
Universidade de Lisboa

Faculdade de Ciências

Departamento de Informática

Self-Motivated Agents That Learn

Gustavo Martins

Dissertação

Mestrado em Informática

2013

http://www.ul.pt
http://www.fc.ul.pt
mailto:your@email.net

Universidade de Lisboa

Faculdade de Ciências

Departamento de Informática

Self-Motivated Agents That Learn

Gustavo Martins

Dissertação

Mestrado em Informática

2013

Orientador: Professor Doutor Hélder Coelho

http://www.ul.pt
http://www.fc.ul.pt
mailto:your@email.net

Abstract

We propose an architecture for the creation of agents with the capac-

ity to learn how to act autonomously, from their interactions with

the environment. Prede�ned solutions such as manually speci�ed

behaviours, goals or rewards are avoided in order to maximize au-

tonomous adaptation to unforeseen conditions. We use internal needs

to motivate agents to act in an attempt to ful�l them. As a conse-

quence of its interactions with the environment, agents make obser-

vations which are used to formulate hypotheses and discover the rules

that govern the relationship between the agents actions and their con-

sequences. These rules are then used as criteria in the decision making

process. Thus, agents behaviours depend on previous interactions and

evolve with experience. We started by proposing a single agent ar-

chitecture and created simple agents de�ned by sensors, needs and

actuators. These agents adapted autonomously to the environment

by discovering behaviours which ful�lled their needs. The single agent

approach did not scale well neither allowed the satisfaction of multiple

needs simultaneously. In order to face these shortcomings we propose

a multiagent architecture which solves the scalability problem found

in the single agent approach and o�ers the capacity to ful�l several

needs simultaneously.

keywords: autonomous agents, motivation, needs, multiagent sys-

tems, reinforcement learning

A meus Pais.

Acknowledgements

I am thankful to professor Hélder Coelho and professor Paulo Urbano

for their support. I also want to thank my colleagues, friends and fam-

ily members for contributions to my personal and academic achieve-

ments.

A word of appreciation is due to FCT - Fundação para a Ciência e a

Tecnologia for one research grant during graduation and two research

grants during master's degree. Also, a word for LabMag - Laboratório

de Modelação de Agentes and FFCUL - Fundaçao da Faculdade de

Ciências da Universidade de Lisboa for having supported the cost

of presenting some of the work present in this dissertation in the

workshop Active Learning in Robotics: Exploration, Curiosity, and

Interaction in Robotics Science and System (RSS 2013) held in Berlin.

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Problem Description . 1

1.2 Motivations . 3

1.3 Chapters Outline . 3

2 Research Background 5

2.1 Machine Learning Algorithms . 6

2.1.1 Supervised and Unsupervised Learning 6

2.1.2 Reinforcement Learning Algorithms 7

2.1.3 Developmental Learning Algorithms 8

2.2 Motivation . 10

2.3 Planning . 12

2.4 Multiagent Coordination . 13

3 Architecture Description 17

3.1 System Components . 17

3.1.1 Needs Set . 18

3.1.2 Decision Making . 20

3.1.3 Perception . 22

3.1.4 Learner . 24

3.2 Single Agent Architecture . 26

3.3 Multi Agent Architecture . 27

v

CONTENTS

4 Experimental Set Up and Results 31

4.1 Single Agent Implementation . 31

4.1.1 Environments . 32

4.1.2 Agents De�nitions . 32

4.1.3 Results and Analysis . 34

4.1.3.1 Performance Measurement 34

4.1.3.2 Statistical Analysis 36

4.2 Multi Agent Implementation . 38

4.2.1 Environment . 38

4.2.2 Agent De�nition . 39

4.2.3 Results and Analysis . 40

5 Discussion 43

5.0.4 Experimental Set Up . 43

5.0.5 Multiagent Coordination 43

5.0.6 Needs Modelling . 44

5.0.7 Planning . 44

5.0.8 Sensorimotor Changes . 45

5.0.9 Action Speci�cation . 45

6 Conclusions and Future Work 47

6.1 Conclusions . 47

6.2 Future Work . 49

References 51

vi

List of Figures

2.1 Multiplanning Example . 13

3.1 System Components . 18

3.2 Plans Tree Example . 22

3.3 Multiagent Architecture . 28

4.1 Urgency Values and AbsMaxDif in Switches Environment 36

4.2 Urgency Values and AbsMaxDif in SoundSystem Environment . . 37

4.3 Urgency Values and AbsMaxDif in the Multiagent Test 40

vii

List of Tables

4.1 Single Agent's Needs to the Switches Environment 32

4.2 Single Agent's Needs to the Soundsystem Environment 33

4.3 AbsMaxDif Determination Example 35

4.4 AbsMaxDif for the 1000 runs . 38

4.5 Multiagent's Needs . 39

ix

1

Introduction

1.1 Problem Description

As long as history can recall mankind has dreamt of having autonomous machines

able of, not only mimic the physiological system of biological beings, but also

exhibit traits of intelligent behaviour. In the past, several attempts to achieve

it were made and with the creation of the ENIAC, the �rst electronic general-

purpose computer [16], and the birth of modern computer science this dream

has gained new and renewed aspirations. Since then, the scienti�c community

has presented a large number of models, and their corresponding variations, that

tried to contribute to the achievement of the described goal in a �eld that has

become known as Arti�cial Intelligence.

The work described in this dissertation comes to join the discussion of the

creation of arti�cial intelligent agents, by addressing some of the shortcomings

that, in our opinion, have been revealed by most of the proposed approaches to

our days. On of the main shortcomings of these approaches is that agents are

built to execute a well de�ned set of tasks in a known environment. Furthermore,

tasks are executed in a way that is algorithmically de�ned. In other words, agents

execute tasks by following a set of instructions that are carefully designed by the

agents creators. While this technique is useful in many cases such as in the

creation of agents able to tireless execute a limited set of repetitive tasks, it also

requires a large amount of time to create and analyse the algorithms. Usually, the

more complex is the task ahead the more e�ort is required to develop algorithms

1

1. INTRODUCTION

that assure its e�ective execution with maximum e�ciency. Furthermore, agents

are not able to autonomously adapt to changes in the environment, or in the

requirements, by executing di�erent actions or by executing the same actions in

a di�erent manner. Thus, theses approaches limit our capacity to build agents

that develop in an open-ended manner because adaptation to new conditions

requires interventions from the agents creators to develop new algorithms.

Our goal is to study and propose an architecture with autonomy as the main

concern, having agents able to act autonomously without prespeci�ed behaviours

and learn from interacting with the environment. To achieve this goal, we stud-

ied and used several techniques and methods from di�erent Arti�cial Intelligence

areas such as learning, decision making and motivation. We avoid to manually

de�ne objectives, rewards, knowledge about the environment and other values

because we aim for the creation of agents which can act and learn autonomously.

To motivate agents to act and circumvent the need of manually specifying be-

haviours, we use internal needs because needs are particularly pushing motives

that motivate agents to act in order to obtain ful�lment.

Some previously proposed architectures, like Belief-Desire-Intention, BDI [34],

require that the agent's knowledge, objectives and possible behaviours are man-

ually speci�ed by the programmer. This has the obvious disadvantage of halting

the agent's development beyond of what had been foreseen before it was de-

ployed. In our opinion, such an agent will probably not be able to deal with

challenges that were unanticipated in the development phase prior to deploy-

ment. Therefore, the utility of such an agent is signi�cantly restricted by its

architecture, mainly in what regards to facing unforseen problems and coping

with environmental changes. This is a very limited approach unlike common bi-

ological systems. Most biological agents have a strong capacity to adapt to new

situations whether it is facing new problems or adapting to more or less drastic

changes in their environment. This is believed to be the main reason of survival

of the species as it is known that species with low adaptability are prone to ex-

tinction, or in other words obsolescence. By avoiding prespeci�ed solutions to

solve problems and direct the agent behaviour, a signi�cant emphasis is put on

learning giving it a fundamental role. The agent must interpret the environment

and discover the rules that translate the relationship between its own actions and

2

1.2 Motivations

their e�ects. Thus, the results of the decision making process are a direct prod-

uct of the agent's interactions with the environment, learning and self-generated

goals that arise from internal needs.

1.2 Motivations

Our motivation is to contribute with advances that might allow the creation of

autonomous, intelligent agents in a simple and e�cient manner that can be used

either in real-world environments as well as in virtual complex worlds such as

games. The ultimate goal of the presented research is to study and develop an

architecture that presents the following characteristics.

Autonomy - agents behaviour does not follow previously designed algorithms

but develops and evolves autonomously throughout their interaction with the

environment. Self-generated goals are preferred to manual speci�cation of goals

in order to favour open-ended development.

Learning - agents are able to learn from their previous experiences, gather

knowledge about the world and use it at a later time to achieve goals. Rein-

forcement learning is preferred to other forms of learning because because it may

favour autonomy by not depending on a supervisor.

Adaptation - agents have the capacity to adapt to new conditions that were

not foreseen by the agents' creators in the development phase. Autonomous adap-

tation avoid the need to de�ne new behaviours to face environmental changes.

Designing - creating an agent does not require the development of algo-

rithms to drive its behaviour, but only the de�nition of actuators, sensors and

needs. This properties are used by the agents internal mechanisms and result in

autonomously developed behaviours.

1.3 Chapters Outline

This section brie�y describes individual chapters to guide the reading of this

document.

3

1. INTRODUCTION

In chapter 1 we outline the thesis, present a general introduction to the prob-

lem addressed by this research and describe the research goals. We aim to ad-

dress lack of autonomy in arti�cial agents by studying and proposing novel self-

motivation and learning models. Other proposed approaches, although relying

on learning and being able to develop some autonomy, still depend on a structure

of manually de�ned information such as goals, rewards for executing actions or

achieving environmental states or prede�ned behaviours. Our goal is to study

and propose a novel approach with autonomy and learning as central feature.

Chapter 2 presents a description of the theoretical background of this research

as well as the state-of-the-art, namely recognized and popular methodologies of

machine learning. It also presents important concepts about motivation, needs,

and their importance as driving forces of behaviour. Besides, planning and mul-

tiagent systems are also brie�y addressed.

Chapter 3 presents the proposed architecture, including all of its components

and the relationships between them. The initial architecture had solely one agent

but we later proposed a multiagent architecture in an attempt to solve some of

the problems we have encountered: low scalability and lack of capacity to satisfy

multiple needs in simultaneous.

Chapter 4 describes the experimental set up and present the obtained results

which show that both the single agent and the multiagent architecture were able

to generate agents with autonomous learning capacity.

In chapter 5 we present a discussion about the results and list major short-

comings and challenges of both architectures. Finally, in chapter 6 we point out

the conclusions of this research and possible directions to take in the future.

4

2

Research Background

In this chapter we present a theoretical background as well as the state-of-the-art

in what respects to the central concepts addressed by this research. In the core

of the set of these important concepts we �nd machine learning, motivation and

needs, and �nally the decision making process as the most relevant. These con-

cepts, which o�er a huge space of research, are introduced in the next paragraphs

and described brie�y in the remaining of this chapter.

Learning, or in this case machine learning, is important because it allows

agents to build knowledge about the world and behave according to that knowl-

edge, thus adapting to the environment. Logic takes an important role in the

learning process, namely inductive logic which is used to generalize, creating gen-

eral statements from individual instances of information.

Motivation is seen as a driving force of behaviour and it is important because

it leads the agent to set self-generated goals and to act in order to achieve those

goals. To generate motivation we use internal needs. From the agents' point of

view, needs are perceived as some lack and in order to provide what is lacking

the agents must act.

Lastly, the decision making process, also known as the action selection process,

is crucial because it is responsible for determining how to behave. Planning

takes an important role in the decision making process because it allows linking

sequences of actions to form plans that constitute complex behaviours. Besides,

it may allow the execution of several di�erent behaviours simultaneously, as long

as they are compatible.

5

2. RESEARCH BACKGROUND

2.1 Machine Learning Algorithms

Machine Learning is the �eld of Arti�cial Intelligence that addresses the building

and studying of automated, arti�cial systems, that have the ability to learn from

data. This data can be directly fed into the system or autonomously gathered

by the system through experience or interaction with the environment. We say

that learning exists when improvements in the performance of a system, while

executing a given set of tasks, can be measured [27].

A wide variety of algorithms have been proposed to implement learning in

arti�cial systems. These algorithms can be classi�ed according to the type of

input available and the most generally used algorithms fall into the following

classi�cation: supervised learning, unsupervised learning, reinforcement learning

and developmental learning. Although there are others classes of machine learning

algorithms, we �nd these the most signi�cant and their brief description follows.

2.1.1 Supervised and Unsupervised Learning

Supervised learning algorithms use a set of labelled examples to infer a function

that can be used to label new examples [28]. In other words, learning happens

by analysing a set of labelled data and inferring a function that maps inputs to

desired outputs. Inputs are new examples which correct labels are unknown to

the learning system while outputs are the labels that the system associates to

each new example. This type of algorithms are normally used in classi�cation or

regression problems. Thus, supervised learning algorithms are used to generalize.

Supervised learning requires that some previous knowledge about what is to be

learned is initially given to the system to be analysed. This requires e�ort from the

supervisor to carefully craft a set of initial data. Also, it means that the agent's

creator must know what is objectively expected of the agent, that is, what is the

desired output in any situation that the agent might encounter. The requirement

of having a supervisor crafting initial information with the desired output deviates

supervised learning algorithms from the goal of creating autonomous agents.

Contrary to supervised learning algorithms, in unsupervised learning there is

no desired output and the goal of this type of algorithms is to �nd a structure or

pattern in data [4]. One simple example of application of unsupervised learning

6

2.1 Machine Learning Algorithms

is clustering, done by seeking out similarity between pieces of data in order to

determine whether they can be characterized as forming a group. Another impor-

tant application is feature extraction, which tries to �nd statistical regularities

from the inputs. In a recent application of unsupervised learning, a 16000 cores

system learnt how to correctly classify faces, human bodies and cat faces from 10

million unlabelled images sampled from videos [33].

We can tell that, by its nature, unsupervised learning is not meant to let an

agent discover what to do next, or how to behave. Its main goal is to �nd patterns

in data that was, otherwise, observed as unstructured noise.

There is an hybrid approach to learning that uses both supervised and un-

supervised learning, called semi-supervised learning. It exposes the system to a

set of initial inputs where some examples are labelled and others are not. This

kind of approach is used to, on one hand, reduce the amount of supervision that

is needed in supervised learning and, on the other hand, improving the results of

unsupervised learning to the user expectations.

2.1.2 Reinforcement Learning Algorithms

Reinforcement learning is centred on the idea that learning happens by interacting

with an environment, gaining awareness of the cause-e�ect relationship between

the system's actions and their consequences [40]. The focus is on goal-directed

learning from interactions, that is, learning what to do in order to achieve goals.

Therefore, it is used to map situations to actions in order to maximize a reward

called reinforcement which can be negative or positive.

The concept of reward is important in reinforcement learning because the sys-

tem is not told which actions to execute in each situation, as in most forms of

machine learning, but instead must discover the reward yielded by each action

by trying it. In some complex cases, actions might a�ect not only the immediate

reward but also the next situation and the ones that follow, in what is called de-

layed rewards. The trial-and-error search and the delayed rewards are important

factors as they represent the most signi�cant challenges in reinforcement learning.

Trial-and-error search allows agents to explore the environment and learn the

rewards that may be obtained by each behaviour. After �nding positive reward

7

2. RESEARCH BACKGROUND

behaviours, the agent can exploit those behaviours in order to obtain cumulative

rewards. However, in what respects to obtaining rewards, the existence of better

but unknown behaviours is possible. This trade-o� between exploration of the

environment looking for better behaviours and exploitation of known behaviours

is an important question in reinforcement learning systems.

The delayed rewards problem turns the creation of associations between causes

and consequences more di�cult because consequences are deferred in time. Be-

sides, with delayed rewards a behaviour which seams better because the obtained

immediate reward is the highest can, in fact, be worst on the long run because

the accumulated reward is lower [44].

Learning from interaction is a base idea underlying nearly all theories of learn-

ing and intelligence. In unknown environments, where one would expect learning

to be most bene�cial, a system must be able to learn from its own experience,

learning how the environment responds to actions, in order to become capable of

in�uencing it through the behaviour. Learning by interacting seems to bring us

closer to the goal of having agents able to autonomously develop behaviours, with

little or no knowledge about the environment. In a research which makes no on-

tological assumptions on the environment [15] agents obtain knowledge about the

environment through their interactions. This allows to avoid coding rewarding

states a priori. However, the rewards are associated with actions and this forces

the programmers to manually de�ne the rewards for each action given a con-

text. Obviously, it is not possible to de�ne rewards for actions in unanticipated

contexts so adaptation and autonomy is not completely achieved.

2.1.3 Developmental Learning Algorithms

Developmental learning aims to study and develop methods and techniques that

allow an agent to cumulatively acquire repertoires of novel skills through au-

tonomous exploration of the environment by using combinations of other learning

algorithms such as supervised and unsupervised learning [31, 46]. It is commonly

applied to embodied robots in the process of learning sensorimotor skills such

as locomotion, grasping, object categorization, as well as interactive and social

8

2.1 Machine Learning Algorithms

skills such as joint manipulation of objects with other agents and emergence of

communication and language.

The basic principle of developmental learning is that learning is a life-long

and open-ended process which progressively increases in complexity as the cogni-

tive capacities of the agent continuously develop, without new interventions of a

programmer. We see that the presented research share some goals with develop-

mental learning as it aims to develop autonomous agents able to learn and adapt

with little or none prespeci�ed behavioural logic.

The sensorimotor and social environments in which agents live may be so

complex that only a small part of potentially learnable skills can actually be

explored and learnt within a life-time. Therefore, mechanisms and constraints

are necessary to guide agents in their development. There are several important

families of guiding mechanisms and constraints which are studied in developmen-

tal learning: motivational systems, that drive exploration and learning, which

can be extrinsic when related to variables that are in�uenced by external re-

sources such as food, water, energy and others, or intrinsic when they respect

to internal tendencies such as curiosity, challenges, novelty exploration an so on;

social interaction as, for instances, learning by imitation, demonstration or stim-

ulus enhancement; morphology of sensors and actuators as these are determinant

to de�ne the sensorimotor capabilities and, therefore, the limits of learning and

behaviours.

State-of-the-art developmental learning research is far from allowing real-

world high-dimensional agents to learn an open-ended repertoire of increasingly

complex skills over a life-time period [2]. The major obstacle to address is

the high-dimensional continuous sensorimotor environment. Lifelong cumulative

learning is another challenge. To our knowledge, no experiments lasting more

than a few days have been set up so far, which contrasts signi�cantly with the

goal of having life-long learning. Besides, the power of biological brains, even the

most simple ones, is tremendously higher than computational mechanisms which

compromises the achievement of learning levels similar to those accomplished by

biological agents.

9

2. RESEARCH BACKGROUND

2.2 Motivation

In motivation literature, two kinds of motivation are commonly referred to: in-

trinsic and extrinsic. Intrinsic motivation may be de�ned as engaging in an

activity for its inherent satisfaction rather than for some external consequence.

When intrinsically motivated, a person is moved to act for the fun or challenge

entailed rather than because of external products, pressures, or rewards. In con-

trast, extrinsic motivation refers to engagement in an activity in order to attain

satisfaction trough some external resource [37]. Although the distinction, it is

important to say that in some activities these two kinds of motivations may

exist simultaneous. For instances, a student may be extrinsically motivated to

study for an evaluation because he desires a good grade and at the same time be

intrinsically motivated to study because he gets satisfaction by obtaining more

knowledge. There are numerous theories that try to de�ne and explain motivation

whether its intrinsic or extrinsic.

The theory of �ow [13] argues that a crucial source of internal rewards for hu-

mans is the self-engagement in activities which require skills just above their cur-

rent level. In other words, engagement in exploratory behaviour can be explained

by an intrinsic motivation for reaching situations which represent a learning chal-

lenge. Internal rewards are provided when a situation which was previously not

mastered becomes mastered within an amount of time and e�ort considered prac-

tical. The maximal internal reward is achieved when the challenge is not too

easy but also not too di�cult. After this theory several proposes were made

to implement or incorporate what has become known as novelty driven systems

and arti�cial curiosity [5, 19, 21, 45]. However, these systems have a number of

limitations making them impossible to use on agents in real-world unstructured

environments. Although they allow the development and emergence of one level

of behavioural patterns they did not show how new behavioural patterns could

emerge without the intervention of a human [32].

The drive theory explains motivation as a de�ciency, internal tension or need

that activates behaviour aiming at a goal or an incentive. These drives are thought

to originate within the individual and may not require external stimuli to encour-

age behaviour [38]. Basic drives could be sparked by de�ciencies such as hunger

10

2.2 Motivation

or thirst, which motivates a person to seek food or water while more subtle drives

may be the desire for praise and approval, which motivates a person to behave

in a pleasing manner to others. Thus, we see that the drive theory attempts to

explain motivation as a tendency to act in order to suppress some internal lack.

In general, motivation theories consider that motivation functions as an im-

pulse to act that initiates, guides and maintains goal-oriented behaviours. What

di�ers amongst these theories is the source of the impulse that leads to action.

We have seen that some theories defend that the source of the impulse is the

existence of external rewards while others advocate that the impulse comes from

an attempt to reduce or augment the level of arousal and others state that mo-

tivation arises from internal needs [23]. Either way, it seems to exist a general

agreement that motivation is a drive to behaviour.

In the context of this research we decided to use internal needs as the motiva-

tion for the agent to act. The concept of needs is presented as a set of "particularly

pushing motives" [9]. Needs are viewed as some lack and it is the attempt to ob-

tain what is lacking that serves as a motivation to act. An interesting approach

to this question is the concept of internal needs [8] on which needs are the drive

behind the agents behaviour. This idea is the corner stone of our architecture,

as it uses needs to drive, or motivate the agent's behaviour. In arti�cial intel-

ligence, motivated agents are agents that can direct, activate or organise their

behaviour [25]. In our opinion, to allow high autonomy this motivation or drive

should result from internal processes and be in�uenced by the agent's previous

actions and their perceived consequences. By having internal processes driving

the agent's behaviour instead of manual speci�ed behaviours we aim to achieve

a higher degree of autonomy.

We understand acting as the creation and persecution of instrumental goals,

otherwise known as means, to reach the ultimate goal which is the satisfaction of

a need. In our view, this idea further justi�es the use of needs as a motivational

engine. In [3] the concept of needs is also used - although formally known as

motivations. However, it's not correct to say that the agents learn how to satisfy

their needs because the contribution of each possible action towards, or against,

the satisfaction of each need is manually de�ned. There is also some work done on

generating goals from needs - know as motives - in [30]. However, the generated

11

2. RESEARCH BACKGROUND

goals belong to a set of goal templates which is provided to the agent. Each goal

template has information about the negative e�ects of the goal in the agent's

resources, about con�icts with other goals as well as a list of possible motives,

or needs, to adopt the goal. Thus, we see that there is a signi�cant structure of

prede�ned information available to the agent from the time of deployment.

2.3 Planning

Planning is a key ability for intelligent systems, increasing their �exibility and

autonomy through the construction of sequences of actions to achieve their goals.

Planning has been a signi�cant area of AI research for decades, dating at least

as far back as the General Problem Solver (GPS) [29]. Planning techniques have

been applied in a variety of tasks including robotics, process planning, web-based

information gathering and autonomous agents. It involves the representation of

actions and behaviours in a environmental context, reasoning about the e�ects

of actions, and techniques for e�ciently searching the space of possible plans.

A structured planning problem is one with a clear de�nition of initial state,

goal state, a list of possible actions and their respective preconditions and post-

conditions. Given this information it is possible to create one or more sequences

of actions to reach the goal state. A signi�cant number of approaches have been

proposed to face planning problems. Classical planning assumes a �nite number

of possible states, actions are instantaneous and that the world is fully observable

amongst other restrictions. Within this scope, progressive and regressive algo-

rithms have been proposed as well as partial-order-planning [36]. In progressive

algorithms search starts o� at the initial state and advances until �nal state is

reached while on regressive algorithms search is conducted the other way around.

These algorithms enforce a total ordering on actions at all stages of the planning

process. Partial-order-planning has a partial order between actions and commits

with the order of the actions as late as possible. A partial-order plan is a before-

than relation between actions so that there is no absolute order of actions but

a set of unordered partial plans. The algorithm tries to order the partial plans,

joining them until initial and goal states are connected by a sequence of actions

belonging to the partial plans.

12

2.4 Multiagent Coordination

A concept that becomes important in our research is multiplanning. In our

research, multiplanning refers to the ability to identify coincident plans to be

simultaneously executed. For instances, take plans A and B presented in �gure

2.1.

Figure 2.1: Multiplanning Example

Plan A has 5 actions of extension while plan B has 3 actions of extension and

the sequence of actions of plan B is contained in plan A: action 2, action 3 and

action 4 can be found in both plans. In other words, plan B coincides with part of

plan A and the execution of plan A implies the execution of plan B. By executing

plan A it is possible to achieve the goals of plan A and plan B, thus avoiding to

execute one plan after the other and saving time or other resources.

Individual plans may be generated by any know technique or algorithm and

stored in the agent's memory. As the number of stored plans grow, multiplanning

becomes increasingly advantageous because there is a higher number of plans that

can potentially be overlapped to be executed simultaneously. However, the e�ort

to search and �nd these plans also increases.

2.4 Multiagent Coordination

The proposed multiagent architecture is a multiagent system that requires mech-

anisms for control and coordination of the behaviour of internal agents in a way

that leads to the desired global goals. Multiagent coordination and cooperation

are important issues in the multiagent �eld. In some cases, agents are able to

achieve their subgoals by themselves, but they need to �nd a coordinated course

13

2. RESEARCH BACKGROUND

of action that avoids con�icting interactions. In another situations, agents may

have to require the assistance of others in order to achieve their goals [14].

Several di�erent approaches were proposed to achieve multiagent coordination

and cooperation. Some of these approaches use distributed plan generation [20,

47], having several agents with complementary actuators cooperating in order to

produce a global plan that none of them could generate alone. Other approaches

present centralized planning but execution is distributed [7], meaning that a plan

is produced in a centralized manner and then it is decomposed into sub-plans that

are assigned to di�erent agents and may be executed in parallel. There are also

approaches where both planning and execution are distributed [1, 11, 12, 41, 42],

with several agents interacting in order to generate plans that will be carried out

by themselves aiming to achieve individual or common goals. Finally, in [1, 7]

the multiagent cooperation problem is approached in a context where agents need

the assistance of other agents in order to achieve their goals.

The problem of coordination in multiagent systems is fundamental in Arti�cial

Intelligence and in game theory [6]. Given a collection of agents responsible for

achieving several goals, often the optimal course of action for one agent depends

on the course selected by another. If agents fail to coordinate behaviours the

outcome could be undesirable. Consider, for instance, a set of agents that have

the goal of crossing a bridge that can not support the weight of all the agents

simultaneously. If all agents start to cross, the bridge will collapse. Thus, the task

requires a coordinated action in order to avoid that the bridge weight capacity is

exceeded.

As the literature shows, multiagent coordination is a complex challenge. To

allow us to focus on learning and self-motivation we avoid to build simulations

that require agents a signi�cant coordination capacity. In the single agent ar-

chitecture there is no need to coordinate agents because there is only one agent

that handles all modules. In the multiagent architecture, where there are sev-

eral di�erent specialized agents, we de�ned the actuators and created internal

agents in a way that it is not possible to execute contradicting plans. Besides,

one internal agent is capable of satisfying needs on its own and it is not necessary

to have multiagent cooperation. In the multiagent architecture coordination is

demanded only to the coordinator agent who knows the needs and requires the

14

2.4 Multiagent Coordination

operator agents their satisfaction. Coordinator agent solely has to guarantee that

when an agent is busy executing a plan it does not receive a need to satisfy and

that needs are sent to operator agents that are known for having satis�ed them

before. Thus, the required level of coordination is low.

15

3

Architecture Description

We developed two alternative architectures: the single agent and the multi agent,

with similar central aspects but with di�erent internal organization. Both alter-

natives share a modular philosophy in what respects to the system's components.

While the single agent architecture places the responsibility to deal with all the

available information and actuators on only one agent, the multi agent architec-

ture spans that responsibility through several internal agents. Each alternative

architecture has implications on the e�ciency, complexity and performance of the

agent. As we will show later, in chapter 4, the single agent architecture is less

complex but also less scalable.

The existing modules are described in section 3.1 of this chapter. The re-

maining of the chapter is dedicated to describing the di�erences between the

alternative architectures.

3.1 System Components

As we stated earlier, the system components are organized into modules: a) Needs

Set, b) Decision Making, c) Perception and d) Learner. The relationship between

the modules is illustrated in �gure 3.1. Each module is semi-independent from

the others and is responsible for a function.

The Needs Set module manages needs and informs the Decision Making mod-

ule about the needs state, which in turn is responsible for selecting behaviours

17

3. ARCHITECTURE DESCRIPTION

Figure 3.1: System Components

to satisfy the needs. Each executed behaviour may generate one or more conse-

quences on the environment which, in turn, may change the state of the needs.

The Perception module makes observations about the conditions on the environ-

ment before and after the behaviour is executed and sends this information to

the Learner module. This module is responsible for analysing the observations

and re�ning them to create hypotheses which predict the outcome of the agent's

actions. These hypotheses can then be used by the Decision Making module to

select behaviours, thus closing the cycle. The more re�ned are the hypotheses

the more appropriate may the Decision Making module decisions be and the bet-

ter may be the performance of the agent. Hypotheses re�nement depend of a

large and heterogeneous set of observations that can be analysed. Thus, agent's

performance depend of, among other factors, rich experiences. Each module is

described in detail following.

3.1.1 Needs Set

The Needs Set module has a set of needs, N = {n1, n2, ...}, where each need is

de�ned by an urgency value representing the importance or intensity of the need

in relation to the other needs. The urgency values of the needs are determined

by information from the perception module. Besides, the needs set module sends

information about the urgency of the needs to the decision making module. The

urgency value changes as it is in�uenced by external variables, like temperature

18

3.1 System Components

or humidity, as well as by internal variables like available energy. Every time

a need is satis�ed its urgency value decreases, proportionally to the intensity of

the satisfaction. This concept is an analogy to biological systems. For instances,

hydration, temperature maintenance, exploring the environment and ingesting

nutrients are all needs from which intrinsic and extrinsic motivation may arise

generating goals. The dynamics associated with the urgency values of each of

the needs are not all the same as needs may behave di�erently from each other.

However, it appears to be common to all needs that the urgency value must

decrease more rapidly when the need is satis�ed than it increases when there

is no satisfaction obtained. For instance, thirst may grow in a period of 2 or 3

hours before it becomes the most urgent need, but it can be decreased rapidly by

drinking water in about 2 or 3 minutes. This makes sense because in this way it

remains a signi�cant amount of time to satisfy other needs.

In the proposed architecture, the concept of needs derives from the idea that

there is a group of basic desires, from which goal setting for each speci�c situation

results. This is a generally accepted idea in motivation theory [24, 35]. These

basic desires, or as we call them, needs, are the core engine of motivation. Con-

textual objectives, or goals, function as means to an end, which is the satisfaction

of the needs [17, 35]. Thus, by having a needs set we aim to create agents able

to set their own goals from the urgency of each need and the context they are

in, even if this context had not been anticipated at design time. The utility,

performance and behaviour of an agent are largely in�uenced by the needs set as

this is its motivational engine.

Needs modelling is a key aspect in what regards to the implementation of

the proposed architecture. In general, and by our own human experience, the

urgency value naturally increases in the absence of satisfaction and decreases

when satisfaction is obtained. However, there are also needs that arise only when

certain conditions are met. When those conditions do not exist the urgency value

of those needs does not change. An example of such a need is to run for safety.

The need to run for safety only appears when there is an identi�able menace,

otherwise its urgency value does not rise. Other examples of needs that may obey

di�erent models are hunger and curiosity. We know that the need to obtain food

is more or less constant over the lifespan of a biological agent. We mean that the

19

3. ARCHITECTURE DESCRIPTION

urge to eat grows at an approximately equal pace everyday. However, curiosity

grows more rapidly in the beginning of our lives than towards the end and it is

easier to obtain ful�lment of curiosity when we are older than when we are young.

In other words the urge to try new things grows at a more accelerated pace when

we are young. Thus, di�erent needs might have to be modelled di�erently.

3.1.2 Decision Making

The main responsibility of this module is to select an appropriate action or se-

quence of actions to execute at each moment. There are two important aspects

to be considered: a) one action may satisfy more than one need, b) there are

no guarantees that satisfying the most urgent need is always the best option.

For instances, let us imagine an environment with two locations (A) and (B). In

location (A) there is water and in location (B) there is food. The agent, which is

located at (A), has hunger as the most urgent need followed by thirst. In this sit-

uation, it might be better to satisfy thirst right away and then travel to location

(B) to satisfy hunger, because only one voyage will be needed. The other option

would be to travel �rst to location (B) and satisfy hunger because it is the most

urgent and than return to location (A) to satisfy thirst. This option would be

more costly because it implies two voyages.

The decision making module has a set of actions, A = {a1, a2, ...} available to

execute, which may generate e�ects on the environment as well as on the agent

itself and that may have some associated cost. This module has access to a set

of statements created and maintained by the learner module called hypotheses.

These hypotheses represent knowledge about the world expressed in the form of

cause-e�ect where causes are actions and environmental conditions and e�ects

may be environmental conditions or the satisfaction obtained for a need. Thus,

hypotheses state what actions and environmental conditions must exist to attain

the ful�lment of a need or other environmental conditions.

The internal mechanism of the decision making module analyses the hypothe-

ses and selects the appropriate action given the current environmental conditions

and the desired e�ect. After having selected an action - which can be none - the

agent actuators will act. As a consequence, there may or may not be an e�ect on

20

3.1 System Components

the environment. Perceiving the e�ect will allow the agent to learn in a process

detailed ahead in section 3.1.4.

Let us assume that an agent has selected need n1 to satisfy. The internal

mechanism of the decision making module searches for hypotheses that state the

satisfaction of n1 as an e�ect. If none is found the result is an action selected

with an alternative criterion - in our particular implementation a random action is

selected. Hypotheses are classi�ed according to their validity by a variable called

strength. When the decision making module �nds several hypotheses stating the

satisfaction of a desired e�ect - satisfying n1, for instances - it has to verify if

it is possible to enable the causes expressed on any of them, starting with the

strongest. If it is than the agent enables those causes immediately by executing

the action or actions stated on the hypothesis thus ful�lling need n1. When

it is not possible to immediately enable the causes stated on any of the strong

hypotheses it is necessary to search for other hypotheses that state those causes

as an e�ect. In other words, it is necessary to search for a second set of hypotheses

that state how to enable the causes of any hypothesis of the �rst set. To �nd these

links between hypotheses the decision making module searches for connections

between consequences and causes of di�erent hypotheses, forming chains. Several

alternative chains of hypotheses are formed by connecting causes of hypotheses

ahead with consequences of hypotheses before. This capacity is called planning.

Planning is essential when none of the of the necessary conditions to attain

a goal can be enabled immediately because it may allow to search for paths to

attain the desired goal. To give the agents the capacity to plan, we implemented

a recursive algorithm that builds a tree of possible plans that lead to the goal

state from the current state. The current state is the last set of readings made

by sensors and is the current environmental context where the agent is situated.

Thus, a �nished plan tree is a structure that has the current state on all leafs and

the goal state on the root node. Each node contains the description of a state and

an action to reach the state described on the ascendant node. In other words,

each node contains the description of the causes of the ascendant node's state.

Likewise, the state described in a node is a consequence of any of the child nodes.

In �gure 3.2 we present an example of such a tree, where actions are represented

by An and states by Sn.

21

3. ARCHITECTURE DESCRIPTION

Figure 3.2: Plans Tree Example

The maximum depth of the tree, or the recursion limit, may be de�ned ac-

cording to the desired response time and memory availability. The algorithm

used to build a plan tree is shown in Algorithm 1.

The tree is initiated by creating a root node and �lling it with the goal state.

After that, for each one of the tree's leafs, all hypothesis that have as consequence

the state described on the leaf are used to create a new node and add it as

descendant of the leaf. This process then continues for a number of iterations

depending on the tree depth. As a simpli�cation we assume that all actions have

the same cost. Being so, the cheapest plan is always the shortest and is the one

selected. If there are two or more plans with the shortest length then a random

plan is selected.

To avoid determining a plan in every iteration and save resources, a mechanism

that stores the selected plan associated with a certain goal is used. If the goal

persists in the following iterations, it is enough to execute the next action of the

stored plan, instead of computing it again.

3.1.3 Perception

The main responsibility of the perception module is to make observations about

the environment and store them. These are recorded on the observations set O

= {o1, o2, ...}. Each observation is formed by two sets: 1) pre-state, or potential

causes, cs: values read by the sensors before acting and selected action or actions

22

3.1 System Components

Algorithm 1 Algorithm for building a plan tree

currentState = current state perceived by the agent

create root node and �ll it with goal state

while (depth > 0) do

allLeafs = getTreeLeafs()

for (leaf = allLeafs(�rst) to allLeafs(last)) do

if (leaf causes != currentState) then

hypoList = �ndHypothesesWithConsequence(getCauses(leaf))

for (hypo = hypoList(�rst) to hypoList(last)) do

create new node and �ll it with the hypo causes and consequences

add new node to leaf

end for

end if

end fordepth = depth - 1

end while

and 2) post-state, or potential consequences, cq: values read by the sensors after

acting. For instances, o1 might be o1 = {(cs1, cs2) => (cq1, cq2)} where csN

denote the Nth potential cause and cqN the Nth potential consequence.

In simple terms, an observation translates the transformation on the environ-

ment as it is perceived by the sensors. In every observation there might be a

number of relationships between elements of the pre-state and the post-state, or

put in other terms, between causes and consequences. These relationships, how-

ever, are not explicit. In every observation there may be one or more subsets of

the pre-state that causes a subset of the post-state, but it is not possible to point

exactly which subset of the pre-state causes a given subset of the post-state. This

is why the learner module was included.

To make observations, the agent has a set of sensors S = {s1, s2, ...} that allow

it to perceive the environment as well as itself. Sensors have great importance

in our model because the obtained readings are used as a representation of the

causes and consequences of the observed phenomenon. In other words, the values

read by the sensors represent the world. This fact and the aim of building agents

able to learn about the world turns sensors into vital components of the proposed

23

3. ARCHITECTURE DESCRIPTION

model and of the performance of the agent.

Sensors are normally used to read properties of the environment. Although

the satisfaction of the agent's needs is not a property of the environment, we

propose the existence of sensors to read the obtained satisfactions. This makes

it possible to include the readings of the satisfactions in the set of sensors and,

naturally, in the observations created by the perception module. Treating this

special internal sensors as common sensors eases implementations of the model. It

exempt us of writing code solely to treat the information about the satisfactions

because it can be treated like any other reading obtained by sensors. In this way,

the satisfaction of a need becomes a potential consequence and the code used to

search for a way of satisfying a certain need is the same as the one used to search

for any other consequence.

3.1.4 Learner

The main function of the learner module is to re�ne the observations made by

the perception module, through the sensors. This is done by following two broad

steps: a) hypotheses formulation and b) hypotheses evaluation.

Hypothesis formulation is grounded on observations as for each observation,

the learner module extracts a list of possible causal relationships, or hypotheses,

between pre-state and post-state. In the pre-state set elements are sensor read-

ings and actions and in the pos-state set elements are sensor readings and needs

satisfactions. To generate all possible hypotheses from an observation all subsets

of the pre-state are combined with all subsets of the pos-state. Thus, for each

observation it is possible to form a signi�cant number of hypotheses. The way

the hypotheses are generated leads to combinatorial explosion which is known

to prevent scalability and require an exponentially growing memory space and

high processing e�ort. Nevertheless, some of this problems can be mitigated by

techniques like hashing, to diminish search complexity.

Hypotheses may be supported or contradicted by observations. When an ob-

servation Ob has the causes and the consequences of an hypotheses Hyp we say

that Hyp is supported by Ob. On the contrary, when an observation Ob has

the causes but do not have the consequences of Hyp we say that hypotheses

24

3.1 System Components

Hyp is contradicted by Ob. Hypotheses evaluation uses the existing observations

to assess if each of the formulated hypothesis is contradicted by any observation.

Hypotheses show what can be the cause of a certain consequence and the strength

of each hypothesis, which is represented by a numeral, depends on the number

of observations that support and contradict it. The strength of an hypothesis

is determined by dividing the number of observations that have both the causes

and the consequences of the hypothesis by the total number of observations that

have the causes, as shown in the following formula.

HypoyhesisStrength =
ObsWithCausesAndConsequences

ObsWithCauses

An hypothesis has strength = 100 when there are no observations contradict-

ing it and strength = 0 when there are no observations supporting it.

Because of the absence of previously coded knowledge and predetermined

behaviour, acting and learning depend directly on the ability to formulate hy-

potheses from observations - experience - and, thereafter, evaluate them to select

the most appropriate ones as criteria on the decision making process. The result

of the hypotheses evaluation process is the strengthening or weakening of each

hypothesis. Strong hypotheses represent sounder knowledge about the world and

can be used as criteria in the decision making process. The agent induces what

conditions should be enacted to obtain the desired e�ect but, in the absence of a

strong hypothesis leading towards a certain goal, it may be possible to use weak

hypotheses as an heuristic or as an approximation to the path of the goal. On

the other hand, weak hypotheses can be used to avoid enacting conditions that

are known not to lead to the desired objective.

To bring the agent closer to richer abilities, it is interesting to have the possibil-

ity to assign a cost value to enabling the conditions expressed on each hypothesis.

This cost can be determined, for instances, by the cost of the actions in the causes

side of the hypothesis, if it exists. This mechanism might allow to save resources

if the cost used in the calculations is equivalent to the real cost.

25

3. ARCHITECTURE DESCRIPTION

3.2 Single Agent Architecture

In the single agent architecture, there is one internal agent which deals with

all the available information generated by the described modules. Through the

sensors, the agent make observations about the environment and each observation

generates a number of hypotheses that depend on the number of sensors and

needs. As we have shown, the number of hypotheses grow exponentially with the

growth of the number of possible values for sensor readings, the number of possible

actions and the number of di�erent needs. Given the exponential growth of the

number of hypotheses and the fact that all modules are associated with a single

agent, resources such as processing time and memory requirements can quickly

be exhausted. Thus, the scalability of this architecture is limited. Nevertheless,

the single agent architecture was implemented and tested.

Modules have internal mechanisms that result in the execution of a given

action. To select an action these internal mechanisms follow the iterative process

presented in algorithm 2.

Algorithm 2 Single Agent Internal Algorithm

while true do

perceive environment

select need to satisfy (the most urgent)

if agent knows action that satis�es need then

select known action

else

select random action

end if

execute action

perceive consequences and record observation

formulate and evaluate hypotheses

end while

In the single agent architecture, the agent starts by using the perception

module to perceive the environment and the needs set module to select a need to

be satis�ed. The selected need is passed to the decision making module. Then,

26

3.3 Multi Agent Architecture

the decision making module searches for strong hypotheses that state which action

may satisfy the selected need. If it �nds an action it selects it, otherwise it selects

a random action. The action is executed and after its execution the perception

module observes the e�ects in the environment and in the satisfaction of the

needs. Finally, the learner module formulates and evaluates hypotheses using the

observation made.

3.3 Multi Agent Architecture

We propose the multi agent architecture as a solution to avoid the exponential

growth of the number of hypotheses by grouping related actuators and sensors

into small, semi-independent clusters. For instances, if there is a set of actuators

that control the speed and turning of the wheels of an agent then the sensors

that perceive the position and velocity of the wheels may be grouped with the

actuators in the same cluster. In the same way, other related sets of sensors and

actuators are grouped into other clusters. This architecture has an obvious anal-

ogy with how brains are organized. The functions performed by the brain are the

products of the work of thousands of di�erent, specialized sub-systems with di�er-

ent responsibilities [26]. For instances, the visual cortex and the auditory cortex

are located on di�erent regions of the brain and have di�erent responsibilities.

Besides the separation of signi�cantly di�erent sets of sensors and actuators,

we also propose two types of internal agents with di�erent responsibilities: coor-

dinator and operator. Coordinator agents are mainly responsible for the needs

set module described in section 3.1.1 and only they have complete access to all

needs. Operator agents are responsible for the decision making, perception and

learner modules presented respectively in sections 3.1.2, 3.1.3 3.1.4. Figure 3.3

shows the diagram of the multilayer architecture and the relationship between

coordinator and operator agents.

Each operator agent is assigned to a cluster of sensors and actuators. Thus,

one operator agent is responsible for learning how to act with the limited set of

actuators that it controls and that belong to the cluster, in order to satisfy needs.

There can be a number of these operator agents, that work semi-independently

from the others, acting and learning within the limitations of its actuators and

27

3. ARCHITECTURE DESCRIPTION

Figure 3.3: Multiagent Architecture

sensors. Operator agents can not be fully independent from each other because

they have common resources to share such as energy. Besides, it is possible that

plans from di�erent operator agents are incompatible. In this case it is necessary

to coordinate actions from the con�icting plans in order to avoid two plans halting

each other simultaneously.

The modules of the architecture have internal mechanisms that result in the

execution of a given action. To select an action these internal mechanisms follow

the iterative process presented in algorithm 3.

In the multi agent architecture, the coordinator agent uses the needs set mod-

ule to select a need to be satis�ed. The coordinator agent has an internal memory

to store lists that are associated with needs. Each list contains the identi�cation

of the operator agents that have satis�ed the associated need in the past. Having

a need to satisfy, that is not being addressed by any operator agent, the coordi-

nator uses the list associated with that need to select an operator agent that is

not busy executing a plan. If all agents from the list are busy another operator

agent is chosen by round robin. Every need has an individual round robin system

associated with it, to be used to select a free operator agent when all operator

agents known to be able to satisfy the need are busy trying to satisfy other needs.

Having an individual round robin system to each need, instead of a general round

28

3.3 Multi Agent Architecture

robin system, guarantees that all operator agents have the opportunity to attempt

to satisfy each need.

The coordinator agent can coordinate the satisfaction of several needs simul-

taneous in di�erent operator agents. For instances, if the most urgent need is

already being satis�ed by an operator agent executing a plan, the coordinator

agent searches for free operator agents to satisfy the second most urgent need.

After having received a need from the coordinator agent, the operator agent

executes the mechanisms of the decision making module described earlier. The

result of this process is the selection and execution of an action. Finally, the co-

ordinator agent perceives the obtained satisfaction from the environment - which

can be negative - and informs the operator agent of the satisfaction, allowing it

to create observations as well as create and evaluate hypotheses, i.e., to learn.

In this way, knowledge is distributed amongst operator agents, each having the

responsibility to learn how to use its set of actuators to satisfy the needs that

are requested by the coordinator agent. Probably only a subset of the operator

agents will have the capability of satisfying each need.

29

3. ARCHITECTURE DESCRIPTION

Algorithm 3 Multi Agent Internal Algorithm

while true do

select need to satisfy (the most urgent that is not being satis�ed)

if coordinator knows operator that satis�es need then

send need to operator

else

send need to next free operator from need's round-robin

end if

for all operators do

if executing a plan then

select next action from plan

else

if there is a need to satisfy then

search for a plan that satis�es need

if plan is found then

begin execution of plan, select �rst action

else

select random action

end if

end if

end if

perceive environment

execute selected action

perceive consequences and record observation

formulate and evaluate hypotheses

end for

end while

30

4

Experimental Set Up and Results

Both the single agent architecture and the multi agent architecture were im-

plemented in the Java language and tested in simple environments. We make

some concessions in what regards to complexity. We assume that, a) actions are

atomic, b) consequences follow causes immediately, c) rules of the environment

never change, i.e., if a certain premise is true at some point it will always be true.

Besides, we admit an enclosed and turn-based environment, that is, the agent is

the sole entity on the environment and nothing happens while the agent is pro-

cessing information. Furthermore, everything that happens in the environment is

due to the agent's actions. Simulations are iterative and the agent acts once per

iteration. The experimental set up and the obtained results of each architecture

follows.

4.1 Single Agent Implementation

To implement the single agent architecture we make an extra assumption: plans

have depth = 1 or one action of extension. In other words, the agent has no

planning capacity. We made this simpli�cation because we wanted to focus on

the core concepts: learning and needs. Two di�erent environments were created,

as well as two di�erent agents, one to each environment. The description of

the environments, agents de�nitions and obtained results are presented in the

following sections.

31

4. EXPERIMENTAL SET UP AND RESULTS

4.1.1 Environments

Two simple simulated environments were created: a) switches and b) soundsys-

tem. The description of each environment is presented below.

Switches

The Switches environment represents an array of switches connected to a light.

The switches can be turned on or o� and the light turns on only when all the

switches are on. In testing we created this environment with only 1 switch, iden-

ti�ed by switch-0.

SoundSystem

The Soundsystem environment represents a system which can be used to play

music. It has a power switch, with two positions, that turn the power on and

o�, a play button and a stop button. When the power is on and the play button

is pressed the system simulates music playing. Pressing the stop button releases

the play button thus stopping the sound.

4.1.2 Agents De�nitions

We created two agents, one for each environment. The description of the agents

is presented below.

Switches

To interact with the switches environment we de�ned an agent with two needs:

lightOn and lightO�. Table 4.1 summarizes the de�nition of these needs including

the impact on the urgency value when satisfaction is obtained and not obtained.

Table 4.1: Single Agent's Needs to the Switches Environment

Need Satis�ed Not Satis�ed

lightOn -3 1

lightO� -10 1

32

4.1 Single Agent Implementation

Need lightOn would be satis�ed only when the light was on. Its urgency

value would increase by 1 unit when the need was not satis�ed and decrease by

3 units when the need was satis�ed. Need lighO� would be satis�ed only when

the light was o�. Its urgency value would increase by 1 unit when the need was

not satis�ed and decrease by 10 units when the need was satis�ed.

The agent had 3 possible actions: nil, turnSwitch-0-On and turnSwitch-0-O�.

This agent had the sensors: isLightOn, to perceive if the light was on, switch0, to

perceive if switch 0 was on or o�, lightOn to perceive the satisfaction obtained by

the lightOn need and lightO� to perceive the satisfaction obtained by the lightO�

need.

Soundystem

To interact with the soundsystem environment we de�ned an agent with two

needs: listenMusic and silence. Table 4.2 summarizes the de�nition of these needs

including the impact on the urgency value when satisfaction is obtained and not

obtained.

Table 4.2: Single Agent's Needs to the Soundsystem Environment

Need Satis�ed Not Satis�ed

listenMusic -10 1

silence -3 1

Need listenMusic would be satis�ed only when the music was playing. Its

urgency value would increase by 1 unit when the need was not satis�ed and

decrease by 10 units when the need was satis�ed. Need silence would be satis�ed

only when the music was not playing. Its urgency value would increase by 1

unit when the need was not satis�ed and decrease by 3 units when the need was

satis�ed.

The agent had 5 possible actions: nil, pressPlayButton, pressStopButton,

turnPowerOn and turnPowerO�. This agent had the sensors: musicPlaying, to

perceive if the music was playing, powerOn, to perceive if the power was on, play-

ButtonPressed and stopButtonPressed to perceive if play button or stop button

33

4. EXPERIMENTAL SET UP AND RESULTS

were pressed, respectively, listenMusic, to perceive the satisfaction obtained by

the listenMusic need and, �nally, silence, to perceive the satisfaction obtained by

the silence need.

Each agent was tested in its environment and the results follow.

4.1.3 Results and Analysis

Each of the agents was tested in its respective environment, having a lifespan of

200 iterations per run. We executed 1000 runs in each of the following 4 tests.

• a) switches environment with random action selection

• b) switches environment using hypotheses to select actions

• c) soundsystem environment with random action selection

• d) soundsystem environment using hypotheses to select actions

All randomisers were seeded with values obtained from the system's clock.

On every iteration of each test, we recorded the urgency values of all the needs

as well as the selected actions.

4.1.3.1 Performance Measurement

Agents are motivated to act by the existence of a set of internal needs and their

ultimate goal is to satisfy those needs. If an agent has a high overall satisfaction of

needs we conclude that the agent learned behaviours that lead to the achievement

of its ultimate goal. Thus, to measure the performance of the agents we propose

to use the overall satisfaction of the needs.

The criterion used to select the next need to satisfy is the highest urgency,

i.e., the most urgent need is always selected to be satis�ed. If the agent learns

how to satisfy all its needs, the most urgent need is satis�ed and ceases to be

the most urgent. In sequence, all needs are satis�ed and the di�erences between

their urgency values are kept to a minimum because of the systematic obtained

satisfaction. The smaller are the di�erences between the urgency values of all the

needs the bigger is the overall satisfaction of the needs. Thus, the smaller are the

34

4.1 Single Agent Implementation

di�erences between the urgency values of the needs, the best is the performance

of the agent. To represent the di�erences between the urgency values of the needs

we use the absolute value of the maximum di�erence of all the urgency values,

termed AbsMaxDif.

Table 4.3 shows the absolute di�erences between the urgency values, Urg,

of three needs. Urg(Need1) = 4, Urg(Need2) = −2, Urg(Need3) = 3. The

AbsMaxDif is presented in bold.

Table 4.3: AbsMaxDif Determination Example

Need 1 Need 2 Need 3

Need 1 - 6 1

Need 2 6 - 5

Need 3 1 5 -

Switches

Figures 4.1a and 4.1b present the evolution of the urgency values of the needs

as well as the AbsMaxDif of a randomly selected run, for tests a) and b), respec-

tively, throughout the 200 iterations. The two bottom lines in �gure 4.1a show

that the needs were not satis�ed side by side. This suggests that the agent's ac-

tions were not satisfying the most urgent need systematically. The fact that the

agent was unable to maintain a low AbsMaxDif shows that there was no learning

or adaptation. The two bottom lines in �gure 4.1b show that the urgency val-

ues of the needs were satis�ed side by side, that is, the di�erence between their

urgency values was minimum. That fact can also be veri�ed by observing the

top line, which shows that after an initial period of learning, the agent was able

to maintain the AbsMaxDif low. It suggests that the agent was able to learn to

direct its behaviour towards the satisfaction of the needs.

SoundSystem

Figures 4.2a and 4.2b present the evolution of the urgency values of the needs

as well as the AbsMaxDif of a randomly selected run, for tests c) and d), re-

spectively, throughout the 200 iterations. The two bottom lines in �gure 4.2a

show that needs were not satis�ed equally and that the AbsMaxDif �uctuated.

35

4. EXPERIMENTAL SET UP AND RESULTS

(a) Random test

(b) Hypotheses test

Figure 4.1: Urgency Values and AbsMaxDif in Switches Environment

As in the prior test - Switches(Random) - learning and adaptation did not exist.

The two bottom lines in �gure 4.2b show that the urgency values were equally

satis�ed, maintaining a low AbsMaxDif. Thus, the agent was able to satisfy its

most urgent need consistently. This suggest the existence of learning.

4.1.3.2 Statistical Analysis

To evaluate the consistency of the prior results, we determined the mean and the

standard deviation of AbsMaxDif for the 1000 runs, for each test. The values are

presented in table 4.4. The collected data shows that, for both environments, the

mean of the AbsMaxDif, was drastically lower when the agents were using the

36

4.1 Single Agent Implementation

(a) Random test

(b) Hypotheses test

Figure 4.2: Urgency Values and AbsMaxDif in SoundSystem Environment

proposed model to select an action than when they were randomly selecting an

action. These results suggest that the agents learned how to satisfy their needs,

and direct their behaviour towards that end without having behaviours explicitly

programmed.

On test Switches (Hypotheses) the mean of AbsMaxDif was 30% lower than on

test SoundSystem (Hypotheses). This is explained by the fact that the Soundsys-

tem environment had states where it was necessary to plan two consecutive ac-

tions while our agent only had capability of building plans with 1 action. Such a

state is when the power is o� and the play button is not pressed. In this situa-

tion, it is necessary to plan to turn the power on and then press the play button.

37

4. EXPERIMENTAL SET UP AND RESULTS

Table 4.4: AbsMaxDif for the 1000 runs

Test Mean St.Dev

Switches(Random) 349.97 85.93

Switches(Hypotheses) 6.21 3.09

SoundSystem(Random) 94.97 52.50

SoundSystem(Hypotheses) 8.12 3.18

Having no possibility to make such plans, and unable to �nd a suitable action,

the agent was programmed to act randomly. We observed other runs where the

initial learning period was signi�cant larger due to that limitation.

4.2 Multi Agent Implementation

To implement the multi agent architecture we dropped the prior restriction of

having plans limited to one action of extension. Thus, agents have the capacity to

make plans up to three actions of extension. The description of the environments,

agent de�nitions and obtained results are presented following.

4.2.1 Environment

To test the multi agent architecture we created an environment which combined

the characteristics of the previous two environments. In this environment there

is an array of 1 switch connected to a light. The light turns on when the switch

is turned on. There is also a simulated sound system such as the one described

earlier in the single agent architecture environment. There is a power switch with

two positions that turns the power on and o�, a play button and a stop button.

When the power is on and the play button is pressed the system simulates music

playing. Pressing the stop button releases the play button and stops the music.

38

4.2 Multi Agent Implementation

4.2.2 Agent De�nition

The agent created to interact with the test environment has the needs lightOn,

lightO�, listenMusic and silence. Table 4.5 summarizes the de�nition of these

needs.

Table 4.5: Multiagent's Needs

Need Satis�ed Not Satis�ed

listenMusic -10 1

silence -3 1

lightOn -3 1

lightO� -10 1

These needs are a combination of all needs of the prior single agents. Need

lightOn is satis�ed when the light is on. Its urgency value increases by 1 unit

when it is not being satis�ed and decreases by 3 units when the need is satis�ed.

Need lighO� is satis�ed when the light is o�. Its urgency value increases by 1

unit when the need is not satis�ed and decreases by 10 units when the need is

satis�ed. The agent has the possible actions: nil, turnSwitch-0-On, turnSwitch-0-

O�. This agent has the sensors: isLightOn, to perceive if the light is on, switch0

and switch1, to perceive if the switches are on or o�, lightOn to perceive the

satisfaction obtained by the lightOn need and lightO� to perceive the satisfaction

obtained by the lightO� need.

Need listenMusic is satis�ed when the music is playing. Its urgency value

increases by 1 unit when the need is not satis�ed and decreases by 10 units when

the need is satis�ed. Need silence is satis�ed when the music is not playing. Its

urgency value increases by 1 unit when the need is not satis�ed and decreases

by 3 units when the need is satis�ed. The agent has the possible actions: nil,

pressPlayButton, pressStopButton, turnPowerOn and turnPowerO�. This agent

has the sensors: musicPlaying to perceive if the music is playing, powerOn to

perceive if the power is on, playButtonPressed and stopButtonPressed to perceive

if play button or stop button are pressed, listenMusic to perceive the satisfaction

obtained by the listenMusic need and silence to perceive the satisfaction obtained

by the silence need.

39

4. EXPERIMENTAL SET UP AND RESULTS

This agent is composed of three internal agents: one coordinator agent and

two operator agents. The coordinator agent has total access to the urgency

values of the needs and informs the operator agents of the most urgent need to

satisfy. Each operator agent is responsible for a cluster of sensors and actuators.

Operator agent One is responsible for the actuators and sensors associated with

the switches while operator agent Two is responsible for the actuators and sensors

associated with the sound system.

4.2.3 Results and Analysis

The agent was tested in the described environment, having a lifespan of 200 iter-

ations. We executed solely one run using hypotheses to select actions. Random

action selection was not tested as we had already seen that it does not result in

learning. On every iteration of the test we recorded the urgency values of all the

needs, as well as the selected actions. To measure the agent's performance we

used the AbsMaxDif as before. The evolution of the urgency values of the needs

as well as the AbsMaxDif is presented in �gure 4.3.

Figure 4.3: Urgency Values and AbsMaxDif in the Multiagent Test

The top line of the results chart show that the AbsMaxDif reached a phase

where it is maintained near zero. This means that the agent was able to satisfy

all the needs after an initial period of learning.

40

4.2 Multi Agent Implementation

It is possible to see that for needs lightOn and lightO� learning was almost

immediate, probably due to initial randomly seleted actions leading to the satis-

faction of those needs. After learning that those actions lead to the desired satis-

factions the agent limits its behaviour to exploiting the learned actions. However,

learning to satisfy needs silence and listenMusic required a considerable longer

period. We know that to play music and satisfying listenMusic two actions are

required: turnPowerOn followed by pressPlay. Thus, we expected a longer learn-

ing period. However, we observe several intervals where the urgencies of needs

listenMusic and silence are signi�cantly far apart. We explain this observation

with the existence of planning ability. Now, instead of selecting an action to

execute the agent selects a plan. In this test we set plan depth to a maximum of

three actions. Thus, to satisfy a need it is possible that the agent selects a plan

that contains actions which will satisfy the opposite need before the end of the

plan's execution. Therefore, a plan that lead to the satisfaction of a given need

might satisfy other needs before. Only after executing the plan it is possible to

the agent to know that the plan is not adequate and that a di�erent plan must

be created and executed.

41

5

Discussion

In this chapter we present a discussion about the features and shortcomings of

the proposed architectures and a critique view over the experiments and obtained

results.

5.0.4 Experimental Set Up

The experimental set up was deliberately simple because we aimed to test the ar-

chitecture without the interference of unnecessary complexity. Simulations were

iterative instead of in real-time in order to avoid delayed consequences. In the

multiagent architecture it was not possible for the internal agents to execute

con�icting actions or plans because we wanted to focus on learning and needs

satisfaction instead of multiagent planning. Although their simplicity, experi-

ments demonstrated that both the single agent architecture and the multiagent

architecture allow the creation of agents able to learn how to act autonomously.

5.0.5 Multiagent Coordination

We have seen that the observations and hypotheses grow exponentially with the

growth of the number of sensors and needs. The exponential growth of hypothe-

ses is a signi�cant disadvantage of the single agent architecture that we addressed

by introducing a multiagent architecture. The proposed multiagent architecture

scales well because it solves the exponential growth of observations and hypothe-

ses, by grouping related actuators and sensors into small clusters associated with

43

5. DISCUSSION

an operator agent. Besides, it allows that several needs are addressed simultane-

ously by having multiple operator agents acting at the same time, coordinated by

a coordinator agent. However, it introduces some problems: a) the coordinator

agent constitutes a single point of failure; if it fails all operative agents became

inactive, b) the actions of an operator agent may be contrary to the actions of an-

other operator agent that is acting simultaneously, thus creating a contradiction

that must be autonomously identi�ed by the coordinator agent and then solved.

A possible solution to the single point of failure problem is to remove the coor-

dinator agent and replace it with a protocol of communication and coordination

between the operator agents. The access to the needs set would be granted to

all operator agents and the selection of the most pertinent need, as well as the

selection of the operator agent responsible for satisfying it, would be negotiated

by operator agents. The advantages and disadvantages of having a coordinator

agent that centralizes some decisions or having a totally decentralized architec-

ture with solely operator agents must be carefully studied because the interaction

between agents determine the overall performance of multiagent systems [39].

5.0.6 Needs Modelling

Needs were modelled in a simple and straightforward manner. When a need is

satis�ed, the urgency value decreases by a number that is constant over time.

Likewise, the urgency value increases by a constant number when the need is not

satis�ed. We think that complex needs models are interesting because they allow

to have a variable number changing the urgency values of the needs in di�erent

moments of the agents existence. Biological agents have di�erent needs at dif-

ferent times of their lives. For instances, curiosity and the crave for adventure

are more intense in early life. Complex needs may allow an approximation to

biological agents and consequently to real-world applications.

5.0.7 Planning

While the single agent architecture includes no planning capabilities, the multi-

agent architecture does. Planning is important to the development of complex

agents as it is not always possible to achieve a goal with only one action but

44

solely with a sequence of actions. Besides, it is often necessary to avoid that dif-

ferent agents execute contrary behaviours. In other situations, one agent is not

capable of achieving a goal on its own and it requires the contribution of another

agent. Re�nements of the presented planning capabilities are important, namely

managing interleaved plans which we designate by multiplanning. Multiplanning

allows to execute two plans simultaneously when the smaller plan equals a part

of the bigger one. Furthermore, in the multiagent architecture opting between

centralize or decentralized planning will have implications in the coordination of

internal agents.

5.0.8 Sensorimotor Changes

A point we do not focus on our research is sensorimotor extension or atrophy.

Sensorimotor changes are interesting because there are cases where an agent dis-

covers new actions or looses the capability to execute known actions. Changes

in the sensorimotor capacities are common in biological systems. For instances,

frogs grow legs only after some time of being born and babies do not have enough

strength to walk before some months have passed. It is also interesting to have

the possibility of removing actions, but it creates problems because it has a sig-

ni�cant impact on the existing knowledge: if the agent's knowledge states that a

given action is capable of satisfying a certain need and that action ceases to exist

there will be a con�ict that must be dealt with.

5.0.9 Action Speci�cation

Action speci�cation is an interesting challenge. An action may be an instruction

such as JUMP. However, it is possible to jump with di�erent intensities (and

we are not even mentioning the several di�erent jumping styles). Specifying the

JUMP action regarding the jump intensity or strength, for instances having dif-

ferent actions like JUMP(Strength=1), JUMP(Strength=2), JUMP(Strength=3)

and so on, will surely increase the actions set dimension signi�cantly. The conse-

quence of having a large actions set may be poor performance, because the larger

the actions set the greater is the number of possible observations. We have seen

already that a fundamental challenge of the proposed learning and perception

45

5. DISCUSSION

model is the growth of the number of observations and hypotheses which may

compromise performance.

46

6

Conclusions and Future Work

In this �nal chapter, we present the conclusions of this research. First, we sum-

marise the research contributions and accomplished goals and second, we re�ect

upon the possibilities for future work and point to interesting research directions.

6.1 Conclusions

Although the agents used in this research were created with a simple set of needs

and tested in simple environments, obtained results show that agents with no

manually speci�ed behaviours may learn and adapt autonomously to their en-

vironmental context. Tested agents behaved in order to achieve self-generated

goals without manually speci�ed behaviours. Moreover, there were no prede�ned

reward values associated with the execution of actions or with reaching environ-

mental states. No knowledge about the environment was previously given to the

agents and it was, instead, acquired autonomously. Some biological agents ac-

tions are explained by instinct, which we assume that is inherited. However, most

actions of biological agents are learned by experience or taught amongst individ-

uals and executed in order to satisfy needs such as hunger, thirst and so on. The

agents we built were not guided by a reward maximization goal but solely by the

attempt to satisfy internal needs according to their urgency values. We think that

this approach brings the proposed architecture closer to real-world environments

where there are no rewards associated with the execution of an action or reaching

an environmental state. Besides, real-world environments can not be completely

47

6. CONCLUSIONS AND FUTURE WORK

known and, thus, learning is essential in order to autonomously adapt to newly

discovered conditions.

We aimed to study and develop an architecture to build autonomous agents

with learning capabilities, able to adapt to their environment autonomously.

These agents are motivated to act by a set of internal needs in order to at-

tain satisfaction, instead of executing manually speci�ed behaviours. To achieve

our goal we proposed two di�erent architectures that share the same internal

modules: the single agent and the multiagent architecture. The results obtained

with the single agent architecture show that it is limited in what regards scalabil-

ity, namely because of the exponential growth of hypotheses. To achieve greater

scalability we proposed the multiagent architecture which allows to group re-

lated actuators and sensors into clusters and specialize internal agents. Besides,

the multiagent architecture has demonstrated the capability of satisfying di�er-

ent needs simultaneously. However, complexity becomes a challenge because the

multiagent architecture requires coordination of internal agents and information

sharing techniques.

Our ambitious goal requires contributions from several areas of Arti�cial Intel-

ligence, such as machine learning, planning, motivational models and multiagent

coordination and communication. State-of-the-art approaches that also aim to

avoid manual speci�cation of behaviours, although largely relying on learning, still

demand that the programmer provides agents with detailed information about

the possible states of the environment, action rewards or speci�c goals.

We consider the results of this research a valid proof of principle as we were

able to demonstrate that autonomous learning and behaviour can occur, with-

out prespeci�ed behaviours or other important information such as rewards for

executing actions or achieving environmental states. However, the actions were

de�ned at a logical level as they represent relatively complex behaviours. For

instances, turning a switch on or pressing a button are actions that require a

complex combination of actuators primitives. Thus, to be able to apply the pro-

posed architecture to real-world or complex virtual environments we will need to

refocus research on low-level actions.

The presented research originated one paper [22] which was accepted in the

workshop Active Learning in Robotics: Exploration, Curiosity, and Interaction

48

6.2 Future Work

in the 2013 Robotics: Science and Systems (RSS) held in Berlin. The multiagent

architecture will be further developed and studied and we plan to submit a paper

to an international conference with major �ndings after future research.

6.2 Future Work

We intend to follow this research by looking for the limits of the multiagent ar-

chitecture by simulating real-world physical environments, where complex agents

can be tested. On one hand, the path of this research may lead to more complex

coordinator agents, able to analyse information from multiple individual plans

generated by the operator agents. Analysing multiple plans will allow to avoid

the problem of having operator agents executing opposite plans by coordinating

them. On the other hand, coordinator agents may be eliminated and be replaced

by a protocol which allows operator agents to negotiate the execution of plans

and resources sharing.

In our experiments, sensors had only two possible values: true or false. How-

ever, to apply the proposed architecture to real-world and complex environments,

future research must include sensors with a larger span of possible values. This

must be done keeping a low growth of the number of observations and hypothe-

ses. Possibly, one solution is the use of fuzzy logic to map a continuous or large

span variable to a smaller set of values. If this is done successfully, the proposed

architecture might contribute to the creation of agents able to be applied to the

real world or complex virtual worlds. For instances in games, an important char-

acteristic of nonplayer characters (NPCs) is that they seem believable in their

behaviour [18], mainly in what regards to the quality of the decision making [43].

The inferior intelligence of NPCs makes games less competitive and entertain-

ment, degrades the quality of the gameplay and disappoints players [10]. NPCs

might bene�t from this architecture in the sense that may represent a bigger

challenge to human players by learning and adapting autonomously, thus avoid-

ing predictability. If the proposed architecture is applied successfully to real-world

environments it may become useful in the �eld of home robotics. In current days,

this �eld is dominated by robots which have a limited set of manually de�ned

behaviours such as following spiral paths in order to vacuum a room.

49

6. CONCLUSIONS AND FUTURE WORK

For future work we can point two important goals:

Needs Modelling - development of a standard format for de�ning needs.

For instances, a need can be de�ned by specifying a function f(x) which returns

the change in the need urgency when the need is satis�ed and another function

g(x) when the need is not satis�ed. The argument x of such functions may be a

variable that represents the time that the agent has already lived or it can refer

to an internal variable such as available charge in a battery.

Actuators Primitives - focus on low-level actions that represent actuators

primitives instead of more complex, high-level actions. High-level actions are

interesting in simulated environments to study decision making processes and

complex goals achievement. However, to have situated agents, which act on real-

world physical environments, it is necessary that low-level actions are learned

�rst. Thus, we will focus future research on planning sequences of actuators

primitives in order to autonomously learn how to execute simple tasks such as

move in a straight line by coordinating several motion actuators such as wheels.

Finally, a decisive step that will be taken is the development of an agent

creation platform and an environment simulator. Such tool will allow to create

agents solely by de�ning their sensors, actuators and needs. An important feature

of this software is the possibility of loading several needs models, in order to study

the consequences of di�erent needs in the behaviour. The described platform will

allow extensive testing in an e�cient way. This platform will be made available

to other researchers of the community in a contribution to their research.

50

References

[1] Rachid Alami and Silvia Silva da Costa Botelho. Plan-based multi-robot

cooperation. In Michael Beetz, Joachim Hertzberg, Malik Ghallab, and

Martha E. Pollack, editors, Advances in Plan-Based Control of Robotic

Agents, volume 2466 of Lecture Notes in Computer Science, pages 1�20.

Springer, 2001. ISBN 3-540-00168-9. URL http://dblp.uni-trier.de/

db/conf/dagstuhl/robagents2001.html#AlamiB01. 14

[2] Minoru Asada, Koh Hosoda, Yasuo Kuniyoshi, Hiroshi Ishiguro, Toshio Inui,

Yuichiro Yoshikawa, Masaki Ogino, and Chisato Yoshida. Cognitive devel-

opmental robotics: A survey. IEEE T. Autonomous Mental Development,

1(1):12�34, 2009. URL http://dblp.uni-trier.de/db/journals/tamd/

tamd1.html#AsadaHKIIYOY09. 9

[3] R. S. Aylett, A. M. Coddington, and G. J. Petley. Agent-based continuous

planning. In 19th Workshop of the UK Planning and Scheduling Special

Interest Group (PLANSIG), 2000. 11

[4] H. B. Barlow. Unsupervised learning. Neural Computation, 1:295�311, 1989.

6

[5] A.G. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning

of hierarchical collections of skills. In Proceedings of the 3rd International

Conference on Development and Learning (ICDL 2004), Salk Institute, San

Diego, 2004. 10

[6] Craig Boutilier. Sequential optimality and coordination in multiagent sys-

tems. In Thomas Dean, editor, IJCAI, pages 478�485. Morgan Kaufmann,

51

http://dblp.uni-trier.de/db/conf/dagstuhl/robagents2001.html#AlamiB01
http://dblp.uni-trier.de/db/conf/dagstuhl/robagents2001.html#AlamiB01
http://dblp.uni-trier.de/db/journals/tamd/tamd1.html#AsadaHKIIYOY09
http://dblp.uni-trier.de/db/journals/tamd/tamd1.html#AsadaHKIIYOY09

REFERENCES

1999. ISBN 1-55860-613-0. URL http://dblp.uni-trier.de/db/conf/

ijcai/ijcai99.html#Boutilier99. 14

[7] Craig Boutilier and Ronen I. Brafman. Partial-order planning with

concurrent interacting actions. J. Artif. Intell. Res. (JAIR), 14:105�

136, 2001. URL http://dblp.uni-trier.de/db/journals/jair/jair14.

html#BoutilierB01. 14

[8] Robert Burke. Using an ethologically-inspired model to learn apparent

temporal causality for planning in synthetic creatures presented at aamas.

In Proceedings of the First International Joint Conference on Autonomous

Agents and Multiagent Systems. Part 1, pages 326�333. ACM Press, 2002.

11

[9] Cristiano Castelfranchi. To believe and to feel: The case of "needs". AAAI

Technical Reports, FS-98-03, 1998. 11

[10] A.J. Champandard. AI Game Development: Synthetic Creatures with

Learning and Reactive Behaviors. NRG Series. New Riders, 2003. ISBN

9781592730049. URL http://books.google.pt/books?id=ZpuR8GnBSGcC.

49

[11] Je�rey S. Cox and Edmund H. Durfee. Discovering and exploiting synergy

between hierarchical planning agents. In AAMAS, pages 281�288. ACM,

2003. ISBN 1-58113-683-8. URL http://dblp.uni-trier.de/db/conf/

atal/aamas2003.html#CoxD03. 14

[12] Je�rey S. Cox and Edmund H. Durfee. An e�cient algorithm for multiagent

plan coordination. In Frank Dignum, Virginia Dignum, Sven Koenig, Sarit

Kraus, Munindar P. Singh, and Michael Wooldridge, editors, AAMAS, pages

828�835. ACM, 2005. ISBN 1-59593-094-9. URL http://dblp.uni-trier.

de/db/conf/atal/aamas2005.html#CoxD05. 14

[13] M. Csikszenthmihalyi. Flow-the psychology of optimal experience. Harper

Perennial, 1991. 10

52

http://dblp.uni-trier.de/db/conf/ijcai/ijcai99.html#Boutilier99
http://dblp.uni-trier.de/db/conf/ijcai/ijcai99.html#Boutilier99
http://dblp.uni-trier.de/db/journals/jair/jair14.html#BoutilierB01
http://dblp.uni-trier.de/db/journals/jair/jair14.html#BoutilierB01
http://books.google.pt/books?id=ZpuR8GnBSGcC
http://dblp.uni-trier.de/db/conf/atal/aamas2003.html#CoxD03
http://dblp.uni-trier.de/db/conf/atal/aamas2003.html#CoxD03
http://dblp.uni-trier.de/db/conf/atal/aamas2005.html#CoxD05
http://dblp.uni-trier.de/db/conf/atal/aamas2005.html#CoxD05

REFERENCES

[14] Yannis Dimopoulos and Pavlos Moraitis. Multi-agent coordination and coop-

eration through classical planning. In IAT, pages 398�402. IEEE Computer

Society, 2006. URL http://dblp.uni-trier.de/db/conf/iat/iat2006.

html#DimopoulosM06. 14

[15] Olivier Georgeon and Ilias Sakellariou. Designing Environment-Agnostic

Agents. In ALA2012, Adaptive Learning Agents workshop, at AAMAS2012,

11th International Conference on Autonomous Agents and Multiagent Sys-

tems, pages 25�32, jun 2012. URL http://liris.cnrs.fr/publis/?id=

5510. 8

[16] Herman. Goldstine. The Computer from Pascal to von Neumann. Princeton,

Princeton University Press, 1980. 1

[17] Susan M. Havercamp and Steven Steven Reiss. A comprehensive assessment

of human strivings: Test-retest reliability and validity of the reiss pro�le.

Journal of Personality Assessment, 81:123 � 132, 2003. ISSN 0022-3891.

URL http://www.informaworld.com/10.1207/S15327752JPA8102_04. 19

[18] Yuan Hong and Zhen Liu. A preliminary research on decision model based

on bayesian techniques for an npc in computer games. In Computational In-

telligence and Design (ISCID), 2010 International Symposium on, volume 2,

pages 240�243, 2010. doi: 10.1109/ISCID.2010.151. 49

[19] X. Huang and J. Weng. Novelty and reinforcement learning in the value sys-

tem of developmental robots. In C. Prince, Y. Demiris, Y. Marom, H. Koz-

ima, and C. Balkenius, editors, Proceedings of the 2nd international workshop

on Epigenetic Robotics : Modeling cognitive development in robotic systems,

pages 47�55. Lund University Cognitive Studies 94, 2002. 10

[20] Subbarao Kambhampati, Mark R. Cutkosky, Marty Tenenbaum, and

Soo Hong Lee. Combining specialized reasoners and general purpose plan-

ners: A case study. In Thomas L. Dean and Kathleen McKeown, edi-

tors, AAAI, pages 199�205. AAAI Press / The MIT Press, 1991. ISBN 0-

262-51059-6. URL http://dblp.uni-trier.de/db/conf/aaai/aaai91-1.

html#KambhampatiCTL91. 14

53

http://dblp.uni-trier.de/db/conf/iat/iat2006.html#DimopoulosM06
http://dblp.uni-trier.de/db/conf/iat/iat2006.html#DimopoulosM06
http://liris.cnrs.fr/publis/?id=5510
http://liris.cnrs.fr/publis/?id=5510
http://www.informaworld.com/10.1207/S15327752JPA8102_04
http://dblp.uni-trier.de/db/conf/aaai/aaai91-1.html#KambhampatiCTL91
http://dblp.uni-trier.de/db/conf/aaai/aaai91-1.html#KambhampatiCTL91

REFERENCES

[21] J. Marshall, D. Blank, and L. Meeden. An emergent framework for self-

motivation in developmental robotics. In Proceedings of the 3rd International

Conference on Development and Learning (ICDL 2004), Salk Institute, San

Diego, 2004. 10

[22] G. Martins, H. Coelho, and P. Urbano. Self-motivated agents that learn.

In Proceedings of the workshop Active Learning in Robotics: Exploration,

Curiosity, and Interaction in the 2013 Robotics Science and System, 2013.

48

[23] A. H. Maslow. A theory of human motivation. Psychological Review,

50:370�396, 1943. URL http://doi.apa.org/index.cfm?fuseaction=

showUIDAbstract&uid=1943-03751-001. 11

[24] William McDougall. An Introduction to Social Psychology. Luce, 1916. 19

[25] Kathryn Elizabeth Merrick and Mary Lou Maher. Motivated reinforce-

ment learning for adaptive characters in open-ended simulation games. In

Proceedings of the international conference on Advances in computer en-

tertainment technology, ACE '07, pages 127�134, New York, NY, USA,

2007. ACM. ISBN 978-1-59593-640-0. doi: 10.1145/1255047.1255073. URL

http://doi.acm.org/10.1145/1255047.1255073. 11

[26] Marvin Minsky. The Society of Mind. Simon & Schuster, New York, NY,

1986. 27

[27] T.M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997. 6

[28] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

Machine Learning. The MIT Press, 2012. ISBN 026201825X, 9780262018258.

6

[29] Allen Newell, J. C. Shaw, and Herbert A. Simon. Report on a

general problem-solving program. In IFIP Congress, pages 256�264,

1959. URL http://dblp.uni-trier.de/db/conf/ifip/ifip1959.html#

NewellSS59. 12

54

http://doi.apa.org/index.cfm?fuseaction=showUIDAbstract&uid=1943-03751-001
http://doi.apa.org/index.cfm?fuseaction=showUIDAbstract&uid=1943-03751-001
http://doi.acm.org/10.1145/1255047.1255073
http://dblp.uni-trier.de/db/conf/ifip/ifip1959.html#NewellSS59
http://dblp.uni-trier.de/db/conf/ifip/ifip1959.html#NewellSS59

REFERENCES

[30] Timothy J. Norman and Derek Long. Goal creation in motivated agents.

In Intelligent Agents: Theories, Architectures, and Languages, LNAI 890,

pages 277�290. Springer-Verlag, 1995. 11

[31] Pierre-Yves Oudeyer. On the impact of robotics in behavioral and cognitive

sciences: From insect navigation to human cognitive development. IEEE

T. Autonomous Mental Development, 2(1):2�16, 2010. URL http://dblp.

uni-trier.de/db/journals/tamd/tamd2.html#Oudeyer10. 8

[32] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a

typology of computational approaches, 2007. 10

[33] Marc'aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg Cor-

rado, Je� Dean, Quoc V. Le, and Andrew Y. Ng. Building high-level fea-

tures using large scale unsupervised learning. In John Langford and Joelle

Pineau, editors, Proceedings of the 29th International Conference on Ma-

chine Learning (ICML-12), pages 81�88, New York, NY, USA, 2012. ACM.

URL http://icml.cc/2012/papers/73.pdf. 7

[34] Anand S. Rao and Michael P. George�. Modeling rational agents within a

bdi-architecture, 1991. 2

[35] Steve Reiss. Who am I?: 16 Basic Desires that Motivate Our Actions De�ne

Our Persona. Berkeley Trade, 2002. 19

[36] S. Russel and P. Norvig. Arti�cial Intelligence: A Modern Approach. Pearson

Education Inc., 2003. 12

[37] Richard M. Ryan and Edward L. Deci. Intrinsic and extrinsic motiva-

tions: Classic de�nitions and new directions. Contemporary Educational

Psychology, 25(1):54 � 67, 2000. ISSN 0361-476X. doi: 10.1006/ceps.

1999.1020. URL http://www.sciencedirect.com/science/article/pii/

S0361476X99910202. 10

[38] D.L. Schacter, D. T. Gilbert, and D. M. Wegner. Psychology (2nd

Edition). Worth, New York, 2011. URL http://www.amazon.

55

http://dblp.uni-trier.de/db/journals/tamd/tamd2.html#Oudeyer10
http://dblp.uni-trier.de/db/journals/tamd/tamd2.html#Oudeyer10
http://icml.cc/2012/papers/73.pdf
http://www.sciencedirect.com/science/article/pii/S0361476X99910202
http://www.sciencedirect.com/science/article/pii/S0361476X99910202
http://www.amazon.com/Psychology-Daniel-L-Schacter/dp/1429237198/ref=sr_1_1?s=books&ie=UTF8&qid=1313937150&sr=1-1
http://www.amazon.com/Psychology-Daniel-L-Schacter/dp/1429237198/ref=sr_1_1?s=books&ie=UTF8&qid=1313937150&sr=1-1

REFERENCES

com/Psychology-Daniel-L-Schacter/dp/1429237198/ref=sr_1_1?

s=books&ie=UTF8&qid=1313937150&sr=1-1. 10

[39] Arne Schuldt. Multiagent coordination enabling autonomous logistics. KI,

26(1):91�94, 2012. URL http://dblp.uni-trier.de/db/journals/ki/

ki26.html#Schuldt12. 44

[40] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-

troduction. MIT Press, 1998. ISBN 0262193981. URL http://www.cs.

ualberta.ca/%7Esutton/book/ebook/the-book.html. 7

[41] Hans Tonino, André Bos, Mathijs de Weerdt, and Cees Witteveen. Plan

coordination by revision in collective agent based systems. Artif. Intell.,

142(2):121�145, 2002. URL http://dblp.uni-trier.de/db/journals/ai/

ai142.html#ToninoBWW02. 14

[42] Ioannis Tsamardinos, Martha E. Pollack, and John F. Horty. Merging plans

with quantitative temporal constraints, temporally extended actions, and

conditional branches. In In Proc. Int?l Conf. on AI Planning and Scheduling

(AIPS), pages 264�272. AAAI Press, 2000. 14

[43] Hao Wang, Yang Gao, and Xingguo Chen. Rl-dot: A reinforcement learning

npc team for playing domination games. Computational Intelligence and AI

in Games, IEEE Transactions on, 2(1):17�26, 2010. ISSN 1943-068X. doi:

10.1109/TCIAIG.2009.2037972. 49

[44] Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards.

PhD thesis, King's College, Cambridge, UK, May 1989. URL http://www.

cs.rhul.ac.uk/~chrisw/new_thesis.pdf. 8

[45] J. Weng. A theory for mentally developing robots. In Second International

Conference on Development and Learning. IEEE Computer Society Press,

2002. 10

[46] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and

E. Thelen. Arti�cial intelligence: Autonomous mental development by robots

and animals. Science, 291:599�600, 2001. 8

56

http://www.amazon.com/Psychology-Daniel-L-Schacter/dp/1429237198/ref=sr_1_1?s=books&ie=UTF8&qid=1313937150&sr=1-1
http://www.amazon.com/Psychology-Daniel-L-Schacter/dp/1429237198/ref=sr_1_1?s=books&ie=UTF8&qid=1313937150&sr=1-1
http://www.amazon.com/Psychology-Daniel-L-Schacter/dp/1429237198/ref=sr_1_1?s=books&ie=UTF8&qid=1313937150&sr=1-1
http://dblp.uni-trier.de/db/journals/ki/ki26.html#Schuldt12
http://dblp.uni-trier.de/db/journals/ki/ki26.html#Schuldt12
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://dblp.uni-trier.de/db/journals/ai/ai142.html#ToninoBWW02
http://dblp.uni-trier.de/db/journals/ai/ai142.html#ToninoBWW02
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

REFERENCES

[47] David E. Wilkins and Karen L. Myers. A multiagent planning architecture.

In Reid G. Simmons, Manuela M. Veloso, and Stephen F. Smith, editors,

AIPS, pages 154�162. AAAI, 1998. ISBN 1-57735-052-9. URL http://

dblp.uni-trier.de/db/conf/aips/aips1998.html#WilkinsM98. 14

57

http://dblp.uni-trier.de/db/conf/aips/aips1998.html#WilkinsM98
http://dblp.uni-trier.de/db/conf/aips/aips1998.html#WilkinsM98

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.2 Motivations
	1.3 Chapters Outline

	2 Research Background
	2.1 Machine Learning Algorithms
	2.1.1 Supervised and Unsupervised Learning
	2.1.2 Reinforcement Learning Algorithms
	2.1.3 Developmental Learning Algorithms

	2.2 Motivation
	2.3 Planning
	2.4 Multiagent Coordination

	3 Architecture Description
	3.1 System Components
	3.1.1 Needs Set
	3.1.2 Decision Making
	3.1.3 Perception
	3.1.4 Learner

	3.2 Single Agent Architecture
	3.3 Multi Agent Architecture

	4 Experimental Set Up and Results
	4.1 Single Agent Implementation
	4.1.1 Environments
	4.1.2 Agents Definitions
	4.1.3 Results and Analysis
	4.1.3.1 Performance Measurement
	4.1.3.2 Statistical Analysis

	4.2 Multi Agent Implementation
	4.2.1 Environment
	4.2.2 Agent Definition
	4.2.3 Results and Analysis

	5 Discussion
	5.0.4 Experimental Set Up
	5.0.5 Multiagent Coordination
	5.0.6 Needs Modelling
	5.0.7 Planning
	5.0.8 Sensorimotor Changes
	5.0.9 Action Specification

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References

