only these two components communicate with RacerPro. So, if
one wants to adapt the DL-plugin to work with different description logics reasoners, one
only needs to change these two components. The TCPIOStream handles the network
connection with RacerPro. The DLCache accelerates the query processing, by storing
answers from previously processed queries.

The numbers in the Figure 3.1 represent the information flow in this system. The
sequential steps are:

1. input: dl-program;

2. instantiate all the modules of DL-plugin;
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Figure 3.1: Brief overview of the DL-plugin with its components, their relationships and
information flow

3. convert dl-program to HEX-syntax;

4. query handle by DL-plugin:

(a) query DL-plugin (check cache),

(b) transform query to RacerPro query,

(c) retrieve answer;

5. retrieve answer to dlvhex;

6. output: answer sets of the input program.
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3.3.1 DL-plugin use cases

The use case diagram for the DL-plugin is shown in Figure 3.2, providing an overview
of DL-plugin’s usage scenarios and showing that the DL-plugin is the linking bridge
between dlvhex and RacerPro. The primary actor is the dlvhex, which is a proactive
actor. The supporting actor is RacerPro as a DL reasoner, which waits for requests from
the DL-plugin and answers queries.

The DL-plugin offers four main use cases for dlvhex: (1) “Set Options”, (2) “Convert
program”, (3) “Optimize Program” and (4) “Query External Atom”. In use case (1),
dlvhex may set some options in the DL-plugin, which are provided as a list of command
line arguments. In use case (2), DL-plugin receives the input program and converts it as
explained earlier. In use case (3), DL-plugin may optimize an HEX-program by syntactic
transformations. The use case (4) shows the requirements for the external atoms provided
by the DL-plugin and the services provided by it.

DL-plugin
DL-plugin

«include»

«include»
«include»

«include»

«include»

Convert
Program

Set
Options

Query
External

Atom

Convert
dl-program

Concept
Query
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Query
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Manage
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RacerPro

Send Query/
Receive Answer

Optimize
Program

dlvhex

RacerPro

Figure 3.2: Use case diagram of the DL-plugin
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3.3.2 Interaction between dlvhex and the DL-plugin

The dlvhex tool controls all the process, as it is the main process that calls the services
provided by its plugins. The interaction between these tools is shown below:

1. dlvhex creates a manager for the Answer Set Program Solver Software (by default,
DLV).

2. dlvhex processes all the arguments that are given by the command line; and each
input (which can be: a file, a URI or a string) is added to the program.

2.1. If no arguments are given to the program, this prints the usage help and exits.

3. dlvhex sets up the PluginContainer, which searches plugins for dlvhex in
the file system, imports all the plugins to the context, and sets the options for each
plugin.

4. All input sources are read to buffers.

5. For each Converter of each plugin:

5.1. The buffer with the input is converted and the result is saved in the same buffer.

In DL-plugin

5.1.1. The content of the buffer is written to a string, and this string is passed
to a Lexer, which processes the input and converts it to tokens, that are
meaningful symbols defined by the grammar of regular expressions in
the DLLexer (lexical analysis).

5.1.2. These tokens are parsed by the DLParser, that is, the parser checks if
the tokens form an allowable expression, which is done with reference
to the DLGrammar, which defines rules to transform the dl-program
to an HEX-program (syntactic analysis).

5.1.2.1. If the input is not well formed a PluginError is output to the
user.

5.1.3. The result, which is the HEX-program converted from the dl-program
as well as the extra rules, is saved in the same buffer.

6. The output of the Converter, which is the correspond HEX-program, is parsed to an
Abstract Syntax Tree (AST) as a Program object: this is done with reference to the
HexGrammar.
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7. Namespaces are inserted, that is, constant names are expanded. A constant name is
in the form “prefix”:“localName” or just “localName”, as shown in Section 3.2.

8. For each Rewriter of each plugin:

8.1. The rewriting process, which can rewrite a custom syntax for the external atoms
of the plugin, is applied to the Program object, the IDB2. Also the set of initial
facts, the EDB3, is passed to the rewriter and can be considered/altered.

In DL-plugin

DL-plugin does not have a Rewriter.

9. Create a Node Graph of the given program.

10. For each plugin that has an Optimizer, perform an optimize operation based on
the Node Graph and the EDB.

In DL-plugin

10.1. DL-plugin does an equivalence-preserving transformation in rules, where
the rule bodies and rules involving dl-atoms can be rewritten. When it is
possible, rules can be replaced by other rules, preserving the semantics
of the program. For instance, dl-queries of one rule can be transform in a
conjunctive query, increasing the performance and decreasing the number
of queries to the ontology.

11. Create a Dependency Graph.

12. Perform a Safety Check based on the IDB.

13. Perform a Strong Safety Check based on the Dependency Graph.

14. To evaluate the program, first check the EDB for consistency and then compute the
program.

14.1. When dlvhex finds an ExternalAtom, it is passed to DL-plugin.

2IDB stands for intensional database, intensional predicate symbols are defined only by rules
3EDB stands for extensional database, extensional predicate symbols are only defined by facts
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In DL-plugin

14.1.1. The ExternalAtom is processed, creating a RacerQuery.

14.1.2. The DLCache is checked.

14.1.2.1. If the this query is in the DLCache, an Answer is retrieved to
dlvhex.

14.1.3. The communication with RacerPro is opened: first the ontology is
increased with the atom extra information and then the dl-query is
send to RacerPro.

14.1.4. The retrieved Answer is saved in the DLCache and it is return to
dlvhex.

15. Perform a Post Process analysis.

16. Remove namespaces, that is, contract constant names, if specified.

17. To build the output, dlvhex calls all the OutputBuilders of each plugin, and
those that know how to build the correspondent output process the output.

In DL-plugin

DL-plugin does not have an OutputBuilder for dl-programs, but dlvhex
has a default TextOutputBuilder.

17.1. The output is shown to the user in the command line.



Chapter 4

Multi Description Logic programs
(Mdl-programs)

Mdl-programs, proposed by the ITSWeb group [7], generalize the definition of dl-programs,
presented in section 2.2, to accommodate several description logic knowledge bases. In
particular, dl-programs can be seen as Mdl-programs with only one knowledge base. As
we will show, the main advantage of Mdl-programs is their simplicity: these programs are
quite adequate for reasoning within the semantic web, where a lot of effort is being put
into developing reusable ontologies.

Some mechanisms for combining different reasoning mechanisms are available, such
as HEX-programs [12] or multi-context systems [4]. In the first section of this chapter we
explain why ITSWeb has defined Mdl-programs instead of working with these frameworks,
and what are the advantages of using Mdl-programs instead of merging all the desired
ontologies and using the result in a standard dl-program. The second section describes
the syntax and the semantics of Mdl-programs, illustrating with an example that uses two
ontologies freely available on-line. In the third section, we introduce a useful syntactic
construction for Mdl-programs, allowing one to extend (globally) concepts or roles from a
knowledge base in an automatic way, with all instances of a predicate in the rule-based
program, and reciprocally. These new operators designed to make programming tasks
more structured and modular, are also illustrated with an example.

4.1 Why Mdl-programs

Mdl-programs allow working with different ontologies at same time, while keeping them
separate. One can think that merging all the relevant knowledge bases into a single is
simpler, but this process has its own specific problems, namely relating to consistency –
logical and structural. Besides, ontologies are typically very wide-spectrum and in practice
one does not work with them entirely. So, keeping them separate reduces the number
of compatibility issues that one has to solve. For example, if we have two concepts in
two different knowledge bases that should be identified but are logically inconsistent,

35
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this will always be an issue. But if this problem is irrelevant to the objective (when the
concepts involved are not used), then not merging the ontologies will not raise that problem;
Mdl-programs bypass this issue.

The advantages to keep ontologies separate coincide with the reasons to defending
modularity of large-scale systems. It is much more convenient to have independent
knowledge bases, which can be physically separated or independently managed, than a
gigantic single one. Also, this separation allows us to make the most of the positive aspects
of each ontology – relevant when one is very efficient at performing reasoning tasks or
when other has richer concepts and relationships.

Other frameworks similar to Mdl-programs include multi-context systems [4] and
HEX-programs [12]. MCSs consist of several knowledge bases, with no restriction on
the underlying languages, each declaring additional rules that allow communication with
the others. Heterogeneous contexts and non-monotonic reasoning are supported in MCSs.
HEX-programs were also proposed as a heterogeneous programming language for the
Semantic Web, and they were designed for interoperating with heterogeneous sources via
external atoms.

Mdl-programs fully support non-monotonicity and limit heterogeneity to two different
frameworks: description logics for the knowledge bases part and logic programming
for the rule part. This last part represents the “conductor” that “coordinates” the other
parts. Mdl-programs are therefore a simpler framework than the other two more powerful
alternatives discussed above. Moreover, description logics are at the core of the Semantic
Web, with a huge effort being currently invested in the interchange between OWL and a
diversity of rule languages, e.g. via the definition of RIF (Rule Interchange Format) [27].

Furthermore, Mdl-programs do not aim at being general frameworks for combining
sources of information of different nature. By being much more general, the other frame-
works generate their own specific problems, which Mdl-programs avoid, providing a nice
framework to combine description logics with rules.

4.2 Syntax and semantics

The essential difference between dl-programs and Mdl-programs is the presence of a set of
description logic knowledge bases, instead of a single one. So, an Mdl-program (for Multi
Description Logic Program) is a pair 〈{L1, . . . , Ln}, P 〉, where:

• each Li is a description logic knowledge base;

• P is a set of dl-rules; i.e. rules of the form

a← b1, . . . , bk, not bk+1, . . . , not bp
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where a is a logic program atom and each bj , for 1 ≤ i ≤ p, is either a logic program
atom or a dl-atom relative to {L1, . . . , Ln}.

A dl-atom relative to {L1, . . . , Ln} has the form:

DLi[S1op1p1, . . . , Smopmpm;Q](t),

often abbreviated to DLi[χ;Q](t), where:

• 1 ≤ i ≤ n

• Sk, pk and Q(t) are as before

• opk ∈ {], ∪- } 1;

Like in dl-programs, the operators ] and ∪- are used to extend a description logic
knowledge base Li locally (that is, in the program’s view of Li), with Sk ] pk increasing
Sk by the extension of pk and with Sk ∪- pk increasing ¬Sk by the extension of pk. The
difference between dl-programs and Mdl-programs is that, in the latter, dl-atoms add the
information to the corresponding Li and then ask only this description logic knowledge
base for the set of terms satisfying the dl-query Q(t).

The semantics of Mdl-programs is a straightforward generalization of the semantics for
dl-programs, shown on section 2.2.2. As in dl-programs, the Herbrand base of P , denoted
by HBP , is the set of all ground atoms built from predicate symbols from P and constants
in P or any Li. An interpretation I ⊆ HBP satisfies a ground atom a, I |= a, if:

• a ∈ HBP and a ∈ I;

• a is DLi[S1op1p1, . . . , Smopmpm;Q](c) and Li ∪
⋃m

k=1 Ak(I) |= Q(c), where

Ak(I) =

{
{Sk(e) | pi(e) ∈ I} if opk = ]
{¬Sk(e) | pi(e) ∈ I} if opk = ∪-

From this, one can define answer-set semantics and well-founded semantics for Mdl-
programs as for dl-programs. All the results shown in [10] and in [11] hold for Mdl-
programs. Also, Mdl-programs are a generalization of dl-programs in the following way.
Let 〈L, P 〉 be a dl-program. Then:

• a set I ⊆ HBP is a strong answer set for 〈L, P 〉 iff I is a strong answer set for the
Mdl-program 〈{L}, P 〉;

• The well-founded semantics of 〈L, P 〉 and the well-founded semantics of 〈{L}, P 〉
coincide.

1The third operator defined in dl-programs can be expressed as an abbreviation using these two operators
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The following example illustrates the main ideas about Mdl-programs.

Example 13. Consider a simple program KB = 〈{L1, L2}, P 〉 that uses two ontologies
freely available on-line: a travel ontology travel.owl [28] – L1 –, which defines
a series of travel-related concepts, including that of (tourist) Destination; and a wine
ontology wine.rdf [32] – L2 –, which compiles a substantial amount of information
about wines, including the locations of several important wineries around the world; in
particular, this ontology contains a concept Region identifying some major wine regions
throughout the world.

Using these two ontologies, P is the following logic program:

wineDest(X)← DL2[;Region](X) (r1)

wineDest(Tasmania)← (r2)

wineDest(Sydney)← (r3)

overnight(X)← DL1[; hasAccommodation](X, Y ) (r4)

oneDayTrip(X)← DL1[Destination ] wineDest ;Destination](X),

not overnight(X) (r5)

This simple program extends the definition of the predicate wineDest with a query to
L2 in rule r1, importing the individuals of the concept Region into wineDest . Through the
facts r2 and r3, we add these new wine destinations to predicate wineDest . Informally, the
goal is to have a subconcept of Destination, but without actually changing L1.

Rule r5 identifies the destinations that are only suitable for one-day trips. The possible
destinations are selected not only from the information originally inL1, but by (i) extending
the concept Destination of L1 with all instances of the predicate wineDest in P (including
those from L2 via rule r1), and then (ii) querying this extended view of L1 for all instances
of Destination . The result is then filtered using the auxiliary predicate overnight defined
in rule r4 as the set of destinations for which some accommodation is known. This rule uses
the role hasAccommodation of L1, where hasAccommodation(t1, t2) holds wherever t1
is a Destination and t2 is an accommodation facility located in t1. The reason to use
rule r4 is the usual in logic programming: the operational semantics of negation-as-failure
requires that all variables in a negated atom appear in non-negated atoms in the body of
the same rule.

We could also extend Destination in rule r4, but it is not necessary, according to the
structure of L1, the role hasAccommodation is defined as the set of its instances (without
any axioms), so changing other concepts or roles has no effect on its semantics.

An important aspect of this example is that Sydney is already an individual of L1.
One of the characteristics of dl-programs is that the atoms of P may use constants of the
knowledge base as terms. Rule r2 adds a new constant to the domain of KB (indirectly
via rule r5), but rule r3 adds information about an individual already in L1. In this case,
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Sydney is already an instance of Destination in L1, so the input context in rule r5 adds
only the new instances of the predicate wineDest (including those from L2 via rule r1 and
excluding Sydney) to this concept.

Note how the extend query in rule r5 is relevant: if Destination were not updated with
the information from wineDest , we would not be able to infer e.g. oneDayTrip(Tasmania)

nor oneDayTrip(SouthAustraliaRegion), a Region from L2.

The answer-set semantics for this program is simple to compute. The Herbrand
base contains all ground atoms from applying the predicates wineDest , overnight and
oneDayTrip not only to the constants of P – Tasmania and Syndey – but also to all indi-
viduals of both L1 – which includes (among others) Canberra and FourSeasons (which is
not an instance of Destination) – and L2 – which includes, for instance, AustralianRegion .
Therefore, HBKB contains, among others, the following atoms:

wineDest(AustrnalianRegion) overnight(Tasmania) oneDayTrip(Canberra)

wineDest(FourSeasons) overnight(Tasmania) oneDayTrip(Sydney)

This program has only one model, which is its only strong answer set. The examination of
L1 shows that this ontology only contains one instance of hasAccommodation – a hotel in
Sydney . Therefore, the interpretation I contains

overnight(Sydney) wineDest(Tasmania)

wineDest(Sydney) oneDayTrip(Tasmania)

and all information obtained from L2 by the rule r1 (i.e. wineDest(t) for every t for
which Region(t) holds in L2), as well as information inferred via L1 by rule r5 (i.e.
oneDayTrip(t) for the same set of t, as well as for every t 6= Sydney for which Destination(t)

holds in L1).

4.3 Adding observers

On top of Mdl-programs, a useful syntactic construction was defined in [7], allowing
concepts or roles from a description logic knowledge base Li to be automatically extended
(in P ’s view of Li) with all instances of a predicate in P , and reciprocally.

An Mdl-program with observers is a pair 〈KB , O〉 where:

• KB = 〈{L1, . . . , Ln}, P 〉 is an Mdl-program;

• O = 〈{Λ1, . . . ,Λn}, {Ψ1, . . . ,Ψn}〉, the observer sets, for 1 ≤ i ≤ n, where:

– Λi is a finite set of pairs 〈S, p〉;

– Ψi is a finite set of pairs 〈p, S〉;
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where S is a (negation of a) concept from Li and p is a unary predicate from P , or S
is a (negation of a) role from Li and p is a binary predicate from P .

Intuitively, Λi contains the concepts and roles in Li that P needs to observe, in the
sense that P should be able to detect whenever new facts about them are derived, whereas
Ψi contains the predicates in P that Li wants to observe. Note that a specific symbol (be
it a predicate, concept or role) may occur in different Λis or Ψis; this yields a way to
communicate between different knowledge bases, as shown in the example below.

An Mdl-program with observers 〈KB , O〉 can be transformed in a (standard) Mdl-
program 〈{L1, . . . , Ln}, PO〉, where PO is obtained from P by:

• adding rule p(X) ← DLi[;S](X) for each 〈S, p〉 ∈ Λi, if S is a concept (or its
binary counterpart, if S is a role); and

• in each dl-atom DLi[χ;Q](t) (including those added in the previous step), adding
S ] p to χ for each 〈p, S〉 ∈ Ψi and S ∪- p to χ for each 〈p,¬S〉 ∈ Ψi.

Writing Mdl-programs with observers has several advantages. First, the program is
shorter and more legible – all global observations, or even identifications (when p and S
belong to both Λ and Ψ), are clearly marked. More importantly, the program is more robust
with respect to future changes. In particular, consider future changes to P ; by writing
the observers separately, it is guaranteed that every Mdl-atom’s input context is always
adequately extended; without this mechanism, this would have to be ensured by hand, and
it is well-known that this kind of internal consistency is very easy to lose while developing
more complex programs.

The following example illustrates the main ideas about Mdl-programs with observers.
We will use the same scenario of Example 13 from section 4.2.

Example 14. The ontologies L1 and L2 are as before. The program P defines a unary
predicate wineDest , of which two instances are known (Tasmania and Sydney), and
which should also inherit all instances of the concept Region from L2. So, we can make
wineDest an observer of Region, adding the pair 〈Region,wineDest〉 to the observer set
Λ2.

Moreover, the goal is to extend the concept Destination from L1 with all the instances
of wineDest in P . This can be achieved by adding the pair 〈wineDest ,Destination〉 to
Ψ1, registering Destination as an observer of wineDest .

We thus obtain the following Mdl-program with observers. The knowledge bases L1

and L2 are unchanged, but P is:

wineDest(Tasmania)← (r2)

wineDest(Sydney)← (r3)

overnight(X)← DL1[; hasAccommodation](X, Y ) (r4)

oneDayTrip(X)← DL1[;Destination](X),not overnight(X) (r′5)
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together with the following set of observers:

O = 〈{∅, {Region,wineDest}}, {{wineDest ,Destination}, ∅}〉

Transforming this into an Mdl-program, as explained above, we regain the rule r1 from
Example 13, and the Mdl-atom in rule r′5 is also changed back into the old rule r5.
Furthermore, rule r4 becomes

overnight(X)← DL1[Destination ] wineDest ; hasAccommodation](X, Y ) (r′4)

which, as discussed in Example 13, does not affect its semantics.
If we consider the rule r4 in its original context, this rule works because there are

no axioms characterizing hasAccommodation in L1. However, it is possible that future
versions of L1 may change this; and it is reasonable to assume that changing the instances
of Destination may affect this role. Using observers, this positive affect is obtained
automatically.

However, if one wants to augment a knowledge base only locally in a dl-rule, this can
not be accomplished with an observer, since the latter has a global effect in the program.





Chapter 5

Mdl-programs in the DL-plugin for
dlvhex

The prototype implementation of Mdl-programs was built upon the DL-plugin for dlvhex,
extending this tool with two new aspects: allowing the use of multiple ontologies and
providing syntactical support for observers. This chapter presents these aspects in detail
as well as some relevant technical issues that emerged during the implementation. In the
two first sections we explain how Mdl-programs were implemented in the DL-plugin and
how we added observers to this tool. The third section presents some technical issues that
arose during the implementation and the solutions adopted. In the fourth section we show
how to integrate an additional mechanism for the original dl-programs called lifting, which
achieves a complete two-way integration between a knowledge base and a program. We
also show how this construction can be achieved in Mdl-programs using observers. In the
last section we compare the performance of an Mdl-program and an Mdl-program with
observers.

5.1 Processing multiple ontologies

The ITSWeb group proposed Mdl-programs, a way to combine several description logic
knowledge bases, described in the previous chapter.

To have Mdl-programs available within the DL-plugin, two changes had to be made:

1. the command-line options of this tool had to be adapted to allow the user to provide
the location of all desired ontologies;

2. the processing of dl-atoms had to be adapted to reflect the extended syntax of
Mdl-programs and to access the correct ontology.

Instead of one ontology, the parameter --ontology= now receives one or more
ontologies, in the form --ontology=URI[,URI]∗. For example, a command to run
an Mdl-program in the DL-plugin could look like:

43



Chapter 5. Mdl-programs in the DL-plugin for dlvhex 44

$ dlvhex --ontology=travel.owl,wine.owl tourism.dlp

When this option is processed, instead of saving a single ontology in a shared pointer
of type Ontology, this set of ontologies is saved in a vector of shared pointers of type
std::vector<Ontology>, which can be accessed everywhere in the plugin. The
order in which the ontologies are written defines their sequence numbers, used later in
dl-atoms. This is in line with the syntax of Mdl-programs.

To use more than one ontology in the DL-plugin – recall that dl-programs in the
DL-plugin work on a single knowledge base – it was necessary to adapt the concrete syntax
for dl-atoms 3.1 in the DL-plugin to receive also the Mdl-syntax (Section 4.2). In this
way, dl-atoms now have an additional first argument indicating the sequence number of
the ontology being used (the i in Li, as in the usual syntax of Mdl-programs). A typical
Mdl-atom for an Mdl-program in the DL-plugin has the form:

DL[i; S1op1p1, . . . , Smopmpm; Q](t)

where 1 ≤ i ≤ n is the sequence number of the ontology to which this dl-atom refers,
according to the list of ontologies in the parameter -ontology=.

To accept this syntax, the DLLexer from the HEX CONVERTER module was modified
to recognize a sequence number i and to convert it to a token. A new rule was added to the
DLGrammar to recognize a sequence number token and the rule that recognizes a dl-atom
was modified to include the non-terminal symbol that represents this new rule.

To process dl-atoms relating to Mdl-programs, the HEX CONVERTER module was
modified to receive also the vector of ontologies.

The DLParser, which uses the DLGrammar, now has a function to handle the
sequence number in the Mdl-atom, which does the mapping between the sequence number
of the ontology and the vector of ontologies, and replaces the sequence number by the URI
of the corresponding ontology. This transformation was easier than expected due to the fact
that the output of the HEX CONVERTER module is an HEX-program, in which external
atoms have as input parameter a constant string denoting the URI of the corresponding
ontology to query.

We now illustrate the constructions detailed above with the help of the Example 13
from Section 4.2. The Mdl-program KB is implemented as the following program
(programMdl.dlp).

wineDest(X) :- DL[2;Region](X).

wineDest("Tasmania").

wineDest("Sydney").

overnight(X) :- DL[1;hasAccommodation](X,Y).

oneDayTrip(X) :- DL[1;Destination+=wineDest;Destination](X),

not overnight(X).
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The invocation of dlvhex has the following form.

$ dlvhex --ontology=travel.owl,wine.rdf programMdl.dlp

After dlvhex sends its inputs to the DL-plugin, the HEX CONVERTER module pro-
cesses the program and rewrites all Mdl-atoms in the form of HEX-atoms, replacing
the ontology identifiers 1 and 2 with the corresponding URIs. The corresponding HEX-
program is:

wineDest(X) :- &dlC["file:/home/wine.rdf",dl_pc_0,dl_mc_0,

dl_pr_0,dl_mr_0,"http://www.w3.org/TR/2003/PR-owl-guide-

20031209/wine#Region"](X).

wineDest("Sydney").

wineDest("Tasmania").

dl_pc_1("http://www.owl-ontologies.com/travel.owl#

Destination",X) :- wineDest(X).

oneDayTrip(X) :- &dlC["file:/home/travel.owl",dl_pc_1,

dl_mc_0,dl_pr_0,dl_mr_0,"http://www.owl-ontologies.com/

travel.owl#Destination"](X), not overnight(X).

overnight(X) :- &dlR["file:/home/travel.owl",dl_pc_0,

dl_mc_0,dl_pr_0,dl_mr_0,"http://www.owl-ontologies.com/

travel.owl#hasAccommodation"](X,Y).

As one can see, the HEX CONVERTER module also adds the namespace of the
corresponding ontology to the constant names denoting concepts and roles.

The answer set shown to the user, which is the answer set computed by the DL-plugin,
contains the facts

wineDest("Sydney")

wineDest("Tasmania")

overnight("Sydney")

oneDayTrip("Tasmania")

together with all information inferred by the program (namely, wineDest(t) for every
t for which Region(t) holds in wine.rdf), and oneDayTrip(t) for every t for which
Region(t) holds in wine.rdf). This corresponds to the (only) answer set for this Mdl-
program, as discussed in Section 4.2.

5.2 Adding observers

The support for observers required more profound changes to the DL-plugin, as they are
syntactically different from the features already available, and also for efficiency reasons.
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To implement observers, in accordance with the definition in Section 4.3, it was
necessary to decide how these should be represented.

• To represent a pair in Λi, 〈S, p〉, where S is a concept, a role or a negation of either
from Li, and p is a predicate from P that needs to be updated every time the extent
of S (of the same arity as p) in Li is changed, we add to the program the annotation:

i : p<- S.

where i is the index corresponding to Li. The motivation for this notation is the idea
that the information flows from S to p.

• To represent a pair in Ψi, 〈p, S〉, where p is a predicate from P and S is a concept, a
role or a negation of either from Li that needs to be updated every time the extent of
p (of the same arity as S) in P is changed, we add to the program the annotation:

i : p-> S.

where i is the index corresponding to Li. The motivation for this notation is the idea
that the information flows from p to S.

• Furthermore, it is useful to conjugate several pairs from Λi and from Ψi of Li in the
same line. For example,

i : p1 <- S1, p2 -> S2, p3 -> S3, p4 <- S4.

will add 〈S1, p1〉 and 〈S4, p4〉 to Λi, as well as 〈p2, S2〉 and 〈p3, S3〉 to Ψi. Further-
more, there may be different annotations for the same i in different places of the
Mdl-program.

The motivation behind this apparent lack of structure is to maintain consistence with
the tradition in logic programming, where clauses with the same head are typically
grouped together. Since p<- S effectively corresponds to such a clause, it makes
sense to group it with other clauses whose head contains p.

For the DL-plugin to be able to process those observers, it was necessary to implement
a new module called OBSERVER CONVERTER, which translates an Mdl-program with
observers to a (standard) Mdl-program as defined in Section 4.3. This new module precedes
the HEX CONVERTER module, and the output of OBSERVER CONVERTER is the input of
HEX CONVERTER, as is shown in Figure 5.1.

This new module receives the input program with observers, which is passed to the
ObserverLexer, which processes the input and converts it to tokens. These tokens
are parsed by the ObserverParser, that is, the parser checks if the tokens form an
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Figure 5.1: Brief overview of the DL-plugin with the new OBSERVER CONVERTER

module

allowable expression. This is done with reference to the ObserverGrammar, which
defines rules to process the observers.

When the parser finds a pair 〈S, p〉 from Λi, in the form p<- S, it first checks whether
S is a concept or a role from Li and adds one of the following rules in the same place in
the program P :

p(X) :- DL[i;S](X). if S is a concept

p(X,Y) :- DL[i;S](X,Y). if S is a role

To process the other observers in the form p-> S, it is necessary to add to each
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Mdl-atom DL[i;χ;S](X)1 (including those added by the pairs from Λi):

• S ] p to χ for each 〈p, S〉 ∈ Ψi

• S∪- p to χ for each 〈p,¬S〉 ∈ Ψi

For efficiency reasons, a different approach was followed in the implementation. To add
these new input parameters to every Mdl-atom, even those added by Λi, one needs to
process them in a second pass, because they have a global effect on the program.

The first step of this process occurs in the OBSERVER CONVERTER module. When
the ObserverParser finds p-> S, it first checks whether S is a concept, a role, or a
negation of either, from Li. According to this, an Atom object is created and it is put in an
AtomSet (a special type used during the conversion to HEX-atoms) that contains all the
observers of this type for each Li.

The second step of this process occurs in the HEX CONVERTER (that has received
the AtomSet vector) and does not directly extend the input context of all Mdl-atoms, but
rather postpones this task to the translation done by HEX CONVERTER. This module
rewrites the input context of each dl-atom as an AtomSet; the AtomSet relative just to
Li collected by OBSERVER CONVERTER (which is empty if there are no observers) is then
appended to the AtomSet of the query relative to Li. In this way, there is no need for
one extra pass of the whole program. Note that the original behaviour of the DL-plugin is
kept unchanged, that is, if an input program does not have observers, this new module, the
OBSERVER CONVERTER, checks whether observers exist, does not change this program
and passes it unchanged to the next module, the HEX CONVERTER.

We now illustrate the details of this mechanism with the help of Example 14 from
Section 4.3. The Mdl-program with observers 〈KB , O〉 is implemented as the following
program (programObs.dlp).

wineDest("Tasmania").

wineDest("Sydney").

2: wineDest <- Region.

1: wineDest -> Destination.

overnight(X) :- DL[1;hasAccommodation](X,Y).

oneDayTrip(X) :- DL[1;Destination](X), not overnight(X).

Note that the placement of the declaration of wineDest as observing the concept
Region is included after the facts about this predicate. This is in keep with the tradition
in logic programming.

The invocation of dlvhex has the following form.

$ dlvhex --ontology=travel.owl,wine.rdf programObs.dlp

1where χ is the abbreviation of S1op1p1, . . . , Smopmpm
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After dlvhex sends its input to the DL-plugin, the OBSERVER CONVERTER module
processes the program, replacing it with

wineDest("Tasmania").

wineDest("Sydney").

wineDest(X) :- DL[2;Region](X).

overnight(X) :- DL[1;hasAccommodation](X,Y).

oneDayTrip(X) :- DL[1;Destination](X), not overnight(X).

and transforms 1: wineDest -> Destination. into an Atom object that is stored
in an AtomSet relative to L1, in this case. Next, the HEX CONVERTER rewrites all
Mdl-atoms in the form of HEX-atoms, replacing the ontologies identifiers with the corre-
sponding URIs, and adding to the queries to travel.owl the extension to the concept
Destination from the observer stored in the Atom object.

The resultant HEX-program is the following:

wineDest(X) :- &dlC["file:/home/wine.rdf",dl_pc_0,dl_mc_0,

dl_pr_0,dl_mr_0,"http://www.w3.org/TR/2003/PR-owl-guide-

20031209/wine#Region"](X).

wineDest("Sydney").

wineDest("Tasmania").

dl_pc_1("http://www.owl-ontologies.com/travel.owl#

Destination",X) :- wineDest(X).

oneDayTrip(X) :- &dlC["file:/home/travel.owl",dl_pc_1,

dl_mc_0,dl_pr_0,dl_mr_0,"http://www.owl-ontologies.com/

travel.owl#Destination"](X), not overnight(X).

overnight(X) :- &dlR["file:/home/travel.owl",dl_pc_1,

dl_mc_0,dl_pr_0,dl_mr_0,"http://www.owl-ontologies.com/

travel.owl#hasAccommodation"](X,Y).

As one can see, the predicate dl_pc_1 represents the extension of the concept
Destination, which is added to the queries to travel.owl, as we have shown in
Section 4.3. The answer set shown to the user is the same of the example from Section 5.1.

5.3 Specific technical issues

Some technical issues arose during the implementation of Mdl-programs. This section
presents these aspects and the solutions that were implemented to solve them.
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5.3.1 Namespaces

As was shown in Section 3.2, namespaces are an important feature of OWL, and they
help with identifying a concept, a role or an individual univocally. A small, but very
important detail concerns how individuals are shared between the different components
of a dl-program. Any individual passing from the logic program to the ontology (through
a dl-atom) automatically receives the namespace corresponding to that knowledge base.
This is a feature that ensures RacerPro produces correct answers.

One principle of Mdl-programs is that individuals should be shared between the
different components. When one has several knowledge bases in an Mdl-program, it is
important to identify individuals with the same name in different ontologies, which have
different namespaces associated to them. So, a small change was made to the DL-plugin
to remove namespaces automatically from the result of dl-queries. This feature can be
turned on by the user in the command line when invoking dlvhex, using the parameter
--nonamespace. For example, a command using this feature could look like:

$ dlvhex --ontology=travel.owl,wine.owl tourism.dlp --nonam

espace

Namespace removal should be activated by the user when one wants to reason in Mdl-
programs in order to obtain true sharing of information between the different ontologies.

5.3.2 Output Builder

The output of dlvhex, the answer set in the case of the DL-plugin, was not shown to
the user in a human readable way. An excerpt of the output from the Example 13 from
Section 4.2 is shown below:

{oneDayTrip("<http://www.owl-ontologies.com/travel.owl#Curr

awongBeach>"),oneDayTrip("<http://www.owl-ontologies.com/tr

avel.owl#BondiBeach>"),oneDayTrip("<http://www.owl-ontologi

es.com/travel.owl#Cairns>"),oneDayTrip("<http://www.owl-ont

ologies.com/travel.owl#Canberra>"),oneDayTrip("<http://www.

owl-ontologies.com/travel.owl#CapeYork>"),oneDayTrip("<http

://www.owl-ontologies.com/travel.owl#Woomera>"),oneDayTrip(

"<http://www.owl-ontologies.com/travel.owl#Warrumbungles>")

,oneDayTrip("<http://www.owl-ontologies.com/travel.owl#Coon

abarabran>"),oneDayTrip("<http://www.owl-ontologies.com/tra

vel.owl#BlueMountains>"), ... }

In order to have a human readable output, we modified the construction of the output.
The dlvhex tool has an interface, the OutputBuilder, to be implemented by other

classes in other plugins, that builds the output to be shown in the console. This tool also
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provides a PrintVisitor, which implements the well known Visitor pattern. This
visitor has functions for each object structure that belongs to the output (e.g. AtomSet
here represents an answer set). The first change was adding a break-line between the facts
in the output in the function which prints an AtomSet of this visitor.

The second change, which affects only the DL-plugin, was to give the user the chance
to choose if he wants to see the namespaces in the answer set or not. By default, DL-plugin
prints the namespaces in the output. Now, this can be overridden by using the parameter
--out in the command line when invoking dlvhex.

To implement this feature, a new class, the DLOutputBuilder, was created in
the DL-plugin, which implements the OutputBuilder interface from dlvhex. This
new class removes the namespaces from each fact in the output and also calls the
PrintVisitor to print the result.

With these modifications, the excerpt of the answer set from the example above that is
shown to the user is now:

{oneDayTrip(CurrawongBeach),

oneDayTrip(BondiBeach),

oneDayTrip(Cairns),

oneDayTrip(Canberra),

oneDayTrip(CapeYork),

oneDayTrip(Woomera),

oneDayTrip(Warrumbungles),

oneDayTrip(Coonabarabran),

oneDayTrip(BlueMountains),

... }

The DLOutputBuilder also removes all the auxiliary domain facts (presented in
the next section) from the output.

5.3.3 Domain Checker

An additional module, the Domain Checker, was implemented due to a technical
necessity. When the semantics of an HEX-program is computed, dlvhex performs a
strong-safety check on its input, identifying circular dependencies between predicates. It
then requires that, whenever a predicate p involved in a circularity appears at the head of
a rule, the variables in the arguments of p must appear in the body of the same rule as
arguments of a predicate not involved in that circularity.

This condition is not met, in general, by HEX-programs generated from Mdl-programs
with observers. A typical example arises when p and S mutually observe each other. If
we have a dl-program with observers where the knowledge base is travel.owl and an
empty logic program with observers:
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1: destination <- Destination.

1: destination -> Destination.

then this generates the extended logic program

destination(X) :- DL[1;Destination += destination;

Destination](X).

and running it in the dlvhex returns the error message “rule not expansion-safe”.
To circumvent this issue, an extra module was built, the DOMAIN CHECKER, that

generates a special predicate domain corresponding to the universal concept >. The
DOMAIN CHECKER module has a DomainLexer and a DomainParser that collect
the list of all known individuals referred to in the program and add domain(X) to every
rule to satisfy the strong-safety check. The DOMAIN CHECKER also obtains all the
individuals from the ontology (from each ontology, if it is an Mdl-program). Next, all
individuals are added to the program as domain facts.

The information about domain is removed from the output, so this auxiliary predicate
is not visible to the user.

With these changes, the example above now generates the intermediate program:

destination(X) :- &dlC["file:/home/travel.owl",dl_pc_1,dl_mc_0,dl_pr_0,
dl_mr_0,"http://www.owl-ontologies.com/travel.owl#Destination"](X),
domain(X).

dl_pc_1("http://www.owl-ontologies.com/travel.owl#Destination",X)
:- destination(X), domain(X).

domain("<http://www.owl-ontologies.com/travel.owl#BlueMountains>").
domain("<http://www.owl-ontologies.com/travel.owl#Coonabarabran>").
domain("<http://www.owl-ontologies.com/travel.owl#Warrumbungles>").
domain("<http://www.owl-ontologies.com/travel.owl#Woomera>").
domain("<http://www.owl-ontologies.com/travel.owl#CapeYork>").
domain("<http://www.owl-ontologies.com/travel.owl#Canberra>").
domain("<http://www.owl-ontologies.com/travel.owl#Cairns>").
domain("<http://www.owl-ontologies.com/travel.owl#BondiBeach>").
domain("<http://www.owl-ontologies.com/travel.owl#FourSeasons>").
domain("<http://www.owl-ontologies.com/travel.owl#Sydney>").
domain("<http://www.owl-ontologies.com/travel.owl#CurrawongBeach>").
domain("<http://www.owl-ontologies.com/travel.owl#TwoStarRating>").
domain("<http://www.owl-ontologies.com/travel.owl#ThreeStarRating>").
domain("<http://www.owl-ontologies.com/travel.owl#OneStarRating>").

where domain(X) was added to the rules and all individuals of this Mdl-program were
added to the program as domain facts. In this case, all domain facts are individuals from
the travel.owl ontology. The answer set that is shown to the user is:

{destination(CurrawongBeach),

destination(Sydney),

destination(BondiBeach),

destination(Cairns),
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destination(Canberra),

destination(CapeYork),

destination(Woomera),

destination(Warrumbungles),

destination(Coonabarabran),

destination(BlueMountains)}

Interestingly, domain predicates were a necessary ingredient that was already needed
in, but missing from, the original version of the DL-plugin. In particular, the example
of closed-world reasoning (Example 5.9 of [11]) is not supported by DL-plugin; private
communication with the developers of the DL-plugin confirmed that this was indeed
missing from the implementation.
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Figure 5.2: Brief overview of DL-plugin with the new DOMAIN CHECKER module
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As mentioned in Section 3.1, the dl-program from the Example 7 does not run on the
original version of this tool, as the rule overloaded(X) :- not goodManager(X)

is not dl-safe. With the inclusion of this new module, this rule is changed to: overloaded(X)
:- domain(X), not goodManager(X). In this way, the negation as failure in
the logic program works as expected. Thus, this example now runs in the DL-plugin as it
should and produces the expected output.

Figure 5.2 shows that this new module processes the program after the HEX CON-
VERTER, as all previous modules may add new rules to the input program and the DOMAIN

CHECKER has to process all rules.
One can turn off this module using the parameter --nodomain in the command line

when invoking dlvhex.

5.4 Lifting

Our group proposed in [6] a new mechanism called lifting in dl-programs, to obtain a
complete two-way integration between the description logic knowledge base and the
rule-oriented program.

The separation between these two worlds is seen as a positive aspect of dl-programs,
but it has the disadvantage that the flow of information is not symmetric. The effects of
the answers from the knowledge base are permanent on the program, whereas no effect is
seen in the knowledge base, as the extensions of concepts or roles in queries are local and
meant to extend the knowledge base in the context of one query (the one which contains
the given DL-atom).

With this lifting mechanism, a concept or a role from the knowledge base can be lifted
to the program and thus be accessible both in the program and in the knowledge base. In
this way, lifting identifies a predicate from the program with a concept or a role from the
knowledge base (in the sense that they become “the same”). In other words, the deductions
one makes are automatically reflected globally on both levels.

The dl-program with lifting KBΓ, where KB = 〈L,P〉 is a dl-program and Γ =

{Q1, . . . , Qm} is a finite set of L-predicates, is the dl-program 〈L,PΓ〉where PΓ is obtained
from P by:

• for every Q ∈ Γ, adding the rules

q+(X)← DL[;Q](X) q−(X)← DL[;¬Q](X)

• replacing every dl-query DL[χ;R](t) (including those added in the previous step)
with

DL[χ,Q1 ] q+
1 , Q1 ∪- q−1 , . . . , Qm ] q+

m, Qm ∪- q−m;R](t)

where χ ≡ S1op1p1, . . . , Snopnpn corresponds to the original query’s input. We will
call the query above a Γ-extended query and abbreviate it to DLΓ[χ;R](t).
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In practice, one can define a dl-program with lifting simply by giving KB and Γ. The
symbols q+ and q− represent Q and ¬Q in the logic program.

Lifting in dl-programs was implemented by Daniel Santos, another member of the
group. He programmed a new module, LIFTING, that processes a dl-program with lifting.
The set Γ is written as special “lifting declarations” of the form

Lfc(Q, q+, q−) or Lfr(Q, q+, q−)

according to whether Q is a concept or a role.
This new module does the parsing of the new lifting declarations, and translates a dl-

program with lifting to a dl-program without lifting, following the transformation defined
above. The LIFTING module has as input a std::string, that contains the dl-program
with the lifting clauses, and returns a std::string with the processed dl-program.

My contribution in this new mechanism was the integration of the LIFTING module in
the DL-plugin for dlvhex. First, the input program is processed by the LIFTING module,
and then by the DL-CONVERTER module, which converts dl-programs to HEX-programs.
In this way, the dl-program resulting from this new module is then subject to the normal
processing by DL-plugin, which has not been modified. In particular, if the input program
does not have lifting, then the lifting module passes it without changes to the next module,
so that the DL-plugin works exactly as without this module.

One technical aspect emerged also during the implementation. Lifting has always
the problem of failing the strong-safety check performed by the dlvhex. Therefore, the
DOMAIN CHECKER module was also required in this process.

The following example illustrates this new mechanism for dl-programs.

Example 15. This dl-program uses the same travel ontology travel.owl which pro-
vides the RuralArea concept. This concept has some individuals as CapeWork and
Woomera and the complement of this concept has some cities as Canberra and Sydney.
We want to share this concept between both components of the dl-program and add some
new information. Then, we have the following program with a lifting declaration to lift the
concept RuralArea to the predicates ruralPlus and ruralMinus of the program:

Lfc{RuralArea,ruralPlus,ruralMinus}

ruralMinus(X) :- australianCity(X).

australianCity("Melbourne").

Here, we add the information that an Australian city is not in a rural area; we achieve
this by adding the predicate australianCity to the predicate ruralMinus, which
is identified with the concept ¬RuralArea. The definition of RuralArea is truly split
between the ontology (which contains all the relationships between this concept and the
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others) and the program (which is where the information about Australian cities, which are
not a rural area, is fed into it).

This dl-program is processed by the LIFTING module, translating the lifting declaration
as described above. The HEX CONVERTER converts this program without lifting to the
corresponding HEX-program. The answer set returned by the dlvhex is:

{australianCity(Melbourne),

ruralMinus(Melbourne),

ruralMinus(Sydney),

ruralMinus(Cairns),

ruralMinus(Canberra),

ruralMinus(Coonabarabran),

ruralPlus(CapeYork),

ruralPlus(Woomera),

ruralPlus(Warrumbungles),

ruralPlus(BlueMountains)}

where the Australian city Melbourne was added to the complement of RuralArea.
Using Mdl-programs with observers, the same construction can also be mimicked:

instead of using the lifting declaration, we can use the same program and take the observers
to be the sets Λ1 = {〈 RuralArea,ruralPlus〉, 〈 ¬RuralArea,ruralMinus〉}
and Ψ1 = {〈 ruralPlus,RuralArea 〉, 〈 ruralMinus,¬RuralArea〉}. So, the
corresponding Mdl-program is

1: ruralPlus <- RuralArea, ruralPlus -> RuralArea.

1: ruralMinus <- -RuralArea, ruralMinus -> -RuralArea.

ruralMinus(X) :- australianCity(X).

australianCity("Melbourne").

and it has the same answer set as the lifting construction.

5.5 Performance analysis

We now provide some experimental results about Mdl-programs and Mdl-programs with
observers. We have tested the performance of Mdl-programs using the DL-plugin for
dlvhex (version 1.7.3) with all new modules that we implemented for Mdl-programs and
RacerPro (version 1.9.2).

The tests were performed on an Intel Core 2 Duo 3.00GHz PC with 4GB RAM within
a virtual machine running Ubuntu 10.10 with 1GB RAM dedicated. As an ontology
benchmark, we used the testsuite about wines described in [30]2. It uses the original

2Available at http://kaon2.semanticweb.org/download/test_ontologies.zip

http://kaon2.semanticweb.org/download/test_ontologies.zip
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wine.rdf ontology, denoted by wine_00 and wine_n (with 01 ≤ n ≤ 10), which
is obtained by replicating 2n times the ABox of wine_00. Some statistical information
about these ontologies is listed in [30]. To test Mdl-programs, we used the program from
Example 13 and for testing Mdl-programs with observers, we used Example 14. We also
tested with or without domain predicates; since these example programs are dl-safe, we
can compare the computation time between both.

The travel.owl ontology was not changed; therefore the only variable in these
programs is the ontology wine_n. For each test, a new instance of RacerPro was opened.
To perform these tests we ran ten times the command (DOMAIN CHECKER module is on):

dlvhex --ontology=travel.owl,$wine $dlp --out

for each program, and ten times the command (here DOMAIN CHECKER module is off):

dlvhex --ontology=travel.owl,$wine $dlp --out --nodomain

for each program, where $wine varies over the ontologies wine_n (with 00 ≤ n ≤ 10)
and $dlp is either the Mdl-program program.dlp or the Mdl-program with observers
programObs.dlp.
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Figure 5.3 presents the results, where the horizontal axis shows the used ontologies
and the vertical axis displays the used time in seconds in a logarithmic scale. As can be
seen from the graph, an Mdl-program with observers has almost the same performance as
an Mdl-program with the same properties. So, there is not a significant overhead using
observers, comparing with similar Mdl-programs.

On the other hand, regarding the domain predicates, we can see that for ontologies with
a large ABox, for example the wine_09.owl, we have a significant difference between
using or not domain predicates. This is mainly due to the processing overhead by the
addition of the predicate domain to all rules in a program and by the addition of the
domain facts for all individuals in the Mdl-program.

For fully detailed test results see Table C.1 in Appendix C.



Chapter 6

Conclusions

In this dissertation, we have studied a generalization of dl-programs – Mdl-programs,
proposed by the ITSWeb group [7]. An Mdl-program accommodates several description
logic knowledge bases and a generalized program, which may contain queries to these
ontologies. Particularly, a dl-program can be seen as an Mdl-program with only one
knowledge base. These programs have the advantage of keeping ontologies separated:
these can be physically apart, independently managed and not available for modifications.

One of the goals of my participation in the ITSWeb group was to contribute with
a survey of available tools in this area. Two tools were analysed in more detail: the
NLP-DL, a reasoner for dl-programs available though a web prototype, and dlvhex, a
tool for computing semantics of HEX-programs. This tool has some available plugins,
such as the DL-plugin. This plugin interprets dl-programs in terms of HEX-programs and
calculates the answers set of the given program. Comparing these tools, we chose to work
with dlvhex, particularly the DL-plugin.

Although dlvhex and the DL-plugin have some years of development, they lack of
documentation. With the purpose of understanding these tools it was necessary to do
reverse engineering, analysing the structure and the source code of both components.
Chapter 3 summarizes all the information retrieved from this process.

The DL-plugin tool allows the computation of dl-programs by means of a concrete
syntax for the dl-atoms. This plugin converts a dl-program to an HEX-program translating
the dl-atoms into the corresponding HEX-atoms, which are provided by the DL-plugin.
Then dlvhex performs the evaluation and, when an external atom is found, it is passed to
DL-plugin to handle the query to the ontology, communicating with RacerPro.

We have extended the DL-plugin to allow the processing of Mdl-programs, where one
can work with more than one ontology at same time, keeping them completely separated.
Through the command line the user can identify which ontologies he wants to work with.
In an Mdl-atom inside the logic program, the user specifies the ontology that he wants to
extend and query this extension. The flow of information among ontologies is achieved
through the logic program, in particular by the input context in each Mdl-atom.
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Mdl-programs can be extended by mean of observers, a syntactic construction that
allows one to extend concepts or roles from a knowledge base (in the program’s view of
that knowledge base) automatically with all instances of a predicate in the logic program
or reciprocally. This syntactic construction also was implemented in the DL-plugin as
annotations in the logic program. A new module was built that processes these annotations,
translating an Mdl-program with observers to a (standard) Mdl-program.

Some technical issues arose during the implementation, which we now briefly summa-
rize.

• When an individual passes from the logic program to the ontology through a dl-atom,
it automatically receives the namespace corresponding to that knowledge base. In
Mdl-programs it is important to identify individuals with the same name in different
ontologies with different namespaces. So, we allow the user to choose if he wants to
keep the namespaces or not.

• The output of dlvhex was not shown in a human readable way to the user. So, we
have changed this to show one fact per line and we allow the user to choose if he
wants to see the namespaces in the answer set or not.

• The dlvhex tool performs a strong-safety check on the input program, identifying
circular dependencies between predicates. An example of this circularity arises when
one has a predicate and a concept mutually observing each other. To circumvent this
issue, we introduce a special predicate domain, which is added to the rules in the
program. All the individuals are also added to the program as domain facts. This was
already needed in the original version of the DL-plugin; the developers confirmed
that it was missing from the implementation.

Having an implementation for Mdl-programs, we analysed the performance of these
programs, using a testsuite already available. We can say that an Mdl-program with
observers has almost the same performance as a similar Mdl-program. Mdl-programs
with observers have the advantage of being shorter and more legible, because all global
observations are clearly marked. More importantly, the program is more robust with
respect to future changes: with observers, it is guaranteed that every Mdl-atom’s input
context is always adequately extended. Without observers, this would have to be ensured
by hand, which might lead to inconsistencies.

Ontologies are considered a convenient tool for specifying knowledge in several areas.
Also, reusing ontologies and the knowledge associated to them is a key technology for
the feasibility of the Semantic Web. So, another of the goals of my participation in the
ITSWeb group was to contribute with some case-studies. We wanted to base our examples
on ontologies used in real projects, as these seem to reflect more accurate use cases. Most
ontologies currently used in practice either have a complex TBox, but no ABox – as the
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Hontology [5], the Volkswagen Vehicles Ontology [22], the Volkswagen Sales Ontology [21],
The Accommodation Ontology [20] and Tourism Ontology [1] – or they have a large ABox,
but a simple TBox – as the Travel Guide System [9], the Travel Ontology [28], the Wine
Ontology [32] and the Food Ontology [31]. Throughout this document, we use some of
these ontologies that are freely available on the internet.

Appendix A contains the tentative work plan for this dissertation. We deviated slightly
from this work plan. The analysis of the dlvhex tool and its plugin, the DL-plugin,
took longer than we were expecting as we had to do the reverse engineering. It was
also necessary to provide some support to Daniel, an undergraduate student in Applied
Mathematics. Daniel and I found a small bug in the interpretation of negated roles by the
DL-plugin, making RacerPro process a negated role with negation as failure instead of
true negation. This was fixed and reported to the developers of the DL-plugin.

As result this thesis provides some documentation about the dlvhex tool and its plugin,
the DL-plugin, which were poorly documented. We also provide an extended version of
this tool that can interpret Mdl-programs, Mdl-programs with observers and dl-programs
with lifting. Another contribution was the case studies that allow to illustrate and test the
implementation of Mdl-programs.

The practical aspects included in this thesis were also included in some publications: a
paper about the lifting construction and its implementation [6] was accepted in a national
conference (Inforum 2013); a paper about Mdl-programs, including case studies, was
submitted to an international conference and it is available as a technical report [8]; and
we have a journal article in preparation that includes the details about the implementation
of Mdl-programs.





Appendix A

Work plan

1. Familiarization with working context (2 months)

(a) Study of specific papers in the relevant subject

(b) Presentation sessions by the members of ITSWeb group

(c) Survey of available tools

2. Implementation and study of solutions already proposed by the ITSWeb group (4
months)

(a) Extension of DL-plugin with new syntactic operators and generalizations of
DL-programs

(b) Case-studies

(c) Performance analysis

3. Development of new solutions (2 months), possibly including:

(a) Alternative forms of combination and interaction of ontologies

(b) Active integrity constraints

4. Writing the final report (1 month)
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OWL

The abstract syntax for class descriptions and axioms in OWL DL ontologies is given
in the first column of Table B.1 and Table B.2, respectively. The second column maps
OWL abstract syntax to the corresponding DL syntax and the third column summarizes
the semantics of OWL DL, that corresponds to SHOIN (D).

Table B.1: OWL DL syntax vs. DL syntax and semantics

Here, we list the full OWL concrete syntax of Example 1 from Section 2.1.1.
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Table B.2: OWL DL axioms and facts

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>
<rdf:RDF xmlns="http://basenamespace.owl#"

xml:base="http://basenamespace.owl"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
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xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<owl:Ontology rdf:about="http://basenamespace.owl"/>

<owl:Class rdf:about="#Child">
<rdfs:subClassOf>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="#hasFather"/>
<owl:someValuesFrom rdf:resource="#Father"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasMother"/>
<owl:someValuesFrom rdf:resource="#Mother"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Father"/>

<owl:Class rdf:about="#Mother"/>

<owl:ObjectProperty rdf:about="#hasFather">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:subPropertyOf rdf:resource="#hasParent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasMother">
<rdfs:subPropertyOf rdf:resource="#hasParent"/>
<owl:inverseOf rdf:resource="#isMotherOf"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasParent"/>

<owl:ObjectProperty rdf:about="#isMotherOf">
<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

</owl:ObjectProperty>

<owl:Thing rdf:about="#John">
<rdf:type rdf:resource="&owl;NamedIndividual"/>

</owl:Thing>

<owl:Thing rdf:about="#Katty">
<rdf:type rdf:resource="#Child"/>
<rdf:type rdf:resource="&owl;NamedIndividual"/>
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<hasFather rdf:resource="#John"/>
</owl:Thing>

<owl:Thing rdf:about="#Susan">
<rdf:type rdf:resource="&owl;NamedIndividual"/>
<isMotherOf rdf:resource="#Katty"/>

</owl:Thing>
</rdf:RDF>



Appendix C

Experimental Results

The following table shows the outcome of the experiments described in Section 5.5.

Mdl-program Mdl-program with observers
ontology with DOMAIN without DOMAIN with DOMAIN without DOMAIN

wine_00.owl 0.8152 0.7903 0.8727 0.9870
wine_01.owl 1.3216 1.2402 1.4160 1.4217
wine_02.owl 1.6597 1.6736 1.7350 1.6781
wine_03.owl 2.1403 1.9686 2.1752 1.9864
wine_04.owl 2.6592 2.2981 2.7200 2.5256
wine_05.owl 3.2022 2.7359 3.2708 2.8564
wine_06.owl 6.0342 4.9395 6.1490 5.1808
wine_07.owl 13.6145 9.5411 13.8759 9.9378
wine_08.owl 38.2662 18.7943 38.6106 19.4540
wine_09.owl 139.4109 43.7885 141.4371 44.2773
wine_10.owl 597.9283 104.4720 602.5614 110.5519

Table C.1: Mdl-program and Mdl-program with observers experiment results (time in
seconds)
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