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Resumo 
O ser humano desde sempre se sentiu fascinado pelo estudo do seu próprio corpo assim como 

das suas propriedades funcionais. Do desejo de compreender e explorar o corpo humano 

surgiram então técnicas que permitem o seu estudo de modo não invasivo. Entre as primeiras 

técnicas de imagiologia encontram-se os Raios-X, a tomografia axial computadorizada 

(TAC) e a terapia por emissão de positrões (PET: do inglês “Positron Emission Therapy"). 

Contudo, todas elas utilizam radiação ionizante, e como tal surgiu o desejo de desenvolver 

novas metodologias igualmente não invasivas mas que por seu lado não utilizem qualquer 

tipo de radiação ionizante. 

Entre estas técnicas encontra-se a imagiologia por ressonância magnética (MRI: do inglês 

“Magnetic Resonance Imaging”) que pode ser utilizada para estudar as estruturas anatómicas 

mas também os seus mecanismos funcionais através da aplicação da técnica de ressonância 

magnética funcional (fMRI: do inglês “functional magnetic resonance imaging).  

Contrariamente às técnicas que utilizam radiação ionizante, a imagiologia por ressonância 

magnética tira partido do facto de o ser humano ser maioritariamente constituído por água. 

Um ser humano adulto é por norma constituído por cerca de 70 – 80% de água (H2O) o que 

se reflecte numa grande abundância de protões – núcleo 1H. Quando submetidos a um forte 

campo magnético, o momento magnético destas partículas tende a alinhar-se de acordo com a 

direcção do campo magnético externo (B0). Após alinhados os protões são então submetidos 

a um pulso de radiofrequência (com frequência igual à frequência de Larmor destas 

partículas) que é absorvido e modifica o momento magnético (i.e. Spin) dos protões. Quando 

este pulso é desligado, o spin dos protões retorna ao equilíbrio termodinâmico, de acordo com 

a direcção do campo magnético B0, emitindo energia sob a forma de radiofrequência (RF). 

Estes mecanismos de relaxação diferem consoante o conteúdo em água dos tecidos e são 

estes que permitem a identificação da sua estrutura. Gradientes de campo magnético são tamb 

ém utilizados de modo a criar ligeiras diferenças no campo magnético que permitem a 

codificação do sinal com informação espacial.  

A imagiologia por ressonância magnética faz, nos dias de hoje, parte da rotina hospitalar 

providenciando imagens com grande precisão e resolução anatómica.  
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Todavia a informação estrutural nem sempre é suficiente para estudar patologias que não 

exibem diferenças anatómicas, tais como depressão ou esquizofrenia. Surge então a 

ressonância magnética funcional, que utiliza o nível de oxigenação do sangue (BOLD: do 

ingles “Blood-oxygenation level dependent”) como uma medida indirecta de activação 

neuronal. Através da utilização desta técnica é então possível mapear zonas cerebrais 

responsáveis pelo processamento de sinais como por exemplo estímulos visuais, tácteis ou 

auditivos. A título de exemplo, temos o estudo de doenças como o autismo ou até mesmo de 

distúrbios de consciência. A nível clínico a ressonância magnética funcional é utilizada para 

mapear funções críticas como por exemplo a fala, o movimento, o planeamento de tarefas, 

etc. Esta técnica oferece aos profissionais de saúde a chance de desenvolver um melhor 

planeamento cirúrgico sendo que é também aplicada no planeamento de tratamentos de 

radioterapia a nível cerebral com o intuito de mapear funcionalmente o cérebro e detectar os 

efeitos que tumores, AVC e lesões cerebrais possam ter ao nível da re-estruturação das suas 

funções.  

Até muito recentemente a grande maioria da informação disponível acerca da conectividade 

anatómica cerebral era estritamente proveniente de estudos efectuados em primatas, 

recorrendo ao uso de técnicas extremamente invasivas (Felleman, Van Essen 1991, Jones, 

Powell 1970, Mesulam 2000, Ungerleider, Haxby 1994) assim como do estudo de lesões em 

casos humanos (ex: (Geschwind 1965)). 

Frinston (Friston et al. 1993) utilizando PET e Biswal (Biswal et al. 1995) através do uso de 

fMRI foram os primeiros a identificar que para além das ligações anatómicas entre diferentes 

estruturas cerebrais é também possível identificar ligações funcionais entre regiões que à 

primeira vista parecem não ter qualquer tipo de ligação. À técnica que usa MRI no estudo da 

conectividade funcional foi dado o nome de conectividade funcional de ressonância 

magnética (fcMRI: do ingles “Functional connectivity MRI”). Esta utiliza ressonância 

magnética funcional e as oscilações de baixa frequência ao nível do sinal BOLD em cada 

voxel para estabelecer correlações. Com base na ideia de que duas zonas se podem dizer 

funcionalmente relacionadas se estas se encontram a operar no mesmo processo, é portanto 

possível assumir que as variações no seu sinal BOLD serão bastante semelhantes exibindo 

uma alta correlação. A título de exemplo vejamos duas regiões do córtex motor primário, 

localizadas em hemisférios opostos, e que contudo apresentam sinais BOLD altamente 
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correlacionados. Com esta ideia em mente foi então desenvolvido o conceito de redes* 

funcionais que são usualmente estudadas durante períodos de repouso†. Exactamente durante 

esta condição foi verificada a existência de uma rede funcional extremamente consistente 

entre indivíduos, e mesmo entre diferentes estados como durante o sono ou anestesia. A esta 

rede foi dado o nome de “Default-mode network” (Raichle et al. 2001) sendo que esta inclui 

regiões do córtex posterior cingulado, precuneus e do córtex prefrontal medial. A “default-

mode network” é a rede mais estudada, mas para além desta existem outras redes tal como a 

rede visual, a auditiva, a de controle executivo, a de atenção, entre outras. Estas redes 

encontram-se frequentemente interrompidas ou modificadas em casos de doença. Os 

projectos descritos no âmbito desta dissertação focam-se no estudo destas redes bem como 

das suas propriedades em casos de doença (distúrbios de consciência, AVC) e durante a 

performance de actividade física. A fim de estudar estas redes funcionais foram utilizados 

diferentes métodos para o cálculo da conectividade funcional. Entre os mais reconhecidos 

métodos de cálculo de conectividade funcional encontram-se a análise com base numa região 

de interesse‡, a análise através do estudo da independência entre componentes§ bem como 

métodos que permitem o cálculo da conectividade cerebral a nível global**. Os métodos que 

utilizam uma região de interesse focam-se no cálculo da conectividade entre esta região e o 

resto do cérebro através do uso de medidas de correlação. O segundo método mencionado 

separa as várias redes neuronais com base na máximizacao da sua independência estatística. 

Por último, os metodos de análise global calculam a correlação das série temporal de cada 

voxel com todos os outros voxeis do cerebro. A contribuição da autora para os estudos 

descritos ao longo desta dissertacao focou-se no uso de duas destas técnicas – “seed-based 

analysis” e “wGBC”- no cálculo da conectividade cerebral em cada um dos diferentes 

projectos. 

No primeiro projecto, descrito no capítulo 3 desta dissertação, são apresentadas vários 

paradigmas que em conjunto com o uso de ressonância magnética funcional, foram 

desenhados para detectar consciência e percepção em doentes que sofrem de distúrbios de 

consciência. Estes paradigmas foram testados num grupo de voluntários saudáveis de modo a 

verificar se são adequados ou se necessitam de ser optimizados. A autora foi então 

responsável por executar uma análise individual e de grupo da activação induzida pela 

                                                
*  do inglês: “networks” 
†  do inglês: “resting state” 
‡  do inglês: “seed-based analysis” 
§  do inglês: “ICA” 
** do inglês: “wGBC” 
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execução destes mesmos paradigmas. O desenvolvimento de paradigmas adequados a estes 

pacientes, combinadas com o uso de fMRI vem complementar e melhorar o diagnóstico e 

prognóstico destes doentes. 

No capítulo 4 desta dissertação a autora focou-se na análise da conectividade functional em 

pacientes que foram diagnosticados com um pequeno AVC, com enxaquecas e com TIAs††. 

Este procedimento utilizou técnicas de cálculo da conectividade com regiões de interesse e 

medidas globais de conectividade funcional. O objectivo deste estudo é uma vez mais 

averiguar se a inclusão de uma sequência de conectividade functional poderá facilitar o 

diagnóstico destes doentes bem como o seu prognóstico. 

No quinto capítulo a autora foca-se no estudo das diferenças induzidas ao nível da 

conectividade funcional por uma única sessão de exercício físico. São uma vez mais 

utilizadas técnicas de cálculo da conectividade com regiões de interesse bem como outros 

métodos implementados por outros investigadores do departamento. 

É também incluído nesta dissertação um capítulo no qual foram analisadas as propriedades 

destas redes neuronais ao nível de uma população saudável. É importante que tanto as 

condições de aquisição dos dados de ressonância magnética funcional como as metodologias 

de análise estejam bem estabelecidas para que os dados provenientes de diferentes estudos 

sejam comparáveis e para que possamos estabelecer de forma fiável conclusões acerca de 

populações saudáveis e doentes. O conceito de repouso é ainda muito variável, 

particularmente quando é apenas pedido aos participantes que permaneçam calmos e imóveis. 

Certos estudos requerem que os participantes permaneçam de olhos fechados, outros de olhos 

abertos e outros ainda que fixem uma imagem projectada num ecrã. Uma grande 

variabilidade de estados podem ser originados com este design experimental, sendo que estes 

vão desde o simples devaneio em torno de um assunto, que por qualquer razão se encontra 

mais fortemente em mente, ou até mesmo o adormecer. Com o objecto de estudar estas 

variações, o capítulo 6 foca-se na investigação da conectividade cerebral resultante de duas 

diferentes situações bem como da sua variabilidade. Neste capítulo a autora procurou estudar 

a reprodutibilidade e confiança destas redes funcionais cerebrais quando é pedido aos 

participantes que executem uma tarefa de baixo requerimento cognitivo. A análise foi 

executada através do cálculo da correlação entre séries temporais bem como da sua análise 

                                                
†† do inglês: “Transient Ischaemic Attack” 
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estatística, utilizando medidas como o coeficiente de correlação intra-classes, que fornece 

uma estimativa de reprodutibilidade entre diferentes medições.  

Deste trabalho resultaram uma apresentação oral e a apresentação de um poster. Os resultados 

foram no geral positivos mas em alguns casos bastante ambíguos. As mais recentes 

publicações evidenciam o interesse em estudar não só a distribuição espacial destas redes 

como também as suas propriedades temporais que se parecem evidenciar como extremamente 

dinâmicas. Como tal fica aqui aberto o caminho para a continuação da exploração das redes 

funcionais cerebrais bem como da sua variabilidade.  

Numa nota final, consideramos importante salientar que o vasto estudo da conectividade 

cerebral assim como o dos seus mecanismos é ainda uma área de investigação com pouco 

mais de uma década e com um ainda longo caminho a percorrer. 
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Abstract 
Conventional functional magnetic resonance imaging (fMRI) is used to measure small 

fluctuations in the blood oxygenation level dependent (BOLD) signal resulting from neural 

activation due to an external stimulus or task. Nonetheless, this imaging technique can also be 

applied to the study of functional connectivity in the human brain. Since it was first 

acknowledged that BOLD signal fluctuations also occur during resting periods that increased 

attention has been directed to the investigation of brain behaviour during this particular state. 

There is still an on-going debate as to whether these fluctuations actually reflect neuronal 

baseline activity or are just the result of physiological metabolism and therefore independent 

o neuronal function. Also, can this resting state activity be truly called a “baseline” for 

comparisons? Moreover, functional connectivity has identified several networks, of which the 

default mode network is the most robust. This network is believed to have a great importance 

in brain awareness and cognition.  

Further research is crucial to correctly understand these events and also to create a 

standardised methodology to perform the resting state fMRI acquisitions. The RESTATE 

(Resting State Techniques) project arises from the need to comprehend and correctly interpret 

the measured low frequency BOLD oscillations during resting periods. With this longitudinal 

study, comprising a baseline and a follow-up scan, we aim to assess the implications of using 

a low cognitive level paradigm upon the reproducibility of the data during functional 

connectivity analysis. 
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Chapter 1  
 

 

Introduction 
 

 

 

1.1 Rationale 

Research has extensively been developed during the last decade using functional connectivity 

MRI. This method has proved to efficiently distinguish between healthy and diseased 

populations and has also provided us with a greater insight into brain mechanisms. 

Particularly during resting periods, this methodology has raised the interest of researchers and 

practitioners since it does not require the performance of a particular task. We therefore focus 

our attention into the different analytical methodologies to perform functional connectivity 

analysis using different populations and study designs. 

 

1.2 Project Aims  

Resting state fMRI has found large application in the study of pathological states where the 

intrinsic activity was found to be related to the severity of the disease. Regardless of the still 

early stages of development, the clinical applications of this technique demonstrate great 

promise. The aim of this dissertation is to investigate functional connectivity in pathological 

cases as well as connectivity differences arising from exercise. 

Nevertheless, the concept of resting state is complex and probably elusive (Morcom, Fletcher 

2007a) and up until today there is no established methodology for resting state fMRI studies. 
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It is therefore expected that the reliability of functional connectivity during resting state is 

affected due to inter-subject and inter-session variability. 

Several papers have been published studying the reliability and consistency of resting state 

fMRI measurements (Wang et al. 2011, Fiecas et al. 2013, Yan et al. 2009, Guo et al. 2012, 

Shehzad et al. 2009, Patriat et al. 2013) and networks such as the Default-mode network 

(DMN) (Greicius et al. 2003, Fox et al. 2005, Fransson 2005), when using conditions such as 

eyes open, eyes closed and passive visual preprocessing tasks. To our knowledge, no study 

has been published investigating these statistical parameters in the presence of a low 

cognitive demand task. With the RESTATE study we aim to quantify possible differences 

and their statistical significance between the two conditions, subjects and scans. 

 

1.3 Methodology 

Every study described during the course of this dissertation resulted from the interest to study 

functional connectivity under different conditions and diseases. All of them went through a 

process of study design, ethical approval, recruitment and data acquisition.  

The author took part in the RESTATE study design, execution and analysis. The following 

general methodology was applied to all separate studies described in this dissertation. 

 

1. The study started with a literature review of what has been previously done in order to 

design a suitable study protocol. The literature review provides important clues on 

how to efficiently outline the purpose of the study regarding what has been previously 

investigated and what sort of contributions can be achieved to provide better 

knowledge towards the work of researchers and the general public.  

 
2. A proposal had to be written to the ethical committee in charge of the area in order to 

obtain ethical approval for the study. In the particular case of the RESTATE study it 

was designed as an amendment to the ethics application previously submitted for the 

TIA cfMRI study. 
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3. After ethical approval a proposal had to be submitted to the Research and 

Development (R&D) department and approved before the study could officially start. 

 

4. The recruitment started after approval of the R&D. Patient/volunteers were carefully 

screened to ensure that they were suitable for the specific research. 

 

5. Data management is of increased importance with studies involving patients. For the 

studies involving NHS stroke patients all information had to be stored on the main 

site file at the Aberdeen Biomedical Imaging Centre as well as in a site file located at 

the Stroke-Unit of the Aberdeen Royal Infirmary (NHS Grampian). 

 

6. At last, the structural scans were screened by a radiologist to identify any possible 

accidental findings and if these existed they were reported to the participant as well as 

to their General Practitioner (GP). The data was then processed to obtain the 

functional connectivity results. 
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1.4 Thesis Outline 

This dissertation features a series of connectivity studies developed at the Aberdeen 

Biomedical Imaging Centre during a period of 9 months. The methodology used to perform 

functional connectivity MRI analysis is common to all of the separate studies even though the 

their aims and outcomes vary. Therefore, this dissertation is outlined in a way so that each 

chapter represents a specific study. The particular purpose, aims, methods and results of each 

study are discussed in each of these chapters. The studies are organised chronologically as the 

work was developed. 

! Chapter 1. Introduction – This chapter is a brief overview of the structure used 

throughout the dissertation as well as of the work developed. 

 

! Chapter 2. Background – In order to contextualize the work developed this chapter 

includes an introduction to MRI, resting state techniques and functional connectivity 

methodologies. The various scanning procedures used in the studies are also 

described in this chapter.  

 

! Chapter 3. DoC study - The first study focuses on Disorders of Consciousness (DoC) 

and how the use of new imaging techniques such as fMRI can help in the assessment 

of these patients. The contribution of the author to this study was in ascertaining the 

validity of the paradigms designed to assess consciousness in DoC patients. In order 

to do so, the author used an in-house built method to quantify the activation induced 

by the paradigms in a group of healthy volunteers. This analysis was performed to test 

the paradigm and use the results as a point for improvement.  

 

! Chapter 4. TIA cfMRI study -The second project is focused on the study of stroke 

patients presenting at the Aberdeen Royal Infirmary and who are given an uncertain 

diagnosis. This study aims to ascertain the advantages of including a functional MRI 

sequence into the already established neurovascular MRI protocol.  

 



RESTING STATE FMRI EXPERIMENTAL AND ANALYTICAL METHODOLOGY: A FUNCTIONAL CONNECTIVITY ANALYSIS 

 5 

! Chapter 5. PECON study- The third study was designed to be an integrating part of 

the TIA cfMRI study by assessing the effects of an acute session of exercise in 

functional connectivity using a group of healthy volunteers. 

 

! Chapter 6. RESTATE study - The fourth and last study chapter describes the 

RESTATE study, which focuses on the study of resting state fMRI acquisition 

techniques and the investigation of their reliability and reproducibility. The study was 

designed and put into practice during the course of this internship and this chapter 

provides a description of the whole process from ethical approval, volunteer 

recruitment, scanning procedure and equipment, cognitive assessment, the paradigm 

used, data analysis and results. 

 

! Chapter 7. Closing Remarks – This last chapter describes the achievements 

accomplished during the course of the internship and their contribution to future 

research. 
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Chapter 2  
 

 

Background 
 

 

 

2.1 Magnetic Resonance Imaging  

Magnetic Resonance (MR) is an imaging method that uses protons and their magnetic 

properties to generate an image. This modality takes advantage of the great abundance of the 

hydrogen nucleus in tissue in the form of water (each water molecule containing two 

hydrogen nuclei/protons) and particularly in the human body constituting up to 70% to 90% 

of most tissues. Moreover, the presence of a single positively charged proton in each 

hydrogen nucleus gives it a relatively large magnetic moment. When exposed to a strong 

static magnetic field (B0), the majority of the magnetic moments (or spins) of the hydrogen 

nuclei will align parallel to the static field. The use of a short oscillating magnetic field at the 

Larmor frequency (i.e. RF pulse) results in the precession of the net magnetization towards 

the xy plane. The xy-magnetization will straight after start to diphase, along with the 

regrowth of the magnetisation in the direction of the external magnetic field (z-direction). 

Magnetic field gradients are used to cause the nuclei at different locations to precess at 

different speeds providing us with spatial information. Severe alterations in the tissue water 

content as well as in their magnetic properties can be found in cases of disease or injuries.  

MR can not only be used to obtain structural anatomical images and investigate pathologies, 

but it can also be applied to study organ function, the chemical composition of tissues and to 

provide an insight into brain activity.  
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2.2 Imaging Techniques  

2.2.1 Noise in functional magnetic resonance imaging sequences 

The noise characteristics of data obtained using functional magnetic resonance imaging 

(fMRI) can pose a great challenge for the analysis process. The signal under focus represents 

less than 2% or 3% of the total BOLD (Blood oxygenation level dependent) response, 

reflecting a very small effect size. The majority of the signal is dominated by physiological 

noise (Kruger, Glover 2001) and scanner drift (Bianciardi et al. 2009). The noise present in 

the data has several sources that can be broken down into true noise and unaccounted-for-

signal. True noise results from thermal motion of electrons residing inside the bore of the 

magnet or within the equipment that is used to collect the raw data.  A second source of true 

noise is related with brain physiology. The observed noise in the fMRI data is also the result 

of various other contributions that can be described as unaccounted-for signal. Head motion, 

scanner drift, and uncontrolled cognitive activity on the part of the subject are some of the 

sources for this type of noise. Scanner drift is the result of slow but constant changes in the 

strength of the magnetic field inside the bore over the course of the scanning session and is 

modelled during data analysis. The subject under study should ideally lie very still in the 

scanner since even small movements of the head position can cause movement artefacts. 

Although these are accounted for and corrected during the preprocessing steps, large head 

movements can be problematic to correct. Physiological fluctuations resulting from heartbeat 

and respiration can be corrected by monitoring and recording these and use them as nuisance 

variables (regressors in the GLM model) during data analysis. Regarding the spontaneous 

low-frequency BOLD fluctuations, unrelated to the paradigm, and due to unconstrained 

cognitive activity, these are impossible to correct due to its unpredictable nature regarding 

time and location and are currently a relevant topic under extensive study.   

 

2.2.2 Echo-Planar Imaging – EPI 

Echo planar imaging (EPI) is one of the most used imaging sequences finding application in 

diffusion, perfusion and functional magnetic resonance imaging (fMRI). The methodology 

behind this sequence involves the acquisition of all k-space lines in one repetition time and 

using a single radio-frequency excitation. It provides us with images with decreased motion 
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artefacts with a reduced imaging time, providing us with the ability to image rapid 

physiological processes of the human body. 

 

2.2.3 T1 –weighted images 

T1-weighted images, usually known as ‘anatomical scans’, have very good contrast enabling 

a great distinction between the different tissue boundaries. In this particular sequence fluids 

are usually displayed as dark, water-based tissues have a mid-grey colour and fat-based 

tissues will be displayed very brightly. The studies described during the course of this 

dissertation use an ultrafast spoiled gradient echo (GE) sequence: T1-3D TFE (Turbo Field 

Echo), with a small flip-angle (8˚) and a very short repetition time (TR = 8.2 ms). This 

sequence uses an optimised k-space filling procedure to reduce the acquisition time. 

However, the drawback of a small flip angle and very short TR is poor T1-weighting. 

Therefore this GE pulse sequence uses an initial 180 degrees inversion pulse to prepare the 

magnetization and provide contrast enhancement before starting acquiring data. 

 

2.2.4 T2 –weighted images 

T2-weighted images acquired using a spin echo sequence will require a long TR and echo 

time (TE), making them more time-consumable than T1-weighted images. When using this 

type of sequence the fluids will appear very bright and both water- and fat-based tissues will 

be displayed on the middle of the grey scale. This is one of the preferred sequences used for 

pathological scans since it enables the easy distinction of collections of abnormal fluid. Long 

T2s will provide more signal and thus images obtained using this combination will be brighter 

than using short T2s. T2
*-weighted images are closely related to T2-weighted ones, having 

basically the same contrast. The main difference is due to susceptibility effects responsible 

for creating field inhomogeneities that speed the transverse relaxation decay. SE sequences 

can correct for this effect but GE cannot. So GE sequences will result in images with a 

combined effect of T2 and magnetic field inhomogeneity, being this relaxation known as T2
*. 

For the TIA cfMRI study the acquired images were T2
*-weighted using a GE sequence 

(T2W_FFE – Steady state Free precession).  
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2.2.5 Neurovascular protocol  

The consultant neuroradiologist on the site, Dr. Arnab Rana, originally developed the 

neurovascular protocol used in the TIA cfMRI study. 

The local minor-stroke MRI protocol includes: 

1) T1 structural image;  

2) T2* weighted sequence;  

3) Fluid attenuation inversion recovery (FLAIR) pulse sequence; 

4) Diffusion-weighted imaging (DWI) sequence. 

For the purpose of the TIA cfMRI study an Echo-Planar Imaging functional MRI sequence 

was also included in the scanning protocol. Each of these sequences has a specific diagnostic 

value, even though they complement each others.  

The T1 structural image is used to identify bleeding, tumours and other structural 

abnormalities such as cortical laminar necrosis. The T2* gradient echo structural image will 

exhibit an enhanced contrast in the presence of microbleeds therefore is used to confirm 

intracerebral haematomas. If a heaematoma is diagnosed then the use of blood thinning drugs 

is not recommended to prevent a potential stroke. The FLAIR sequence is included in this 

protocol once the inversion recovery nulls the CSF signal resulting in an easier identification 

of infarcts at the cortical surface compared to the standard T2SE. This sequence also shows 

infarcts that are older than the hyper-acute lesion. Finally, DWI will identify infarcted regions 

as diffusion restriction. 

Apart from the structural and the functional sequences, all of the other sequences are acquired 

in an axial plane. The reason behind this choice is related to an easier diagnose using this 

particular plane when compared with the coronal or sagittal.   
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The neurovascular protocol parameters are as follows: 

A gradient-echo echo-planar sequence (EPI) was used to obtain the functional images (used 

in the posterior functional connectivity analysis) with an acquisition time of 10 minutes 

(30ms echo time; 2s repetition time; 78˚ flip angle; 96!96 matrix size; 240!240 mm2 field of 

view; 32 slices; 3.5 mm slice thickness; 1 mm inter-slice gap; SENSE parallel imaging 

method with two-fold acceleration; 300 dynamic scans; 4 dummy scans). A high-resolution 

T1-weighted structural scan was also obtained in 5 minutes and 58 seconds, using fast three-

dimensional gradient-echo imaging (8.2s repetition time; 3.8ms echo time; 8˚ flip angle; 

240!240!125 matrix size; 240!240!160 mm3 field of view; 1.0!1.0!1.0 mm3 voxel size). A 

T2*-weighted image was acquired with 706 ms repetition time; 16.11ms echo time; 18˚ flip 

angle; 232!229!131 matrix size; 230!131!182 mm3 field of view; 4.50!4.5!4.5 mm3 voxel 

size; 24 slices; slice thickness 4.5 mm. The parameters used to obtain the FLAIR images are 

11000ms repetition time; 125 ms echo time; 120˚ refocusing pulse; 0.65!0.87 mm2 voxel 

size; 29 slices; 4 mm slice thickness; Finally, a diffusion-weighted imaging (DWI) scan was 

acquired in 1 min and 30 s (b value of 1000; 152!152 matrix size; 230x230 mm2 field of 

view; 24 slices; 4.5 mm slice thickness; 1 mm inter-slice gap; SENSE parallel imaging 

method with two-fold acceleration).  
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2.3 Resting state fMRI  

During periods of resting wakefulness the human brain presents spontaneous, low frequency, 

fluctuations of the blood oxygenation level dependent (BOLD) signal. In 1995 Biswal and 

colleagues(Biswal et al. 1995) published the results of a study that focused on explaining the 

meaning of these oscillations. The authors first identified a region of interest in the left 

somatosensory cortex by using a traditional fMRI experimental design during which the 

subjects were performing bilateral finger tapping. The same subjects were posteriorly 

scanned during a period of rest, without performing any sort of cognitive, motor or language 

task. The results reflected high correlation between the seed region in the left somatosensory 

cortex and the homologous areas in the contralateral hemisphere. 

One of the major motivations for studying spontaneous activity in the brain focuses in 

understanding brain energy metabolism systems. The brain represents only 2% of total body 

mass but is responsible for the consumption of 20% of body’s energy (Raichle, Mintun 

2006). Task related increases in neuronal metabolism are usually small (<5%) when 

compared with its large resting energy consumption(Raichle, Mintun 2006). 

The first studies identifying the presence of spatial patterns with coherent signal fluctuations 

in the human brain were performed in the late 90’s and early 2000 using both fMRI (Biswal 

et al. 1995, Lowe, Mock & Sorenson 1998) and positron emission tomography (PET) 

(Friston et al. 1993, Shulman et al. 1997, Raichle et al. 2001a). These patterns have been 

named “intrinsic connectivity networks” (Seeley et al. 2007) or “resting state networks” 

(RSNs) (Greicius et al. 2003). These RSN are located in grey matter regions and several 

studies have suggested the importance of some of these networks supporting core perceptual 

and cognitive processes therefore strengthening the hypothesis that these reflect functional 

systems with intrinsic energy demands. The neuron population enclosed within each 

networks is thought to be firing together with a common functional purpose. The patterns 

displayed by RSN are reliable and reproducible across a range of analysis techniques, 

conscious states and both in an individual subject and group level (Greicius, Menon 2004, 

Damoiseaux et al. 2006, Shehzad et al. 2009). 

These BOLD signal fluctuations are intrinsically generated by the brain and do not happen as 

a result of an input from the outside environment (e.g. being asked to perform a task) or an 

output (e.g. performing the task). Therefore, fMRI studies of spontaneous activity attempt to 
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minimize changes in sensory input and ask the participants to refrain from making any 

specific cognitive task. This scanning protocol has been commonly named ‘resting state 

fMRI’ since subjects are usually instructed to simply lie in the scanner and refrain from 

falling asleep. However, there is still some debate on whether the low frequency BOLD 

fluctuations observed during ‘resting state’ represent true intrinsic neuronal activity or are 

just the result of ‘mind wandering’ and conscious mentation (Morcom, Fletcher 2007b). 

Up until today, most of the studies performed seem to suggest that although spontaneous 

individual behaviour is likely to contribute to resting state BOLD fluctuations, this is unlikely 

to be the main source of the signal. Supporting this hypothesis are the studies reporting 

similar spatial location of BOLD correlations across different behavioural states, including 

different resting conditions, task performance, sleep and even anaesthesia. Furthermore brain 

activity evoked by the performance of a task seems to be distinct from and only 

superimposed on the underlying spontaneous activity. A 2006 study performed by Nir and 

colleagues (Nir et al. 2006) reported that spontaneous cognition, such as mental imagery, 

results in patterns of neuronal activity in visual regions that are distinct from the patterns 

observed in spontaneous activity. These studies support the idea that unconstrained behaviour 

experienced by the participants inside the scanner will result in BOLD modulations that are 

in addition to, and not the source of, spontaneous coherent BOLD fluctuations. Therefore one 

can divide the spontaneous BOLD oscillations into two different components: resulting from 

unconstrained behaviour and the intrinsic activity underlying the first and persisting across 

different states (Fox, Raichle 2007). 

Two very important data analysis issues should be considered when studying resting state 

data: how to account for non-neuronal noise and how to identify spatial patterns of 

spontaneous activity. As mentioned in the previous section, non-neuronal components (e.g. 

cardiac and respiratory activity) can be measured during data acquisition and removed from 

data through linear regression. Independent component analysis is a technique that can be 

used to isolate noise sources from the BOLD data itself, along with the regression of signals 

that are common to all the voxels (e.g. the global signal) or signals from regions that are 

likely to have a high degree of physiological noise compared to the amount of neuronal 

activity (e.g. ventricles or white matter). 

In the early days of resting state analysis the attention was focused on how this state could 

potentially represent a baseline for comparisons with activation studies. The 
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acknowledgement of a true baseline would provide a new tool for block-design fMRI 

experiments as well as the correction of the influence that this baseline might have on the 

signal under study. However the lack of agreement on whether ‘resting state’ represents a 

true neuronal baseline or just a physiological response has moved the current functional 

connectivity studies to focus on the dynamic properties of these low frequency oscillations 

which can provide new clues to the mechanisms underlying brain function.  

 

2.3.1 Resting state networks  

The low frequency BOLD fluctuations observed during the ‘resting state’ (i.e., in the absence 

of an external stimulation task) and described in the previous section were not only found to 

be reproducible but also to show temporal correlations between different areas of the brain. 

To these distant regions that are thus hypothesised to be working on the same process, we 

give the name of resting state networks. The most studied and reproducible network is the 

default-mode network (DMN) that is thought to be involved in memory consolidation and 

keeping a certain level of awareness even when resting. 

The first evidence for the default-mode hypothesis came from a PET study carried out by 

Raichle et al. in 2001(Raichle et al. 2001a). In this study the volunteers were asked to rest 

quietly with their eyes closed. It was found that consistent regions of the brain were active at 

rest but decreased their activity when cognitive tasks were performed. The authors then 

suggested the existence of an organised, baseline default mode network (DMN) of brain 

function. Not long after, Greicius et al., 2003(Greicius et al. 2003)firstly identified the DMN 

using functional MRI. A study performed by the same team also revealed that even thought 

this network is affected by the performance of cognitive tasks (presenting a decreased 

magnitude) its activity persists throughout both experimental and rest periods if the 

experiment is not sufficiently challenging(Greicius et al. 2004). 

Numerous studies(Greicius et al. 2003, Shulman et al. 1997, Mazoyer et al. 2001)hypothesise 

the existence of two large opposing networks in the brain: the “task-negative” including the 

DMN and the “task-positive” composed by networks involving attention and task-based 

systems such as the somatosensory or visual. 
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Several other resting state networks have been identified up until today and investigation 

suggests the existence of at least 6 consistent networks: Visual, Auditory, Dorsal and ventral 

attention, default-mode network, somatosensory network and frontoparietal network. 

Although there is no agreement on the literature regarding neither the names nor their 

divisions the existence of significantly agreeable resting state networks is already an 

established fact. Once again, these patterns of activated regions are consistent across subjects, 

states of cognitive development, degrees of consciousness, to some degree even across 

species, and under pharmacological manipulation.  
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2.4 fMRI analysis 

After data acquisition and before model estimation the data has to be preprocessed. During 

this stage the images are realigned with each other, the functional scans are co-registered to 

the structural image and there is usually also a normalization step that ensures that all the 

brains are in the same image space. Figure 2.1 summarises the most common preprocessing 

pipeline procedure. 

 

 

 

 

 

 

We designate as ‘native space’ the original coordinate system as the images were acquired 

from the MRI scanner. The brain of different individuals will not necessarily line up in the 

native space due to different brain sizes, and even the same individual will have his or her 

brain in a different position during different scans. Therefore there is a need for a 

standardised/stereotactic space to register the images with. The studies performed and 

described on the forthcoming chapters will use the MNI (Montreal Neurological Institute) 

stereotactic coordinate space by default. 

Motion correction (realignment and reslice) is another step that has to be performed during 

fMRI data analysis. The studies described in this dissertation used a rigid-body spatial 

transformation model (with six-parameters), which assumes that the effects of motions do not 

change the shape of the brain, just its position and orientation.  

Slice timing correction is a process that is not implemented in all studies. Nonetheless, slice 

timing correction is important and it is used because different slices are acquired in sequence 

therefore the BOLD signal is sampled at different time points in different parts of the brain. 

One would ideally like to have the signal for the whole brain at the same time point. This 

correction method works at the voxel level examining the time course and shifting it by a 

Figure 2.1 - Schematics of the fMRI preprocessing pipeline 
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small amount and using interpolation with the points actually sampled in order to obtain the 

time course we would have if we sampled all the voxels at the same time.  

Normalization of data with the presence of lesions can prove to be difficult due to existence 

of areas with missing signal. This can result in substantial lack of information to perform a 

correct spatial normalization. The standard way to deal with this problem is to use cost 

function masking, in which a portion of the image (in this case the area with the lesion) is 

excluded from the cost function computation during registration. For the particular case of 

the patients involved in the fcMRI study of a stroke population (Chapter 3) the participants 

only presented with small lesions such as minor ischaemic attacks. As it has been described 

before, the normalization of standard stroke lesions would use a lesion masking procedure, 

however, the lesions in the dataset of chapter 3 are of a relatively small size and have proven 

not to interfere with the normalisation of the data. 

As mentioned before artifacts should always be corrected during data preprocessing. When 

carrying out connectivity analysis one has to be extremely careful with artifacts such as head 

motion since these can cause spurious connections between regions of the brain. The typical 

nuisance trends considered to be removed from the resting state fMRI data include the six 

motion parameters, the average signal from white matter regions, ventricular signal, global 

mean signal, and physiologic signals such as the heart rate and respiration (if available) 

(Cohen et al. 2008, Fox et al. 2005). Opinions differ on the use of global signal regression 

and whether this step should or not be implemented. The main reason supporting the use of 

global signal regression is related to information on non-neuronal signal artifacts (such as 

components related to motion and respiration) that are encompassed in this variable. 

Nevertheless recent studies discourage the use of this variable as a regressor. A more detailed 

overview about this topic can found in the Chapter 5 of this dissertation. 

When using spatial smoothing we assure a more homogeneous signal since the data in one 

voxel is averaged with its neighbours. It is important to avoid using too much smoothing 

otherwise most of the information can also be lost. It is a fine compromise and the usual 

values for smoothing range between a Gaussian kernel of 4 and 8 mm.  

The last step of fMRI analysis is the statistical testing of the results obtained with the aim of 

testing/validating a hypothesis. This procedure usually involves the use of t-tests and will 

provide a valid method to verify if for e.g. two conditions elicit a different brain response or 

not.   
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2.5 Functional connectivity MRI (fcMRI)  

The analysis of brain connectivity can be divided into three types: Anatomical connectivity 

(AC), Functional Connectivity (FC) and Effective Connectivity (EC). Anatomical 

connectivity, as the name implies, is the study of the anatomical connections between 

different brain regions. On the other side, functional connectivity assumes the possibility of 

an anatomical pathway but is mainly focused on the study of temporal correlations in BOLD 

fluctuations between different brain areas. Finally, effective connectivity is the specific study 

of causal influence between at least 2 regions, and the direct and/or indirect influence that 

these regions exert upon each other (Varsou, Macleod & Schwarzbauer 2013). Apart from 

their fundamental differences these types of connectivity are usually found to interact with 

each other. Hence the measured connectivity may be the result of a combination between 

anatomical, effective and functional networks. The studies in this dissertation are based on 

functional connectivity and therefore any future references on brain connectivity will relate to 

this specific type of connectivity. 

As mentioned before, functional connectivity targets the study of temporal correlations 

between different brain areas in the fMRI data. This is a non-invasive technique used to study 

the large-scale neural networks in the brain (Bullmore, Sporns 2009, Salvador et al. 2005, 

Zhang, Raichle 2010). 

Low-frequency spontaneous oscillations in the BOLD signal are correlated over time 

between regions within the same working brain systems. Figure 2.2 depicts the BOLD time 

course of an example subject measure in (top) both left (green) and right (red) primary motor 

cortex where can clearly be seen a pattern of correlated fluctuations; and (bottom) the 

absence of correlation between motor (green) and visual (blue) regions. 
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Functional connectivity MRI applied during ‘resting state’ has proved to be a good 

segregation method between health and diseased population. Resting state fMRI has also 

shown that neuronal network patterns change with increasing age(Meunier et al. 2009) and it 

has just started to be used in the study of the neonatal and fetal development (Schöpf et al. 

2012). On the other hand, the resting state networks on their own have also provided clues 

regarding brain function. The DMN has shown to be affected by ageing (Damoiseaux et al. 

2008) and disrupted in several neuropsychiatric disorders such as mild cognitive impairment 

(Sorg et al. 2007), Alzheimer’s disease (Greicius et al. 2004, He et al. 2009), schizophrenia  

(Calhoun, Eichele & Pearlson 2009, Zhou et al. 2007), depression (Greicius et al. 2007), and 

autism  (Kennedy, Redcay & Courchesne 2006, Müller et al. 2011). Regarding autism 

spectrum disorders the study of resting state activity has shown that multiple networks are 

affected by this condition presenting each presenting some sort of dysfunction. Depressive 

disorder studies show some evidence for abnormal hyperconnectivity, moreover the study 

published by Perrin et al. (Perrin et al. 2012) analysed depression patients before and after 

electroconvulsive therapy (ECT) treatment and reported a decreased connectivity in the left 

dorsolateral prefrontal cortex after treatment. The patients included in the study had reported 

improvement in symptom intensity after the ECT treatment, which was found to be correlated 

Figure 2.2 - BOLD time course of an example subject: top – time course of two regions located in the 
left (green) and right (red) primary motor cortex; bottom – time course of two regions located in the left 
(green) primary motor cortex and the left (blue) primary visual cortex. 
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with the decreased connectivity pattern identified. Patients suffering from Alzheimer’s 

exhibit abnormal neuronal patterns as well as Parkinson’s (Wu et al. 2009) (connectivity 

disrupted in motor areas), epilepsy and multiple sclerosis. 

Some of the most widely used methodologies to investigate functional connectivity in fMRI 

data include seed-based analysis, independent component analysis (ICA) and graph theory 

methods. Graph measures were not used in any of the studies described in this dissertation so 

they will not be described any further. The two forthcoming sections (Section 2.5.1 and 

Section 2.5.2) will give a brief overview of the theory behind seed-based and weighted global 

connectivity measures as well as of their strengths and weaknesses. Section 2.5.3 will focus 

on independent component analysis.  

It is important to note that subtle changes in the analytic approach of resting state data, for 

example using slightly different spatial seeds in seed-based correlation, or altering the model 

order dimensionality estimation in ICA, can have a significant impact on the spatial 

characteristics of the RSNs identified.  

 

2.5.1 Seed-correlation analysis  

Seed-based correlation mapping is a methodology based in extracting the BOLD signal time 

course from a “seed” region of interest (ROI). The time courses from all the other voxels in 

the brain are also extracted and a correlation measure is computed between these and the 

seed’s time course (Figure 2.3). The signal from the seed region is either averaged before 

computation of the correlation measure or after by averaging the correlation values of the 

voxels inside the ROI. The Pearson product-moment correlation method is the most widely 

used measure of functional connectivity. Nevertheless, when using this method one has to 

carefully remove the non-neuronal contributions (such as head movement or any other 

confounding variables) insofar as is possible to ensure that the calculated correlations truly 

reflect neuronal activity. In addition, low pass filtering of the data should be performed under 

the assumption of temporal sample independence, to address the high noise content of fMRI 

data. This step attempts to minimise artificial correlation emanating from noise processes 

such as synchronised cardiac and respiratory signals (Birn et al. 2006). The physiological 

noise resulting from respiratory and cardiac function is concentrated at relatively high 

frequencies (>0.1Hz) (Cordes et al. 2001a, Lowe, Mock & Sorenson 1998, Thomas, 
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Harshman & Menon 2002) while scanner drift is localised to frequencies bellow 0.01Hz. 

Signal resulting from spontaneous neuronal activity is mostly confined to frequencies 

between 0.01Hz – 0.1Hz (Biswal et al. 1995, Cordes et al. 2001a, Demirci et al. 2009, 

Salvador et al. 2005). Therefore the majority of spontaneous BOLD studies perform low-pass 

filtering of the data at a cut-off of 0.08 or 0.1Hz. 

The primary advantage of seed correlation analysis (SCA) over other methods is that this 

approach provides straightforward, sensitive and easy to interpret results, showing the 

network of regions most strongly functionally connected with the seed voxel or region of 

interest. SCA is an attractive approach for many researchers due to its inherent simplicity, 

sensitivity and ease of interpretation. In 2009 Shehzad et al. (Shehzad et al. 2009) published 

a study with an assessment of the test-retest reliability of the most widely used connectivity 

measures and SCA has proved to provide moderate to high reliability in identifying RSN 

connectivity relationships.  

Nonetheless, this method requires a priori assumptions regarding seed location, which in turn 

can be considered to bias the connectivity findings towards specific, smaller or overlapping 

sub-systems, rather than the larger, distinct networks. Moreover, the fundamental problem 

resides in the fact that there are as many possible networks to be derived, as there are possible 

seeds. Some seeds are regarded as being very reliable (e.g. posterior cingulate cortex) in 

determining specific networks (e.g. DMN). However small changes in the seed coordinates 

can prove to completely distort the resulting connectivity map. 

 

 

 

 

 

 

 

 Figure 2.3 - Schematic of the principles of seed-
based functional connectivity analysis 
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2.5.2 Weighted Global Connectivity (wGBC) 

Alongside the increasing power of computation as well as the desire to study how the brain is 

intrinsically correlated, new methods have just recently started to be applied to the study of 

brain connectivity. One of them is a voxel-wise whole brain analysis, developed by Cole and 

Schneider (Cole, Schneider 2007), and first applied to the whole brain by Cole, Pathal and 

Schneider  (Cole, Pathak & Schneider 2010), named weighted Global Brain Connectivity 

(wGBC). This method calculates a correlation measure (usually Pearson’s) between each 

voxel with all other voxels in the brain, creating a similarity matrix. Since the matrix is 

symmetric at its’ diagonal, each voxel’s wGBC value can be obtained either through column 

or row averaging of the correlation values. Prior to averaging across correlation values, a 

Fisher’s Z-transform is applied to the previously calculated Pearson’s r-correlation values. 

After averaging, these values are converted back to r-values and back to the image space. 

This routine is repeated for all other grey matter voxels resulting in a wGBC image with the 

averaged correlation value of each voxel for each subject.  

The primary source of neuronal signal is within grey matter voxels and so in order to avoid 

contamination with white matter connectivity a binary mask for the grey matter is applied. 

For similar reasons the smoothing process is only applied after the wGBC maps have been 

created. This method has the great advantage of being very easy to implement and interpret 

as well as the strength of not requiring any arbitrary user-defined parameters. 

 

2.5.3 Independent Component Analysis (ICA)  

Independent Component Analysis (ICA) is a methodology used as a means of separating 

distinct sources from one another based on the assumption of statistical independence 

between them. It was first introduced by Comon in 1994 (Comon 1994) and since then it has 

been extensively applied in many different fields. One application of ICA methods is 

precisely to the analysis of fMRI data, and the first publication regarding the use of ICA in 

fMRI dates from 1998(McKeown et al. 1998). ICA is a data driven method that can be used 

to interpret fMRI data without the need for further input. It is also very sensitive in detecting 

group differences and removing sources related to motion. As mentioned before, ICA 

analysis eliminates the need to specify explicit seed locations since this method works 

through spatial correlation. However, there is a loss in specificity compared to a single well-
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defined seed of interest, resulting in a more complex interpretation of the results. While ICA 

requires fewer a priori assumptions it still compels the user to manually select the number of 

components in which to divide the signal (noise, physiological signals, neuronal components, 

etc). The user is responsible for choosing which of the components are noise and which are 

the components of interest. The choice of the model order and the number of components for 

ICA decomposition are likely to introduce other types of variability in the final outputs such 

as network breakdown. 

 

 



 

24 



 

 25 

Chapter 3  
 

 

 

Assessing conscience with the aid of functional 
Magnetic Resonance Imaging (fMRI).  

The Disorders of Consciousness (DoC) study 
 

 

 

Chapter Summary 

An increasing awareness has been given to the assessment of consciousness. Common 

diagnostic guidelines are widely used for patients suffering from Disorders of Consciousness 

(DoC) and behavioural assessment is still the most commonly used method to establish 

conscious awareness in patients who sustain severe brain damage. New protocols using 

Functional Magnetic Resonance Imaging (fMRI) together with paradigms are being 

specifically designed to provide evidence of awareness and volition. This new approach may 

provide profound insights into altered states of consciousness. The aim of this study was to 

design fMRI paradigms that could more accurately predict awareness and diagnose patients 

according to their correct level of consciousness.  

A group of paradigms specifically designed for this study were subjected to analysis to assess 

the response triggered in healthy volunteers. The author was responsible for performing data 

analysis of the fMRI data to localise and quantify the activation induced by the paradigm in a 

group 21 of healthy subjects. The results from this study seem to suggest that most of the 

paradigms are fitted for the use in DoC patients even though minor corrections might need to 

be taken into account. 
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3.1 Introduction 

Our knowledge about consciousness is still very limited and mostly based on external 

assessment methods. Nevertheless when faced with unresponsive patients, who have usually 

sustained severe brain damage, these methods are often insufficient. Several problems arise 

regarding the definition and assessment of consciousness. The lack of understanding on what 

consciousness is creates even more difficulties to the development of treatments and 

methodologies to restore it.  

Behavioural assessment is still the most widely used method to establish conscious awareness 

in patients suffering from disorders of consciousness (DoC). These guidelines acknowledge 3 

levels of conscience: Coma, Vegetative State (VS) and Minimally Conscious State (MCS), 

ranging from the most unconscious to the most aware respectively. Nonetheless these 

behavioural assessment methods are prone to error resulting in diagnostic uncertainty. 

Meanwhile, the implementation of new imaging techniques together with quantitative 

assessment methods is providing additional information and a new nosology is gradually 

being created including more levels of consciousness. Functional magnetic resonance 

imaging together with paradigms/tasks specifically designed to provide evidence of 

awareness and volition had a great impact among practitioners in the field. This technology 

was able to correctly diagnose patients as locked-in when previously, based on behavioural 

assessment, they were incorrectly diagnosed as being in a vegetative state (Owen, Coleman 

2008). These studies are performed with the use of active paradigms that involve following 

commands, where the patients are instructed to imagine a well-defined sensorimotor- or 

cognitive-mental task. It has also been the case when faced with large evidences of possible 

volition and consciousness, that these tasks can also be used as a “yes” or “no” answer. The 

questions are usually personal and upon correct answers these can be used to prove patient’s 

volitional neural activation, therefore providing proof of awareness. New active paradigms 

are being developed such as “look at a screen and silently name the objects as they appear” 

(resulting in a language network activation) (Hirsch, Moreno 2011), “move the hand” 

(resulting in premotor cortex activation)(Andres Bekinschtein et al. 2011)and “imagine 

swimming” (resulting in supplementary motor area activation) (Laureys, Schiff 2012). 

Paradigm development for DoC patients can be very challenging and time consuming as the 

‘tasks’ have to be very specific but not too complex. If the paradigm is too complex the 
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patient most likely will not be able to execute it and so no activations (or dispersed 

activation) will be seen. On the other hand, we know that areas such as fingertips and lips 

have a big representation in the cortex (Homunculus – Penfield, 1951. Epilepsy and the 

Functional Anatomy of the Human Brain). Thus there is a requirement for very specific 

stimulation so that awareness and volition can be correctly verified. Nonetheless, the absence 

of command related fMRI activation does not permit the extrapolation of conclusions 

regarding consciousness. A literature review was elaborated on some of the most relevant 

publications regarding this subject. A compilation of these publications can be found in the 

Appendices A Section 3.1. 

This chapter reflects the efforts made to develop suitable paradigms to study consciousness in 

DoC patients. An in-house built method entitled “Heat map” analysis was used to localise 

and quantify the activation induced by the paradigms in a group of healthy volunteers. The 

results were posteriorly used to identify which paradigms are more likely to be successful in 

ascertaining consciousness and which ones still need to be improved. 
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3.2 Material and Methods 

3.2.1 Participants 

To test the paradigms developed at the Aberdeen Biomedical Imaging Centre a group of 21 

healthy volunteers was scanned. This group consisted of 7 females and 14 males, with a mean 

age of 33 years old.  

 

3.2.2 Measurements 

Six stimulation paradigms were used to assess the patients. These included a language 

comprehension task, a tennis task, a tactile stimulation both on the left and right hand, a 

visual stimulation both using a flickering checkerboard and the use of a spinning spiral.  
 

TABLE 3.1 – PARADIGM DESCRIPTION FROM MRS SUSA MERZ DOCUMENTATION 
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3.2.3 Imaging Methods 

All the data was acquired using the 3T Philips Achieva MRI scanner at the Aberdeen 

Biomedical Imaging Centre. A structural T1 was acquired as well as seven standard EPI 

sequences, including one resting state and six stimulation paradigms designed to evaluate the 

level of consciousness. The structural T1 was acquired using a 3D Ultrafast gradient echo 

sequence with the following parameters: TR = 6.490 ms; slice thickness = 1.3 mm; 122 slices 

with no gap; scan resolution (x,y) = (184, 184); FOV (mm) = [240 240 158.6]. The functional 

MRI was acquired using a gradient echo planar imaging technique with a TR = 2000 ms; 

TE= 30 ms; 32 slices; slice thickness = 3.5 mm; scan resolution (x , y)=(96,96); TR = 2s, 

FOV (mm) = [240 143 240];  

!

3.2.4 Image Analysis 

Preprocessing and Modeling 

Mrs Susa Merz had previously preprocessed and modelled the fMRI data according to the 

corresponding task fMRI model. Section 7 from the Appendices A includes more 

information regarding the researchers and their contributions to each project. 

The fMRI data was pre-processed using the statistical parametric mapping software package 

(SPM8)7. The preprocessing steps included realignment, co-registration, segmentation, 

normalization, reslicing to 2x2x2mm, and spatial smoothing using a 8-mm FWHM Gaussian 

isotropic kernel. The data was posteriorly modelled using a block design specific for each 

paradigm, and using the second-level analysis of fMRI data implemented on the SPM 

software. The onset periods and duration used in the modelling of each paradigm can be 

extrapolated based on the data presented in Table 3.1. The movement parameters obtained 

                                                
7 Statistical Parametric Mapping Software (SPM8); www.fil.ion.ucl.ac.uk/spm 
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during preprocessing were regressed out of the data. The canonical HRF was the only basis 

function used to model the data (no derivatives). A contrast was created to study the 

activations induced by the task. The activation maps result from the estimation of the model 

parameters. This procedure results in 6 activation maps for each subject. 

 

Heat map analysis 

All of the single subject activation maps obtained for each of the 21 subjects and for each 

task were compared using an in-house built script that generates a heat map. This method is a 

tool to perform a group-level analysis. This script first transforms each activation map into a 

binary map. Then, and separately for each paradigm, the script operates in a voxel-scale, 

comparing all the correspondent voxels from each subject and weighting which are the most 

consistently activated brain voxels for all the subjects. Each voxel starts with the value zero 

and its value is incremented by one for each consistent activation (on a group-level 

comparison). For each paradigm, the final result is a map of the most consistently activated 

regions for all the subjects - heat map. !  
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3.3 Results 

The results from the heat map analysis for all the 6 paradigms are displayed in the following 

pages. During the analysis process some of the volunteers exhibited abnormal or non-

significant activations (regarding the activation maps). Those who displayed positive 

activation at a lower threshold (lower than p=0.05) were included in the heat map analysis 

with the activation map obtained for p=0.05. Volunteers that failed to present activation at a 

lower threshold were excluded from the heat map analysis. In the following table a summary 

of the exclusion performed for each paradigm is presented. 

TABLE 3.2 – BRIEF DESCRIPTION OF PARTICIPANT EXCLUSION AND REASONS 
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As shown in table Table 3.2 the same volunteers were consistently excluded for all the 

paradigms. The reason for exclusion was in some cases due to widespread activation but most 

of the times due to no significant activation, not even when lowering the threshold of 

significance. Both Volunteer 5 and 6 showed consistent problems with the paradigms as well 

as Volunteer 13 that also showed a very small activation for the tactile stimulation of the left 

and right hand.  

The heat maps obtained for each paradigm are displayed in the next pages using the display 

software Freesurfer (http://surfer.nmr.mgh.harvard.edu/).   

 

Tactile left and right hand 

This is one of the most basic paradigms used to test functional activation. It does not tell us 

much about the level of consciousness or awareness since the motor pathways may be intact 

while the rest isn’t. By stimulating the right and left hand one would expect activation of the 

primary and secondary somatosensory cortices in the contralateral sensory areas. The primary 
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somatosensory cortex (S1) is located in the post central gyrus and the secondary 

somatosensory cortex (S2) is located in the parietal operculum on the ceiling of the lateral 

sulcus. Sensory stimulation to only one side of the body will induce a bilateral response in the 

S2 but a more localised on S1. Both heat maps (Figure 3.1) show activation on the 

paradigms’ contralateral motor region as well as a shallow activation on the ipsilateral S2. 
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Figure 3.1 - Heat map resulting from the tactile stimulation of the left hand!

Figure 3.2 - Heat map resulting from the tactile stimulation of the right hand 
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Language Comprehension task 

The great majority of the population exhibits left hemispheric language dominance 

(Rasmussen, Milner 1977, Springer et al. 1999). The language processing centres are mainly 

situated in the left hemisphere being that the right hemisphere analogues are also involved in 

processing this information even though it is to a lesser extent. This paradigm is expected to 

generate activation in the Wernicke’s and eventually Broca’s areas. Wernicke’s area is 

responsible for written and spoken language comprehension and is located on the posterior 

section of the superior temporal gyrus in the dominant cerebral hemisphere. 

As it can be seen in Figure 3.3 the language comprehension paradigm elicited a clearly larger 

functional activated area on the left hemisphere when compared with its’ analogue. The 

activation is present in both the Wernicke’s and Broca’s areas. Right hemisphere activation 

can also be seen over the temporal lobe, which can be due to auditory stimulation. Small 

bilateral activation over the occipital lobe is most likely due to visual stimulation from the 

paradigm presentation.  
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Figure 3.3 - Heat map resulting from the language comprehension paradigm 
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Tennis Task  

For the subjects performing the tennis paradigm one should expect activation of the 

supplementary motor area (SMA). This region is a part of the primate cerebral cortex, 

situated in the midline surface of the hemisphere, anterior to leg representation on the 

primary motor cortex. The SMA contributes to the control of movement. Figure 3.4 shows 

the activation maps resulting from the performance of this paradigm. Besides activation in 

the SMA, activated regions of the secondary motor cortex and the posterior parietal 

association cortex were also found. Most of the patients exhibited a larger activation on the 

left hemisphere since they were right handed. Activation of the frontal lobes reflects 

involvement of the executive frontal centres in the performance of this task. 

 

 
Figure 3.4 - Heat map resulting from the tennis paradigm!
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Spirals  

The visual stimulus of spinning spirals will induce activation of the primary visual cortex 

(V1). This cortical area is responsible for processing the visual information and is located in 

the occipital lobe. In Figure 3.5 it is displayed the heat map resulting of the presentation of 

this paradigm showing a large activation of the occipital lobe in the primary visual cortex 

region. Even though this is not clear in the image there is also residual bilateral activation due 

to auditory stimulation on the temporal lobe. 

. 

 
Figure 3.5 - Heat map resulting from the spinning spirals paradigm 
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Checkerboard 

The visual checkerboard paradigm – Figure 3.6 – is, concurrently with the spinning spirals, 

going to induce activation in the V1 (Brodmann area 17). Both these paradigms have similar 

activation maps. However the spinning spirals induce a larger and stronger area of activation 

when compared to the checkerboard 

 

 

Figure 3.6 - Heat map resulting from the checkerboard paradigm 
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3.4 Discussion 

These results provide evidence that the group of healthy participants recruited for the study 

show some degree of between-subject variability regarding the paradigm response. Table 3.2 

provides some of the reasons for exclusion from the heat map group-analysis. Some 

participants failed to elicit a significantly positive activation regarding their activation maps. 

Particularly for paradigms such as the tennis imagination task it is clear that the activations 

are quite broad and will hardly be reproducible or useful in the case of DoC patients. Hence, 

it is important to design paradigms that provide an accurate response so these results cannot 

be mistaken for random brain activity.  

Some of the healthy volunteers did not present significant differences in brain activity when 

faced with a well-established visual paradigm (e.g. spinning spirals) or a tactile paradigm, 

which eventually resulted in the removal of certain participants from the analysis. These 

results are a clear evidence for the necessity of using more precise paradigms that would 

either recruit more attention or elicit a larger brain response. The spirals paradigm might need 

to be re-designed for increased differences between on- and off-phase. On the other hand, the 

tennis task might just be too complex to elicit a consistent response. Moreover, the broad 

variety in activation maps for this particular task might be the result of different subjects 

having a different perception of playing tennis, whether they have already played the sport or 

not. It would also be interesting to investigate if the heat maps (i.e. activity) maps increase 

their specificity for a larger sample/population size. The recruitment of healthy volunteers is 

on going, and has reached a total of 47 participants to date. 

Further improvement was posteriorly made to the pre-existing paradigms in order to improve 

their specificity. Meanwhile the DoC patients have started to be scanned and the paradigms 

seem to provide specific and resilient activations. A particular patient displayed activation 

only on one hemisphere for the language comprehension task. Therefore the paradigm was 

specifically adapted to verify his hearing capacities with a single stimulation to the right and 

to the left ear. This is an important process in identifying which paradigms are more likely to 

induce a response. It is crucial that these paradigms are extensively tested on healthy 

volunteers before they are used to ascertain consciousness in DoC patients.  

!

  



CHAPTER 3. ASSESSING CONSCIOUSNESS WITH THE AID OF FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI). 
THE DISORDERS OF CONSCIOUSNESS STUDY  

  38 

3.5 Conclusion 

The results are in agreement with the activation one would expect to elicit with the execution 

of these paradigms in healthy volunteers. The lack of power of the tennis paradigm in 

eliciting a significant activation on a single-subject level might be an evidence that this task is 

not suitable designed to be applied to DoC patients, particularly when the analysis of these 

subjects is performed in a single subject-level. Nonetheless, and apart from the tennis task, all 

other paradigms seem to be reproducible and able to elicit a significant activation at their 

respective functional area. 
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Chapter 4  
 

 

 

Diagnostic dilemma: longitudinal assessment of 
transient ischaemic attacks, minor stroke and   
migraines with functional connectivity MRI 

 

 
 
 

Chapter Summary 

Patients referred to the Neurovascular clinic present with motor, sensory, visual, and speech 

symptoms and also, less likely, with headaches. These patients constitute a very 

heterogeneous group and the consultants base their differential diagnosis on the examination 

and the background history of the patient. The diagnosis can be of a minor stroke, a transient 

ischaemic attack (TIA), migraine or other. TIA and migraines exhibit very similar clinical 

manifestations to a minor stroke. While an ischaemic minor stroke is a clinical syndrome 

characterised by focal neurologic deficit definition of TIA remains a matter of debate.  

The most up-to date definition of TIAs according to the American Stroke Association (ASA) 

is built on a tissue-based classification rather than the previous time based definition. Based 

on the new guidelines, TIAs are now considered to be brief episodes of neurological 

dysfunction, which are caused by temporary focal cerebral ischaemia without acute infarction 

on imaging (Easton et al. 2009). Table 4.1 summarises the main characteristics of the 

aforementioned conditions. 

TIA and minor stroke are two conditions that still present a diagnostic dilemma. CT is 

commonly used for the assessment of cerebral ischaemia but be insufficient in diagnosing 

these particular conditions. Alternatively MRI with combined diffusion and perfusion is 
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superior to CT in the diagnosis of cerebral ischaemia, with a probability of detecting an acute 

ischaemic lesion in about 60-70% of the patients. The differentiation between TIAs and 

migraines is based on the strong history accompanying migraines patients while TIA 

symptoms resemble the common stroke symptoms including risk factors such as high blood 

pressure and cholesterol levels. Patients that present a diagnostic uncertainty are referred to 

diagnostic investigations using the MRI scanner. Both TIA and minor stroke patients should 

be given the same preventive treatment due to the high risk of recurrence of a proper 

ischaemic attack. 

Nevertheless up to 40% of patients with symptoms suggestive of minor stroke may have a 

clear MRI scan. This could be due to a small-sized lesion which is undetectable on the DWI 

or a long period of time between symptom onset and scan. For these patients, this result 

means an on-going diagnostic uncertainty, particularly if they are experiencing persisting 

physical or psychological symptoms. The diagnosis of minor stroke also poses significant 

challenges from a clinical point of view with lesions often small and, at times, difficult to 

detect during diagnostic investigations. The large variability regarding lesion location and 

size amongst different minor stroke patients requires the development of a suitable method 

comparing a single subject against a set of healthy controls. Functional connectivity magnetic 

resonance imaging (fcMRI) may provide a mean of detecting connectivity changes associated 

with these conditions. fcMRI can have the significant potential to improve the accuracy of 

diagnosis as well as the prognostic of these patients. 

 

The aim of this study is to assess the diagnostic potential of the integration of a functional 

connectivity MRI sequence into the current vascular protocol for stroke patients. This type of 

connectivity measure could potentially function as a tool to distinguish migraines from TIA’s 

and help in the assessment of minor stroke patients. 

!

!
! !
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4.1 Introduction 

Patients presenting with transient stroke like symptoms and a restricted diffusion lesion on 

MRI are categorised as having suffered from a brain infarction, and present a very high risk 

of stroke recurrence. Transient ischaemic attack (Figure 4.3) and minor stroke (Figure 4.2) 

are a common condition that should be seen as a warning for a more severe event (acute 

stroke). An early diagnosis and the introduction of secondary prevention may help prevent 

further events. These events, often of short duration, present a diagnostic dilemma, with a 

possible diagnosis of minor stroke or, in absence of lesions, a transient ischaemic attack 

(TIA) or migraine. 

Since the establishment of resting state fMRI techniques as a valid research tool this 

technique has been used to study the rearrangement of networks, particularly in disease (Sorg 

et al. 2007, Greicius et al. 2004, He et al. 2009, Calhoun, Eichele & Pearlson 2009, Zhou et 

al. 2007, Greicius et al. 2007). Resting state techniques could be a valuable tool in studying 

the cortical reorganisation of neural networks in stroke survivors (Traversa et al. 1997). 

Resting state techniques are also easier to implement among stroke patients than a 

conventional fMRI protocol because no physical effort is required. 

TABLE 4.1 – SUMMARY OF THE MOST COMMON DIAGNOSIS AND THEIR PROGNOSTIC 
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The acquisition time is yet another constrain since stroke patients are hardly suitable to 

remain still for long periods of time inside the scanner without moving. Once again resting 

state fMRI is easier to perform since regular acquisition times are around 5-10min. 

Lesions locations as well as the cognitive performance are different for every stroke patient. 

This creates difficulties in performing a proper group analysis without averaging all the 

differences between patients. As mentioned previously a suitable method for the comparison 

of a single subject with a group of healthy controls has yet to be developed. 

The literature on the implementation of functional connectivity among stroke patients is 

scarce. Some of the most relevant papers in the field were reviewed in the paper by Varsou 

O. et al. (Varsou, Macleod & Schwarzbauer 2013) and will be highlighted in this dissertation 

for the purpose of contextualization. 

A study performed by Carter et al. in 2010 (Carter et al. 2010) demonstrated a significant 

association between impaired performance and disrupted inter-hemispheric functional 

connectivity. The same was not observed for intra-hemispheric connectivity. Another study 

performed in 2011, by Park et al. (Park et al. 2011) sought to identify longitudinal changes 

that take place in the functional connectivity of the ipsilateral primary motor cortex over a 

period of six months. The patients involved in this study showed increased functional 

connectivity with the ipsilateral regions and diminished connectivity with contralateral areas. 

With the aim of elucidating the functional changes occurring during the post-stroke period in 

the motor network, Wang et al. (Wang et al. 2010) performed resting state fMRI at five 

consecutive time-points during a period of 12 months. In this study it was reported a random 

and less efficient re-arrangement of the functional connections, whereas the ipsilateral motor 

cortex and contralesional cerebellum presented increased functional connectivity over time. 

A study by He et al. published in 2007 (He et al. 2007) assessed longitudinal changes in 

functional connectivity of the dorsal and ventral frontoparietal attention networks during the 

acute and chronic post-stroke stages as well as the relationship with spatial neglect 

symptoms, verified after stroke. Functional connectivity was disrupted in both networks 

during the acute period, even though one of the networks was affected by structural damages. 

The patients that reported impaired performance were also the ones who presented with 

decreased connectivity. In 2012 Carter et al. (Carter et al. 2012) published a study on the 

somatomotor network and the resulting functional connectivity after an episode of structural 
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damage to the corticospinal tract. This sort of lesion was found to be associated with a 

decrease in interhemispheric connectivity. Diaschisis is the impact that a focal brain lesion 

can have in distant areas structurally intact, but connected to the primary site of injury, and it 

has been reported to happen in some stroke studies (Nomura et al. 2010). Post-stroke deficit 

has been associated with alterations in connectivity and the relationship between the 

breakdown of interhemispheric links and impaired neuromotor function. Restoration of 

connectivity in motor areas affected by the stroke and within the affected hemisphere is an 

important indicator for recovery. Therefore the assessment of connectivity patterns in minor 

stroke and TIA patients can provide further information on networks reorganization and re-

wiring after these lesions. 

Migraine with aura is a subtype of migraine characterised by transient focal neurology. 

Patients suffering from this condition experience a range of different symptoms shortly 

before the headache onset, including visual, sensory, speech and motor symptoms. These 

early symptoms are called prodome. Due to the resemblance of this symptomatology with the 

one experienced by stroke patients, a great number of migraine patients that experience aura 

are given an initial differential diagnosis of cerebral ischaemia.  For this reason, magnetic 

resonance imaging is usually part of the routine diagnosis. 

The patients analysed for this study were scanned during their interictal period (i.e. in 

between attacks) and therefore not experiencing any symptoms. Figure 4.1 shows the scan of 

one illustrative patient.  

Recent neuroimaging studies report pain mechanisms that also trigger visual and auditory 

symptoms. Photophobia in migraine patients has been addressed in several recent 

neuroimaging studies, mainly using PET (Denuelle et al. 2011, Boulloche et al. 2010) and 

task fMRI (Hougaard et al. 2013). These have reported malfunctions in visual networks 

among migraine patients upon the use of luminous stimulations. Studies have also reported 

structural abnormalities (Granziera et al., 2006) thought to be the result of cortical 

hyperexcitability of migraineurs. Hence, the current hypothesis is for a cortical 

hyperexcitability among this population.  
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Figure 4.1 - Migraines. Female, 71yo, right-handed, presenting with sensory symptoms. MoCA score 
of 29. Strong presence of WMH with a Scheltens score of 55, and a history of migraines. Initial and 
final diagnose of migraine. FLAIR image. 



CHAPTER 4. DIAGNOSTIC DILEMMA: LONGITUDINAL ASSESSMENT OF TRANSIENT ISCHAEMIC ATTACKS, MINOR 
STROKE AND MIIGRAINES WITH FUNCTIONAL CONNECTIVITY MRI  

  46 

 
  

 !  

  

 

Figure 4.2 - Minor Stroke. Female, 45 yo, right-handed, sensory and motor symptoms on the left side. 
Hypertension. MoCA score of 30. Presented with single right acute ischaemic lesion. Initial and final 
diagnose of minor stroke. Lacunar infarct in the posterior limp of the right internal capsule. Schelten’s 
score of 34. T2* enhanced image. 
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Figure 4.3 - TIA. Female, 49 yo, right–handed, sensory and speech symptoms on the right side. No history of 
migraines. MoCA score of 29. Symptoms duration were < 24h.!
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4.2 Material and Methods 

4.2.1 Participants 

To the present date, 86 patients took part in the TIA cfMRI study and all of them were 

subjected to a cognitive assessment and their white matter hyperintensities were scored using 

the Scheltens scoring method (the MoCA cognitive assessment form as well as the white 

matter hyperintensities can be found in the Appendices B). The participants age ranges from 

21 to 82 yo, with a mean age of 50.37 yo, SD = 12.395. The study includes 46 males and 40 

females and the most common symptoms are sensory and motor. More information regarding 

this population can be found in the Appendices A Section 4.1.  

The minor stroke patients used for the analysis were carefully selected from the patient 

population. A group of eight patients diagnosed with a single ischaemic lesion were 

originally included in the analysis. Two of them were retrospectively excluded due to an 

inconclusive diagnosis and a lesion located outside the grey matter. This population includes 

4 males and 2 females with a mean age of 46.3 years, and SD = 22.71. This group of patients 

all presented with WMH and had an average Scheltens score of 34.17, SD = 14.72. The most 

common symptoms were motor and sensory. A summary of all the information regarding 

these participants can be found in the Appendices A Section 4.2. Table 4.2 includes 

information regarding lesion size and location for every patient.  

TABLE 4.2 –INFORMATION REGARDING LESION SIZE AND LOCATION FOR MINOR STROKE 

PATIENTS 
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Also included in the analysis were 13 migraine patients (diagnosed as migraine with aura), 7 

males and 6 females, with a mean age of 39.17 yo, SD=11.20, and mean Scheltens score of 

24.50, SD=4.83. More information about the demographics of these patients can be found in 

Section 4.3 of the Appendices.  

The volunteers used for the comparison with migraine patients consisted of 7 males and 7 

females, with a mean age of 30.93yo and SD=7.09 (Section 4.4 of the Appendices A).  

 

4.2.2 Imaging Methods 

According to what has been mentioned in Morcom et al., 2007 (Morcom, Fletcher 2007b) 

and Varsou O. et al. (Varsou, Macleod & Schwarzbauer 2013) longitudinal studies would 

provide us with a better insight on the neuronal re-arrangements that take place after stroke. 

According to this idea a follow-up scan was performed 30 ! 5 days after the baseline scan. 

The patients were scanned using the clinical research 3T Philips Achieva X-series MRI 

scanner located within the Aberdeen Biomedical Imaging Centre (ABIC). The imaging 

parameters can be found in Chapter 2, section 2.2.5 Neurovascular protocol. A low 

cognitive level paradigm was used during the resting state sequence (see Chapter 6, section 

6.2 Materials and Methods for a more detailed description of the paradigm). 

 

4.2.3 Image Analysis 

A more detailed explanation about the theoretical assumptions behind seed-based and wGBC 

methods can be found in Chapter 2 – Background. 

 

Weighted Global Brain Connectivity (wGBC) 

A first analysis of the data was performed using wGBC methods. The goal was to investigate 

how this method behaves in the case of anatomical brain lesions and to verify if wGBC is 

able to correctly identify possible functional connectivity abnormalities in TIAs, which 

present no anatomical alteration in a regular DWI scan. It is of prime importance to assess the 

sensitivity and efficiency of the applied wGBC method. The behaviour of wGBC in 
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identifying reduced (or none at all) functional connectivity in the lesion voxels was explored 

using the Minor-Stroke data. This technique was also implemented using migraine patients 

on a comparison with healthy volunteers. wGBC was calculated for each subject using the 

CHART method, stage 1, (a detailed description of the method can be found at Perrin, Merz 

et al., 2012) developed at ABIC. All the data was resampled to a 3x3x3 voxel size in order to 

approximate DWI voxel resolution (1.53mm). 

 

Lesion mask 

Due to the inability of performing group comparisons with a single subject against a set of 

healthy volunteers, the hemisphere contralateral to the ischaemic lesion was used for this 

analysis as a basis for comparison in each subject. Diffusion Weighted Imaging (DWI) is 

recognised as the preferred sequence to identify the lesions (Figure 4.7). The patients 

included in this first type of analysis presented with ischaemic lesions ranging between 

2.15mm and 14.21mm. 

Manual segmentation was used to create a binary mask of each lesion based on the diffusion 

weighted imaging (DWI) scan of every patient (Figure 4.8). The mask was then flipped at 

the sagittal midline with the aim of creating the seed mask on the opposite hemisphere. Due 

to hemispheric symmetry the maps computed with each of the seeds can be used as a control 

for each other (e.g. healthy hemisphere VS lesion hemisphere). These masks were used as a 

region of interest to compute the functional connectivity maps. 

 

 

 

 

 

 

  Figure 4.4 - Lesion mask and opposite hemisphere 
seed mask overlaid on top of the normalised 
structural T1 
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Pre-processing 

The fMRI data was pre-processed using the statistical parametric mapping software package 

(SPM8). The data was realigned, slice timing corrected, co-registered, segmented, 

normalised, resliced to 3x3x3mm, and spatially smoothed using a 8-mm FWHM Gaussian 

isotropic kernel. It was also low-pass filtered at 0.1-Hz, and baseline corrected. A binary 

mask was created based on the SPM8 grey matter tissue probability map, including all voxels 

with a probability greater than 0.3. A total of 33,985 voxels from the functional imaging time 

series were within the grey matter binary mask. 

 

Functional connectivity analysis 

A seed-based connectivity mapping method combined with non-linear parametric statistics 

used according to the procedure described in J.S. Perrin, Merz et al. (Perrin et al. 2012) was 

applied to the pre-processed data, in order to compute the functional connectivity maps 

between region of interest in the lesion site and the remaining voxels in the brain. The same 

procedure was used to calculate the functional connectivity maps with the seed in the 

opposite hemisphere.  

Non-parametric tests were utilised to check for significant differences between connectivity 

maps obtained with the two different seeds. Subjects were grouped according to the 

hemisphere of the lesion and functional connectivity was compared within each group (i.e. 

right and left hemisphere). Individual statistical analysis was finally performed between both 

maps for each subject. 

!

Statistical Testing 

The nonparametric permutation testing (SnPM) toolbox for MATLAB 

(http://go.warwick.ac.uk/tenichols/snpm) was used for the statistical analysis. The tests were 

corrected for multiple comparisons with a whole-brain FWE correction (p < 0.05). Subjects 

were grouped according to the hemisphere of the lesion (i.e. right and left hemisphere) and 

functional connectivity was compared within each group using a non-parametric Paired T-

test. Functional connectivity maps of each subject (for both the seed on the lesion and on the 

opposite hemisphere) were compared individually using a two sample T-test for 2 conditions. 
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ICA analysis 

Mr Michael Stringer (see Section 7, Appendices A) performed an ICA analysis of the data 

using the group ICA functional toolbox (GIFT version 2.0e; 

http://mialab.mrn.org/software/gift/). The control and patient data were analysed separately 

using the Infomax algorithm. Using the minimum description length (MDL) information 

theoretic criterion the number of components was estimated to be 38 for the migraine patients 

and 41 for the control group. In order to back-reconstruct the individual subject components 

the GICA3 algorithm was applied. An established set of templates available online 

(http://findlab.stanford.edu/research) was used to identify which was the component with the 

highest spatial correlation for each of the relevant networks (primary auditory, primary visual 

and high-level visual network). 

The SnPM toolbox was used to carry out the statistical testing between the selected networks 

from the patient and control group. The comparison was performed with the use of a two-

sample t-test with 5000 permutations and a family-wise error (FWE) correction at 5% (P < 

0.05). Variance smoothing was also applied, matching the smoothing used in pre-processing, 

with FWHM set to 8 mm. 
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4.3 Results 

i. Migraines 

The study of the migraines patients was focused over the connectivity map resulting from the 

use of a seed in the right temporal lobe. Additionally a wGBC analysis was also performed.  

 

ICA analysis 

The ICA analysis has found a cluster of hyperconnectivity in the right auditory cortex of 

migraine patients. 

 

Seed-based analysis 

A seed was placed over the right auditory cortex, in the temporal lobe. The MNI coordinates 

are [69, -28, 13] and the seed was comprised of a cube, one voxel in each direction from the 

coordinate centre, accounting for a total of 7 voxels. This seed was chosen after the ICA 

methodology has identified this region as being hyperconnected in migraine patients. Non-

parametric statistics were used for the comparison between the connectivity maps of both 

groups (migraine and healthy volunteers). It was used a two-sample T-test, with 10,000 

permutations after smoothing with an 8-mm Gaussian kernel. No significant results were 

found between both groups for a FWE p<0.05. 

 

wGBC 

wGBC was used to compare migraine patients with healthy volunteers. Performing a two-

sample T-test on differences between the wGBC maps for migraine patients and volunteers, 

using kernel with an FWHM of 8mm, resulted in a significantly different (p<0.05) cluster of 

3 voxels in the MNI coordinates [-27, -55, 10]. Using an in-house script – written by 

Christian Schwarzbauer – the Brodmann area (BA) and anatomical location of these clusters 

was identified.  
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T-Threshold: 4.2 
MinClusterSize: 1 
MinPerc: 1.000000e-05   

TABLE 4.3 –INFORMATION REGARDING CLUSTERS LOCATION – WGBC METHOD 

Cluster  Coordinates (MNI) Voxels  Location 

#1 [-26 -54 8] mm   3vox 
BA19.L: 3vox (0.2% overlap) 

PCN.L (Parietal): 1vox (0.1% overlap) 

#2 [-21 -49 10] mm   1vox 
BA17.L: 1vox (0.2% overlap) 

PCN.L(Parietal): 1vox (0.1% overlap) 

#3 [-9 -31 19] mm  1vox - 

The regions mentioned above show increased connectivity in migraine patients when 

compared with healthy volunteers. These are all situated on the left hemisphere representing 

the primary and secondary visual cortex. BA17 is the Brodmann area equivalent to the 

Primary visual cortex (V1) responsible for processing information about static and moving 

objects as well as pattern recognition. BA19 is part of the associative visual cortex (V3), 

which along with BA18 is involved in feature-extraction, shape recognition, and visual 

attention.11 Increased activation is also present in the left precuneus over the parietal lobe, 

which is thought to be involved in episodic memory, visuo-spatial processing and aspects 

related with consciousness and self. 

 
 

 

 

 

 

 

  

                                                
11 Lloyd 2007. What do Brodmann areas do? or: Scanning the neurocracy” 
 

Figure 4.5 - Increased connectivity for migraines 
patients when compared with healthy volunteers using 
wGBC 
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ii. Minor Stroke 

wGBC 

A map of whole brain connectivity was plotted for each subject using the aforementioned 

wGBC methodologies. No significant differences were found between healthy participants 

and minor-stroke patients.  

 

 

 

 

 

 

 

 

 

Seed-based analysis 

Significant differences were not detected either between the connectivity maps of individual 

subjects, or within each group.  

The results from the functional connectivity analysis obtained with seed based methods and 

weighted global connectivity proved to be inconclusive. Nevertheless, the use of ICA 

methodologies resulted in significant differences found between patients and healthy 

population. These results offer a possible explanation for the null results using wGBC and 

seed based analysis.  

 

 

 

 

Figure 4.6 - Weighted global connectivity map of one example subject. The lesion is 
also represented in red even though it has not been used for the computation of WGBC 

maps 
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Figure 4.8. Lesion mask drawn on top of the diffusion weighted imaging scans 

 

Figure 4.7 - Diffusion Weighted Images (DWI) presenting with lesions from two representative 
patients 
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iii. Transient Ischaemic Attack (TIA) 

 

Transient ischaemic attacks have proven to be extremely difficult to analyse with the 

methodologies available nowadays. The initial focus of this study was to study this 

particular condition. The number of TIA patients available was not enough to provide 

significant results either using ICA or wGBC methods. Migraine and minor stroke 

patients have proven to be more fruitful and therefore have been studied to a greater 

extend detail than TIA patients. Besides the small sample size, these patients are all very 

different in their essence therefore it is not surprising that the analysis did not provide any 

significant differences. The recruitment of more patients with this symptomatology and 

the development of methodologies for the comparison of single subject with a group of 

healthy volunteers will enable a further study of such an enigmatic condition. 

!

!

!

!

! !
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4.4 Discussion 

Migraine 

Weighted global connectivity was able to correctly identify changes in the primary visual 

cortex in migraine patients, subscribing previous literature (del Rio, Linera 2004) that 

describes altered mechanisms of visual and pain processing. The use of ICA has proven to be 

more efficient identifying regions of altered connectivity than seed-based methodologies. The 

ICA methodology not only has identified regions of hyperconnectivity in the primary visual 

cortex (BA 18) and high-level visual networks (BA 17) but has also reported the same 

condition in the auditory association cortex (BA 22). These findings provide a valid 

explanation for the general presentation of phonophobia and photophobia in migraine with 

aura patients, even between attacks. 

These results also support the idea of cortical spreading depression (CSD), a condition during 

which there is a malfunction on the visual cortex, which tends to spread to other brain 

regions. fMRI studies have been carried out during the period of typical aura in migraine 

revealing multiple neurovascular events in the occipital cortex within a single attack(Cao et 

al. 1999, Hadjikhani et al. 2001). These neurovascular alterations closely resemble CSD with 

an initial hyperaemia (lasting for 3 ~ 4.5min) followed by a mild hypoperfusion (lasting for 

1~2h), an attenuated response to visual activation, and the first affected area is the first to 

recover. A cortical event such as CSD is able to activate trigeminal vascular system being 

this system comprised of sensory fibres of the ophthalmic division of the trigeminal nerve 

that innervate the blood vessels of the dura mater. The activation of the trigeminal fibres is 

involved in the mechanism of pain and leads to an inflammatory process in the dura mater – 

neurogenic inflammation. 

To our knowledge it has not yet been published an original research study reporting 

disrupted functional connectivity among visual and auditory networks, while using a 

population comprising only migraineurs with aura during their interictal period. 
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Minor Stroke 

Comparison between contralateral and ipsilateral connectivity maps was expected to result in 

decreased connectivity when the seed was placed over the lesion. However, at this stage, no 

significant differences were observed to justify this assumption. These preliminary results 

provide further support for the importance of data re-sampling and the possible 

incompatibility of seed-based methods when dealing with small lesions such as ischaemic 

minor strokes. On the other hand, ICA analysis identified increased connectivity in 

sensorimotor components on the hemisphere opposite to the lesion.  

Furthermore, due to the differences reported using the ICA methodology one can hypothesize 

that the changes in connectivity do not occur within the lesion itself but in other brain regions 

that change their connectivity in order to compensate for the disruption. Brain plasticity is a 

well-known phenomenon happening among stroke survivors. These results encourage a 

further analysis of a possible network re-arrangement after such a disabling occurrence. One 

must assume that the tissue within the infarcted region is poorly or even no longer 

functioning. For this reason, it is only logical to assume that other surrounding brain regions, 

provided that the patients are offered a suitable rehabilitation treatment, take over the 

functions of the no longer existing tissue.  
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4.5 Conclusion 

The findings regarding migraine patients are in complete agreement with what has been 

previously reported in the literature, and provide a plausible explanation for the symptoms 

experienced by patients suffering from migraine with aura. These broadly acknowledge the 

involvement of visual mechanisms during prodome and also provide new evidences for some 

of the auditory symptoms experienced by migraine patients.  

The results for minor-stroke patients are not what had been initially hypothesised but instead 

they seem to suggest that the changes in functional connectivity occurring among minor 

stroke survivals do not happen within the lesion itself but instead in the surrounding areas 

using plasticity mechanisms.  

Transient ischaemic attacks patients were the primary goal of this study. Nonetheless, and 

due to small sample size and lack of common symptomatology for all the participants the 

comparisons did not result in any measurable differences between their connectivity and the 

one of a group of healthy volunteers. This is a complicate condition and grouping patients 

with different symptoms within a single group might result in averaging out of the actual 

effect. This analysis should be repeated when a larger number of TIA patients are available.  
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Chapter 5  
 

 

Physical exercise & brain connectivity.  
The physical exercise connectivity (PECON) study 

 

 
 
 
 

Chapter Summary 

Recent studies have proved that exercise does have an effect on functional brain connectivity 

and more specifically into resting state networks right after a training session  (Taubert et al. 

2011, Pereira et al. 2007, Voss et al. 2010, Voelcker-Rehage, Godde & Staudinger 2010). 

The fronto-parietal brain networks seem to be responsible for containing the information 

regarding acquired motor skills. Nevertheless how these networks experience changes and 

evolve throughout motor training is still unclear. It is also unknown whether long-term 

changes in RSN can be induced by motor training as well as if these changes overlap with 

reported structural alterations. It is a fact that the changes in functional connectivity are 

measurable after a long-term intervention, namely in fronto-parietal networks. After physical 

activity this particular network has been reported to present with increased connectivity. The 

aim of the PECON study is to explore whether a single session of acute exercise temporarily 

changes the connectivity between different brain regions.  

A wide range of different connectivity measures has been used including seed-based analysis, 

ICA, cluster analysis, Network Based Statistic (NBS) methods and graph theory. The author 

performed data analysis using seed-based methodologies and the results from the 

implementation of this method will be described in this chapter. These will also be compared 

with other significant findings using different methodologies.  
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5.1 Introduction 

The idea of a constantly changing brain was firstly suggested by the psychologist William 

James in the late nineteen century. In his book entitled The Principles of Psychology he 

developed the idea that nervous tissue has a great degree of plasticity, unlike the current 

thinking at the time. 

It was only in the second half of the twentieth century that researchers began to explore 

neuroplasticity events happening in older adults who had suffered massive strokes and who 

were still able to regain function. Current research also targets the rewiring process that 

seems to happen when brain tissue experiences learning, memorisation or even a traumatic 

injury, involving the reorganization of pathways and the creation of new connections. 

Physical exercise has been reported to induce not only structural but also functional 

plasticity. Nonetheless, the study of how functional connectivity is affected by exercise is still 

a fairly new branch of research. Several studies have reported neuroplasticity due to motor 

training sessions as a reflex of morphological adaptation of the human brain, although no 

linear relationship has been shown yet between anatomical changes and the amount of 

practice. They do however report increased functional connectivity immediately after a 

training session, while the structural changes induced by training are usually only visible 

after several weeks (Colcombe et al. 2006, Ruscheweyh et al. 2011). However, some studies 

have reported rapid changes of brain structure happening during very early stages of learning 

in specific motor and parietal regions (Driemeyer et al. 2008, Taubert et al. 2010). The 

structural changes are found mainly in frontal areas such as the anterior cingulate cortex 

(ACC), along with increased volume of the temporal lobe (Colcombe et al. 2006) and the 

hippocampus (Erickson et al. 2011). Structural changes correlated with functional 

connectivity changes in the prefrontal and supplementary-motor areas have also been 

reported to happen within white matter fibre structure and into grey matter. Hippocampal and 

medial temporal lobe volumes are larger in higher-fit adults, and it has been established that 

physical activity training increases hippocampal perfusion. Furthermore, aerobic exercise 

training has been reported to increase the size of the anterior hippocampus, leading to 

improvements in spatial memory. Erickson et al. (Erickson et al. 2010) provided evidences 

that performing aerobic exercise training increased the hippocampal volume, reversing age-

related loss in volume in late adulthood. The reported hippocampal volume changes seem to 
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be sensitive to the duration of cardiovascular activity (Erickson et al. 2011). Nonetheless, the 

functional meaning of these structural changes is not yet fully understood. 

Coordination and planning of complex motor skills is controlled by fronto-parietal brain 

networks (Rizzolatti, Luppino 2001). Other fMRI studies (Hallett, Grafman 1997; Halsband, 

Lange 2006; Pascual-Leone, Grafman & Hallett 1995) have found that prefrontal, premotor, 

supplementary motor and parietal brain areas are recruited when acquired motor skills are 

executed. It has been shown increased fronto-parietal network connectivity just after two 

motor skill-learning sessions (Taubert et al. 2011). These effects progressed accordingly with 

subject performance. Within the DMN the connectivity over parietal regions was 

demonstrated to be increased by the performance of a finger sequence task during a learning 

period of 4 weeks (Ma et al. 2011) or by 6 weeks of learning a whole-body balance task 

(Taubert et al. 2011). Changes were detected within fronto-parietal areas of the DMN even 

after a short session of 11minutes of visuo-motor stimulation inside the scanner using a block 

design (Albert, Robertson & Miall 2009). Voss et al. on her 2010 (Voss et al. 2010) study 

showed increased functional connectivity within frontal and parietal regions after a 6-month 

stretching intervention with older adults. Fewer changes happen after the initial learning 

period, however other motor and frontal areas show a continuous increase across 5/6 weeks 

of practicing a complex task. After cessation of motor learning, changes seem to be persistent 

for at least for 4 weeks (Scholz et al. 2009). It has been hypothesised that learning a 

challenging motor task leads to long-lasting changes in functional resting state networks and 

the corresponding cortical and sub-cortical brain structures (Taubert et al. 2011). However, 

structural changes seem to return to baseline levels after a period of 8-16 weeks (Draganski et 

al. 2004, Driemeyer et al. 2008). For this reason, longitudinal studies have been the preferred 

design to study training-induced changes in both brain structure and function.  

Longitudinal brain studies revealed a great degree of training-induced structural plasticity in 

the adult human brain. For example, three months of juggling training resulted in profound 

changes in the parietal grey matter structure (Draganski et al. 2004). Training-induced 

changes have also been found in the parietal white matter microstructure after six weeks of 

juggling training (Scholz et al. 2009). One year of walking (Voss et al. 2012) increased 

functional connectivity between aspects of the frontal, posterior, and temporal cortices within 

the default-mode network and a frontal executive network. This study also showed that 

exercise duration and intensity is another extremely important factor for the successful 

observation of brain changes. A study performed in older adults using resistance training only 
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revealed benefits of exercise when it was practiced at least twice a week, whereas exercise 

once a week revealed no effect (Liu-Ambrose et al. 2012).  

It has also been acknowledged that not all types of exercise will produce measurable changes 

in brain function and structure. No positive effects on cognitive functions are expected for 

physical activity with very low metabolic or cognitive demands.  

 

The PECON study is a brain imaging study that aims to investigate the effects of an acute 

exercise session of one hour on functional connectivity. With this in mind this project was 

designed to provide us with a better understanding of the underlying neuronal networks 

involved and to posteriorly apply the insights about the mechanisms involved to develop 

exercise-rehabilitation programs. 
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5.2 Material and Methods 

5.2.1 Participants 

This study included a total of 13 participants, all male, right-handed, healthy and fit. The 

mean age was of 28yo with SD=5.45. All of them regularly practice exercise such as running, 

cycling and football. One of the participants had to withdraw from the study due to a physical 

lesion. More information regarding the demographics of the volunteers can be found in the 

Appendices A, Section 6.1. 

 

5.2.2 Study Design 

Dr Ourania Varsou was responsible for the study design and data acquisition (Section 7, 

Appendices A). All of the participants were asked to abstain from caffeine and alcohol at 

least 24h before the scanning sessions. All of them were subjected to the Montreal cognitive 

assessment (MoCA). The volunteers were assessed in three separate occasions. The 

individual maximum oxygen uptake (VO2max) and maximum heart rate (HRmax) were 

determined during static cycling at their first visit. Their second visit was designed to provide 

familiarisation to the task and the equipment and to avoid confounding factors. During this 

visit the volunteers were asked to exercise at 50% of their VO2max Over a one hour period 

using a static bicycle. The third and last visit comprised of a baseline MRI scan, cycling for 

one hour at 50% of their VO2max, resting for a period of at least 30 minutes and then a 

follow-up scan. The resting period after exercise ensures that all the physiological parameters 

return to baseline (e.g. heart rate, etc) and therefore the changes in BOLD signal will not be a 

result of physiological instability. 

 

5.2.3 Imaging Methods 

A structural T1 was acquired when the volunteer performed the first scan and two fMRI scans 

were acquired before and after exercising. Both T1 and fMRI sequences were performed 

using the same scanning parameters as the ones used in the neurovascular protocol (see 

Chapter 2, section 2.2.5 Neurovascular Protocol). 
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5.2.4 Measurements 

The CO2 levels of every participant were monitored during the whole scanning procedure. 

During the resting state acquisition a low level cognitive paradigm was used to keep the 

volunteers focused. More information about the paradigm can be found in Chapter 6, section 

6.2 Materials and Methods. 

 

5.2.5 Image Analysis 

Pre-processing 

The fMRI data was pre-processed using the statistical parametric mapping software package 

(SPM8).12 The data was realigned, slice timing corrected, co-registered, segmented, 

normalised, resliced to 3x3x3mm, and spatially smoothed using a 8-mm FWHM Gaussian 

isotropic kernel. It was also low-pass filtered at 0.1-Hz, and baseline corrected. A binary 

mask was created based on the SPM8 grey matter tissue probability map, including all voxels 

with a probability greater than 0.3. A second preprocessing was performed using exactly the 

same parameters but the data was instead resliced 4x4x4. The second preprocessing was 

performed in order to enable a proper comparison with the NBC results (which have been 

resliced at 4x4x4).  

 

Seeds 

Table 5.1 outlays the coordinates of the seed regions used to perform the seed-based analysis 

of the data. Published literature reports structural changes in the hippocampus, therefore one 

can hypothesise that there should also exist underlying functional differences. In order to 

study functional connectivity in this structure it was included a separate group of ROI located 

in this particular part of the brain. The right cerebellum seed without referencing in Table 5.1 

resulted from the application of a clustering method to this data - performed by Mr. Alex Ing 

(Section 7, Appendices A). This method discovered a cluster of significant differences (FWE 

corrected p<0.05) in these coordinates. 

 

 
                                                
12 Statistical Parametric Mapping Software (SPM8); www.fil.ion.ucl.ac.uk/spm 
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Functional connectivity analysis 

A seed-based approach according to the procedure described in Perrin, Merz et al. (Perrin et 

al. 2012) was the method used to calculate the functional connectivity maps. This procedure 

was applied to the pre-processed data, in order to compute the functional connectivity maps 

between the regions of interest and all the other voxels of the brain. This procedure was 

performed for scans before and after exercise. 

 
Statistical analysis 

Non-linear parametric statistics were used to test the results for significant differences 

between the functional maps computed before and after the exercise session. SnPM was used 

in combination with paired T-tests, FWHM = 8mm, 4096 permutations and a FWE corrected 

p<0.05. 

TABLE 5.1 – REGIONS OF INTEREST USED FOR SEED BASED CONNECTIVITY ANALYSIS 

!! !! -0#:)3O! SEED Z-`!.))3;$*(#01! !!
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!!!!!G,2,/!E#2F,/7! @3$%(3/!%)#)3!.)3#0E! !!!!]M6RJ!M67J!FU^!BX!!

!! H*9%2,/I!$#2F,/7! @3$%(3/!(&;$#)3/!.)3#0E! !!!!!!]MX7J!MRRJ!U^!B8! !!
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13 Perrin et al., 2012. Electroconvulsive therapy reduces frontal cortical connectivity in severe depressive disorder. PNAS 
14 Shahabeddin Vahdat et al., 2011. Functionally specific changes in resting state sensorimotor networks after motor 
learning. J Neurosci. 
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5.3 Results 

The seed region located in the right cerebellum at the MNI coordinates [46,-63,-46], has 

resulted in a cluster of significantly decreased connectivity following exercise (FWE p<0.05, 

with a t-threshold=5.21) between the left parietal lobe (MNI [-50, -24, 42]) and the right 

cerebellum. 

 

 

 

 

 

 

 

 

 
 
 
 
 

                                                                                                                                                  
15 Eckert MA et al., 2008. A cross-modal system linking primary auditory and visual cortices: Evidence from intrinsic fMRI 
connectivity analysis. Hum Brain Map 
16 JN Pannekoek et al., 2013. Aberrant limbic and salience network resting state functional connectivity in panic disorder 
without comorbidity. Journal of Affective Disorders 
17 Shahabeddin Vahdat et al., 2011. Functionally specific changes in resting state sensorimotor networks after motor 
learning. J Neurosci  
18 Buckner et al., 2011. The organization of the human cerebellum estimated by intrinsic functional connectivity. J 
Neurophysiol  
19 K Duncan et al., 2009. Distinct memory signatures in the hippocampus: Intentional States distinguish match & mismatch 
enhancement signals. J Neurosci. 
20 A Viard, et al., 2007. Hippocampal activation for autobiographical memories over the entire lifetime in healthy aged 
subjects: An fMRI study. Cereb Cortex  
21 Seeley WW et al., 2007. Dissociable intrinsic connectivity networks for salience processing and executive control. J 
Neurosci 
22 Voss et al. 2010. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. 
Frontiers in Aging Neuroscience 

Figure 5.1 - Glass brain and design matrix resulting from the 
statistical testing of the connectivity maps resulting from the use of a 
right cerebellum ROI. Group A - scans pre-exercise; Group B - scans 
post-exercise. 
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Using an in-house built script - written by Christian Schwarzbauer – the Brodmann areas 

(BA) and anatomical regions present in this cluster were identified.23 
T-Threshold: 5.2 
MinClusterSize: 1 
MinPerc: 1.000000e-04 

TABLE 5.2 – INFORMATION REGARDING CLUSTER LOCATION – RIGHT CEREBELLUM SEED 

Cluster  Coordinates (MNI) Voxels  Location 

#1 [-49 -25 46] mm 18vox 
BA48.L: 1vox (0.1% overlap)  

BA4.L: 2vox (0.7% overlap) 

BA3.L: 8vox (4.3% overlap) 

BA2.L: 7vox (6.0% overlap) 

PoCG.L(Parietal): 7vox (1.4% overlap) 

IPL.L(Parietal): 9vox (3.0% overlap) 

SMG.L(Parietal): 2vox (1.3% overlap) 

 
The anatomical locations mentioned above are the left Postcentral gyrus (PoCG), left 

supramarginal gyrus (SMG) and left inferior parietal gyri. 

Apart from the above finding, the use of the other seeds reported in Table 5.1 did not result 

in any significant differences between the first scan (before exercise) and the scan acquired 

after the exercise session. However, it will also be presented the results that by one reason or 

another did not reach significance. Hence, the following results are obtained with a Family 

Wise Error (FWE) correction but using more lenient p-thresholds. 

The seed placed in the left hippocampus with MNI coordinates [-27, -24, 9] resulted in a 

cluster of 30 voxels of decreased connectivity after exercise between this region and mainly 

the left cerebellum and the cerebellar vermis (FWE p<0.5 k=30 MNI [-3, -64, -44]).  

Threshold: 3.7 
MinClusterSize: 1 
MinPerc: 1.000000e-04 

TABLE 5.3 - INFORMATION REGARDING CLUSTER LOCATION – LEFT HIPPOCAMPUS SEED 

Cluster  Coordinates (MNI) Voxels  Location 

#1 [-4 -63 -44] mm   18vox 
C8.L(Cerebellum): 18vox (5.4% overlap) 

C9.L(Cerebellum): 7vox (4.0% overlap) 

V9(Vermis): 1vox (2.0% overlap) 

                                                
23 Both SnPM and the Brodmann area script report the results in MNI coordinates. The slight difference between both values 
is due to the fact that one gives the information about the peak voxel (SnPM) and the other about the centre of mass of the 
cluster 
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#2 [-18 -70 -34] mm   12vox 
C1.L(Cerebellum): 10vox (1.3% overlap) 

C2.L(Cerebellum): 1vox (0.2% overlap) 

C6.L(Cerebellum): 1vox (0.2% overlap) 

#3 [-10 -63 -7] mm   12vox 
BA18.L: 10vox (0.7% overlap) 

LIN.L(Occipital): 11vox 

C6.L(Cerebellum): 1vox 

#4 [6 -56 -46] mm   2vox - 

 

 
The anatomical location mentioned above is the left lingual gyrus (LIN.L), Figure 5.2. 

 
 
 
 
 
 
 
 
On the other hand, the left amygdala shows increased connectivity with the right cerebellum 

after exercise (FWE p<0.5 k=3 [30, -91, -23]). 

 
The foot coordinates extracted from Buckner et al. (Buckner et al. 2011) provided the 

following results for an uncorrected p=0.01:  

- For the left cerebellum seed, decreased connectivity was observed after exercise with a 

cluster (k=19 voxels) in the left parietal lobe with MNI coordinates of [-66 -16 25]; 

- For the right cerebellum seed, decreased connectivity was observed with 2 clusters in the 

right parietal lobe (k=29vox) with MNI coordinates of [15 2 -14] and (k=16vox) [33 -13 

19]; 

 
At last, the PCC seed tested with a FEW p<0.2 resulted in a cluster (k=12vox) of decreased 

connectivity after exercise with the left parietal lobe with MNI coordinates of [-51 -34 52]. 

These changes are within BA 40 and BA 2 (Figure 5.3). 

 

Figure 5.2 - Significant decreases in functional connectivity after exercise 
between the hippocampus and the cerebellar vermis 
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  Figure 5.3 - Decreased functional connectivity between the PCC and the left 
parietal lobe 
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5.4 Discussion 

Our results strongly agree with the hypothesis that exercise has an effect on functional 

connectivity. Moreover, they offer proof that these changes not only occur after a 

longitudinal intervention but also after a single acute session of exercise. Upon the second 

scanning session the physiological parameters of the participants had already returned to 

baseline, therefore it is extremely unlikely that the BOLD fluctuations observed during this 

period are the result of these physiological changes.  

Previous literature on the effects of physical exercise has mainly reported increases in 

connectivity, namely in the fronto-parietal networks. Surprisingly, our results reflect exactly 

the opposite, with decreases in connectivity being more evident between cerebellar structures 

and the left parietal cortex. Other methodologies were combined with seed-based methods in 

order to gain further information about the measured connectivity changes. An ICA analysis 

using GIFT and FSL extracted several components from the data and found a cluster 

(k=14vox) of significantly increased connectivity after exercise in the cerebellum. This 

component highly correlated with the basal ganglia network extracted from the paper 

published by Allen et al. (Allen et al. 2011). Graph measurements resulted in increased 

connectivity within the frontal lobes. Performing this analysis with the 160 Dosenbach 

regions resulted in increases in the right ventromedial prefrontal cortex, in the right 

dorsolateral prefrontal cortex, in the right superior frontal gyrus and the ventromedial 

prefrontal cortex. Increased local efficiency was verified in the cerebellum as well as a 

decrease in path length within the same structure. The data was further analysed using a 

Network Based Statistics (NBS) Toolbox  (Zalesky, Fornito & Bullmore 2010)for MATLAB. 

The results from the implementation of this method reflect decreases in connectivity between 

the cerebellum and the rest of the brain following physical activity.  

In concordance with the seed-based results, most of these methodologies seem to point 

towards decreased connectivity between cerebellar regions and other brain structures. These 

results are by no means surprising due to the role that the cerebellum is known to play in 

motor coordination and motor learning. All of the participants were already somehow 

familiar with exercise activities, therefore cerebellar connectivity differences are most likely 

to be the product of the exercise task. 
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One of the most relevant and significant results reflects decreased connectivity between the 

right cerebellum and the left parietal cortex. Regions such as BA 2 and BA 3, which have 

presented with decreased connectivity, are part of the primary somatosensory cortex. On the 

other hand, BA 4 is the area where the primary motor cortex is located. The results are in 

agreement with areas that would normally be required while performing physical exercise, 

and one can argue that the functional changes are still the remaining of the functional and 

structural mechanisms active during the acute session of physical activity.  

Concurrently to what has been previously mentioned in the literature it is reported activity 

between the cerebellum and the contralateral parietal lobe. However the relationship seems to 

be bilateral, with the stronger links found to be towards the opposite hemisphere. The seeds 

extracted from Buckner et al. (Buckner et al. 2011) were not above thresholding for 

significance, however they illustrate the connectivity that seems to exist between structures 

from the same hemisphere. The NBS methodology has found a vast network between the 

right cerebellum and parietal regions. The contralateral regions were more highly connected 

to the cerebellar structure however connections to the right parietal cortex were also present.  

The vermis has integrative functions and is the structure uniting both cerebellar bodies. It is 

responsible for the transmission of sensory and motor information to and from higher 

processing areas. Our results point towards the idea of a functional network that connects the 

cerebellum with hippocampal structures. Several changes have been reported in the literature 

reflecting hippocampal volume changes following exercise and related with improvement of 

spatial memory. Therefore it is not surprising that it have also been found functional changes 

within this structure. The amygdala, part of the limbic system and responsible for memory 

processing and emotions, presents with decreased connectivity to the cerebellum, along with 

what has been reported for the hippocampus. The hypothesis is that these structures reported 

changes due to memory retrieval mechanism, since all the participants went through a 

familiarisation session on the bicycle before the day when they had to perform the acute 

session of exercise.  Once again, the changes found within the DMN were related with the 

left parietal cortex, namely with the primary somatosensory cortex. 

All of the differences found seem to be focused in regions within the cerebellum, primary 

motor and somatosensory cortices. These regions appear to be less connected to the rest of 

the brain after the exercise session. 
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Overall, these results strengthen the hypothesis that exercise is capable of inducing 

measurable functional brain connectivity changes. It is remarkable that even after such a 

short session of exercise significant differences in brain functional connectivity can be found. 

However, these findings are hard to interpret and further studies will be necessary to fully 

perceive the mechanisms involved in these functional changes. Future studies should focus 

on the functional changes and try to assess for how long they last, their extensiveness and the 

influence of the exercise type. 

Apart from the seed-based methods all the other analysis methodologies described in this 

section were implemented by other researchers working within this project. Mr. Michael 

Stringer performed the ICA analysis; the graph measures were computed by Mr. Joel 

Parkinson, and finally the clustering methods and NBS analysis was carried out by Mr. Alex 

Ing. More information about their contributions can be found in Section 7, Appendices A. 
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5.5 Conclusion 

The goal of this study was to investigate whether it would be able to find significant 

functional changes induced by a single session of acute exercise. Using different 

methodologies to study functional connectivity it has been found that there are indeed 

significant functional differences resulting from a single session of exercise. Each method 

seems to be more accurate in identifying specific functional changes, nonetheless all of them 

seem to report differences focused in regions within the cerebellum, primary motor and 

somatosensory cortices. As a result of a short session of exercise all these regions appear as 

hypoconnected to the rest of the brain. 

These results have not been previously reported in the literature and they are encouraging 

towards the idea of measurable exercise-induced functional brain connectivity changes.  
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Chapter 6  
 

 

What is rest? A methodological approach  
to resting state functional MRI acquisitions 

!

!

!

!

!

Chapter Summary 

Up until today there is no established methodology for resting state fMRI studies. In most of 

the typical studies using functional connectivity “resting state fMRI” the subjects are 

instructed to lay very still, usually with their eyes open, to relax and not to think about 

anything in particular. Thus, a wide variance in brain activity is expected due to the fact that 

different subjects will be thinking about different things and some of them may even fall 

asleep. Therefore reliably identifying neuronal intrinsic activity in the human brain in the 

absence of a specific task can prove to be extremely problematic. The aim of this project is to 

develop a protocol for resting state fMRI acquisitions that will provide us measurements with 

less variability by using a low cognitive level paradigm to keep the attention of the volunteer 

focused. It is expected that by using this paradigm it can be induced a more unified response, 

boosting the power of the methodology, and decreasing the variability of the analysed 

statistical parameters. Based on the paper from Morcom and Fletcher (Morcom, Fletcher 

2007b) it is anticipated that the inclusion of this task will decrease the within group 

variability and therefore improve the sensitivity of the between-group comparison. 

!
!
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6.1 Introduction 

Patterns of FC observed at rest have been shown to resemble those elicited by more 

traditional task-based paradigms or derived directly from task-data (Hutchison et al. 2013, 

Biswal et al. 1995, Calhoun, Eichele & Pearlson 2009, Fox et al. 2005, Laird et al. 2011, 

Smith et al. 2009, Vincent et al. 2007). It has been established that the same functional 

networks are cohesively active during a multitude of tasks as well as rest(Smith et al. 2009). 

On the other hand, rigorous task demands have also been shown to modulate functional 

connectivity inside the RSN(Fransson 2005, Hampson et al. 2006, Harrison et al. 2007, Kelly 

et al. 2008). Complex cognitive processes such as working memory require the reallocation 

of neural resources from default-mode brain regions to lateral prefrontal regions. McKiernan 

et al. in 2003(McKiernan et al. 2003) demonstrated that this reallocation of resources 

increases with an increase in task difficulty. Nonetheless the study by Greicius et al, 2004 

(Greicius et al. 2004) suggests that not all tasks are sufficiently engaging to disrupt the 

default-mode network. 

The lack of consistency in the methodology used by different research labs to perform 

‘resting state’ fMRI acquisitions makes it nearly impossible to accurately study the variability 

among the identified network patterns. A relatively small change in the study design can have 

a large impact on how these networks are represented and how reliably these will be 

identified. Given the unconstrained nature of ‘resting state’ there is the emerging need for an 

agreement among!researchers regarding the protocol used to study such a stage. Accordingly, 

the reliability of resting state measurements, and the factors that may modulate them, need to 

be thoroughly examined.  

A study design using eyes-closed is considered to be one valid experimental way to switch 

the brain into its resting state activity (Raichle 2010, Logothetis et al. 2009). While this might 

be regarded as experimentally valid and sufficient, it may, however, prove insufficient when 

considering the input from the remaining senses, such as audition, that cannot be shut down 

completely. According to Logothetis et al. (Logothetis et al. 2009) a fixating cross requires 

the eyes to be open which implies an additional effort of fixation and therefore cannot be 

considered an appropriate method for measuring the resting state activity. Nonetheless, the 

study performed in 2013 by Patriat et al. (Patriat et al. 2013) analysed the effect of eyes open, 

eyes closed and the fixation of a cross on resting state fMRI reliability. The results supported 
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the fixation condition as the one providing better reliability. Beyond these contradictory 

results Logothetis raised some important questions “What should be considered as reflecting 

the intrinsic, spontaneous activity of the brain? What is the optimal experimental protocol for 

studying such activity? If no optimal protocol exists, and external sensory stimulation of at 

least some modalities is unavoidable, then what should be the strategy to assess the effects of 

the stimulated areas on the higher association cortices that might – at the outset – appear to be 

unrelated to the sensory stimulus?”. 

A study carried out by Smith et al. (Smith et al. 2009) compared two groups of data, one with 

true resting state and another with a large database of activation studies to test the hypothesis 

that the set of functional networks seen in resting state data closely matches the set derived 

from thousands of different activation conditions. The authors showed a strikingly strong 

correlation between the networks derived from both groups with ICA with 20 components 

(and later with 70 components). These included the visual, default-mode network, 

cerebellum, sensorimotor, auditory, executive control and frontoparietal networks. The 

quality of the correspondence between the derived activation networks and resting state fMRI 

is particularly compelling given the fundamentally different nature of the data feeding into 

these two analysis. 

The methodology chosen to analyse the ‘resting-sate’ data can also be acknowledged as a 

factor for variability. Different seed locations when using region of interest methods, or 

different number of component decomposition using ICA can be responsible for slight 

variations in the patterns of the RSN identified. Despite the fundamental differences between 

these two methodologies, a 2012 study (Rosazza et al. 2012) showed that the results of seed-

based analysis and ICA are significantly similar in a group of healthy subjects. 

Another factor of variability is the scanning time. A typical acquisition in humans includes a 

single scan of approximately 5-10 minutes using a repetition time (TR) in the range of 2-3 s 

that allows for whole-brain coverage with standard imaging sequences. It has been suggested 

that correlation values within and between ICNs stabilise within 4-5min of data (Van Dijk et 

al. 2010), implying that most studies are adequately sampling the network activity despite 

relatively few data points. However the identification of an optimal duration of a resting 

fMRI session (and the possible need for multiple sessions) is an open question (Cole, Smith 

& Beckmann 2010). 
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Several recent studies analysing the stability of RSN patterns through various sleep states 

indicate that the correlation patterns are relatively stable, except for a slight weakening 

during deep sleep. Even though they are designated RSN, the fMRI acquisitions are not 

usually collected during a proper ‘resting state’. Most of the studies incorporate passive 

visual stimulation, instructed or self-initiated changes in mental state or focus, or occur 

immediately following some other experimental manipulation, and therefore cannot be 

described as involving true, stimulus-unguided rest. All these factors affect reliability and 

have an impact even in the within-subject variability through different scanning sessions. 

Within-subject FC has been shown to vary considerably, even between different scans within 

the same imaging session (Honey et al. 2008, Liu et al. 2009, Shehzad et al. 2009, Van Dijk 

et al. 2010). Therefore the most recent studies have focused on finding the condition that 

provides the more reliable and reproducible measurements  

 

Reliability of RS-fMRI 

Test-retest reproducibility and inter-subject variability studies suggest that RSNs can be 

detected reliably across imaging sessions (Shehzad et al. 2009) and across different subjects 

(Damoiseaux et al. 2006, Shehzad et al. 2009) though there may be some source of variability 

between subjects. In the study published by Chou et al. (Chou et al. 2012) the reproducibility 

of RS-fMRI during a period of one year was assessed, resulting in an intraclass correlation 

coefficient (ICC) of >0.60 for >70% of the functional networks examined. 

In general, the reliability and stability of resting state functional connectivity MRI is critical 

to establish the network patterns present during normal development and aging so that 

deviations from these healthy states can be assigned with certainty to a particular condition or 

disease. As mentioned before, it has been suggested that many neuropsychiatric diseases 

disconnect brain areas belonging to the DMN. However, the potential use of the DMN as a 

functional imaging marker for individuals at risk with these diseases requires that the 

components of the DMN are reproducible over time in healthy individuals. Thus, studies like 

the one carried out by Meindl et al. (Meindl et al. 2010), assessing the reliability of the DMN 

over time in healthy volunteers, are of extreme importance. The most reproducible areas were 

found to be the anterior and posterior cingulated gyrus being the DMN patterns generally 

reproducible in healthy young subjects.  
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Furthermore, in the publications by Varsou et al. (Varsou, Macleod & Schwarzbauer 2013) 

and Perrin et al. (Perrin et al. 2012) it has been suggested that the inclusion of a low cognitive 

level paradigm may help reduce the variability in the RSN patterns identified and also within 

and between subjects. If the inclusion of this low level cognitive paradigm causes minimal 

impact/disruption of the RSN patterns the RSN patterns then it is expected that the 

connectivity maps obtained during rest will be replicable during this simple task. 

 

Clinical applications 

Rs-fMRI has provided many interesting insights on RSNs in the healthy brain and in multiple 

disease states.  Potential clinical applications at the single subject level have been 

demonstrated on some studies. Literature available on group-level studies is rather limited. 

• Identification of patients with Alzheimer Disease (Wang et al. 2007, 

Damoiseaux 2012, Agosta et al. 2012) 

• Surgical planning in patients with epilepsy (Liu et al. 2009, Stufflebeam et al. 

2011) 

• Psychiatric diseases such as major depressive disorder and schizophrenia 

(Perrin et al. 2012, Venkataraman et al. 2012) 

• Patients with autism spectrum disorders (von dem Hagen et al. 2013, Jones et 

al. 2010) 

• Attention deficit/hyperactivity disorder (Fair et al. 2010) 

 

Literature review 

During the course of this study a literature review regarding resting state fMRI reliability and 

reproducibility was conducted using electronic bibliographic databases, online journals and 

the websites of key organisations. This review used the following bibliographic databases: a) 

Web of Knowledge; b) Medline (via Ovid) – including studies since 1946; c) Embase (via 

Ovid) – including studies since 1974; and d) Scopus. The search mainly focused on articles 

published in the last 5/10 years. Natural language searching was used combined with Boolean 

operators to establish the relationship between different search terms. Whenever necessary 

more than one term for the same concept was used (e.g. fMRI, functional MRI and functional 
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resonance imaging) to strengthen the search. The keywords for this literature search were 

“resting state”, “magnetic resonance imaging”, “task”, “reproducibility” and “reliability”.  
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6.2 Material and Methods 
 

6.2.1 The RESTATE study 

This is a pilot / feasibility neuroimaging longitudinal study comprising of 13 healthy 

volunteers. There were two scanning sessions: a baseline scan and a follow up after 30 ± 5 

days. The goal of this study is to compare the reliability of functional connectivity estimates 

in two different resting conditions: true resting state (RS) and while performing a low 

cognitive level paradigm (LCP). The participants are asked to always perform the task with 

their dominant hand. There are several variables that can contribute to increased variability in 

the results (such as gender, age, social background, etc) therefore the aim was to make the 

population as homogeneous as possible in order to minimise the variability resulting from 

possible confounds. Each scanning session lasted for a total of 45 minutes including 10 

minutes of true resting state and another 10 minutes of the low cognitive demand paradigm. 

 

Problem 

It is not uncommon that the measurements resulting from a single subject present a very high 

standard deviation. This is ultimately reflected in an increased difficulty to compare subjects 

and conditions with certainty. In these cases it is virtually impossible to be sure that what is 

being observed is in fact a true effect and not just random signal.  

 

Questions 

This study was designed to answer the following questions: 

a) Does a low cognitive demand paradigm reduce the within group variability? 

b) Does a low cognitive demand paradigm offer a better baseline for the comparison 

with the follow-up scan and stroke patients?  

!
! !
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6.2.2 Participants 

• Demographic information 

Thirteen participants were originally included in the study. One of them was excluded due to 

the non-attendance to the second scanning session. The twelve participants included for 

further analysis were all right-handed (mean age 28,83 ± 4.687). Seven of the participants 

were females (58.3%) and five of them were males (41.7%). The participants were all age 

and sex matched with the stroke patients. 

For this cohort the number of days between baseline and follow-up scans was of 29.83 ± 

3.271 days, with a range from minimum to maximum of 27 – 35 days. Further information 

regarding the demographic statistics can be found in Section 6.1 from the Appendices A. 

 

• Medical Conditions 

On the first selection process all of the selected volunteers stated to be healthy. However, 

when reporting their medical history at the time of their first scan two of the participants 

acknowledged having medical conditions that should be taken into account. One of the 

participants reported suffering from depression and another from migraines. Some less severe 

conditions such as hyperlipidaemia, hypothyroidism and ulcerative colitis were also reported. 

Even though the participant suffering from migraines was not under any medication the 

volunteer suffering from depression acknowledged to be currently taking antidepressant 

tablets. These participants were still included in the study since they were considered to be 

representative of the normal population.  

!

• Ethics 

The RESTATE study was approved by the North of Scotland Research Ethics Service 

(NOSRES), and written informed consent of all the participants was obtained prior to 

participation in the study.! !
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6.2.3 Paradigm 

The low cognitive demand paradigm was designed by Dr Ourania Varsou and Mr Gordon 

Buchan using the Presentation software (more information can be found in Section 7, 

Appendices A). This task consists on the presentation of alternating pictures of buildings and 

landscapes (Figure 6.1) where the participant is asked to press the dominant hand index 

finger button every time an image of a building is presented. The button handle has a specific 

design so that the patient/volunteer can rest his/her hand on the chest and the action of 

pressing the button becomes more comfortable. The participants were shown 200 pictures - 

100 landscapes and 100 buildings – centred in the middle of the screen and presented every 

2.9 seconds. 

The presentation has a background image of which 70% is grey, to avoid white flashes 

between images, inducing a more pleasant, neutral and calm reaction to the paradigm. Based 

on previous literature, the clinical psychologist in the Department Dr Jennifer Perrin, 

carefully chose the pictures used in this paradigm. Each time the button is pressed a feedback 

response – “Button pressed” – is presented on the screen. The feedback message is designed 

to be simple and to avoid triggering any competitive behaviour. 

To perform the visual paradigm a screen and a projector have been positioned on the back of 

the scanner bore. The head coil has an incorporated mirror that allows the visualization of the 

screen and each volunteer is given a button to press every time a building is shown. 

 

 
Figure 6.1 - Low cognitive paradigm presented to the participants with pictures of a) buildings and b) 
landscapes. Once the button was pressed a message saying “Button pressed” would be displayed 

!
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6.2.4 Imaging Methods 

The participants were scanned two times with the neurovascular protocol (Baseline and 

Follow-up) plus the two fMRI resting conditions: Resting state (RS) and Low Cognitive 

Paradigm (LCP). During the RS sequence volunteers were asked to relax and the radio was 

switched off. The follow-up scan was acquired in a period of 30 ± 5 days from the baseline 

scan. The full MRI protocol can be found in Appendices B.  

In order to avoid habituation or prediction regarding the scanning sequence a random number 

generator script was used to create the order of the scanning procedure for each volunteer and 

each scanning session. 

 
TABLE 6.1 – SCANNING ORDER FOR BOTH BASELINE ANDFOLLOW-UP SCANS 

! ! !"#$$%$&'()*+)'

Volunteers Baseline Follow-up 
1 Low cognitive/ RS Low cognitive/ RS 

2 RS/Low cognitive RS/Low cognitive 

3 RS/Low cognitive RS/Low cognitive 

4 Low cognitive/RS Low cognitive/RS 

5 RS/Low cognitive RS/Low cognitive 

6 RS/Low cognitive RS/Low cognitive 

7 Low cognitive/RS Low cognitive/RS 

8 Low cognitive/RS Low cognitive/RS 

9 RS/Low cognitive RS/Low cognitive 

10 Low cognitive/RS Low cognitive/RS 

11 Low cognitive/RS Low cognitive/RS 

12 RS/Low cognitive RS/Low cognitive 

13 RS/Low cognitive RS/Low cognitive 

 

The participants were asked to fill a research form that included questions such as sex, age, 

medical conditions and current regular medications. Upon agreement of the volunteer a 

Montreal cognitive assessment test (MoCA) would also be performed by the researcher. The 

scans were posteriorly checked by a radiologist to make sure that no medical problems were 
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found. A white matter hyperintensity visual scoring was also performed based on the local 

Scheltens protocol developed by Professor Alison Murray. This protocol classifies the 

hyperintensities in four categories: deep white matter hyperintensities (DWMHs), grey matter 

hyperintensities (GMHs), infra-tentorial foci of hyperintensities (ITFHs) and periventricular 

hyperintensities (PVHs). The differences between the local and original protocols are in 

terms of DWMH and GMH classifications and the scaling points of PVH. In addition, the 

internal capsule has been incorporated into the DWMH section instead of the GMH which 

was originally used. In the local protocol, FLAIR images are used to score the PVH and 

DWMH, while scoring of the GMHs and ITFHs is performed using T2-weighted images. 

WMH present in MR images as visible changes within white matter structures. These are 

thought to be due to hypoxic episodes related to hypoperfusion of vulnerable deep white 

matter, secondary to hypertension, diabetes, and other vessel diseases.  A copy of the 

Research form and information about the local Scheltens protocol can be found in the 

Appendices B.  

!
! !
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6.2.5 Image Analysis 

Preprocessing 

The data was preprocessed using the statistical parametric mapping software package for 

MATLAB (SPM8; www.fil.ion.ucl.ac.uk/spm). Preprocessing was performed according to 

the standard steps including realignment and reslicing, slice timing correction, co-

registration, segmentation, normalization to the MNI space, reslicing to 3 x 3 x 3 mm, and 

spatial smoothing with an 8-mm FWHM Gaussian isotropic kernel.  

A binary mask was created using the SPM8 tissue probabilistic map for grey matter 

(spm/spm8/apriori/gray.nii) to segment the grey matter tissue of each subject, including all 

the voxels with a grey matter probability greater than 0.3. The time courses of all grey matter 

voxels included inside the binary mask were extracted from the imaging data and stored in an 

array of N= 33, 985 time course vector. 

The segmentation step also provided a probabilistic map of the white matter 

(spm/spm8/apriori/white.nii) and cerebrospinal fluid (CSF) (spm/spm8/apriori/csf.nii) for 

each subject. These maps were thresholded to ensure 30% of tissue type probability and used 

to create a tissue-averaged time-course for each subject, which was posteriorly used as a 

confounding variable to be regressed out of the data. In order to perform this step the 

thresholded masks were applied to the time series of each individual and a mean time serie 

was calculated by averaging across all voxels within the mask. This is a common step used to 

avoid the discovery of false correlations related with white matter or cerebrospinal fluid 

signal that are not the main signal of interest (i.e. grey matter signal) and therefore are 

considered to be nuisance variables (Di Martino et al. 2008, Shehzad et al. 2009, Fiecas et al. 

2013, Patriat et al. 2013). 

!

Templates 

Unlike most of the previously published reliability analysis literature it has been decided to 

use a set of templates instead of a region of interest (ROI) approach. The templates used in 

this analysis were derived by Allen et al. in her 2011 paper (Allen et al. 2011). This study 

used Independent Component Analysis (ICA) to analyse the data from 603 healthy 

adolescents and adults with a mean age of 23.4 years, ranging from 12 -71 years.  The fMRI 

data was analysed using a 75-component group independent component analysis (GICA), and 
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based on visual inspection and power spectra 28 components were identified as Resting state 

Networks (for a detailed description of the component selection see Section 2 of (Allen et al. 

2011)). The unthresholded t-maps for 28 resting state components including 7 different 

networks are available online (http://mialab.mrn.org/data/index.html) .For display purposes 

the maps where thresholded at tc > µc + 4!c. (see Appendix B of (Allen et al. 2011)). The 

RSN are divided into groups according to their anatomical and functional properties 

including the basal ganglia (BG), auditory (AUD), sensorimotor (MOT), visual (VIS), 

default-mode (DMN), attentional (ATTN), and frontal (FRONT) networks (Figure 6.2).  

 

Figure 6.2 - 28 components identified as RSN in the Allen et al., 2011 paper 

 

  



RESTING STATE FMRI EXPERIMENTAL AND ANALYTICAL METHODOLOGY: A FUNCTIONAL CONNECTIVITY ANALYSIS 

 91 

TABLE 6.2 – THRESHOLDS FOR THE T-MAPS OF EACH COMPONENT FROM THE ALLEN ET 
AL, PAPER  

P)%5)*0*#!*&%<03! S01#$*=!d!"#(#0!-0#:)3O! #M1#(#$1#$.!#93019)';!
N! "0*1)3$%)#)3!HZ+WI! RBCXU!
=N! b&;$#)3/!Hbe2I! RUCFR!
>O! N3)*#('!HNS+-WI! RFC88!
>=! a(1('!f(*='$(!HafI! 66C77!
>?! "0*1)3$%)#)3!HZ+WI! R7CFB!
>@! "0*1)3$%)#)3!HZ+WI! R7C78!
>A! 20,(&'#M%);0!H2Z-I! 6BCUB!
>P! "0*1)3$%)#)3!HZ+WI! 67CBQ!
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The single BG component shows activation mainly focused in the putamen and pallidum 

(Robinson et al. 2009, Ystad et al. 2010). The auditory component, IC 17, represents large 

parts of the auditory system, including the superior temporal gyrus, superior temporal sulcus 

and middle temporal gyrus all with bilateral activation(Seifritz et al. 2002, Specht, Reul 

2003).  

In order to create a mask/template of each network the thresholds corresponding to the 

display of the t-map for each component are needed. The author herself provided the 

threshold values through e-mail correspondence. The values used to create the binary masks 

for each of the components can be found in the Table 6.2. 

 

Data analysis 

Only the voxels included inside both the RSN template and the grey matter mask were 

selected for further analysis. 

!
Temporal low-pass filtering 

According to previous literature (Biswal et al. 1995, Fox, Raichle 2007, Cordes et al. 2001b) 

resting state data fMRI should be filtered to exclude physiological components and non-

neuronal sources as well as to improve the signal-to-noise ratio (Van Dijk et al. 2010). 

Therefore a 10th order low-pass Butterworth filter with a cutoff frequency of 0.1Hz was 

applied to each time course vector. The filter coefficients were computed using the 

MATLAB “butter” function and applied using the “filtfilt” function as described in(Perrin et 

al. 2012).  

!
Baseline Correction 

Linear regression was used to perform a linear baseline correction of each time course vector 

for the confounding factors. For this purpose and according to the standard analysis 

procedure used in the Department, a second order cosine basis set was applied, consisting of 

the two vectors with the components xi = cos(i.t/T. ") with t = 1, 2, …, T and i = 1, 2; T = 300 

is the number of time points. In addition to the two cosine basis vectors, the six realignment 

vectors generated by SPM8 during the realignment preprocessing routine were included as 

covariates to correct for movement-related global signal changes simultaneously. The 
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averaged time course for the white matter and CSF were also included as nuisance regressors 

to correct for a potential contamination of the signal with sources that do not originate in the 

grey matter. These regions are also thought to include high proportions of noise related to 

cardiac and respiratory signals.  

The linear regression coefficients were calculated in MATLAB for each time course vector ! 

according to " = (X’.X)-1.X’. !, where X is the 11 x T design matrix that consisted of a 

constant column vector of ones followed by the two cosine basis vectors, the six realignment 

vectors and the two averaged time courses (white matter and CSF). The corrected time course 

vector was calculated for each time course according to !c = ! – X. ". 

Global signal regression was not performed in this dataset. This process consists of 

regressing out the average time course of the entire brain with the aim of improving the 

specificity of correlations and reducing noise. The decision to not include this step followed 

after consulting the published literature  (Cole, Smith & Beckmann 2010, Murphy et al. 2009, 

Liang et al. 2012, Weissenbacher et al. 2009, Saad et al. 2012, Song et al. 2012) suggesting 

that the inclusion of this step tends to reduce the overall reliability, induce false negative 

correlations and affect group results. The paper by Liang et al. (Liang et al. 2012)also found 

that greater reliability was observed for Pearson-correlation-based brain networks without 

performing global signal removal. 

 

Functional connectivity analysis 

The seeds used for computation of the correlation maps were extracted from the paper 

published by Patriat et al. (Patriat et al. 2013). Table 6.3 outlays the seeds and their 

corresponding MNI coordinates. The seeds consisted in a cube with the central voxel in the 

coordinate and one voxel in each direction accounting for a total of 7 voxels. 
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TABLE 6.3 – SEED REGIONS USED FOR THE SEED-BASED CONNECTIVITY 

ANALYSIS 

Network Seed MNI Coordinates 

Default-mode Network PCC ]7J!M86J!RF^ 
mPFC ]7J!8RJ!MF^ 
left LatPar [MXUJ!MFRJ!6F^ 
Right LatPar ]XFJ!MFRJ!6R^ 
left HF ]MRXJ!MRRJ!MR7^ 
right HF ]RXJ!MR7J!MRR^ 

Dorsal Attention 

Network 

 

 

left FEF [M6UJ!MXJ!XUg 
right FEF [X7J!MXJ!XU^ 
left MT [M8FJ!MF7J!MR^ 
right MT [8XJ!M8UJ!MX^ 
left IPS [MRXJ!M8UJ!8R^ 
right IPS [RRJ!M8UJ!8X^ 

Auditory Network left Aud [MX6J!MRFJ!BR^ 
right Aud [X6J!MRFJ!BR^ 

Motor Network left Mot [M6FJ!MR8J!8_^ 
right Mot [6FJ!MR8J!8_^ 

Visual Network left Vis [M67J!MUUJ!7^ 
right Vis [67J!MUUJ!7^ 

PCC, posterior cingulate cortex; mPFC, medial prefrontal cortex; LatPar, lateral parietal cortex; HF, 
hippocampal formation; FEF, frontal eye fields; MT, medial temporal area; IPS, intraparietal sulcus; Aud, 
primary auditory cortex; Mot, primary motor cortex; Vis, primary visual cortex. 
 
 
The seed-based analysis was performed using Pearson correlation measures and the CHART 

method stage 2 according to what has been described in the previous chapters and following 

the methodology applied in the paper by Perrin et al. (Perrin et al. 2012). 

 

Averaged time-course 

The time-course of the voxels of interest for each template was averaged independently for 

each subject and condition in order to create a vector of N=1 x T where T = 300 time points. 
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Correlation Coefficient 

Correlation coefficients can be used to investigate how close is the relationship between two 

variables. This measure is based on the sum of products about the mean of the two variables 

(x and y). The distance of the point (xi and yi) to the axis represents the deviations from the 

mean. This value can be positive or negative and so their product will either be positive or 

negative according to the sort of relationship that exists between the variables (positive or 

negative correlation). When plotting the variables, and if the two are not related, it will result 

in a scattered diagram with roughly the same number of points in each of the sections, 

resulting in a sum equal to zero – no correlation.  

In order to obtain a dimensionless coefficient one can divide the sum of products by the 

square roots of the sum of squares of both variables (x and y). This is denoted by r, the 

Pearson correlation coefficient. Assuming there are n=1,2,..i pairs of observations denoted by 

(xi,yi) then r is given by 

! ! ! !!! ! !!!!! ! !!
! !!! ! !!!!! !!! ! !!!!

 

 

!! !!!! !! !! !!
!

!!! !
! !!!!
! !!! !

! !!!!
!

 

 

However this correlation coefficient only accounts for linear relationships between the two 

variables. Therefore the two variables under study can be related in a non-linear way and thus 

the correlation coefficient will be equal to zero. This shows the importance of plotting the 

data and not relying on statistics only. 

The Spearman correlation coefficient is the nonparametric version of the Pearson parametric 

test. It is specifically used under the assumption of ranked variables instead of raw scores. 

Unlike the Pearson correlation coefficient which only results in a perfect correlation of the 

two variables are related in a linear fashion, the Spearman correlation will be perfect for any 

two variables X and Y which are related by any monotonic function. The nonparametric 

characteristic of this measure also means that the Spearman correlation does not require any 

previous knowledge about the joint probability distribution of the variables under study. 
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Similarity matrix 

With the aim of studying the stability within each network it was calculated a similarity 

matrix between all the voxels included inside of the template for each network. A Bravis 

Pearson product moment correlation (commonly known as Correlation Coefficient measure) 

was used. This procedure was followed by a Fisher Z-transform. The N x N similarity matrix 

is symmetrical on its diagonal being the unique values equal to S = N x (N-1) /2, where N is 

the number of voxels inside of the template. Extracting only the unique correlations (UC) 

from the similarity matrix results in a vector of size S for both the Resting state and Paradigm 

in the Baseline scan and the Follow up. Under the assumption of reproducibility these vectors 

were used to calculate a further correlation measure between the unique correlation vector 

(UC) resulting from the same condition but comparing the 2 different scanning times – 

intersession variability.  

 

 

 

 

 

 

 

 

 

 

 

Ideally if it was possible to reach 100% reproducibility the two vectors would have a perfect 

correlation between each other. The correlation measures used were a Pearson and Spearman 

correlation coefficients resulting in a single value of correlation per subject and condition.  

Figure 6.3 - Similarity matrix resulting from the computation of Pearson’s correlation 
of all the voxels within the template!
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The averaged time course of the template (with size 1 x T with T =1, 2…300 time points) 

was calculated based on the mean of the time course of all voxels. A Pearson correlation 

coefficient was computed between the averaged time course and all the voxel included in the 

template generating a more localised comparison without averaging out the differences. 

These values were converted back to the image space in order to obtain maps of correlation 

within the template. 

 

Intraclass Correlation Coefficient 

Intraclass Correlation Coefficient (ICC) is a common measure of test-retest reliability (TRT) 

firstly introduced by Shrout and Fleiss in 1979(Shrout, Fleiss 1979) to measure inter-rater 

reliability. This measure has been extensively used to assess the test-retest reliability of fMRI 

activations and connectivity (Braun et al. 2012, Li et al. 2012, Shehzad et al. 2009, Thomason 

et al. 2011, Zuo et al. 2010, Patriat et al. 2013). Greater reliability will be expressed by higher 

ICC values while lower ICC values reflect low reliability between different measures. 

Supporting the choice of using templates of RSN instead of a whole brain analysis is the 

finding reported by Shehzad et al. (Shehzad et al. 2009) that significant differences in ICC 

can be found depending on the significance of the connection. Assuming the study of the 

connectivity values of two unconnected regions these should be approximately zero 

throughout all subjects and scans, possibly with slight variations due to noise. Consequently, 

the between subjects variance will be approximately the same as the within-subjects variance 

resulting in an ICC value of zero. If a non-zero ICC value is found for a non-significant 

connection this suggests the presence of consistent noise within a subject that is reliably 

different from another subject. In reality it is extremely unlikely that two areas are totally 

unconnected, however the ICC values of most weakly connected areas will be more 

influenced by noise (Patriat et al. 2013), therefore the study of well-defined networks should 

in principle give us more reliable information than whole brain analysis. 

For each unique correlation of the similarity matrix it was created one 12 x n matrix, using 

the Z-transformed correlation values (according to the procedure performed in(Patriat et al. 

2013) and (Shehzad et al. 2009)) for the 12 participants and n = 2 scans - Baseline and 

Follow-up. This process was repeated for all of the 28 components. 
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The ICC values were calculated using a public MATLAB script developed by the University 

of Wisconsin – Madison24. A one-way ANOVA with random subject effects was used to 

compute the between-subject mean square (BMS) and within-subject mean square (WMS). 

The ICC values were subsequently calculated according to the equation proposed by Shrout 

and Fleiss, 1979, where k is the number of repeated measurements per voxel (here, k = 2): 

 

!"" ! !"# !!"#
!"# ! ! ! ! !"# 

 

This is the model widely used to in fMRI reliability testing (Shehzad et al. 2009, Telesford et 

al. 2010, Zuo et al. 2010, Braun et al. 2012, Wang et al. 2011, Liang et al. 2012, Schwarz, 

McGonigle 2011, Song et al. 2012, Guo et al. 2012, Gorgolewski et al. 2013, Patriat et al. 

2013). Once all the scans have occurred at different times there is nothing intrinsic about the 

label of “scan one” for the scans of each subject. To further access the network variability the 

ICC values were averaged within each of the 28 components. ICC values range from 0 to 1 

with a value close to 1 representing a reliable measure with low within-subject variance 

relative to between subject variance. In agreement with what has been considered in previous 

studies (Liang et al. 2012, Liao et al. 2013) the test-retest (TRT) reliability was assessed in a 

component-wise manner according with the classifying criteria of ICC values (Sampat et al. 

2006) that states that values <0.4 indicate low reliability; 0.4 < ICC < 0.6 indicates fair 

reliability; 0.6 < ICC < 0.75 indicates good reliability and 0.75< ICC < 1.0 indicates excellent 

reliability. 

 

 

 

 

 

 

 
                                                
24 Birn Laboratory, Department of Psychology: http://birnlab.psychiatry.wisc.edu/ 
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Statistical analysis 

Statistical analysis of the data was performed using three different softwares: 

" SnPM was used for the comparison of the seed-based connectivity maps using 

paired T-tests. The statistical testing was performed using a FWHM of 8mm and 4096 

permutations; 

" SPSS25 was used to perform paired T-tests of the UC and ICC values obtained; 

" FSL was the software chosen to perform the nonparametric statistical paired T-

tests between the correlation maps of all the subjects for each scanning session and 

condition due to its easier implementation and automisation of the procedure. 

 

 

 

 

 

 

 
  

                                                
25 IBM SPSS Statistics: http://www-01.ibm.com/software/uk/analytics/spss/products/statistics/ 
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6.3 Results 

A record was kept on the amount of times the participants pressed the button and in which 

situation (buildings or landscapes). Taking into account that the paradigm consisted in 100 

pictures of buildings and 100 pictures of landscapes and that these are healthy volunteers one 

would expect that the button would be pressed 100 times for buildings and 0 times for 

landscapes according to what has been asked the participants to do. The actual statistics are 

as follows: Scan1 - number of times the button was pressed for buildings was of 99.25 ± 

1.288 times with median 100; Scan2 - the participants pressed the button for buildings 95.08 

± 16.093 times with a median of 100. 

For all the participants the movement parameters were carefully plotted and analysed. The 

movement present in the data was very small, being currently accepted that values of 

movement in this range can be easily corrected by the regression of the movement parameters 

from the model. For the purpose of this study it has been considered excessive head motion 

as any of the translational parameters presented > 2 mm or rotational parameters > 2degrees. 

A comparison between the movement parameters resulting from one of the RESTATE 

volunteers and one DoC patient can be found in the Appendices A Section 6.3. 

!

Statistical Analysis 

Pearson correlation coefficient between the Schelten score reported for Scan 1 and for Scan 2 

was significant (p<0.05) meaning that both sessions reported the same results. No significant 

correlation was found between the Scheltens score and the MoCA test neither between 

Scheltens and sex. Curiously, in this population it is reported an inverse correlation between 

age and Scheltens score. This fact can be explained by the healthier profile or our older 

participants when compared with the younger ones. 

The number of times that the button is pressed in each session is normally distributed for a 

significance of 0.001 according to the Kolmogorov-Smirnov good-fit parametric test. (see 

Appendices A Section 6.1) 

!

! !
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Seed-based correlation 

Seed-based connectivity maps were computed for the scans acquired under the resting state 

condition as well as the paradigm. These maps were posteriorly compared between sessions 

(e.g. Baseline: Resting state vs Follow-up: Resting state) in order to study the intersession 

reliability when using seed-based methods. The resting state condition did not provide any 

significant differences between the two sets of connectivity maps for a FWE corrected of 

p<0.05. On the other hand the Paradigm maps were significantly different for the seed 

regions of the left primary auditory cortex (1 voxel, MNI [33,41,37]), right frontal eye fields 

(2 voxels MNI [24, -64,64] & 3 voxels MNI [-39,-55,25]), the left intraparietal sulcus (4 

voxels MNI [36,-10,67]) and the right intraparietal sulcus (1 voxel MNI [15,-79,-32]). All the 

differences pointed towards increased connectivity in all these regions during the baseline 

scan when compared with the follow-up.!

!

Network statistical analysis 

The Spearman correlation consistently provided lower values of correlation for the subject 

average of the UC correlations. From each subject resulted a set of 2 correlation values, one 

per condition (Paradigm and Resting state). For the purpose of displaying the results in a 

more concise manner the values of correlation for each subject were averaged per component 

as can be seen in Table 6.4 and the resulting plots Figure 6.4 and Figure 6.5. 

Both the Kolmogorov-Smirnov and the Shapiro-Wilk normality tests proved that the values 

of correlation for Pearson and Spearman tests are normally distributed.  

A paired T-test was used to compare the Pearson correlation values of each subject within the 

same component and between Paradigm and Resting state. On a component level there were 

significant differences (considering for a FWE p<0.05) in two visual components – 

component 39 and 48. Averaging the results of all the components within each network the 

DMN, attention network, frontal networks and visual network present no significant 

differences between both conditions, however in the sensorimotor networks the differences 

are significant at p<0.05. Again, and using the Spearman correlation values this time, a paired 

T-test was performed on a component level showing significant differences in the visual 

components 39 and 48 for the correlation values between both conditions for a p<0.05.  On a 

network level no significant differences were found between the conditions for a p<0.05. The 
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auditory and basal ganglia networks did provide any significant differences (p<0.05) in the 

correlation values obtained for both conditions. 

 

TABLE 6.4 - UNIQUE CORRELATION VALUES FOR EACH COMPONENT AND AVERAGED PER 
SUBJECT 
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!

!

 
 

 
 
Figure 6.5 - Plot of the Spearman correlation coefficient obtained for the unique correlations and statistical 
error bars!
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Figure 6.4 – Plot of the Pearson correlation coefficient obtained for the unique correlations and statistical 
error bars 
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ICC Results 

Table 6.5 shows the results of the average values of ICC for each component. Both the 

Kolmogorov-Smirnov and the Shapiro-Wilk normality tests proved that the ICC values 

obtained for both resting state and paradigm are normally distributed. A paired T-test was 

used to compare the average ICC values between Resting state and Paradigm. For a p<0.05 

this test demonstrated that there were significant differences between both conditions values.  
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TABLE 6.5 - ICC VALUES AVERAGED WITHIN EACH COMPONENT 
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Figure 6.6 – Plot of the average ICC values for each network and statistical error bars!

 

From visual inspection from the graphic (Figure 6.6) it can be seen that for all the networks, 

with exception of the visual, the resting state condition showed higher values of intraclass 

correlation coefficient - reflecting a lower intersession variance (Baseline vs Follow-up) for 

this particular condition. The visual network, as being the one most stimulated by the 

paradigm, did show a small increase in stability under this condition when compared with the 

true resting state.  

The ICC values are mainly in the range between 0.4 and 0.6 reflecting fair reliability (0.4< 

ICC <0.6) for the detection of these networks. 

!
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The correlation maps resulting for both scanning procedures and scanning session were 

compared using non-parametric statistics and a paired T-test, 10000 permutations at a 

significance level of p<0.05. This comparison comprised of a normal voxelwise comparison, 

and a cluster check on the voxelwise results and a threshold free cluster enhancement. 

Whenever the results were positive for significant differences these were reported using FSL 

view. Unlike MRIcron used in the previous studies FSLview displays the images according 

to the radiological convention (i.e. left is right) and uses the MNI coordinates as the 

stereotaxic space.! !
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TABLE 6.6 – CLUSTERS OF SIGNIFICANT DIFFERENCES BETWEEN THE CORRELATION 
MAPS FROM BASELINE AND FOLLOW-UP 
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Components 20, 47 and 49 are all part of the frontal networks, while component 24 is 

included in the sensorimotor network, component 53 on the default-mode network and 

component 71 in the attentional networks. The cluster of 10 voxels presenting increases in the 

Baseline session compared to the Follow-up, during the Paradigm condition, is mainly 

included in the right Brodmann area (BA) 11. One of the voxels is part of the right BA 25 

and all of the 10 voxels are included in the right anterior cingulate and paracingulate gyri. 

Appendices Section 6.2 includes a table with the results from the comparison of the 

correlation maps obtained for both conditions during the same scan (i.e. Baseline: Resting 

state vs Paradigm). The differences are significant in number and size but appear to be 

consistent for the first and second scan. 

!

!

!

!
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Individual analysis 

Figure 6.7 is illustrative of two patients with a relatively high load of WMH. The white 

matter hyperintensities presented beneath are visualised in a FLAIR sequence, on which the 

WMH appear as hyperintense regions in the white matter. A higher load of WMHs is usually 

correlated with the development of vascular diseases such as stroke and multiple sclerosis. 

The volunteers included in this study had a Scheltens score between 5- 25. In this particular 

study it has been found that the volunteers who suffered from migraines and depression 

where the ones that presented with the highest score of WMH. 

 

 

 

 

 

 

 

 

 

Incidental Findings 

Even though no medically relevant incidental findings were discovered during the course of 

this study some participants did present incidental findings (Figure 6.8) as well as normal 

variations (Figure 6.9). This finding in such a small population (13 individuals) supports the 

potential interest in developing a study involving a larger sample of healthy subjects. This 

study would target the investigation of how many incidental findings can be found in the 

regular healthy population used for control purposes, what sort of findings are more 

predominant and how medically relevant are they.!!

!

!

Figure 6.7 WMH in a) Patient with a very high Scheltens score 53; and b) a patient with 
Scheltens score of 38. 



CHAPTER 6. WHAT IS REST? A METHODOLOGICAL APPROACH TO RESTING STATE FUNCTIONAL MRI ACQUISITIONS 

  108 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Normal variations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.8 - Incidental finding of a 6mm calcified cyst in the right caudate 
nucleus.!

Figure 6.9 - Proeminent cisterna magna 
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ICA analysis 

Mr Michael Stringer (more information on Section 7, Appendices A) performed ICA analysis 

of the data from both sessions and conditions. The components were extracted from one ICA 

session and compared between baseline and follow-up. No significant differences were 

detected in either case using a 2-sample Paired T-test with FWE p<0.05. The comparison 

between both conditions in session 1 and session 2 only resulted in a small cluster (3voxels 

and 2 voxels) of significant differences for FWE p<0.05 in two components of the visual 

network. 
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6.4 Discussion 

Seed-based analysis 

The results from the seed-based analysis support the idea that there is a considerable degree 

of reproducibility between scans for both conditions. However, contradicting out initial 

hypothesis, the results seem to suggest that the resting state condition is more stable and 

reproducible than the low-cognitive paradigm.  

Our results point for greater connectivity patterns in regions such as the left and right 

intraparietal sulcus. Both regions are included in component 71 part of the attentional 

networks of the Allen template. This component also overlaps the alerting system(Fan et al. 

2005). Seed-based connectivity maps for these seeds (L_IPS & R_IPS) show increased 

connectivity during baseline paradigm when compared with the same condition during 

follow-up. This behavior can be explained as the result of the baseline scan being the first 

contact the participants had with the task and therefore they are more focused and attentive 

comparative to the follow-up session. The differences observed in visual regions (L_FEF and 

R_FEF) are also interesting. There is increased connectivity in these regions during the 

baseline scan when compared with the follow-up. Increased connectivity in visual regions 

during paradigm when compared with resting state is somehow expected due to the 

performance of the task. As a result it can once again be assumed that during the first scan the 

participants were dedicating more attention to the task than when they performed it for the 

second time. 

Moreover, it would be interesting to see how patterns of functional connectivity change 

during a third scanning session. This could give us further knowledge about the 

reproducibility of resting state and about the fluctuations observed during the execution of the 

paradigm. 

The results obtained for the resting state condition do allow us to conclude that this condition 

is totally reproducible, but only that the similarity between the resulting maps cannot the 

denied. It is also important to stress that these small but significant differences can also be the 

product of other numerous factors. They can result of a small population size, random 

variations, etc. Therefore it is important to study other parameters (e.g. within group 

variability) that might give us a more into depth overview on what is actually happening 

between both scanning sessions.  



RESTING STATE FMRI EXPERIMENTAL AND ANALYTICAL METHODOLOGY: A FUNCTIONAL CONNECTIVITY ANALYSIS 

 111 

Correlation maps  

Most of the differences observed for the same condition and between the two sessions 

(Baseline vs Follow-up) are very small (~1 voxel), which can result not from significant 

inter-session differences but to be rather justified by other factors such as natural variance 

between sessions.  

Component 23 and 24 are part of the left and right sensorimotor networks, situated in the 

vicinity of the central sulcus. Component 24 presented increases during baseline when 

compared to follow-up for the paradigm condition. Since all of the participants had the task 

button on their right hand, it can be hypothesised that the contralateral (left) somatomotor 

hemisphere (component 23) is more consistent and homogeneous during the two scanning 

sessions while executing the paradigm. The reported finding in component 24 is small (1 

voxel) and can be acknowledged as being the result of inter-session variation. The same 

component and coordinate is also increased (1 voxel) in the baseline session during the 

execution of the paradigm when compared with the RS condition in the same session. This 

comparison also resulted in increases in component 23 during paradigm when compared to 

RS (1 voxel), that can be accepted as being the result of the performance of the task. These 

differences are strikingly small, proving that the execution of the paradigm does not seem to 

elude significantly greater activation of the contralateral somatomotor cortex when compared 

with the resting condition. Component 38, a bilateral component also part of the sensorimotor 

networks, is clearly the one from this network that is mostly affected by the execution of the 

paradigm. In a comparison between rest and paradigm, for both sessions, component 38 was 

the component that presented with greater increases during the execution of the task 

(Baseline: 7 voxels + 2 voxels & Follow-up: 9 voxels + 1 voxel). 

Component 39, 46, 48, 59, 64, 67 are all part of the visual networks. The Allen templates 

have been created based on resting state fMRI acquisitions where the subjects were instructed 

to lay with eyes open fixating on a cross. During the resting state scan the volunteers were 

instructed to lay still and relax, giving them the option on whether they would like to keep 

their eyes open or closed. It has been found a higher correlation with the average time course 

during resting state for component 46 (178 voxels in the Baseline scan & 214 voxels in the 

Follow-up), component 59 (142 voxels in the Baseline scan & 264 in the Follow-up) and 

component 64 (59 voxels in the Baseline scan & 752 voxels in the Follow-up). Components 

39, 48, 61 and 67 also report increased connectivity during resting state when compared with 
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paradigm for both scanning sessions. These results suggest that the behaviour of the visual 

network is much more similar to the template during resting state than during a period when 

there is visual stimulation. In some cases the same components reported increased correlation 

with the averaged time course in both conditions, however in different regions. As an 

example, component 59 shows an increase of 142 voxels [27,7,21] during RS and an increase 

of two clusters of 56 voxels [12,12,56] and 53 voxels [38,9,25] clusters during the paradigm, 

all during the first scanning session. Nonetheless the same behaviour is observed for the 

follow-up scan. 

Component 49 comprises of the right prefrontal cortex, which is thought to be involved in 

executive functions. It was found a cluster (9 voxels) of increased connectivity during the 

first time performing the paradigm. This cluster is mainly included in BA 11, the 

orbitofrontal area, which is involved in planning, reasoning and decision-making. All of the 

voxels are included in the right ACC, structure that once again plays a role in decision-

making. Hence, it can be hypothesised that the higher correlation values within the network 

when first executing the task (Baseline: Paradigm) and when compared with the second time 

they perform the task (Follow-up: Paradigm) – Table 6.6 – are due to this being the first 

contact with the paradigm. During the second session the participants were already familiar 

with the task and might have been more comfortable and less focused while performing it. 

Both components 47 (bilateral) and 49 are part of the frontal networks and these are also the 

components that present with increased connectivity during the execution of the paradigm. 

The frontal networks are usually implied in decision making and mentalizing as well as 

mediating executive, memory and language functions  (Koechlin, Ody & Kouneiher 2003, 

Koechlin, Summerfield 2007)hence their involvement during the execution of the paradigm, 

even though being minimal, is not surprising. 

Component 71, which is part of the attentional networks and is focused at the temporo-

parietal junction, comprises the intraparietal sulcus. This area is thought to be related with 

perceptual-motor coordination (for directing eye movements and reaching) as well as visual 

attention. The functional relevance of this sulcus for visual-motor tasks comprising target 

selections for arm and eye movements, object manipulation and visuo-spatial attention has 

been established through animal and human studies (Grefkes, Fink 2005). This same 

component appears to be consistently more correlated (for both baseline and follow-up) and 

working in a more homogeneous way when the subjects are under the resting state condition 

than when they are performing the task (Table 6.6 and Appendices A Section 6.2). The 
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increased clusters in the baseline session (when compared with RS) are mainly focused on 

the parahippocampal gyrus, a region that plays a role in memory encoding and retrieval. The 

increased clusters in the follow-up session (when compared with RS) are mainly located in 

the right (36vox) and left (10vox) thalamus. This structure has the important role of relaying 

both motor and sensory signals to the cerebral cortex and also regulates consciousness, sleep 

and alertness. Therefore, increased correlation during resting state may be related with a 

mechanism working to maintain awareness during a passive period and also the retrieval of 

memories related with the execution of the task or maybe even just daydreaming. The 

comparison of the paradigm between the first and second scan shows a small increase (only 1 

voxel) in this component during session 2. Once again, during the task performance it can be 

assumed that there would be a constant flux of information from sensory stimuli towards the 

cortex and therefore involvement of the thalamus.  

Component 53, one of the most representative of the default-mode network, presents 

increases during resting state when compared with the paradigm for the Baseline session. A 

direct comparison between RS and LCP during the first scanning session reported a cluster of 

16 voxels [21,21,18], one of 2 voxels [34,24,11] and 1 voxel [17,26,10] of increases in this 

component during RS. The same behaviour was not found to happen during the follow-up 

session. However, when looking at the results provided by the comparison of Baseline: 

Paradigm vs Follow-up: Paradigm it is found a small increase during the follow-up session 

for this same default-mode component. Therefore it can be hypothesised that when executing 

the task for the second time the participants no longer devoted a great amount of attention as 

when they first executed the paradigm. 

Component 55, comprising the anterior cingulate and insular cortex has been reported to be 

active during demanding tasks and conflict processing (Ridderinkhof et al. 2004, Klein et al. 

2007, Eichele et al. 2008). Nonetheless this component is never found during our analysis 

reflecting no significant differences between both conditions (Paradigm and Resting state). 

Therefore it can infered that the implementation of this low cognitive level paradigm did not 

cause activation of higher processing mechanisms.  

Overall, the differences found between the correlation maps for the two different conditions 

within the same scanning session are significant in number as well as in size. These 

differences are hard to explain and to account for. Nonetheless, they also appear to be 

consistent on the first and the second scan.  
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ICC 

The results from the ICC calculations are in good agreement with the ICC results usually 

reported in the literature. These seem to establish that resting state generally provides more 

reproducible data than the one obtained with the implementation of the low cognitive-

demand paradigm. The differences between both conditions are not totally obvious since 

statistical testing proved that the differences on a network level are mostly not significant 

between the results obtained for both conditions. On the other hand, the use of the low-

cognitive demand task seems to result in better reproducibility among visual networks.  

 

ICA 

The ICA results seem to agree with the findings provided by the use of correlation measures. 

Only two small clusters of significant differences have been identified, both in visual network 

components. These results lead to the conclusion that the visual network seem to be the one 

that is mostly affected by the execution of the paradigm. 

 

Reliability 

Assuming that if the results seen in the first session are not just due to random noise then they 

should be reproducible under the same conditions in a follow-up scan. However, if the 

statistical testing does not find any significant differences for the same condition between 

both sessions one cannot state that there are no differences, but only that the null hypothesis 

cannot be denied. Then one should pose the question of “why do we not see any 

differences?”. It might be that the variance within the group is greater and so it masks the 

actual effect. In this case it is important to test the within-group (between subjects) 

variability. Thus, the Pearson and Spearman correlation of the unique correlation values at a 

subject level have been studied. Curiously, once again only component 39 and 48, both visual 

network components, reported significant differences. From out analysis it seems that both 

conditions (Resting state and Paradigm) are in fact quite similar, producing analogous results. 

One can also say that these results show a certain degree of reproducibility reporting the same 

differences in both baseline and follow-up. Moreover, our results seem to be in accordance 

with what has been previously reported by Patriat et al. (Patriat et al. 2013) when comparing 

three different resting conditions during three different time points. This study reported that 
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the differences in reliability and consistency between different resting conditions are 

relatively small in effect size but with results that were in fact significant. 

Further investigation should be carried out to confidently establish these conclusions. It is 

required more in-depth knowledge about the underlying operation of resting state networks as 

well as their reliability in order to properly understand these functional mechanisms. Albeit a 

great number of research papers have been published studying the reliability and 

reproducibility of these networks no consistent methodology for resting state acquisition has 

been implemented yet. Nonetheless, our results seem to suggest that most of these networks 

are strongly reproducible even when using different study protocols. This finding is 

encouraging since it supports extrapolation of conclusions and combination of results arising 

from different studies.  

!

Limitations 

The recently published paper by Hutchison et al. (Hutchison et al. 2013) mentioned the 

relevance of having a long scanning session, ideally longer than the 10 minutes that have 

been performed for this study.  

Another issue is related to the series time filtering. During our functional connectivity 

processing it has been used the conventional time filtering, applying only a low-pass 

Butterworth filter with f = 0.1Hz. However, a recent study published by Davey et al. (Davey 

et al. 2013) suggests that the use of conventional temporal filtering to exclude the high noise 

content in fMRI data may induce sample dependence. Moreover, the paper by Liang et al. 

(Liang et al. 2012) studied different correlation metrics and preprocessing factors and their 

effect on functional networks, revealing that the brain networks derived in the 0.027-0.072 

Hz band exhibited greater reliability than those in the 0.01 – 0.027 Hz band.  

Another possible limitation is regarding the white matter and CSF time series masking and 

regression. The white matter and CSF masks used to extract the average BOLD signal from 

these regions are most commonly thresholded between 0.8 and 0.9, unlike the thresholding of 

0.3 that has been performed. This might have resulted in the averaging and posterior 

exclusion of signal that was not actually part of these brain regions. 
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At last, nowadays the tools commonly applied to perform functional connectivity analysis are 

based on the assumption that there is statistical interdependence of signals between distinct 

brain regions. However some literature has proposed that it might not be true and that 

quantifying changes in functional connectivity metrics over time may provide greater insight 

into fundamental properties of brain networks (Hutchison et al. 2013).  

On a last note it would have also been interesting to study the relationship between the 

connectivity strength of our network connections and their reliability as some previous 

studies have done (Patriat et al. 2013).  

 

Future Directions 

Current techniques to perform functional connectivity analysis implicitly assume that the 

relationships are constant throughout the scanning period. Dynamic functional connectivity 

seems to be the future of functional connectivity analysis. Recent studies are now uncovering 

the variability within functional connectivity measures, unveiling flexible connections 

between regions that are frequently treated as separate and antagonistic (Allen et al. 2011). 

Future studies should focus on the investigation of the temporal trends in functional 

connectivity which may provide an even more accurate mechanism to differentiate between 

healthy and disease. 

On the other hand, considerations about what is too much movement are still not clear. While 

some studies use high values of movement, such as 2mm, as a threshold, other report that 

even fine movements can somehow modify the resulting networks from connectivity 

analysis. While most of our participants remained still throughout most of the scanning 

session with an average of 0.5 mm of translational movement and 0.3 degrees of rotation, 

some spikes of movement were identified, some of them reaching almost 1mm of translation 

and 1degree of rotation. It has also been verified that is during the resting state condition that 

the participants most move. Studies have demonstrated that subject motion produces 

substantial changes in the timecourse of resting state fcMRI (Power et al. 2012). Therefore it 

is hereby suggested the development of a correction mechanism to extract the spikes of the 

data in order to avoid the misidentification of what in reality are just spurious correlations. 
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6.5 Conclusion 

The aim of this study was to longitudinally evaluate the reliability and reproducibility of 

functional networks during a true resting state and while executing a low cognitive demand 

paradigm. Our initial assumption was that the use of a low cognitive demanding paradigm 

would provide increase stability and reliability when compared with true resting state. Our 

analysis seems to reflect that both conditions are in fact quite similar, producing identical 

results. The ICC analysis seems to suggest that resting state provides in general more 

reproducible data than when using the low cognitive demand task. However, the use of this 

task did improve the reproducibility among visual network components. 

Moreover, these results show a good degree of network reproducibility during a longitudinal 

approach. 

In summary these findings are very encouraging, supporting the comparison and combination 

of results arising from studies performed under different study protocols.  
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Chapter 7  

 

Closing Remarks 
  

Functional connectivity studies are broadening our knowledge about the anatomo-functional 

organization of the human brain. The last decades saw major developments towards the 

concept of brain plasticity with innumerous publications regarding this subject. This idea 

challenges the previously established notion that each brain area was hyper-specialised and 

only responsible for processing specific cognitive functions. Research is nowadays walking 

towards a more interactive and dynamic concept of networks (Bressler, Menon 2010) 

introducing the notion that plasticity is the fundamental property characterizing brain 

function (Pascual-Leone, Grafman & Hallett 1995) and that the functional behaviour of the 

human brain can be essentially changed through the use and development of this capacity.  

Current research, namely using resting state fMRI, has been providing us with clues on brain 

dynamical properties as well as regarding the intrinsic mechanisms of reshaping functional 

networks as one experiences extreme conditions such as trauma, lesion, diseases and even 

just regular exercise (Lang et al. 2012, Voelcker-Rehage, Niemann 2013). Therefore, the 

application of functional connectivity techniques can shed some light over this intriguing 

subject and how this brain capacity can also be implemented as, for e.g. a therapy. 

The last decade has seen the rise of new and powerful imaging sequences and analysis 

techniques as the computing power has also increased exponentially. As it has been proposed 

by van Dijk et al.  (Van Dijk et al. 2010), we strongly believe in the benefits of combinating 

fcMRI with HARDI techniques to study human connectomics. Future studies should work 

towards the combination of these different techniques and methodologies in order to achieve 

further knowledge about brain structure and its still enigmatic functional mechanisms.   
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ACHIEVEMENTS 

During the course of this internship the author had the chance to be integrated within a 

multidisciplinary research team as well as to deal with NHS professionals, with patients as 

well as with a wide range of materials and techniques. The author was involved in five 

different studies during the course of this internship, ranging from exercise to disorders of 

consciousness, which reflects the wide range of research projects currently being developed 

at ABIC. The immense growth experienced in the past year was both professional and 

personal. 

During this period the author has not only received medical training that makes her now 

qualified to perform cognitive assessments on both healthy volunteers and patients, but she 

has also underwent a Good Clinical Practice (GCP) course, important to any researcher who 

is in the process of creating his own study. Moreover, the author still had the chance to be 

involved in every step of the creation and development of a new study, managing all the 

study data in a site file, dealing with ethics and with both patients and healthy population. 

During this process the author was also taught on how to prepare the MRI scanner for our 

specific study as well as to deal with the Presentation software. On a regular basis the author 

would volunteer to test new MRI sequences and study protocols specially designed for the 

different projects currently being carried out at the ABIC. These involve heart, 

musculoskeletal and brain research. It was also during this internship that the author had the 

chance to audit an MRI deeper course for the master in Biomedical sciences, which proved to 

be extremely fruitful. Moreover, the author had the chance to deal with researchers 

developing new MRI techniques, such as Fast field-cycling MRI. 

The SINAPSE program – Scottish Imaging Network: A platform for scientific excellence – is 

a platform that aims to connect researchers carrying out medical imaging studies all over 

Scottish territory. The author presented a poster on the SINAPSE Student Day at Dundee 

University, in April 2013.  

On the 12th of June 2013, as part of the Postgraduate Radiology Symposium, the author gave 

a presentation to an audience of radiology students and NHS professionals about the current 

research and methods being applied in the TIA cfMRI stroke study. The author was also 

involved in a lesson provided to 4th year medical students about MRI. On the 10th of 

September, and as part of the S6 Biology day at the University of Aberdeen, the author 
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worked as a demonstrator for secondary advanced higher biology students. Recently the 

author has also became a postgraduate student ambassador for the University of Aberdeen.  

During this time the author underwent training and became a STEM (Science, Technology, 

Engineering and Mathematics) ambassador, carrying out several public engagement and 

scientific communication activities. These include teaching and sparkling the interest of 

children, young students and higher levels as well as the general public about science, MRI 

and the research carried out at the Aberdeen Biomedical Centre. These events include the use 

of hands-on experiments and material that was developed on-site (e.g. RF coils, 3D anatomic 

models, etc). The author visited a school with the activity “Lab-in-a-Lorry” including hands-

on physical experiments about light, resonance, among others. The author co-organised and 

took part in events during the Aberdeen May Festival 2013 

(http://www.abdn.ac.uk/mayfestival/) with an activity that took place at the Satrosphere 

Science Centre a part of the physics project “Explore your Universe: Familly fun day”, 

entitled “Meet the Researcher: Magnetise your Brain”. More recently, and after a science 

basking event at the local Waterstone’s book shop, the author took part in Techfest - Festival 

of Science, Technology, Engineering and Mathematics 

(http://www.techfestsetpoint.org.uk/tis/). During this festival the author has co-organised and 

took part in the Doors open Day, event during which the general public gets to know about 

the research projects currently being developed at the University and to do an interactive tour 

of the facilities used to carry out scientific research. Another edition of the event “Magnetise 

your Brain” happened on the 19th of September 2013 at Satrosphere Science Centre, as part 

of the Techfest. 

 

In brief, this internship has given the author the chance to get to know new imaging analysis 

methods and equipment as well as to closely relate the scientific research to the clinical 

environment. 
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• Section 3.1    
DoC Literature Review 
 

Study  Number Diagnosis Ethiology Duration Active Task Main Findings 

1. Assessing 

Consciousness 

 

Owen et al. 

(2006) 

1 VS TBI 5m Motor and spatial 

mental imagery 

Activation of the 

supplementary motor 

area for motor task. 

Activation of the 

parahippocampal gyrus, 

posterior parietal and 

premotor cortex for 

spatial task 

Monti et al., 

(2010a) 

54 23 VS 

31 MCS 

32 TBI 

22 NTBI 

22m Motor and spatial 

mental imagery 

Activation of 

supplementary motor 

area for motor task in 

4VS and 1 MCS. 

Activation of the 

parahippocampal gyrus 

for spatial task in 3 VS 

and 1 MCS 

Rodriguez 

Moreno et al. 

(2010) 

10/17 

included 

3 VS 

5 MCS 

1 EMCS 

 

5 TBI 

45 NTBI 

20m Silently picture 

naming 

Activation of the left 

superior temporal, 

inferior frontal and pre-

supplementary motor 

are in 1 VS, 2MCS, 

1LIS, 1 EMCS 

Bekinschtein et 

al. (2011) 

5/43 

included 

VS 4 TBI 

1 TBI-

anoxic 

10d Motor task Activation of the 

contralateral dorsal 

premotor cortex in 2 VS 

Bardin et al. 

(2011) 

6/7 

included 

5 MCS 

1 LIS 

4 TBI 

2NTBI 

6m – 3y Motor mental 

imagery 

Activation of the 

supplementary motor 

area in 2 MCS and 1 

LIS 

2. Assessing 

communication 

 

Monti et al. 

(2010a) 

1/54 

included 

VS TBI 1m – 25y Yes (motor mental 

imagery) or No 

(spatial mental 

imagery) 

autobiographical 

questions 

Correct responses in 

expected brain regions 

in 5 out of 6 questions 

Bardin et al. 

(2011) 

4/7 

included 

3 MCS 

1 LIS 

2 TBI 

2 NTBI 

6m – 3y Binary and multiple 

choices tasks 

Incorrect responses in 

expected brain regions 

in 1 MCS 

VS: vegetative state; MCS: minimally conscious state; EMCS: emerged from minimally conscious state; LIS: locked-in-

syndrome; d: days: m: months; y: years; TBI: traumatic brain injury; NTBI: non-traumatic brain injury;  
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• Section 4.1   
TIA cfMRI stroke population demographics 

Sex 
 Frequency Percent Valid Percent Cumulative Percent 
Valid Male 46 53.5 53.5 53.5 

Female 40 46.5 46.5 100.0 
Total 86 100.0 100.0  

 
Motor symptoms 

 Frequency Percent Valid Percent Cumulative Percent 
Valid Yes 41 47.7 47.7 47.7 

No 45 52.3 52.3 100.0 
Total 86 100.0 100.0  

 
Sensory symptoms 

 Frequency Percent Valid Percent Cumulative Percent 
Valid Yes 55 64.0 64.0 64.0 

No 31 36.0 36.0 100.0 
Total 86 100.0 100.0  

 
Speech-related symptoms 

 Frequency Percent Valid Percent Cumulative Percent 
Valid Yes 30 34.9 34.9 34.9 

No 56 65.1 65.1 100.0 
Total 86 100.0 100.0  

 
Visual symptoms 

 Frequency Percent Valid Percent Cumulative Percent 
Valid Yes 18 20.9 20.9 20.9 

No 68 79.1 79.1 100.0 
Total 86 100.0 100.0  

 
Headache 

 Frequency Percent Valid Percent Cumulative Percent 
Valid Yes 29 33.7 33.7 33.7 

No 57 66.3 66.3 100.0 
Total 86 100.0 100.0  
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Other symptoms 
 Frequency Percent Valid Percent Cumulative Percent 
Valid Yes 13 15.1 15.1 15.1 

No 73 84.9 84.9 100.0 
Total 86 100.0 100.0  

 
Affected side 

 Frequency Percent Valid Percent Cumulative Percent 
Valid Right 32 37.2 37.2 37.2 

Left 43 50.0 50.0 87.2 
Both 1 1.2 1.2 88.4 
Neither 10 11.6 11.6 100.0 
Total 86 100.0 100.0  
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• Section 4.2   
Information regarding the minor stroke patients 
 

!! Age Gender Presenting complain WMH Scheltens score 

atient 1 30 Female Motor / Sensory Yes 22 

Patient 2 31 Male Motor / Sensory / Headache Yes 26 

Patient 3 25 Male Motor / Speech Yes 21 

Patient 4 82 Male Sensory Yes 43 

Patient 5 65 Male Speech Yes 59 

Patient 6 45 Female Motor / Sensory Yes 34 

 

 

 

• Section 4.3     
Information regarding the migraine patients 
 

!! !! Sex! Age! Symptoms! Scheltens score! !!

!! Patient 1 male 50 Motor, Sensory, Speech, Headache 29 !!

!! Patient 2 female 21 Motor, Headache 23 !!

!! Patient 3 male 46 Motor, Sensory, Visual 31 !!

!! Patient 4 female 31 Motor, Speech, Headache 15 !!

!! Patient 5 male 33 Sensory, Speech, Headache 26 !!

!! Patient 6 female 55 Visual 25 !!

!! Patient 7 male 31 Motor, Speech, Headache 21 !!

!! Patient 8 male 40 Motor, Sensory, Visual, Headache 29 !!

!! Patient 9 female 51 Sensory, Speech, Headache 27 !!

!! Patient 10 male 50 Sensory, Speech, Visual, Headach 28 !!

!! Patient 11 female 25 Motor, Headache 18 !!

!! Patient 12 female 37 Motor, Speech 22 !!

!! Patient 13 male 47 Sensory, Visual, Headache 28 !!
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• Section 4.4     
Information regarding the healthy volunteers 
 

! ID! Sex! Age! !
! Control 1 female 32 !

! Control 2 female 21 !

! Control 3 male 31 !

! Control 4 male 31 !

! Control 5 male 29 !

! Control 6 male 45 !

! Control 7 female 39 !

! Control 8 female 37 !

! Control 9 male 38 !

! Control 10 male 32 !

! Control 11 female 29 !

! Control 12 female 21 !

! Control 13 male 24 !

! Control 14 female 24 !

 

 

• Section 5.1    
Demographics from the PECON study participants 

!! ID! Sex! Age! Sports practiced! MoCA! HR! sBP! dBP! Height! Weight! BMI! HRmax! VO2max! !!
!! 1 male 26 Football, Running 30 86 110 70 171 80 27 192 37 !!

!! 2 male 25 Running, Cycling, 
Football 

30 82 122 80 180 73 23 189 43 !!

!! 3 male 26 Running 30 75 125 80 177 73 23 180 37 !!

!! 4 male 33 Running, Cycling 27 68 110 70 186 71 21 186 51 !!

!! 5 male 33 Running, Cycling 27 82 122 70 181 74 23 172 40 !!

!! 6 male 27 Running 30 60 110 70 188 67 19 179 38 !!

!! 7 male 22 Running 29 84 118 70 185 74 22 184 45 !!

!! 8 male 25 Running 28 84 110 70 170 67 23 182 42 !!

!! 9 male 39 Running, Yoga 29 71 118 78 181 83 25 175 33 !!

!! 10 male 34 Cycling 30 81 118 80 184 80 24 187 50 !!

!! 11 male 29 Running 30 64 122 80 170 67 23 169 38 !!

!! 12 male 19 Running 30 86 122 80 178 75 24 192 38 !!

!! 13 male 26 Running 30 77 118 70 187 73 21 167 38 !!

!! 6B-!H!616:<C1A!JC<<0!=/566I/5!K33L2MN!0B-!H!O1.6:<C1A!JC<<0!=/566I/5!K33L2MN!BP@!H!B<0Q!3.66!1805?!KR2S3%MN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

L/3.?!H!P.?13I3!T5./:!/.:5!KJ5.:6S318MN!!>U%3.?!H!P.?13I3!<?Q258!I=:.R5!K3CSR2S318M!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

VUWXY!-./:1A1=.8:!18!/50!=ICC50!<I:!<Z!:T5!6:I0Q!0I5!:<!18[I/Q!

!!

!! !!
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• Section 6.1     
RESTATE Statistics 

Statistics 
 Age 

(years) 
Sex Dominant hand Occupation 

N Valid 12 12 12 12 
Missing 0 0 0 0 

Mean 28.83 1.58 1.00 2.00 
Std. Error of Mean 1.353 .149 .000 .000 
Median 28.00 2.00 1.00 2.00 
Std. Deviation 4.687 .515 .000 .000 
Variance 21.970 .265 .000 .000 
Minimum 23 1 1 2 
Maximum 37 2 1 2 
Percentiles 25 24.50 1.00 1.00 2.00 

50 28.00 2.00 1.00 2.00 
75 33.50 2.00 1.00 2.00 

!

Sex 
 Frequency Percent Valid Percent Cumulative Percent 
Valid Male 5 41.7 41.7 41.7 

Female 7 58.3 58.3 100.0 
Total 12 100.0 100.0  

!

Age (years) 
 Frequency Percent Valid Percent Cumulative Percent 
Valid 23 1 8.3 8.3 8.3 

24 2 16.7 16.7 25.0 
26 2 16.7 16.7 41.7 
27 1 8.3 8.3 50.0 
29 2 16.7 16.7 66.7 
32 1 8.3 8.3 75.0 
34 1 8.3 8.3 83.3 
35 1 8.3 8.3 91.7 
37 1 8.3 8.3 100.0 
Total 12 100.0 100.0  

!
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Days from baseline to follow-up MRI scan 
 Frequency Percent Valid Percent Cumulative Percent 
Valid 27 2 16.7 16.7 16.7 

28 6 50.0 50.0 66.7 
31 1 8.3 8.3 75.0 
35 3 25.0 25.0 100.0 
Total 12 100.0 100.0  

!

Number of times button was pressed for buildings (scan 1) 
 Frequency Percent Valid Percent Cumulative Percent 
Valid 96 1 8.3 8.3 8.3 

98 2 16.7 16.7 25.0 
99 1 8.3 8.3 33.3 
100 8 66.7 66.7 100.0 
Total 12 100.0 100.0  

!

Number of times button was pressed for buildings (scan 2) 
 Frequency Percent Valid Percent Cumulative Percent 
Valid 44 1 8.3 8.3 8.3 

99 3 25.0 25.0 33.3 
100 8 66.7 66.7 100.0 
Total 12 100.0 100.0  

!

!

!

!

!

!

!

!
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• Section 6.2 !

Differences resulting from a) Paired T-test of the same condition in the two scanning sessions (e.g. Baseline: Resting state vs Follow-up: Resting 
State); b) Paired T-test of the two different conditions in the same scanning session (e.g. Baseline: Resting State vs Paradigm).!
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• Section 6.3 
Movement parameters: 
RESTATE volunteer 

!

!

!

!

!

!

!

!

Image realignment (differences)
rp_CONTROLS_0_02_fMRI_Connectivity_Pictures_SENSE_8_1.txt
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• Section 6.3 (cont) 
Movement parameters: 
DoC patient 

!

!

!

!

!

!

!

!

!

Image realignment (differences)
rp_DOC_PATIENT_010_fMRI_Comprehension_vol0000.txt
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• Section 7  
Contributions  

List of people who contributed to the projects described along this dissertation. All 

contributions resulted from people currently working at the Aberdeen Biomedical Imaging 

Centre with the following positions: 

!

Professor Christian Schwarzbauer, Chair in Neuroimaging 

Dr Mary Joan Macleod, Senior Lecturer 

Mr Gordon Buchan, Research Technician 

Mrs Susa Merz, PhD Student 

Dr Ourania Varsou, PhD Student 

Mr Michael Stringer, PhD Student 

Mr Joel Parkinson, PhD Student 

Mr Alex Ing, PhD student 

Miss Catarina Dinis Fernandes, Research Assistant 

 

. Chapter 3 – DoC study 

Mrs Susa Merz, under the supervision of Professor Christian Schwarzbauer, was responsible 

for data acquisition, preprocessing and modelling of the fMRI data as well as development of 

the “Heat map” method. She was also involved in the design and optimisation of the 

paradigms. Dr. Ourania Varsou was involved with patient recruitment. 

 

. Chapter 4 – TIA cfMRI study 

Dr Ourania Varsou was involved in study design along with Dr Mary Joan Macleod and 

Professor Christian Schwarzbauer. Dr Varsou performed patient recruitment, assessment and 

data acquisition. She was also responsible white matter hyperintensities scoring. Mr Gordon 

Buchan provided assistance during scanning. 

 

. Chapter 5 – PECON study 

Dr Ourania Varsou, under the supervision of Professor Christian Schwarzbauer, designed the 

study and was responsible for the recruitment and data acquisition. Mr Gordon Buchan 

provided assistance during scanning. Mr Alex Ing used Network Based Statistic methods in the 
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analysis of the data, Mr Michael Stringer analysed the data using and ICA methodology and 

Mr Joel Parkinson with the use of Graph analysis. 

 

. Chapter 6 – RESTATE study 

Dr Ourania Varsou along with Miss Catarina Fernandes, under the supervision of Professor 

Christian Schwarzbauer, were responsible for the study design, advertisement and recruitment. 

Both have also performed data acquisition with the aid of Mr Gordon Buchan during the step 

up the scanner. Data analysis was performed by Miss Catarina Fernandes along with Mr 

Michael Stringer who was responsible for ICA analysis. 

!

!

!
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1) RESTATE Study MRI protocol 

2) Montreal Cognitive Assessment 

3) White matter hyperintensities scoring protocol 
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1) RESTATE study MRI protocol 

 

 

 

 

 

 

 

 

 

 
 



 

V1 November 2012              TIA_cfMRI_Controls 

BRAIN                                                               TIA + Connectivity fMRI 

 
Principal Investigator 1: Prof. Christian Schwarzbauer 
Contact Details:  Ext – 8361 

Email – c.schwarzbauer@abdn.ac.uk  
 
Principal Investigator 2: Dr Mary-Joan Macleod – Ward 39 (Acute Stroke Unit)            
Contact Details:  Bleep – 3132 

Email – m.j.macleod@abdn.ac.uk 
 
PROJECT CONTACTS 
Students:  Ourania Varsou – o.varsou@abdn.ac.uk – bleep 4203 
   Michael Stringer – r01mss12@abdn.ac.uk 
    Catarina Fernades – c.dinisfernandes.50@aberdeen.ac.uk  
 
 
PREPARATION 
The scanning session lasts 45 minutes 

• Set up the backward facing coil mirror 
• Give the right hand index finger button to the participant in their dominant 

hand 
• Both connectivity fMRI sequences are done in a resting state with the 

radio switched off  
• One of the connectivity fMRI sequences has a low level cognitive 

paradigm using alternating pictures of buildings and landscapes (paradigm 
saved in the RESTATE folder of the presentation library in the shared 
network that is accessible in the stimulus delivery PC; pathway: 
X:\Imaging\Projects\Presentation_Library\RESTATE) 

• The participants have to press the right index finger button only when they 
see a picture of a building 

 
 
SCAN PROTOCOL 
    32ch head coil 

• Protocol – Abdn – 32ch Coil – Brain TIA + cfMRI_CONTROL (Research) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BRAIN                                         TIA & Connectivity fMRI – Controls
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ADMINISTRATION 

• Ensure “Auto-push” is disabled 
• Archive all the data except fMRI – DVD (All & NHS) 
                                                                EWS1 workstation. 
• All data sent to the “X” Drive  
• Patient details added to the Daily Log and the appropriate study database 
• All study data logged in the work book 
• Request form filed in the study box folder 

 
 
All data transferred into “X” drive must be under ID no.  

• System  
• Advanced Tools  

! Research   
! dbimexp (database image export tool))   

• Select patient 
• Highlight all sequences except DWI & survey 

! T2W_FFE 
! T1W_3D 
! T2W_FLAIR  
! fMRI_Connectivity_Resting_State 
! fMRI_Connectivity_Pictures 

• Browse 
• My computer  
• Abic projects 

! TIA_cfMRI folder 
! TIA controls_RESTATE subfolder 
! Create new folder e.g. Controls_0_01 

• Click OK 
• Check NIFTI has been selected 
• Proceed 
• Windows explorer – check data has been exported 
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TO TRANSFER DWI DATA: 

• Patient 
• Administration  
• Select patient – select DWI data 
• Disk files 
• Browse 
• Temp file – create folder 

      OK – proceed 
 
Once data has been transferred, please copy and paste folder from the temp drive into 
the “X” drive and the corresponding patient folder. 
 
 
 

BRAIN                                         TIA & Connectivity fMRI – Controls
  



 

 

 

 

 

 

2) Montreal Cognitive Assessment 

 

 

 

 

 

 

 

 

 

 

 



NHS GRAMPIAN & UNIVERSITY OF ABERDEEN 

fcMRI Stroke Study 
Please complete sections 1 to 5 by marking the 

appropriate box with an X or by writing the answer 
in the space provided 

 
 
 

Your answers will be treated in the strictest 
confidence 

 
 
 

Thank you for your help with this study 
This is very much appreciated 

 
 

 
 

Volunteer version 3: November 2012 
 

A member of the research team to complete sections 6 to 8 

 

 



fcMRI Stroke Study Volunteer’s trial 
number:!

!

Volunteer version 3: November 2012! ! Page 1 of 4!
!

Section 1: Volunteer Information 

1a Sex: Male          Female  

1b Age (years):  

1c Dominant hand: Right         Left  

1d Occupation:       Retired      Employed      Unemployed      Registered disabled  

 
 

Section 2: Medical Conditions 

2a High blood pressure: Yes        No  

2b High cholesterol: Yes        No  

2c Diabetes: Yes        No  

2d Ischaemic heart disease: Yes        No  

2e Previous TIA / stroke: Yes        No  

2f Depression: Yes        No  

2g Migraines: Yes        No  

2h Please list any other medical conditions: 

 

 
 

Section 3: Current Regular Medications 

3a High blood pressure treatment: Yes        No  

3b High cholesterol treatment: Yes        No  

3c High blood sugar treatment: Yes        No  

3d Blood thinning treatment: Yes        No  

3e Antidepressant(s): Yes        No  

3f Please list any other regular medications: 

 

 



fcMRI Stroke Study Volunteer’s trial 
number:!

!

Volunteer version 3: November 2012! ! Page 2 of 4!
!

Section 4: Registered GP Practice 

4a Current GP Practice: 

4b Address: 

 

 

 
 

Section 5: Declaration 

I confirm that I have read and understand this form. I have answered all questions to the best of 
my knowledge.  

Volunteer’s name: 

Volunteer’s signature: 

Date:  

 
  



fcMRI Stroke Study Volunteer’s trial 
number:!

!

Volunteer version 3: November 2012! ! Page 3 of 4!
!

Section 6: General Information 

6a Volunteer’s trial number: 

6b Date form completed (dd/mm/yyyy): 

6c Person completing form (please print name & sign): 

 
 

Section 7: Montreal Cognitive Assessment (MOCA) Version 7.1 

 

 



fcMRI Stroke Study Volunteer’s trial 
number:!

!

Volunteer version 3: November 2012! ! Page 4 of 4!
!

Section 8: MRI Scan 

8a Scan date (dd/mm/yyyy):  

8b Presence of white matter hyperintensities: Yes          No  

8c Presence of ischaemic lesion(s): Yes          No  

8d Clarification of ischaemic lesion(s):  

8e Presence of non-stroke lesion(s): Yes          No  

8f Clarification of non-stroke lesion(s):  

 
 

 

 

 



 

 

 

 

 

 

3) White matter hyperintensities scoring 

protocol 

 

 

 
 

 

 



Scheltens Scoring Scale 
 
Participant’s trial number  
Date of scan  
Name of scorer  
Date of scoring  
 
 

White matter hyperintensities Score (0-6) 0=normal              1=<3mm, n<5 
2=<3mm, n>6       3=4-10mm, n<5 

Frontal  4=4-10mm, n>6    5=>11mm, n>1 
6=confluent 

Parietal   

Temporal   
Occipital   
Internal capsule   

Total __________ (max 30) 
 

Grey matter hyperintensities Score (0-6) Score as above 

Caudate nucleus   

Putamen   

Globus pallidus   

Thalamus   

Hippocampus   

Total _________ (max 30) 
 

Infra-tentorial foci of hyperintensity Score (0-6) Score as above 

Cerebellum   

Midbrain   

Pons   

Medulla   

Total _________ (max 24) 
 

Periventricular white matter lesions Score (0-3) 0=None 
1=Pencil thin lining 
2=Smooth halo 
3=Large confluent 

None (normal)  
Frontal horns  
Bodies   

Occipital horns   

Total _________ (max 9) 
 
 

 

Total score 
 

.................(max 93) 
 
 
Additional findings  
 
 
 
 
 
 
 
 


