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RESUMO 

O timo é um órgão essencial do sistema imunitário, cuja função é gerar linfócitos T auto-

restritos e auto-tolerantes que entram em circulação, onde actuam como parte da resposta 

imune adaptativa. Histologicamente, o timo encontra-se dividido em duas regiões - o córtex 

e a medula - que se caracterizam pela presença de diferentes Células Epiteliais Tímicas 

(CETs): corticais (cCETs) ou medulares (mCETs), respectivamente. A função do timo na 

diferenciação e maturação de linfócitos T é indissociável da função especializada destes 

dois tipos celulares, assim como da própria arquitectura do órgão.  

Anatomicamente próximas do timo mas com uma função absolutamente distinta, as 

glândulas paratiróides são responsáveis pela regulação da homeostase do cálcio 

extracelular. Quando os seus receptores detectam alterações nos níveis de cálcio no 

sangue, as células epiteliais sintetizam e secretam a hormona paratiróide que actua em 

diferentes alvos de forma a permitir o restabelecimento homeostático. 

Apesar das diferenças funcionais e estruturais, o desenvolvimento destes dois órgãos 

está intimamente ligado, uma vez que os seus epitélios partilham a mesma origem 

embrionária – a endoderme da 3ª e 4ª bolsas faríngicas (3/4 BF, em galinha). Os rudimentos 

do timo e das glândulas paratiróides encontram-se assim identificados pela expressão 

regionalizada dos marcadores moleculares Foxn1 (Forkhead box N1) e Gcm2 (Glial cells 

missing-2) na endoderme da 3/4 BF, respectivamente. 

A origem endodérmica das CETs, assim como a importância das interacções epitélio-

mesenquimais na sua especificação, foram primariamente evidenciadas por Le Douarin e 

Jotereau, utilizando o modelo de quimeras galinha-codorniz. A capacidade de distintos 

mesênquimas ectópicos suportarem (mesênquima permissivo da somatopleura) ou não 

(mesênquima não permissivo do botão do membro) o desenvolvimento da endoderme da 

3/4 BF na formação de um timo funcional, revela a importância destas interacções na 

especificação das CETs. Para além disso, um estudo recente identificou dois factores de 

transcrição, Bmp4 e Fgf10, cuja expressão sequencial na endoderme e no mesênquima é 

fundamental para especificação da endoderme da 3/4 BF nos epitélios do timo e das 

glândulas paratiróides. 

A sinalização Notch é uma via de sinalização celular que regula aspectos como a 

proliferação, destino, sobrevivência e diferenciação celular no desenvolvimento embrionário 

e no adulto. A sua importância no normal funcionamento do sistema imunitário, 

nomeadamente na hematopoiese e linfopoiese, é bem conhecida. De facto, foi demonstrado 

que a geração das primeiras células estaminais hematopoiéticas assim como a 

especificação dos progenitores hematopoiéticos nas diferentes linhagens linfoides são 
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acontecimentos dependentes da sinalização Notch. Adicionalmente, a expressão de genes 

ligados à sinalização Notch em diferentes territórios do timo adulto e a observação do seu 

envolvimento na diferenciação de linfócitos mas também na diferenciação dos dois tipos de 

CETs, sugere o envolvimento desta sinalização na organogénese tardia do timo. Existem, 

no entanto, poucas evidências da sua função nos estadios iniciais da organogénese do timo. 

Recentemente, o nosso grupo de investigação observou a expressão de genes envolvidos 

na sinalização Notch, nomeadamente ligandos, receptores e genes-alvo, nos territórios 

presuntivos do timo e das glândulas paratiróides. Adicionando a conhecida importância 

desta sinalização no desenvolvimento e função do timo adulto, estas evidências apontam 

para um papel relevante da sinalização Notch também na fase inicial do desenvolvimento 

destes dois órgãos. 

Neste projecto pretendeu-se estudar o papel da sinalização Notch durante os estadios 

iniciais de desenvolvimento do timo e das glândulas paratiróides, utilizando para isso os 

modelos de galinha e codorniz. De forma a manipular a sinalização Notch nos territórios 

presuntivos do timo e das paratiróides foram desenvolvidos dois sistemas organotípicos in 

vitro: explantes da região faríngica de embriões de codorniz com 3 dias de desenvolvimento; 

e associações heteroespecíficas da endoderme da 3/4 BF com mesênquima ectópico 

permissivo da somatopleura (previamente desenvolvido no laboratório, Neves et al, 2012). 

No primeiro sistema, a estrutura tridimensional da região faríngica é mantida intacta, 

preservando o contacto da endoderme da 3/4 BF com os tecidos envolventes (mesênquima 

e ectoderme). Para testar o efeito da inibição farmacológica da sinalização Notch nos 

estadios iniciais de desenvolvimento do timo e das glândulas paratiróides, os explantes da 

região faríngica foram mantidos em contacto com dois tipos de inibidores da -secretase 

(cuja função é necessária para a normal sinalização): DAPT e LY411575. A capacidade de 

inibição da sinalização Notch e o seu efeito na formação do timo e das glândulas 

paratiróides foram avaliados pela expressão de Hes5.1, Foxn1 e Gcm2, respectivamente, 

por PCR quantitativo em tempo real (qRT-PCR). Os nossos dados indicam que a inibição da 

sinalização Notch tende a diminuir a expressão de Foxn1 e Gcm2, sugerindo que o 

desenvolvimento dos dois órgãos se encontra comprometido na ausência de sinais Notch. 

O segundo sistema consiste na associação heteroespecífica de endoderme da 3/4 BF de 

codorniz com mesênquima permissivo da somatopleura de galinha. Esta abordagem permite 

a manipulação da sinalização Notch especificamente nos territórios presuntivos do timo e 

das glândulas paratiróides e sua posterior associação a um mesênquima ectópico, 

necessário para o seu desenvolvimento. Para validar o sistema anterior de inibição da 

sinalização Notch nos explantes da região faríngica, esta associação de tecidos foi 

igualmente sujeita a inibição farmacológica da sinalização Notch, como descrito 
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anteriormente. Uma vez mais, os resultados indicam que a ausência de sinais Notch 

compromete a normal organogénese do timo e das glândulas paratiróides. 

Para modificar a sinalização Notch de forma estável e a nível celular na endoderme da 

3/4 BF, foi usado um sistema de vectores que combina a “transferência génica mediada por 

Tol2” e a “expressão condicional dependente de tetraciclina”. Assim, a endoderme da 3/4 BF 

foi geneticamente modificada de forma a promover um ganho ou perda de função da 

sinalização Notch. Para ganho de função, a endoderme da 3/4 BF foi electroporada com um 

conjunto de vectores que induzem a expressão da forma intracelular do receptor Notch1 

(ICN1), que se sabe activar a sinalização Notch de forma constitutiva e independente da 

ligação a um ligando. Para perda de função, o mesmo sistema foi utilizado, mas forçando a 

expressão de uma forma dominante-negativa do co-activador Mastermind-like1 

(DNMAML1). Neste contexto, foi construído neste trabalho um novo vector para perda de 

função com o objectivo de aumentar a estabilidade da proteína DNMAML1 (que tem apenas 

205 pares de bases) e de a direcionar para o núcleo por adição de uma sequência com um 

sinal de localização nuclear, aumentando a sua eficiência. Estas abordagens permitiram 

testar o efeito da modulação do sinal Notch durante as interacções epitélio-mesenquimais 

necessárias para a formação dos dois órgãos em estudo, pela avaliação dos níveis de 

expressão de Foxn1 e Gcm2. Inesperadamente, os resultados de perda e ganho de função 

mostram uma tendência de fenótipo semelhante, com a descida da expressão de Foxn1 e o 

aumento da expressão de Gcm2, em ambos os casos. Estes dados demonstram que a 

perda de função da sinalização Notch especificamente no domínio presuntivo do timo e das 

glândulas paratiróides tem um efeito diferente do obtido quando toda a região faríngica é 

sujeita a inibição. Ficam no entanto por aferir as condições deste sistema para ganho de 

função da sinalização Notch. 

 

Palavras-chave: sinalização Notch; organogénese; timo; glândulas paratiróides; qRT-PCR; 

sistema organotípico in vivo; 
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ABSTRACT 

The thymus is the organ responsible for the differentiation and maturation of Lymphoid 

Progenitor Cells into T lymphocytes, while the parathyroid glands have a key role in the 

regulation of the extracellular calcium homeostasis by the production of the parathyroid 

hormone. Despite their functional differences, the epithelia of these organs derive from the 

endoderm of the 3rd and 4th pharyngeal pouches (3/4 PP), in avian.  

Notch signaling has been implicated in several aspects of organogenesis, inclusively 

having a function during the late stages of thymus development. A recent observation from 

our group showed Notch-related genes expression in the 3/4 PP endoderm and surrounding 

mesenchyme suggesting a role for Notch signaling in the thymic and parathyroid glands 

early-organogenesis.  

In this study, we investigated Notch signaling effects in avian thymus and parathyroid 

glands early-organogenesis. For that, we modulated Notch signals in their prospective 

territories, prior to organ formation. In a first assay, explants of the pharyngeal region of E3 

quail embryos were grown in the presence of Notch signaling inhibitors (DAPT or LY411575). 

After 48h of culture, the expression Hes5.1 (Notch-target gene), Foxn1 (marker for thymus 

epithelium) and Gcm2 (marker for parathyroid glands epithelium) was evaluated by qRT-

PCR. The results showed that the pharmacological inhibition of Notch signaling promoted a 

decrease of Foxn1 and Gcm2 expression, suggesting that blocking Notch signaling impairs 

normal early stages of thymus and parathyroid glands development. Moreover, studies were 

performed to modulate Notch signaling (gain- and loss-of-function) specifically in the 

prospective territories of the thymus and parathyroid glands (3/4 PP).  In this context, I 

developed a new loss-of-function construct (pT2K-NLS-Cherry-DNMAML1-eGFP). Both in 

gain- or loss-of-function experiments, the expression of Foxn1 was down-regulated and the 

expression of Gcm2 was up-regulated. This conflicting data will be subject to further study. 

 

Keywords: Notch signaling; early-organogenesis; thymus; parathyroid glands; qRT-PCR;  
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1. INTRODUCTION 

1.1. The morphology and function of the thymus 

The thymus is a primary lymphoid organ responsible for the differentiation of Lymphoid 

Progenitor Cells (LPCs) into T lymphocytes, a key cellular component of the adaptive 

immune response. T cell development begins when the LPCs enter the thymus and it is 

characterized by the thymocyte (developing T lymphocyte) progression through several 

phenotypically distinct stages (Blackburn and Manley, 2004). 

Surrounded by a mesenchymal capsule, the thymus is divided into two main histologically 

distinct regions - the cortex and the medulla, characterized by the presence of different 

subsets of stromal cells, the cortical (c) and medullary (m) Thymic Epithelial Cells (TECs). 

Thymocytes are more than 95% of the cells in the thymus, and their differentiation is 

intimately dependent on their interaction with cTECs and mTECs as well as mesenchymal 

cells, endothelial cells, dendritic cells and macrophages, in which complex signals drive the 

commitment and differentiation into the T cell lineage (Gordon and Manley, 2011). After 

entering the thymus at the cortico-medullary junction, the LPCs travel throughout the thymic 

cortex, where cTECs drive their commitment, proliferation and rearrangement and 

expression of T cell receptors (TCRs). Thymocytes with the ability to recognize self-antigens 

expressed by cTECs undergo positive selection, receiving survival and maturation signals, 

and traveling into the medulla. Once in the medulla, thymocytes that react to tissue-restricted 

self-antigens expressed by mTECs are negatively selected, giving rise to only self-restricted 

and self-tolerant mature T lymphocytes that enter the circulation (Palmer, 2003; Ladi et al., 

2006; Ge and Zhao, 2013). 

In mammals and birds, the thymus starts to involute early in the development (6 weeks 

after birth in mice, 1 year in human and 3rd/4th month after birth in chicken), affecting both T 

cell production and thymic microenvironment maintenance resulting in a decrease in 

functional thymic volume (Dorshkind et al., 2009; Shanley et al., 2009; Tarek et al., 2012). It 

is therefore crucial the correct patterning and organization of thymic stromal components for 

an efficient thymic function. Defects in thymus structure and function normally generate 

problems such as immunodeficiency and autoimmunity, urging the importance of unrevealing 

the developmental processes underlying thymic organogenesis (Nowell et al., 2007). 

1.2. The morphology and function of the parathyroid glands 

The parathyroid glands play a key role in the regulation of extracellular calcium 

homeostasis, which is important to many physiological processes such as muscle 

contraction, blood coagulation and synaptic activity. Through calcium-sensing receptor 

(CasR), these glands are able to detect changes in the levels of calcium in the blood and 
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produce the parathyroid hormone (PTH). For instance, when low calcium levels are detected 

in blood, the parathyroid glands produce and secrete PTH that directly targets receptors on 

osteoblasts to regulate bone resorption. In the kidney, PTH targets distal tubule epithelial 

cells, increasing renal calcium reabsorption, allowing the increase of calcium in blood (Okabe 

and Graham, 2004; Liu et al., 2007). 

Histologically, parathyroid glands have a thin capsule of collagen I and III (reticular fibers) 

and few elastic fibers that surround a parenchyma, where the epithelial cells (chief cells) are 

responsible for the PTH synthesis (Gilmour, 1939). Mutations in genes that act during 

parathyroid development impair PTH production, causing a disease called 

hypoparathyroidism (Liu et al., 2007). To better understand the development of this and other 

parathyroid disorders it is important to comprehend parathyroid glands organogenesis. 

 

Despite their structural and functional differences, the development of the thymus and 

parathyroid glands is intimately linked – the epithelium of both organs derives from the 

endoderm of the pharyngeal pouches (PP) (Gordon and Manley, 2011). However, the 

precise PP embryological origin, the number of organs formed and the final anatomical 

positions of these organs differ according to the species (Rodewald, 2008). For instance, in 

mammals, the thymus is a bilobed organ centrally located on the thoracic cavity, above the 

heart and behind the sternum (Gordon and Manley, 2011), whereas pairs of parathyroid 

glands are located in the dorsal region of the thyroid gland. In birds, the thymus is subdivided 

in seven lobes that are bilaterally located along the neck, near the jugular vein. The pair of 

parathyroid glands is located at the bottom of each thymic cord, under the thyroid glands 

(Neves et al., 2012).  

1.3. The organogenesis of the thymus and parathyroid glands 

The epithelia of the thymus and parathyroid glands share the same embryological origin – 

the endoderm of the PP. The pharyngeal apparatus arises from a series of bulges on the 

lateral surface of the head of the embryo, the pharyngeal arches (PA), covered on the 

outside by the ectoderm, and on the inside by the endoderm, having a core of neural crest 

(NC)-derived mesenchymal cells (Figure 1-1). Five pairs of PA emerge between Theiler’s 

stages 13 (St13) and St16 in the mouse and Hamburger and Hamilton stages 14 (HH14) and 

HH19 in the chick.  The endoderm of the pharyngeal tube evaginates between the adjacent 

arches, forming an out-pocketing – the PP, while the external overlying ectoderm depresses 

forming a pharyngeal cleft (Grevellec and Tucker, 2010; Graham and Richardson, 2012).  
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Figure 1-1 The pharyngeal apparatus. A side view of the PA pairs of a HH16 chick embryo (A). A longitudinal 
section through the PA highlighting the contribution of the three embryonic tissue layers (ectoderm, mesoderm 
and endoderm) (B). Arrows indicate the PP (1

st
 to the 4

th
 PP); A, Anterior; P, Posterior. Adapted from Lindsay, 

2001. 

 

In 1975, using the chick-quail chimeras system it was shown that TECs derive from the 

PP endoderm (Douarin and Jotereau, 1975). Later on it was shown that, in mice, the 

rudiments of parathyroid glands and thymus emerge from the 3rd PP (3PP) endoderm 

(Gordon et al., 2001), while in human emerge from the 3rd and 4th PP (3/4 PP) and the 3PP, 

respectively (Farley et al., 2013). In birds, such as chicken and quail, the rudiments of the 

two organs derive from the endoderm of the 3/4 PP (Douarin and Jotereau, 1975; Neves et 

al., 2012).  

In mice, the 3PP appears at Embryonic day of development 9.5 (E9.5) and is patterned 

into organ-specific domains by the regionalized expression of molecular markers. More 

precisely, the parathyroid domain identity is specifically determined by the expression of 

Gcm2 (the mouse homolog of the Drosophila transcription factor Glial Cells Missing), which 

is first detected at E9.5 in an anterior/dorsal region. Gcm2 deletion results in the absence of 

parathyroid glands showing that Gcm2 is essential for the survival and differentiation of these 

glands (Günther et al., 2000). Conversely, the thymus domain identity is specified by the 

expression of the transcription factor forkhead box N1 (Foxn1) at E11.25 in a 

posterior/ventral domain (Patel et al., 2006; Gordon et al., 2001; Gordon and Manley, 2011). 

Mice deficient for Foxn1 (nude mouse) have a hairless phenotype and are athymic. 

Furthermore, in nude mouse the LPCs fail to enter the thymic primordium (Itoi et al., 2001) 

and TECs fail to proliferate and differentiate (Blackburn et al., 1996).  

In chicken, the rudiments of the thymus and parathyroid glands are also identified by the 

distinct domains of Gcm2 and Foxn1 expression in the 3/4 PP, respectively. Gcm2 is 

detected by RT-PCR from E3 onwards (E2.5 in quail) in a medial/anterior domain of the 

pouches (Figure 1-2 A and B), while Foxn1 is detected at E4 (E3.5 in quail) and is confined 

to a dorsal region (Figure 1-2 C and D). These divergent expression domains of the organ-

specific markers might explain the different final anatomical positions of the adult thymus in 

mammals and birds (Neves et al., 2012). 
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Figure 1-2 Expression of Gcm2 and Foxn1 during parathyroid glands and thymus development in E4.5 
chick embryos. In situ hybridisation and corresponding schemes of Gcm2 (A, B) and Foxn1 (C, D) expression in 
3/4 PP endoderm. A, Anterior; D, Dorsal; PP, Pharyngeal Pouch; P, Posterior; V, Ventral. Adapted from Neves et 
al., 2012. 

 

The thymus organogenesis occurs in two distinct temporal phases: a thymocyte-

independent phase followed by a thymocyte-dependent phase (Rodewald, 2008). In the first 

one, cellular interactions between the PP endoderm and the surrounding NC-derived 

mesenchyme drive the specification of TECs. In chick, one report showed that the failure of 

sufficient quantities of cephalic neural crest cells (cNCCs) to migrate and interact with these 

developing organs results in ectopic, hypoplastic or absent thymic lobes. Moreover, reduced 

or absent parathyroids in at least one side of the embryo are also observed (Bockman and 

Kirby, 1984). Pax3 knockout-mice, with severe NCC deficiency show large thymus and small 

parathyroid glands rudiments, and these organs fail to detach from the pharynx and from 

each other (Griffith et al., 2009).  

The importance of the epithelial-mesenchymal interactions during thymus organogenesis 

was first demonstrated in 1967 by Le Douarin using the quail-chick chimera system. Quail 

endoderm isolated from the 3/4PP was able to develop into functional TECs when 

associated with a chicken permissive mesenchyme (somatopleura), but not when associated 

with a non-permissive mesenchyme (limb bud). In fact, permissive ectopic mesenchymal 

tissues are able to mimic the role played by neighbouring NC-derived mesenchyme in 

thymus development (N. Le Douarin, 1967). This endoderm-mesenchyme crosstalk was 

recently explored and it was shown that a specific spatial-temporal expression of BMP and 

FGF factors is fundamental for endoderm development and specification into TECs (Neves 

et al., 2012). Additionally, a transcription-factor network involving the expression of Hoxa3 

(Manley and Capecchi, 1995), Pax1/9 (Wallin et al., 1996; Peters et al., 1998; Hetzer-Egger 

et al., 2002), Eya1 and Six1 (Xu et al., 2002) is crucial for normal thymus organogenesis in 

mouse. 

In the later stage of thymus development, the thymocyte-dependent phase, maturation of 

the thymic epithelium in cTECs and mTECs compartments, is driven by the initial 

colonization by LPCs, at E6.5 in chicken (Le Douarin and Teillet, 1973; Douarin and 

Jotereau, 1975) and at E11.5 in mouse (Owen and Ritter, 1969; Fontaine-Perus et al., 1981). 

This LPCs colonization and further maturation steps of TECs are dependent on the 
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expression of Foxn1 by TECs (Nehls et al., 1996). Several reciprocal signals between 

thymocytes and immature TECs induce co-differentiation of T lymphocytes and TECs (Alves 

et al., 2009). In this context, Notch signaling has been subject of study, since both ligands 

and receptors are co-expressed in the TECs and developing thymocytes (Anderson and 

Jenkinson, 2001; Parreira et al., 2003). 

1.4. Notch signaling 

Notch signaling is a fundamental signaling-pathway that mediates cell-cell communication 

during animal development. It regulates cell proliferation, fate, survival and differentiation in 

all metazoans (Kopan, 2012; Greenwald and Kovall, 2013), in a dose-, timing- and context-

dependent fashion (Maillard et al., 2005). Specifically, it has been implicated in the control of 

several aspects of organogenesis such as bone development (Watanabe et al., 2003), 

function and neural development (Hitoshi et al., 2002), angiogenesis (Liu et al., 2003), 

somitogenesis (Conlon et al., 1995) and haematopoiesis (Jaleco et al., 2001; Parreira et al., 

2003; Neves et al., 2006; Alcobia et al., 2011; Laranjeiro et al., 2012).  

Notch receptors (Notch1-2 in birds and Notch1-4 in mammals) bind to five different 

ligands [Delta-like1, 3 and 4, and Serrate1-2 (Jagged1-2 in mammals)] present in the 

adjacent cells (Bray, 2006), leading to the cleavage and release of the intracellular domain of 

Notch (ICN) by the -secretase complex (Kopan, 2012). ICN is then translocated into the 

nucleus where it binds CSL, a transcription factor that mediates most of the well-

characterized Notch functions. This binding furthers the recruitment of other transcriptional 

activators, like the co-activator protein Mastermind-like (MAML), thereby activating the 

transcription of many downstream target genes, such as the basic helix-loop-helix (bHLH) 

Hes genes (Kopan and Ilagan, 2009) (Figure 1-3). Hes genes are the mammalian homologs 

of the Drosophila genes Hairy and Enhancer of Split, and function as effectors of Notch 

signaling. It has been shown their importance as biological clocks, measuring time in 

development events such as somite segmentation, and in the regulation of binary cell fate 

decisions in the developing nervous system of mouse embryos (Kageyama et al., 2007). 

 

Figure 1-3 Schematic representation of Notch signaling pathway in birds. Serrate or Delta ligands bind to 

the Notch receptor, leading to the proteolytic cleavage of the ICN by -secretase. ICN enters the nucleus, binds to 
co-activators such as MAML1, and activates the transcription of Notch target genes (Hairy, Hes5.1 and Hes6.1). 
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1.5. Notch signaling in thymus and parathyroid organogenesis 

Several evidences point out to important roles of Notch signaling in haematopoiesis and 

lymphopoiesis. The expression of Notch-related genes in the adult thymus was 

demonstrated for the first time by Parreira et al. (2003), suggesting the involvement of Notch 

signaling in thymic function. The generation of the earliest haematopoietic stem cells (Radtke 

et al., 2010) and the expansion and lineage-differentiation of early-myeloid progenitors 

(Neves et al., 2006) were shown to be Notch-dependent. In fact, it was shown that Notch 

ligands Delta1 (Jaleco et al., 2001) and Delta4 (Koch et al., 2008) are responsible for T/B 

lineage decision and promote the development of the thymocytes into T lymphocytes (Jiang 

et al., 1998; Jiménez et al., 2001; Fiorini et al., 2009). Recent studies report a role of 

thymocytes to provide Notch signals to TECs, stressing its importance in the regulation of 

late thymic organogenesis (Koyanagi et al., 2012). It is known that the lack of Jagged2 has a 

negative impact in the medullar organization of the thymus (Jiang et al., 1998), and that the 

presence of Delta1 is necessary for the development of both cTECs and mTECs (Masuda et 

al., 2009). Additionally, the maintenance of a high proliferative potential of the thymic 

epithelial stem cells by ΔNp63 (a particular isoform of p63) is dependent on the presence of 

Jagged2 as a downstream effector (Candi et al., 2007). 

Nevertheless, only few recent evidences point to the role of Notch signaling in the early 

stages of thymus and parathyroid glands organogenesis. In chicken development, the 

expression of Notch-related genes (receptors, ligands and target genes) in the endoderm of 

the 3/4 PP and surrounding mesenchyme at E4, provided the first evidence of an active 

Notch signaling in the prospective thymus and parathyroid domains. Moreover, preliminary 

data of in vitro inhibition of Notch signaling specifically in the pharyngeal region, showed a 

blockage or reduction of the Gcm2 expression while Foxn1 expression appears to be 

randomly affected (Figueiredo, 2011).  

In order to understand the very beginning of avian thymus and parathyroid glands 

organogenesis we aim to study the role of Notch signaling during their early phases of 

development. 

1.6. Objectives 

The aim of this project was to unravel the role of Notch signaling during the early stages of 

the avian thymus and parathyroid glands organogenesis. Two distinct approaches were 

performed in order to manipulate Notch signaling: pharmacological inhibition and gain- and 

loss-of-function of Notch signaling by genetic manipulation of tissues. With regard to this, two 

strategies involving two embryological sources of the prospective domains of the thymus and 

parathyroid glands (3/4PP endoderm) were used in an organotypic in vitro system: 
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1) Explants of the pharyngeal region of E3 quail embryos. With this strategy, the 3/4 PP 

endoderm is in close contact and preserve 3D interactions with local tissues 

(mesenchyme and ectoderm); 

2) Heterospecific associations of isolated 3/4 PP endoderm with ectopic permissive 

mesenchyme (somatopleura) (developed by Neves et al, 2012);  

In the first approach (1), the pharyngeal region explants were grown in the presence of 

two distinct -secretase inhibitors, DAPT and LY411575, to test the effect of Notch signaling 

inhibition in the tissues involved in epithelial-mesenchymal interactions during early thymic 

and parathyroid glands organogenesis.  

In the second approach (2), heterospecific associations of isolated quail 3/4 PP endoderm 

with chicken somatopleural mesenchyme were first grown in the presence of DAPT, similar 

to described above. Secondly, quail 3/4 PP endoderm was genetically modified in a cell-

autonomous manner (with gain- and loss-of-function of Notch signaling) and associated in 

culture with chicken somatopleural mesenchyme. With this approach, we tested the effects of 

Notch signaling modulation in the prospective domains of the thymus and parathyroid glands 

during epithelial-mesenchymal interactions at early-stages of organs formation. In this 

context, a new construct for the loss-of-function experiments (pT2K-NLS-Cherry-

DNMAML1eGFP) was generated.  

Quantitative Real-Time PCR (qRT-PCR) analysis was performed in both experimental 

approaches. Notch activity was then evaluated by the expression of the Notch target gene 

Hes5.1, and thymus and parathyroid glands formation by Foxn1 and Gcm2 expression, 

respectively. 

 

 

2. EXPERIMENTAL DESIGN TO MODIFY NOTCH SIGNALING 

2.1. Pharmacological Notch signaling inhibition 

-secretase complex has a key role in the Notch signaling pathway, allowing the cleavage 

and release of ICN and its import into the nucleus. By inhibiting -secretase activity, we were 

able to block Notch signaling and evaluate the effects in the early stages of the avian thymus 

and parathyroid glands organogenesis. Two cell permeable -secretase pharmacological 

inhibitors were used: DAPT (N-S-phenyl-glycine-t-butyl ester; Dovey et al., 2001) and 

LY411575 (a DAPT analogue; Fauq et al., 2007). LY411575 is structurally similar to DAPT, 

but 100-fold more potent. 
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2.2. Genetic modification with gain- and loss-of-function of Notch signaling 

It is known that cells forced to express the intracellular domain of Notch1 (ICN1) have a 

constitutive activation of Notch signaling in a ligand-independent manner (Weinmaster, 

1997). Conversely, cells forced to express a dominant-negative (DN) form of the co-activator 

Mastermind-like1 (DNMAML1), consisting only in the N-terminal binding domain, block Notch 

signaling probably due to an inability of this truncated protein to recruit other proteins of the 

Notch transcriptional activation complex (Maillard et al., 2004). 

To genetically modify Notch signaling in avian tissues we used a system of vectors 

combining a Tol2-mediated gene transfer technique and a Tetracycline-dependent 

conditional gene expression (Sato et al., 2007; Watanabe et al., 2007) (Figure 2-1). The 

system of vectors comprises three different plasmids: pT2K-CAGGS-tTA, constitutively 

expressing a tetracycline-controlled transcriptional activator (tTA); pT2K-BI-TREeGFP, a 

plasmid containing a cassette in which two different genes can be bidirectionally transcribed 

under the control of a tetracycline-responsive element (TRE), and pCAGGS-T2TP, a 

transposase that allows the stable integration of the two former plasmids. Upon integration in 

the host genome, and in the absence of Doxycycline (Dox) (a tetracycline analogue), tTA 

gene product will bind to the promoter cis-element TRE, activating the TRE-driven genes. By 

adding Dox to the culture medium, tTA is released from TRE, shutting off the expression of 

the TRE-driven genes (Tet-off expression system). ICN1 and DNMAML1 sequences were 

previously cloned in pT2K-BI-TREeGFP generating pT2K-ICN1eGFP and pT2K-

DNMAML1eGFP (Figueiredo, 2011), respectively. A new construct with DNMAML1 fused to 

CherryNLS sequence, pT2K-NLS-Cherry-DNMAML1eGFP, was generated to improve 

protein stability and nuclear translocation of DNMAML1:  

 

Figure 2-1 Schematic representation of the Tol2-mediated gene transfer technique and Doxycycline-
dependent switch-on/off of gene expression. Transient activity of transposase (pCAGGS-T2TP) induces the 
integration in the host genome of either transactivator (pT2K-CAGGS-tTA) or TREeGFP (pT2K-BI-TREeGFP). In 
the absence of doxycycline, the product of the gene tTA (transactivator) activates the transcription of the TRE-
driven genes: gene of interest (GOI) or EGFP. Adapted from Sato et al., 2007. 
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2.3. Materials and methods 

2.3.1 Chemically competent cells preparation 

Since E. coli cells are not naturally competent, they need to undergo a process that make 

them able to uptake exogenous DNA. Non-competent cells of the DH5α strain were 

inoculated in LB plates and grown overnight at 37ºC. One single colony was selected, 

inoculated in 3mL of LB medium and left overnight in a 37ºC shaker (220rpm). 2mL of this 

grown culture were added to 200mL of LB medium and incubated for 3h under the same 

conditions until OD600=0.4-0.6. From then on, all steps were performed on ice, refrigerated 

centrifuges and using cold solutions. Cells were initially centrifuged at 4000rpm for 5min at 

4ºC and the supernatant was discarded. Half of the initial bacterial culture volume of MgCl2 

0.1M was added, cells were again centrifuged and supernatant removed. Half of the initial 

bacterial culture volume of CaCl2 0.1M was then added and cells were incubated on ice for 

30min. After another centrifugation, supernatant was discarded and cells were carefully 

resuspended in CaCl2 0.1M/15% Glycerol to 1/15 of the initial volume. The final cell 

suspension was aliquoted in 500µL sterile cryovials and stored at -80ºC. 

2.3.2 Transformation 

All the E. coli DH5α transformations were performed by adding 100-500ng of plasmid 

DNA to 200µL of competent cells. After gently mixing, the mixture stayed on ince for 30min. 

A heat shock was performed for 1min at 42ºC, followed by 2min of incubation on ice. 600µL 

of LB medium was added to the cells and incubation in a 37ºC shaker (220rpm) for 1h 

enabled the expression of the ampicillin resistance gene (bla). After that, cells were 

centrifuged at 5000g for 3min. 650µL of the supernatant were discarded and cells were 

resuspended on the remaining 150µL. Finally, the 150µL of cells were plated on LB Agar 

supplemented with ampicillin (100µg/mL) (Sigma) and incubated overnight at 37ºC. 

2.3.3 Cell growth, plasmid purification and cell banks 

Single colonies of DH5α transformed with each plasmid were collected and added to 5mL 

of LB medium supplemented with 5µL of ampicillin (100µg/mL) in a 50mL. For small scale 

plasmid extraction, cells were grown overnight in a 37ºC shaker (220rpm). The purification of 

plasmid DNA was carried out using QIAprep®Spin Miniprep Kit (QIAGEN) according to the 

recommended protocol. For midi-preparation of plasmid DNA, cells were incubated for 7-8h 

(37ºC, 220rpm). Then, 1mL of this pre-culture was added to 50 or 100mL (high- or low-copy 

plasmids, respectively) of LB medium supplemented with ampicillin (100µg/mL) in a 250 or 

500mL erlenmeyer. Cultures were left to grow overnight at 37ºC at 220rpm. The plasmid 

DNA purification was performed using QIAfilter Plasmid Midi Kit (QIAGEN) according to the 

manufacturer’s instructions. DNA concentration and purity were determined using 
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NanoDrop® ND-1000 Spectrophotometer (Thermo Scientific) and samples were stored at -

20ºC. 

For each new plasmid, a working cell bank was always performed by adding 150µL of the 

pre-culture to 850µL of glycerol 100% in a sterile 2mL eppendorf and storing at -80ºC. 

2.3.4 Generation of pT2K-NLS-Cherry-DNMAML1eGFP 

To improve protein stability of DNMAML1 and its nuclear translocation we cloned the 

DNMAML1 sequence in fusion with the CherryNLS sequence in pT2K-BI-TREeGFP plasmid. 

2.3.4.1 PCR amplification 

DNMAML1 is the dominant negative form of MAML1 and corresponds only to its 12-74aa 

(36-224 nucleotides) in Gallus gallus. The nucleotide sequence of DNMAML1 Gallus gallus is 

shown below (primers location in bold): 

MAML1 Gallus gallus ID: XM_414607.2  

1 atggtgctgc ccccctgccc catggcccat ttagtggtgc cgcggcacag cgcggtgatg  

61 gagcggccct ttcagcgcat cgagctctgc cggcggcacc acagcgcctg cgagtcccgc  

121 taccaggccg tgtccccgga gcgcctggag ctggagcgcc agcaaacctt cgccctgcac  

181 cagcgctgcc tgcaggccaa ggccaagcgg gccggcaagc accgccagcc gcccccggcc 

... 

To amplify DNMAML1 and allow its cloning and further expression, a forward primer from 

a previous work (Figueiredo, 2011), that was modified to introduce a NheI restriction site 

(bold) and a KOZAK sequence (underlined), was used: 

5´GCTAGCCATGgtggtgccgcggcacagc 3’. The reverse primer was also modified introducing 

an EcoRV restriction site (bold): 5’GATATCgtgcttgccggcccgcttggc 3’. Inserted sequence is in 

capital letters. 

Cherry is a fluorophore with high photostability and rare fluorescence-intensity fluctuations 

(Seefeldt et al., 2008) and was used as a tag for DNMAML1 in this work. Cherry carrying a 

nuclear localization signal (NLS) was cloned in a pCAG plasmid (pCAG-CherryNLS; Vilas-

Boas et al., 2011) and its partial nucleotide sequence is shown below (primers location in 

bold): 

1 atggtgagca agggcgagga ggataacatg gccatcatca aggagttcat gcgcttcaag 

61 gtgcacatgg agggctccgt gaacggccac gagttcgaga tcgagggcga gggcgagggc 

121 cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggtgg ccccctgccc 

181 ttcgcctggg acatcctgtc ccctcagttc atgtacggct ccaaggccta cgtgaagcac 

... 

661 cgcgccgagg gccgccactc caccggcggc atggacgagc tgtaccctcc aaaaaagaag 

721 agaaaggtag aagacccctg attgtaca 
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To amplify CherryNLS and allow direct cloning in fusion with DNMAML1 sequence in 

pT2K-DNMAML1eGFP plasmid, both forward and reverse primers were modified to 

introduce an EcoRV restriction site (capital and bold letters). The final primers used were: 

forward 5’GATATCatggtgagcaagggcgaggag 3’ and reverse 

5’GATATCtgtacaatcaggggtcttctacc 3’. 

 

DNMAML1 sequence was amplified from 10ng of TOPO-DNMAML1 vector from a 

previous work (Figueiredo, 2011) and CherryNLS from 10ng of pCAG-CherryNLS plasmid, 

both in a 25µL PCR reaction using PhusionTM Master Mix with HF Buffer (Finnzymes) and 

0.5µM final concentration of the primers described above, according to manufacturer’s 

instructions. The cycling conditions were: 1 cycle of initial denaturation at 98ºC for 30sec; 30 

cycles of denaturation at 98ºC for 10sec, annealing at 65ºC for 30sec, and extension at 72ºC 

for 15sec/Kb (205bp product for DNMAML1 and 761bp product for CherrryNLS); a final 

extension cycle at 72ºC for 10min. All PCR reactions were performed in a MyCyclerTM 

Thermal Cycler (Bio-Rad), and PCR products were resolved on a 1.5% agarose gel (see 

section 2.3.10) and stored at -20ºC. 

2.3.4.2 TOPO II PCR Cloning 

DNMAML1 and CherryNLS PCR products were cloned in pCR®II-TOPO® vector using 

TOPO TA Cloning® Kit (Invitrogen) according to the manufacturer’s instructions. In order to 

add single 3’ adenine overhangs to the PCR products, they were previously incubated at 

72ºC for 10min with 0.25µL of Go-Taq Polymerase. TOPO® Cloning reactions were 

transformed into One Shot® MAX Efficiency® DH5α-T1R Chemically competent E. coli cells 

(Invitrogen) according to the instructions. Four white colonies of each plasmid were chosen 

and plasmid DNA was extracted using QIAprep®Spin Miniprep Kit (QIAGEN) as described 

(see section 2.3.3). The presence of the insert was then confirmed by restriction analysis 

(see section 2.3.4.3). 

2.3.4.3 Restriction analysis 

To confirm the presence of DNMAML1 and CherryNLS in each vector, digestions with 

restriction enzymes were performed. For DNMAML1 we did a double digestion with NheI 

(New England Biolabs - NEB) and EcoRV (Promega) using Buffer 2 from NEB (10mM Tris-

HCl pH7.9, 10mM MgCl2, 50mM NaCl and 1mM DTT). For CherryNLS a single digestion 

with EcoRV (Promega) using Buffer D from Promega (6mM Tris-HCl pH7.9, 6mM MgCl2, 

150mM NaCl and 1mM DTT) was done. These digestions were performed in 4000ng of total 

plasmid DNA and 20µL final volume and were incubated for 2h30min at 37ºC. Digestion 

results were analysed by agarose gel electrophoresis (see section 2.3.10). 
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2.3.4.4 Cloning DNMAML1 in pT2K-BI-TREeGFP 

2.3.4.4.1 Double digestion with restriction enzymes and purification 

After confirming the TOPO-DNMAML1 and TOPO-CherryNLS clones, the first step was to 

clone DNMAML1 in pT2K-BI-TREeGFP. 2µg of pT2K-BI-TREeGFP and 8µg of TOPO-

DNMAML1 were double digested with NheI and EcoRV, as previously described, in a final 

reaction volume of 30µL and 80µL, respectively. Digestion product of pT2K-BI-TREeGFP 

was purified using the QIAquick PCR Purification Kit (QIAGEN) according to the instructions. 

Digestion products of TOPO-DNMAML1 and TOPO-CherryNLS were loaded on a 1.5% 

agarose gel (see section 2.3.10) and the fragments of interest were collected and purified 

using QIAquick Gel Extraction Kit (QIAGEN) according to the manufacturer’s instructions. In 

both cases, DNA was eluted in 30µL of EB Buffer. 

2.3.4.4.2 Ligation reaction and transformant analysis 

Ligation reaction between pT2K-BI-TREeGFP and DNMAML1 was performed according 

to the correlation ng of insert = ((ng of vector x Kb size of insert)/Kb size of vector) x 10. 

Thus, 150ng of pT2K-BI-TREeGFP (8,7Kb) were added to 35ng of DNMAML1 (0,2Kb), using 

1µL of T4 DNA Ligase (NEB 400U/µL) and the correspondent 1X Buffer (50mM Tris-HCl 

pH7.5, 10mM MgCl2, 1mM ATP and 10mM DTT) in a final volume of 20µL, at room 

temperature (RT), overnight. Half of the ligation result was used to transform DH5α cells as 

described (see section 2.3.2). Transformants were tested for the presence of the 

recombinant plasmids of interest by repeating the procedures 2.3.3 and 2.3.4.3. 

2.3.4.5 Cloning CherryNLS in pT2K-DNMAML1eGFP 

After confirming the presence of DNMAML1 in pT2K-DNMAML1eGFP, the CherryNLS 

sequence was fused to DNMAML1. 2µg of pT2K-DNMAML1eGFP and 4µg of TOPO-

CherryNLS were digested with EcoRV and purified as described in section 2.3.4.4.1. Before 

the ligation reaction, the linearized pT2K-DNMAML1eGFP was dephosphorilated in order to 

prevent auto-ligation by adding 1X CIP enzyme and 1X Buffer 3 from NEB (50mM Tris-HCl 

pH7.9, 10mM MgCl2, 100mM NaCl and 1mM DTT), and incubated at 37ºC for 3h. After a 

new purification step (see 4.4.1), the ligation reaction between CherryNLS and pT2K-

DNMAML1eGFP was performed by adding 150ng of vector (8,9Kb) to 13ng of insert 

(0,76Kb) in the same conditions described in 2.3.4.4.2. After purification and quantification 

steps, the correct orientation of the insert in pT2K-DNMAML1eGFP was confirmed by 

agarose gel electrophoresis (see section 2.2.10) after restriction analysis with PvuII using 

Buffer B from Promega (6mM Tris-HCl pH7.5, 6mM MgCl2, 50mM NaCl and 1mM DTT). 
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2.3.5 Avian Embryos 

Fertilised chicken eggs (Gallus gallus) were obtained from Sociedade Agrícola Quinta da 

Freiria, S.A., Portugal, and Japanese quail eggs (Coturnix coturnix japonica) from Interaves, 

Sociedade Agro-Pecuária, S.A., Portugal. Eggs were stored at 16ºC and incubated at 38ºC 

to initiate development. Dissection was performed at specific stages according to Hamburger 

and Hamilton stages (HH, Hamburger and Hamilton, 1951) or after distinct incubation times. 

2.3.6 Organotypic assay of explants of the pharyngeal region 

The pharyngeal region between the first and fourth PA was dissected from quail E3 

embryos, cut dorsally along the anterior/posterior axis (along the notochord), and kept in 

PBS and on ice until culture setting. Explants were cultured with the opened dorsal side 

down, placing endodermal tissues in contact with the 74μm Mesh Size Polyester Membrane 

(24mm NetwellTM , Corning) and in culture medium (Figure 2-2)  for 48h in a humidified 

incubator at 37ºC with 5% CO2. Culture medium was RPMI-1640 (Sigma) supplemented with 

10% Fetal Bovine Serum (FBS) (Invitrogen) and 1x Pen/Strep.  

For Notch signaling inhibition, two distinct pharmacological inhibitors were used: DAPT – 

InSolutionTM -Secretase Inhibitor IX (Calbiochem), and StemoleculeTM LY411575 

(Stemgent). Culture medium was supplemented with different concentrations of the two 

inhibitors: 12.5, 25, and 50μM for DAPT; or 100 and 200nM for LY411575.  

The control culture medium was supplemented with DMSO (Sigma) at the concentration 

used in the corresponding experimental condition (with -Secretase inhibitor), and a dose-

response curve was performed to check for toxic concentrations (see Table 2-1). 

 

Table 2-1 DMSO concentrations used to perform the dose-response curve and the respective inhibitors (DAPT 
and LY411575) concentrations. 

 

 

 

 

 

 

 

After 48h of culture, explants were washed in PBS, RNA extracted (see section 2.3.8.2) 

and qRT-PCR analysed (see section 2.3.9). For each culture condition, a pool of two to five 

samples replicates (n=2-5) was obtained for qRT-PCR analysis. Each sample consisted of a 

pool of five pharyngeal explants. Freshly dissected pharyngeal regions (E3) were used to 

evaluate gene expression analysis at 0h of culture. In vitro assays were performed in 

collaboration with Marta Figueiredo, the PhD student from our research team. 

DAPT 

Inhibitor (µM) DMSO concentration 
12.5 0.05% 

25 0.1% 

50 0.2% 

- 0.4% 

- 0.8% 

LY411575 

Inhibitor (nM) DMSO concentration 

100 0.1% 

200 0.2% 
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Figure 2-2 Schematic representation of the in vitro culture of the pharyngeal region explants. Region of the 
pharynx dissected at E3 quail embryo (A). Ventral view of the dissected pharyngeal region (B). Pharyngeal 
explants are grown in the presence (experimental condition) or absence (control condition) of the pharmacological 
inhibitors of Notch signaling. Note the PP endoderm in contact with the culture medium (C). A, Anterior; D, Dorsal; 
PA, Pharyngeal Arch; PP, Pharyngeal Pouch; P, Posterior; V, Ventral. 

2.3.7 Organotypic assay of heterospecific association of tissues 

The region of the 3rd and 4th PA was dissected from quail embryos at E3 (HH-stage 21) 

and treated with a solution of pancreatin (25g/L, Sigma) for 60-90min on ice to allow the 

separation of the endoderm from the pharyngeal mesenchyme and ectoderm. Somatopleural 

mesenchymal tissues of E2.5 chick embryos (HH-stage 18) were isolated at the level of 

somites 19 to 24. The mesenchyme was further treated with a solution of pancreatin (25g/L, 

Sigma) for 10-20min on ice to allow its dissociation from endodermal and ectodermal tissues. 

Isolated 4-5 endodermal explants were associated with 4-5 mesenchymal explants on 

Nucleopore membrane filters (Millipore) supported by fine meshed metal grids (Goodfellows), 

placed in culture dishes and in contact with culture medium [RPMI-1640 (Sigma) 

supplemented with 10% Fetal Bovine Serum (FBS) (Invitrogen), 1x Pen/Strep], for 48h in a 

humidified incubator at 37ºC with 5% CO2. After 48h, cultured tissues were washed in PBS, 

RNA extracted (see section 2.3.8.2) and qRT-PCR analysed (see section 2.3.9). Freshly 

dissected endodermal and mesenchymal explants (E3) were used to evaluate gene 

expression at 0h of culture. In vitro assays were performed in collaboration with Marta 

Figueiredo, the PhD student from our research team. 

2.3.7.1 Notch signaling inhibition by DAPT 

For Notch signaling inhibition, a pharmacological inhibitor was used: DAPT – InSolutionTM 

-Secretase Inhibitor IX (Calbiochem). The culture medium [RPMI-1640 (Sigma) 

supplemented with 10% FBS (Invitrogen), 1x Pen/Strep] was supplemented with 50μM of 

DAPT – InSolutionTM -Secretase Inhibitor IX (Calbiochem). The control culture medium was 

supplemented with 0.2% DMSO (Sigma) (see Table 2-1). 
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2.3.7.2 Notch signaling modulation by genetic modification of the endodermal tissues 

Isolated quail 3/4PP endoderm was genetically modified by electroporation (250V, 500μF 

in PBS) using distinct combination of the above described tetracycline-dependent system of 

vectors (Figure 2-1): no vectors (control condition), 30μg of pT2K-BI-TREeGFP (vector 

control condition); 30μg pT2K-ICN1eGFP (gain-of-function condition); 30μg pT2K-

DNMAML1eGFP (1st loss-of-function condition) or 30μg pT2K-NLS-Cherry-DNMAML1eGFP 

(2nd loss-of-function condition). For all vector conditions 15μg of pT2-CAGGS-tTA 

(transactivator) was added. For these experiments, we did not use the transposase vector 

due to the short period of culture time. These experiments were performed using the 

transient effect of electroporated vectors. After electroporation, the endodermal tissues were 

kept in 100% FBS (Invitrogen) for 5-10min, on ice. 

For each condition, 4-5 electroporated endodermal explants were associated with 4-5 

mesenchymal explants and grown for 48h, as previously described (see section 2.3.7).  

2.3.8 RNA isolation and Reverse Transcription 

2.3.8.1 RNA isolation from samples for qRT-PCR calibration curves 

Quail E9 embryos were dissected and thymi and parathyroid glands were separately 

isolated. Chicken E18 embryos were as well dissected to isolate thyroid glands. An OP9 cell 

line carrying a plasmid to express GFP (OP9-GFP; Schmitt, 2002) was also subjected to 

RNA isolation. Total RNA from chicken or quail organs (thymus, parathyroid and thyroid) and 

OP9-GFP cell line was extracted using High Pure RNA Isolation Kit (Roche) according to the 

manufacturer’s instructions. Samples were DNase digested for 40min and RNA was eluted in 

50μL of Elution Buffer. 

2.3.8.2 RNA isolation from organotypic assays 

Total RNA from the samples was extracted using a combination of TRIzol reagent 

(Invitrogen) and RNeasy Mini Kit (QIAGEN) manufacturer’s instructions. To each sample, 

1mL of Trizol was added and they were then maintained at -80ºC until RNA extraction. After 

thawing at RT, 200µL of chloroform were added. Tubes were vigorously shaken for 15sec, 

allowed to stand 10min at RT and centrifuged at 13000rpm for 15min at RT. Aqueous 

(colorless) phase, avoiding organic pahse, was withdrawn to a clean eppendorf and ethanol 

precipitation of RNA was performed as described on the RNeasy Mini Kit protocol. DNase 

digestion was carried out for 15min and RNA was eluted in 50µL of RNase-free water. All 

RNA samples were stored at -80ºC. 

2.3.8.3 Reverse transcription 

First-strand cDNA synthesis was performed in a total volume of 20µL, by reverse 

transcription of 2µg of total RNA using the SuperScriptTM III Reverse Transcriptase kit and 
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Oligo (dT)12-18 Primer (Invitrogen), according to the manufacturer’s instructions. Synthesized 

cDNAs were stored at -20ºC. All steps of RNA extraction and cDNA synthesis were 

performed in a vertical laminar flow hood. 

Concentration and purity of both the RNA and cDNA samples were determined using the 

NanoDrop® ND-1000 Spectrophotometer (Thermo Scientific). 

2.3.9 Quantitative Real-Time PCR 

Specie-, organ- and construct-specific primers were designed and tested and qRT-PCR 

assays were optimized. Primers were designed either by using Primer3 software or manually 

(list in  

Table 6-1). Except for qGAPDH, DNMAML, ICN1 and GFP, primer pairs were designed to 

be intron-spanning (to exclude amplification of genomic DNA) and near 3’poly-A. qRT-PCR 

assays were run in a 7500 Fast Real-Time PCR System (Applied Biosystems) in MicroAmp® 

Fast Optical 96-Well Reaction Plate (Applied Biosystems). Reactions were performed in 

25µL volume using 12.5µL of Power SYBR® Green PCR Master Mix (Applied Biosystems), 

0.4µM final concentration of primers and 1µL of cDNA. Thermocycling conditions were 

composed by an initial denaturation at 50ºC for 20sec and 95ºC for 10min, followed by 40 

cycles at 95ºC for 15sec and at specific annealing temperature (see  

Table 6-1 and Table 6-2) for 1min. To assess amplification efficiency, and as a positive 

control, a calibration curve for each gene was performed using 10-fold dilutions of a sample 

that was known to express the gene of interest (see Table 6-2). To control primers 

specificity, at the end of each experiment a melting curve was generated by increasing the 

temperature from 60ºC to 95ºC. Relative quantification of gene expression was determined 

by the ΔΔCt method (Livak and Schmittgen, 2001), of by the Pfaffl method (Pfaffl, 2001) 

using quail Glyceraldehyde-3-phosphate dehydrogenase (qGAPDH) as endogenous control 

gene to normalize the variability in expression levels. To discriminate quail and chicken 

tissues in the experiments of heterospecific association of tissues, qGAPDH primer pair was 

designed (and further tested) to specifically amplify quail GAPDH but not chicken GAPDH. 

All the experiments were carried out in a horizontal laminar flow hood to avoid contamination 

and using two biological replicates for each condition. 

2.3.10 Agarose gel electrophoresis 

Analysis of RNA and DNA integrity, purification of specific DNA segments and 

confirmation of PCR amplification products as well as digestion results were performed using 

agarose gel electrophoresis. UltraPureTM Agarose (Invitrogen) was dissolved in 1X TAE to a 

final concentration of 0.8-1.8%, according to the DNA fragments size. GelRedTM Nucleic Acid 

Gel Stain, 10,000X in DMSO (Biotium) was used as intercalating agent and added to the gel 

at 1:10,000. 6X Loading Dye Solution (Fermentas) diluted 6 times was added to each sample 
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according to the final volume and the gel was loaded. According to the expected fragment 

sizes FastRuler™ DNA Ladder Low Range, FastRuler™ DNA Ladder Middle Range or 

O'GeneRuler™ 1 kb DNA Ladder (Fermentas) were used. Electrophoresis was run in 1X 

TAE at 5-10V/cm of gel length, results were seen on a UV transilluminator and images were 

acquired with ChemiDocTM XRS+ (Bio-Rad) and Image Lab 4.1 software. 

 

3. RESULTS 

3.1. Pharmacological inhibition of Notch signaling in pharyngeal region explants. 

To unravel the role of Notch signaling during epithelial-mesenchymal interactions in early-

organogenesis of the thymus and parathyroid glands, we started to perform an in vitro loss-

of-function of Notch signaling using two distinct pharmacological inhibitors of -secretase 

activity: DAPT and LY411575. Different concentrations of the distinct inhibitors DAPT (12.5, 

25 and 50μM) or LY411575 (100 and 200nM) were used in cultures of pharyngeal region 

explants (quail E3). After 48h of culture, Notch signaling inhibition was evaluated by the 

expression of Notch target gene Hes5.1, and its effects in thymus and parathyroid glands 

organogenesis by Foxn1 and Gcm2 expression, respectively. Gene expression was 

quantified using Quantitative Real-Time PCR analysis.  

As the distinct inhibitors were reconstituted in DMSO, we began to evaluate the toxicity 

effect of DMSO in cultured tissues. For that, we quantified the expression of Foxn1, Gcm2 

and Hes5.1 in distinct DMSO concentrations (from 0 to 0.8%, see Table 2-1). 

A B 

       

Figure 3-1 Relative expression of Foxn1 and Gcm2 (A), and Hes5.1 (B) at 0h (E3), and after 48h of culture in 
the distinct DMSO concentrations (from 0% to 0.8%). 0h-culture, n=3; 48h-culture, n=2; all DMSO samples, 
n=5. 

 
 

Before culture (0h), the initial expression of Foxn1, Gcm2 and Hes5.1 was evaluated in 

freshly isolated pharyngeal region explants (E3). As shown in Figure 3-1, low expression of 
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Foxn1 and Hes5.1 was observed, when compared to the strong Gcm2 expression at this 

time of development. After 48h of culture, pharyngeal explants grown without DMSO (control) 

had an increased expression of Foxn1 (Figure 3-1 A) and Hes5.1 (Figure 3-1 B), while 

Gcm2 (Figure 3-1 A) expression was reduced when compared to 0h-culture.  

When the explants were grown for 48h with increasing doses of DMSO, a fluctuation of 

Foxn1, Gcm2 and Hes5.1 expression was observed. At lower doses of DMSO (0.1% and 

0.2%), the highest expressions for Foxn1 and Gcm2 were observed while accompanied by a 

strong reduction of Hes5.1 expression (Figure 3-1). Moreover, explants grown with 0.4% of 

DMSO presented a 60% reduction of Foxn1 expression (Figure 3-1). These results define 

the toxicity effect of DMSO at doses  0.4% DMSO. Consequently, all experimental 

conditions using Notch signaling inhibitors were performed using <0.4% of DMSO. 

3.1.1 DAPT: 

 

 

 

Table 3-1 Hes5.1 expression in the pharyngeal region 
explants. 

 

Hes5.1 Average StDev p-value 

DMSO Control 1,000 - - 

DAPT 12.5M 0,128 0,049 0,005 

DAPT 25M 0,043 0,010 0,017 

DAPT 50M 0,019 0,017 0,025 

Figure 3-2 Relative expression of Hes5.1 in the pharyngeal region explants grown at increased 
concentrations of DAPT. 5 samples for each culture conditions. 

 
 

When the pharyngeal region explants were grown in the presence of 12.5M (0.05% 

DMSO), 25M (0.1% DMSO) and 50M (0.2% DMSO) of Notch inhibitor DAPT, we observed 

a significant decrease of Hes5.1 expression when compared with the respective control 

conditions (only DMSO) (Figure 3-2 and Table 3-1). Moreover, this decrease of Hes5.1 

expression was also dose-dependent (Table 3-1). These results showed an effective 

blockage of -secretase activity and a consequent inhibition of Notch signaling by DAPT in 

the cultured tissues. 

 

Next, we evaluate Notch signaling inhibition effects in the early-development of the 

thymus and parathyroid glands by measuring in the cultured pharyngeal explants the 

expression of Foxn1 and Gcm2, respectively.   
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Table 3-2 Foxn1 (A) and Gcm2 (B) expression in the 
pharyngeal region explants. 

A 

Foxn1 Average StDev p-value 

DMSO Control 1,000 - - 

DAPT 12.5M 0,635 0,236 0,085 

DAPT 25M 0,517 0,315 0,192 

DAPT 50M 1,243 0,735 0,760 

B 

Gcm2 Average StDev p-value 

DMSO Control 1,000 - - 

DAPT 12.5M 0,676 0,194 0,219 

DAPT 25M 0,318 0,224 0,172 

DAPT 50M 0,513 0,593 0,258 
 

Figure 3-3 Relative expression of Foxn1 and Gcm2 
in the pharyngeal region explants grown with 
increasing concentrations of DAPT. 5 samples for 
each culture conditions. 

 

In Figure 3-3, explants treated with increasing doses of DAPT (all concentrations) showed 

lower Foxn1 and Gcm2 expression when compared with control conditions, with the 

exception of Foxn1 expression in 50μM DAPT-explants (which showed similar levels to 

control) (Table 3-2).  

3.1.2 LY411575: 

Similar experimental approach was performed to study Notch inhibition effects using 

LY411575 inhibitor. 

 

 
 
 
 
 
Table 3-3 Hes5.1 expression in the pharyngeal region 
explants 

Hes5.1 Average StDev p-value 

DMSO Control 1,000 - - 

LY 100nM 0,019 0,016 0,103 

LY 200nM 0,017 0,012 0,051 
 

Figure 3-4 Relative expression of Hes5.1 in the pharyngeal region explants grown at increased 
concentrations of LY411575 (LY). 5 samples for each culture conditions. 
 

When pharyngeal explants were grown in the presence of 100nM (0.1% DMSO) and 

200nM (0.2% DMSO) of LY411575 we observed an effective decrease of Hes5.1 expression 

when compared to the control explants (Figure 3-4 and Table 3-3). The results obtained with 
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LY411575, were similar to those obtained with DAPT, which showed an effective Notch 

signaling inhibition when using these inhibitors. However, in this case, Notch inhibition was 

not dose-dependent. 

 

 
 
Table 3-4 Foxn1 (A) and Gcm2 (B) expression in the 
pharyngeal region explants. 

A 

Foxn1 Average StDev p-value 

DMSO Control 1,000 - - 

LY 100nM 0,861 0,422 0,697 

LY 200nM 0,182 0,030 0,034 

 

B 

Gcm2 Average StDev p-value 

DMSO Control 1,000 - - 

LY 100nM 0,310 0,182 0,166 

LY 200nM 0,146 0,074 0,112 
 

Figure 3-5 Relative expression of Foxn1 and Gcm2 in 
the pharyngeal region explants grown with increasing 
concentrations of LY411575 (LY). 5 samples for each 
culture conditions. 

 

The effect of Notch signaling inhibition in the early-development of the glands was 

measured in the cultured pharyngeal explants by evaluating the expression of Foxn1 and 

Gcm2, respectively.  As reported in DAPT-explants, a reduction of Foxn1 and Gcm2 

expression was observed in explants treated with increasing doses of LY411575 inhibitor 

(100nM and 200nM) when compared to control conditions (Figure 3-5 and Table 3-4).  

3.2. Pharmacological inhibition of Notch signaling in heterospecific association of 

tissues 

To study Notch signaling effects during cellular interactions between the 3/4 PP endoderm 

and the ectopic/permissive mesenchyme 

(somatopleura), heterospecific associations of 

these tissues were grown in the presence of 

50μM of DAPT, as described above. After 48h 

of culture, Notch signaling inhibition was 

evaluated by the expression of Notch target 

gene Hes5.1, and its effects in thymus and 

parathyroid glands organogenesis by Foxn1 

and Gcm2 expression, respectively. Gene 

expression was quantified using Quantitative 

Real-Time PCR analysis. 

 

Figure 3-6 Relative expression of Foxn1, Gcm2 and 
Hes5.1 in freshly isolated quail 3/4 PP endoderm (E3) 
and after 48h of culture in control culture medium 
(RPMI-1640 supplemented with 10% FBS, 1x 
Pen/Strep). 0h-culture, n=3; 48h-culture, n=2. 
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We started to measure the initial expression of Foxn1 and Gcm2 in freshly isolated 3/4 PP 

endoderm and then after 48h of culture in heterospecific associations. As depicted in Figure 

3-6, we observed almost no expression of Foxn1 at the beginning of the culture, while Gcm2 

had already moderate levels of expression. After the 48h of culture, a striking increase of 

Foxn1 expression was observed accompanied by maintenance of Gcm2 expression. 

 

 
 
 
 
 
Table 3-5 Hes5.1 expression in the heterospecific 
association of tissues. 

Hes5.1 Average StDev p-value 

DMSO Control 1,000 - - 

DAPT 50M 0,008 0,008 0,418 
 

Figure 3-7 Relative expression of Hes5.1 in heterospecific association of tissues grown in the presence of 

50M DAPT. 3 samples for each culture conditions. 
 

As shown in Figure 3-7, when the associated tissues were grown for 48h in the presence 

of 50μM DAPT we observed a decrease of 99,2% in Hes5.1 expression, showing the 

inhibition of Notch signaling by the blockage of -secretase activity. We then measured the 

Notch signaling inhibition effect in the levels of expression of Foxn1 and Gcm2. 

 

 
 
 
 
 
Table 3-6 Foxn1 (A) and Gcm2 (B) expression in the 
heterospecific association of tissues. 

A 

Foxn1 Average StDev p-value 

DMSO Control 1,000 - - 

DAPT 50M 0,817 0,074 0,454 

 

B 

Gcm2 Average StDev p-value 

DMSO Control 1,000 - - 

DAPT 50M 0,055 0,040 0,070 
 

Figure 3-8 Relative expression of Foxn1 and Gcm2 in 
the heterospecific association tissues grown in the 

presence of 50M DAPT. 3 samples for each culture 
conditions. 

 

Similar to 50M DAPT-explants, Gcm2 expression was reduced in the associated tissues 

grown in the presence of DAPT (Figure 3-8 and Table 3-6). However, the expression of 

Foxn1 in the associated tissues was lower than the control and distinct to what was observed 

in the pharyngeal explants experiments.  
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3.3. Modulation of Notch signaling in the prospective domains of the thymus and 

parathyroid glands (3/4 PP endoderm) 

3.3.1 Production of pT2K-NLS-Cherry-DNMAML1 

In a distinct approach, we aimed to modify Notch signaling in the prospective domain of  

thymus and parathyroid glands. Gain- and loss- of function experiments were performed 

using two recombinant plasmids containing either the intracellular domain of Notch1 (ICN1) 

or the dominant-negative form of MAML1 (DNMAML1), respectively. ICN1 or DNMAML1 

sequences were previously cloned into pT2K-BI-TREeGFP thus generating pT2K-ICN1eGFP 

and pT2K-DNMAML1eGFP (Figueiredo, 2011). As DNMAML1 sequence is only 200bp, 

generating a small protein that might be unstable, we generated a new construct adding to 

the DNMAML1 sequence a CherryNLS (Cherry Nuclear Localization Sequence) with 761bp. 

With this approach, we hope to generate a more stable DNMAML1 protein, more competitive 

against endogenous MAML1. DNMAML1 sequence in fusion with CherryNLS sequence was 

cloned in pT2K-BI-TREeGFP, generating pT2K-NLS-Cherry-DNMAML1eGFP plasmid. 

 

Figure 3-9 1.3% Agarose gel electrophoresis showing the steps involved on the generation of pT2K-NLS-
Cherry-DNMAML1eGFP. PCR amplification of DNMAML1 (A). PCR amplification of CherryNLS (B). TOPO-
DNMAML1 digested with EcoRV/NheI (C). TOPO-CherryNLS digested with EcoRV (D). pT2K-BI-TREeGFP 
linearized with EcoRV (E). pT2K-DNMAML1eGFP digested with EcoRV/NheI (F). pT2K-DNMAML1eGFP 
linearized with EcoRV (G). pT2K-NLS-Cherry-DNMAML1eGFP digested with EcoRV (H). Confirmation of 
CherryNLS insert orientation on the final plasmid by digestion with PvuII (I). L1, O'GeneRuler™ 1 kb DNA Ladder; 
L2, FastRuler™ Middle Range DNA Ladder. Arrowhead indicates the DNA band corresponding to the CherryNLS 
sequence in pT2K-NLS-Cherry-DNMAML1eGFP. 

 

The first step for the production of pT2K-NLS-Cherry-DNMAML1 was the PCR 

amplification of DNMAML1 (205bp) from a cE3 embryo cDNA (Figure 3-9 A), and 
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CherryNLS (761bp) from a pCAG plasmid (pCAG-CherryNLS; Vilas-Boas, 2011) (Figure 3-9 

B). Each PCR product was cloned in a pCR®II-TOPO® vector (4kb). According to the inserted 

restriction sites, the presence of DNMAML1 in TOPO-DNMAML1 was confirmed by double 

digestion with EcoRV and NheI, and single digestion with EcoRV for the presence of 

CherryNLS in TOPO-CherryNLS. As expected and shown in Figure 3-9 (C and D), there are 

two bands in each case: a 4kb DNA band corresponding to the pCR®II-TOPO® vector and a 

205bp DNA band for DNMAML1 or 761bp DNA band for CherryNLS fragments.  

Secondly, the EcoRV/NheI DNMAML1 insert was purified from TOPO-DNMAML1 and 

subcloned into the pT2K-BI-TREeGFP plasmid (8,7Kb). The presence of DNMAML1 insert 

was confirmed as described earlier, and two bands were obtained: an 8.7Kb and a 205bp 

DNA fragments corresponding to pT2K-BI-TREeGFP plasmid and DNMAML1 insert, 

respectively (Figure 3-9 F). The integrity of pT2K-BI-TREeGFP plasmid was ensured by the 

presence of an 8.7kb DNA band when linearized with EcoRV (Figure 3-9 E). 

Once generated pT2K-DNMAML1eGFP, the CherryNLS sequence was cloned in fusion to 

DNMAML1. For that, the EcoRV CherryNLS sequence was purified from TOPO-CherryNLS 

and subcloned in the previous recombinant plasmid pT2K-DNMAML1eGFP (digested with 

EcoRV and dephosphorylated) (Figure 3-9 G), thus generating pT2K-NLS-Cherry-

DNMAML1eGFP. The single digestion with EcoRV confirmed the presence of a 761bp DNA 

band corresponding to the CherryNLS sequence (Figure 3-9 H, arrowhead). Finally, the 

correct orientation of the insert was confirmed by single digestion of the final plasmid pT2K-

NLS-Cherry-DNMAML1eGFP with PvuII, giving rise to five expected DNA fragments (2513bp 

+ 746bp + 1711bp + 793bp + 3904bp) (Figure 3-9 I). 

 

3.3.2 Establishment of electroporation of the 3/4 PP endoderm conditions  

To modulate Notch signaling in the prospective domains of the thymus and parathyroid 

glands, the 3/4 PP endoderm was genetically modified using a combined system of vectors: 

Tol2-mediated gene transfer technique and Tetracycline-dependent conditional gene 

expression (Sato et al., 2007; Watanabe et al., 2007). First, the isolated quail 3/4 PP 

endoderm was electroporated with distinct vectors: pT2K-BI-TREeGFP (control condition); 

pT2K-ICN1eGFP (gain-of-function condition); pT2K-DNMAML1eGFP (1st loss-of-function 

condition); and pT2K-NLS-Cherry-DNMAML1eGFP (2nd loss-of function condition). For each 

condition, the vector was co-electroporated with pT2K-CAGGS-tTA (transactivator), which 

modulates the expression of the first. Genetically modified endoderm was then associated 

with chicken mesenchyme and allowed to grow for 48h. Quantitative gene expression 

analysis was performed to the cultured tissues for Hes5.1 (Notch target), Foxn1 (thymic 

epithelial marker), Gcm2 (parathyroid epithelial marker) and GFP (vector marker) genes. 

However, and in contrast with the previous experiments, Hes5.1 expression could not be 
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measured as a direct readout of Notch signaling inhibition (in the endoderm), as the 

mesenchymal compartment of the heterospecific association of tissues could also express 

Hes5.1. The vector-specific expression of Intracellular domain of Notch 1 (ICN1) and 

Dominant Negative form of Mastermind-like 1 (DNMAML1) was also evaluated by qRT-PCR 

in the respective culture conditions.  

 

 
Table 3-7 Foxn1 (A), Gcm2 (B) and Hes5.1 (C) 
expression in the heterospecific association of tissues. 

A 

Foxn1 Average StDev p-value 

PBS w/o vectors 1,000 1,463 - 

pT2K-BI-TREeGFP 0,843 0,939 0,860 

 

B 

Gcm2 Average StDev p-value 

PBS w/o vectors 1,000 1,181 - 

pT2K-BI-TREeGFP 1,671 2,227 0,666 

 

C 

Hes5.1 Average StDev p-value 

PBS w/o vectors 1,000 2,151 - 

pT2K-BI-TREeGFP 2,169 1,977 0,471 
 

Figure 3-10 Relative expression of Foxn1, Gcm2 
and Hes5.1 in the heterospecific association of 
tissues after 48h of culture. Two control conditions of 
electroporation were evaluated: endoderm 
electroporated with PBS without vectors and with the 
control vector, the pT2K-BI-TREeGFP. PBS w/o 
vectors, n=5; pT2K-BI-TREeGFP, n=3. 

 

To assess the endodermal effects of the electroporation with the system of vectors, we 

used two distinct control conditions of electroporation: PBS without vectors and the control 

vector, the pT2K-BI-TREeGFP. No significant differences were observed for Foxn1, Gcm2 

and Hes5.1 expression in the two conditions (Figure 3-10 and Table 3-7). However, a 

tendency for increased expression of Gcm2 and Hes5.1 was observed when the endoderm 

was electroporated with pT2K-BI-TREeGFP. Thus, samples electroporated with the control 

vector were used as the calibrator for the following experiments. 

3.3.3 Loss-of-function of Notch signaling by genetic modification of the 3/4PP endoderm 

Loss-of-function experiments were performed using two distinct constructs: pT2K-

DNMAML1eGFP and pT2K-NLS-Cherry-DNMAML1eGFP. DNMAML1 is a dominant-

negative form of the co-activator MAML1 that competes with its native form for the binding of 

ICN, and blocks the activity of Notch signaling. 

Endoderm was electroporated with either control or loss-of-function vectors. After 48h of 

culture with the mesenchyme, the associated tissues were collected and analysed for GFP 

and DNMAML1 (construct) expression. 
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Figure 3-11 Expression of DNMAML1 and GFP in the heterospecific association of tissues after 48h of culture. 
Endoderm was electroporated with the control vector (pT2K-BI-TREeGFP), pT2K-DNMAML1eGFP (DNMAML1 
samples) or pT2K-NLS-Cherry-DNMAML1eGFP (NLS-DNMAML1 samples). 
 

As shown in Figure 3-11, the expression of GFP and DNMAML1 was widely variable 

among the different samples of the associated tissues. Moreover, we observed a strong 

correlation with the levels of expression of GFP and DNMAML1. Samples were divided in 

three distinct groups: low (<3), medium (3-10), or high (>10) DNMAML1 (GFP) expression. 

According to this criterion, the expression of DNMAML1 observed for the new construct, the 

pT2K-NLS-Cherry-DNMAML1eGFP, was considered to be low (<3). The expression of 

Foxn1, Gcm2 and Hes5.1 was further evaluated in each of these sample groups. 

A B 

       

Figure 3-12 Relative expression of Foxn1, Gcm2 (A) and Hes5.1 (B) of the heterospecific association of 
tissues grown for 48h in culture. Endoderm was electroporated with the control vector (pT2K-BI-TREeGFP), 
pT2K-DNMAML1eGFP or pT2K-NLS-Cherry-DNMAML1eGFP. 
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As shown in Figure 3-12 and Table 6-3, a reduction of Foxn1 expression was observed in 

the endoderm electroporated with the loss-of-function vectors independently of the levels of 

the construct expression, when compared to control conditions. Gcm2 showed an increased 

expression in the conditions with the highest levels of DNMAML1 construct expression. 

Finally, Hes5.1 was reduced in all samples electroporated with loss-of-function vectors when 

compared with control condition. However, Hes5.1 expression is a combined readout of its 

expression in the endodermal and mesenchymal compartments of the associated tissues, 

not reflecting the Notch signaling activity in the modified endoderm.  

 

3.3.4 Gain-of-function of Notch signaling by genetic modification of the 3/4PP endoderm 

Gain-of-function experiments were performed by electroporating 3/4 PP endoderm with 

the construct pT2K-ICN1eGFP. The expression of the intracellular domain of Notch 1 (ICN1) 

constitutively activates Notch signaling in a ligand-independent manner. Similar to 

DNMAML1 experiments, the expression of GFP and ICN1 in each electroporated sample 

(control and gain-of-function vectors) was measured. 

 

Figure 3-13 Expression of ICN1 and GFP in the heterospecific association of tissues after 48h of culture. 
Endoderm was electroporated with the control vector (pT2K-BI-TREeGFP) or pT2K-ICN1eGFP (ICN1 samples). 
 
 

As shown in Figure 3-13, the expression of GFP and ICN1 was also widely variable 

among the different samples, such as seen for DNMAML1. However, for similar construct 

expression level, the expression of GFP was lower in ICN1 samples when compared to its 

expression in DNMAML1 samples. Samples were divided in two distinct groups: low/medium 

(<10) or high (≥10) ICN1 expression. The expression of Foxn1, Gcm2 and Hes5.1 was 

further evaluated in each of these sample groups. 
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A B 

 

Figure 3-14 Relative expression of Foxn1, Gcm2 (A) and Hes5.1 (B) of the heterospecific association of 
tissues grown for 48h in culture. Endoderm was electroporated with the control vector (pT2K-BI-TREeGFP) or 
pT2K-ICN1eGFP. 

 
 

As shown in Figure 3-14 and Table 6-4, a reduction of Foxn1 and an increase of Gcm2 

expression was observed in the endoderm electroporated with the gain-of-function vector 

(independently of the levels of the construct expression), when compared to control 

conditions. Surprisingly, Hes5.1 was also reduced in all samples electroporated with ICN 

vector when compared with control condition. 

 

4. DISCUSSION 

The aim of this project was to unravel the role of Notch signaling during the early stages of 

the avian thymus and parathyroid glands organogenesis. The manipulation of Notch 

signaling was achieved in vitro by two distinct approaches: pharmacological inhibition and 

gain- or loss-of-function of Notch signaling by genetic manipulation of the prospective 

territories of the thymus and parathyroid glands. Analysis of the effects of Notch signaling 

modulation was performed by measuring the expression by quantitative RT-PCR of the 

transcription factors, Hes5.1 (Notch-target gene), Foxn1 (marker for thymus epithelium) and 

Gcm2 (marker for parathyroid glands epithelium) in the distinct samples.  

The pharmacological inhibition of Notch signaling promoted a decrease of Foxn1 (with 

only one exception) and Gcm2 expression. These results suggest that blocking Notch 

signaling in the endodermal and mesenchymal compartment impairs normal development of 

these glands.  

When Notch signaling was modulated in the developing 3/4 PP endoderm to constitutively 

express ICN1 (gain-of-function) or DNMAML1 (loss-of-function) constructs we observed a 
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reduction of Foxn1 expression accompanied by an increase of Gcm2. This conflicting data 

will be subject to further discussion bellow.  

4.1. In vitro development of the thymic and parathyroid rudiments (3/4 PP endoderm)  

In this work we used two distinct organotypic systems of culture to mimic early 

development of the thymus and parathyroid glands.  In the first, the pharyngeal region of E3 

quail embryos was isolated and grown in vitro for 48h. In the second, isolated quail 

endoderm of 3/4PP (E3) and isolated chick mesenchyme of the somatopleura (E2.5) were 

associated in vitro for 48h. This system was previously used and validated to its capacity to 

reproduce early events in the development of these glands by our group (Neves et al., 2012). 

In this work, variation of levels of expression of Foxn1 and Gcm2 throughout the time of 

culture was similar to those previously reported (Neves et al., 2012).  

In the pharyngeal explants culture, as opposed to observed in the association tissue 

system of culture, we observed a slight reduction of Gcm2 expression after 48h of culture. 

For this unexpected result we cannot exclude some effects resulting from 3D-constrains to 

nutrients and oxygen accessibility in this type of culture system. However, Hes5.1 showed a 

strong increased expression in the explant samples. In agreement, we have previously 

observed this augmentation of Hes5.1 expression, by whole-mount (WM) in situ 

hybridization, in chick E3.5 (corresponding to quail E3) explants grown in similar conditions 

(Figueiredo, 2011). 

Furthermore, we recently observed strong expression of Notch-related genes (receptors, 

ligands and target-genes) in the endoderm of the 3/4 PP and surrounding mesenchyme by 

WM in situ hybridization and microarray techniques (data not shown of recent studies from 

our team). 

Together, these results strongly suggest that Notch signaling is active during these early 

events of thymic and parathyroid glands organogenesis.  

4.2. Pharmacological inhibition of Notch signaling impairs early-development of 

thymus and parathyroid glands. 

In this work, we started to manipulate Notch signaling by a -secretase inhibitor, DAPT, in 

both of our culture systems. We observed a decrease of Foxn1 (with only one exception) and 

Gcm2 expression in the endoderm grown in its 3D-preserved environment (pharyngeal 

explants) or when associated with an ectopic mesenchyme (somatopleural mesenchyme). 

These results suggest that inhibition of Notch signal in the epithelial and mesenchymal 

compartments may interfere with normal establishing of thymus and parathyroid glands 

rudiments. Moreover, it also shows similar Notch effects when the endoderm interacts with 

the natural or the ectopic mesenchymal tissues.  
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Only when pharyngeal explants were grown in the presence of 50M DAPT, we observed 

a slight increase in Foxn1 expression. Though unexpected, similar results were obtained 

from our group in previous studies (Figueiredo, 2011). Chicken pharyngeal explants of E3.5 

(corresponding to quail E3) grown in similar conditions and WM in situ hybridized showed a 

complete abrogation of Gcm2 signals while Foxn1 was randomly expressed.  

To validate Notch signaling effects by the inhibition of DAPT we pursued our studies using 

another Notch inhibitor, LY411575. Similar results were obtained with pharyngeal explants 

grown in the presence of LY411575 when compared with those grown with DAPT. In fact, a 

more pronounced effect was observed in Ly411575-explants. We are now evaluating the 

effect of this inhibitor in the culture of heterospecific association of tissues. 

The interaction between Notch signals and Foxn1 and Gcm2 expression has been 

described in other developmental contexts. In fact, a mutual regulation of Notch signaling 

and Foxn1 during hair follicle differentiation has been shown (Hu et al., 2010, Cai et al., 

2009), as well as a role for Gcm2 in the expression of Hes5 during the generation of neural 

stem cells (Hitoshi et al., 2011). 

Taken together, our results show a tendency for a reduction of Foxn1 and Gcm2 

expression (although not significant), in all condition where Notch signaling is inhibited. 

These suggest that the pharmacological inhibition of Notch impairs the normal 

organogenesis of the thymus and parathyroid glands.  

4.3. Genetic modification of the prospective domains of the thymus and parathyroid 

glands (3/4 PP endoderm) with gain-and loss-of-function of Notch 

To modulate Notch signaling exclusively in the prospective domains of the thymus and 

parathyroid glands, we genetically modified the 3/4 PP endoderm using a system of vectors 

combining a Tol2-mediated gene transfer technique and a Tetracycline-dependent 

conditional gene expression. To manipulate Notch signaling, three constructs were used: 

pT2K-ICN1eGFP (ICN1, gain-of-function), pT2K-DNMAML1eGFP (DNMAML1, loss-of-

function) [both developed in a previous work (Figueiredo, 2011)] and a new construct 

developed in this work, the pT2K-NLS-Cherry-DNMAML1eGFP (NLS-DNMAML1), carrying a 

more stable and efficient form of DNMAML1. 

To evaluate the loss-of-function of Notch in the prospective domains of the glands, the 

isolated 3/4 PP endoderm was genetically modified with the constructs (DNMAML1 or NLS-

DNMAML1) and grown for 48h in heterospecific association with non-modified ectopic 

mesenchyme.  We observed a slight reduction of Foxn1 and Gcm2 expression when low 

levels of the construct were observed. This is in agreement with our results obtained when 

Notch signaling was pharmacologically inhibited. However, samples with medium/high doses 

of the DNMAML1 construct showed an up-regulation of Gcm2 expression. This distinct effect 
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in Gcm2 expression may be dose-dependent and/or due to the different cellular interactions 

responses between the manipulated endoderm with different levels of Notch signal and the 

non-manipulated mesenchyme. We may further envisage a cell-autonomous effect of Notch 

signaling reduction (block) to promote parathyroid glands development. Though intriguing, 

the results obtained cannot be explained by the non-functional constructs as they were 

previously tested in vivo (data not shown from our team). The loss-of-function constructs 

(DNMAML1 or NLS-DNMAML1) were in ovo electroporated in the neural tube and the 

expected Hes5.1 reduction was observed (Vilas-Boas et al., 2011), confirming the constructs 

functionality.  

Finally, we evaluated the gain-of-function of Notch in the prospective domains of the 

glands by genetically modifying the endoderm with the ICN1 construct. Unexpectedly and 

similar to observed in the loss-of-function assays, when the endoderm was manipulated to 

over express ICN1 we observed a reduction of Foxn1 and an increase of Gcm2 expression. 

We are now conducting new experiments to evaluate the functionality of the ICN1 construct 

as its incapacity to activate Notch signaling may explain the results obtained.   

 

5. REFERENCES 

Alcobia, I., Gomes, A., Saavedra, P., Laranjeiro, R., Oliveira, S., Parreira, L. and Cidadão, A. 
(2011). Portrayal of the Notch system in embryonic stem cell-derived embryoid bodies. Cells, 
tissues, organs 193, 239–52. 

Alves, N. L., Huntington, N. D., Rodewald, H.-R. and Di Santo, J. P. (2009). Thymic epithelial cells: 
the multi-tasking framework of the T cell “cradle”. Trends in immunology 30, 468–74. 

Anderson, G. and Jenkinson, E. J. (2001). Lymphostromal interactions in thymic development and 
function. Nature reviews. Immunology 1, 31–40. 

Blackburn, C. C. and Manley, N. R. (2004). Developing a new paradigm for thymus organogenesis. 
Nature reviews. Immunology 4, 278–89. 

Blackburn, C. C., Augustine, C. L., Li, R., Harvey, R. P., Malin, M. a, Boyd, R. L., Miller, J. F. and 
Morahan, G. (1996). The nu gene acts cell-autonomously and is required for differentiation of 
thymic epithelial progenitors. Proceedings of the National Academy of Sciences of the United 
States of America 93, 5742–6. 

Bockman, D. and Kirby, M. (1984). Dependence of thymus development on derivatives of the neural 
crest. Science (New York, NY) 223, 498–500. 

Bray, S. J. (2006). Notch signalling: a simple pathway becomes complex. Nature reviews. Molecular 
cell biology 7, 678–89. 

Cai, J., Lee, J., Kopan, R. and Ma, L. (2009). Genetic interplays between Msx2 and Foxn1 are 
required for Notch1 expression and hair shaft differentiation. Developmental biology 326, 420–

430. 



31 
 

Candi, E., Rufini, A., Terrinoni, A., Giamboi-Miraglia, A., Lena, A. M., Mantovani, R., Knight, R. 
and Melino, G. (2007). DeltaNp63 regulates thymic development through enhanced expression 
of FgfR2 and Jag2. Proceedings of the National Academy of Sciences of the United States of 
America 104, 11999–2004. 

Conlon, R. a, Reaume, a G. and Rossant, J. (1995). Notch1 is required for the coordinate 
segmentation of somites. Development (Cambridge, England) 121, 1533–45. 

Dorshkind, K., Montecino-Rodriguez, E. and Signer, R. a J. (2009). The ageing immune system: is 
it ever too old to become young again? Nature reviews. Immunology 9, 57–62. 

Douarin, N. Le and Jotereau, F. (1975). Tracing of cells of the avian thymus through embryonic life in 
interspecific chimeras. The Journal of experimental medicine 142,. 

Dovey, H. F., John, V., Anderson, J. P., Chen, L. Z., De Saint Andrieu, P., Fang, L. Y., Freedman, 
S. B., Folmer, B., Goldbach, E., Holsztynska, E. J., et al. (2001). Functional gamma-secretase 
inhibitors reduce beta-amyloid peptide levels in brain. Journal of neurochemistry 76, 173–81. 

Farley, A. M., Morris, L. X., Vroegindeweij, E., Depreter, M. L. G., Vaidya, H., Stenhouse, F. H., 
Tomlinson, S. R., Anderson, R. a, Cupedo, T., Cornelissen, J. J., et al. (2013). Dynamics of 
thymus organogenesis and colonization in early human development. Development (Cambridge, 
England) 140, 2015–26. 

Fauq, A. H., Simpson, K., Maharvi, G. M., Golde, T. and Das, P. (2007). A multigram chemical 
synthesis of the g-secretase inhibitor LY411575 and its diastereoisomers. 17, 6392–6395. 

Figueiredo, M. (2011). The role of Notch signaling in thymic epithelium development. Master's thesis, 
Universidade de Lisboa. 

Fiorini, E., Merck, E., Wilson, A., Ferrero, I., Jiang, W., Koch, U., Auderset, F., Laurenti, E., 
Tacchini-Cottier, F., Pierres, M., et al. (2009). Dynamic regulation of notch 1 and notch 2 
surface expression during T cell development and activation revealed by novel monoclonal 
antibodies. Journal of immunology (Baltimore, Md.  : 1950) 183, 7212–22. 

Fontaine-Perus, J. C., Calman, F. M., Kaplan, C. and Le Douarin, N. M. (1981). Seeding of the 10-
day mouse embryo thymic rudiment by lymphocyte precursors in vitro. Journal of immunology 
(Baltimore, Md.  : 1950) 126, 2310–6. 

Ge, Q. and Zhao, Y. (2013). Evolution of thymus organogenesis. Developmental and comparative 
immunology 39, 85–90. 

Gilmour, J. (1939). The normal histology of the parathyroid glands. The Journal of Pathology and 
Bacteriology. 

Gordon, J. and Manley, N. R. (2011). Mechanisms of thymus organogenesis and morphogenesis. 
Development (Cambridge, England) 138, 3865–78. 

Gordon, J., Bennett, a R., Blackburn, C. C. and Manley, N. R. (2001). Gcm2 and Foxn1 mark early 
parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. 
Mechanisms of development 103, 141–3. 

Graham, A. and Richardson, J. (2012). Developmental and evolutionary origins of the pharyngeal 
apparatus. EvoDevo 3, 24. 

Greenwald, I. and Kovall, R. (2013). Notch signaling: genetics and structure. WormBook  : the online 
review of C. elegans biology 1–28. 



32 
 

Grevellec, A. and Tucker, A. S. (2010). The pharyngeal pouches and clefts: Development, evolution, 
structure and derivatives. Seminars in cell & developmental biology 21, 325–32. 

Griffith, A. V, Cardenas, K., Carter, C., Gordon, J., Iberg, A., Engleka, K., Epstein, J. a, Manley, 
N. R. and Richie, E. R. (2009). Increased thymus- and decreased parathyroid-fated organ 
domains in Splotch mutant embryos. Developmental biology 327, 216–27. 

Günther, T., Chen, Z. F., Kim, J., Priemel, M., Rueger, J. M., Amling, M., Moseley, J. M., Martin, T. 
J., Anderson, D. J. and Karsenty, G. (2000). Genetic ablation of parathyroid glands reveals 
another source of parathyroid hormone. Nature 406, 199–203. 

Hetzer-Egger, C., Schorpp, M., Haas-Assenbaum, A., Balling, R., Peters, H. and Boehm, T. 
(2002). Thymopoiesis requires Pax9 function in thymic epithelial cells. European journal of 
immunology 32, 1175–81. 

Hitoshi, S., Alexson, T., Tropepe, V., Donoviel, D., Elia, A. J., Nye, J. S., Conlon, R. A., Mak, T. 
W., Bernstein, A. and Kooy, D. Van Der (2002). Notch pathway molecules are essential for the 

maintenance , but not the generation , of mammalian neural stem cells. 846–858. 

Hitoshi, S., Ishino, Y., Kumar, A., Jasmine, S., Tanaka, K. F., Kondo, T., Kato, S., Hosoya, T., 
Hotta, Y. and Ikenaka, K. (2011). Mammalian Gcm genes induce Hes5 expression by active 
DNA demethylation and induce neural stem cells. Nature Neuroscience 14, 957–964. 

Hu, B., Lefort, K. and Qiu, W. (2010). Control of hair follicle cell fate by underlying mesenchyme 
through a CSL–Wnt5a–FoxN1 regulatory axis. Genes & … 1519–1532. 

Itoi, M., Kawamoto, H., Katsura, Y. and Amagai, T. (2001). Two distinct steps of immigration of 
hematopoietic progenitors into the early thymus anlage. International immunology 13, 1203–11. 

Jaleco, a C., Neves, H., Hooijberg, E., Gameiro, P., Clode, N., Haury, M., Henrique, D. and 
Parreira, L. (2001). Differential effects of Notch ligands Delta-1 and Jagged-1 in human 
lymphoid differentiation. The Journal of experimental medicine 194, 991–1002. 

Jiang, R., Lan, Y., Chapman, H. D., Shawber, C., Norton, C. R., Serreze, D. V., Weinmaster, G. 
and Gridley, T. (1998). Defects in limb, craniofacial, and thymic development in Jagged2 
mutant mice. Genes & Development 12, 1046–1057. 

Jiménez, E., Vicente, a, Sacedón, R., Muñoz, J. J., Weinmaster, G., Zapata, a G. and Varas, a 
(2001). Distinct mechanisms contribute to generate and change the CD4:CD8 cell ratio during 
thymus development: a role for the Notch ligand, Jagged1. Journal of immunology (Baltimore, 
Md.  : 1950) 166, 5898–908. 

Kageyama, R., Ohtsuka, T. and Kobayashi, T. (2007). The Hes gene family: repressors and 
oscillators that orchestrate embryogenesis. Development (Cambridge, England) 134, 1243–51. 

Koch, Ute Fiorini, Emma Benedito, Rui Besseyrias, Valerie Schuster-Gossler, Karin Pierres, 
Michel Manley, Nancy R Duarte, Antonio Macdonald, H. R. R. (2008). Delta-like 4 is the 
essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. The Journal 
of experimental medicine 205, 2515–23. 

Kopan, R. (2012). Notch signaling. Cold Spring Harbor perspectives in biology 4,. 

Kopan, R. and Ilagan, M. X. G. (2009). The canonical Notch signaling pathway: unfolding the 
activation mechanism. Cell 137, 216–33. 



33 
 

Koyanagi, A., Sekine, C. and Yagita, H. (2012). Expression of Notch receptors and ligands on 
immature and mature T cells. Biochemical and biophysical research communications 418, 799–

805. 

Ladi, E., Yin, X., Chtanova, T. and Robey, E. a (2006). Thymic microenvironments for T cell 
differentiation and selection. Nature immunology 7, 338–43. 

Laranjeiro, R., Alcobia, I., Neves, H., Gomes, A. C., Saavedra, P., Carvalho, C. C., Duarte, A., 
Cidadão, A. and Parreira, L. (2012). The notch ligand delta-like 4 regulates multiple stages of 
early hemato-vascular development. PloS one 7, e34553. 

Le Douarin, N. M. and Teillet, M. a (1973). The migration of neural crest cells to the wall of the 
digestive tract in avian embryo. Journal of embryology and experimental morphology 30, 31–48. 

Lindsay, E. a (2001). Chromosomal microdeletions: dissecting del22q11 syndrome. Nature reviews. 
Genetics 2, 858–68. 

Liu, Z., Shirakawa, T., Li, Y., Soma, A., Oka, M., Dotto, G. P., Fairman, R. M., Velazquez, O. C. 
and Herlyn, M. (2003). Regulation of Notch1 and Dll4 by Vascular Endothelial Growth Factor in 
Arterial Endothelial Cells  : Implications for Modulating Arteriogenesis and Angiogenesis. 23, 14–

25. 

Liu, Z., Yu, S. and Manley, N. R. (2007). Gcm2 is required for the differentiation and survival of 
parathyroid precursor cells in the parathyroid/thymus primordia. Developmental biology 305, 

333–46. 

Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time 
quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25, 402–8. 

Maillard, I., Weng, A. P., Carpenter, A. C., Rodriguez, C. G., Sai, H., Xu, L., Allman, D., Aster, J. 
C. and Pear, W. S. (2004). Mastermind critically regulates Notch-mediated lymphoid cell fate 
decisions. Blood 104, 1696–702. 

Maillard, I., Fang, T. and Pear, W. S. (2005). Regulation of lymphoid development, differentiation, 
and function by the Notch pathway. Annual review of immunology 23, 945–74. 

Manley, N. R. and Capecchi, M. R. (1995). The role of Hoxa-3 in mouse thymus and thyroid 
development. Development (Cambridge, England) 121, 1989–2003. 

Masuda, K., Germeraad, W. T. V, Satoh, R., Itoi, M., Ikawa, T., Minato, N., Katsura, Y., Van Ewijk, 
W. and Kawamoto, H. (2009). Notch activation in thymic epithelial cells induces development of 
thymic microenvironments. Molecular immunology 46, 1756–67. 

Nehls, M., Kyewski, B., Messerle, M., Waldschutz, R., Schuddekopf, K., Smith, a. J. H. and 
Boehm, T. (1996). Two Genetically Separable Steps in the Differentiation of Thymic Epithelium. 
Science 272, 886–889. 

Neves, H., Weerkamp, F., Gomes, A. C., Naber, B. a E., Gameiro, P., Becker, J. D., Lúcio, P., 
Clode, N., Van Dongen, J. J. M., Staal, F. J. T., et al. (2006). Effects of Delta1 and Jagged1 on 
early human hematopoiesis: correlation with expression of notch signaling-related genes in 
CD34+ cells. Stem cells (Dayton, Ohio) 24, 1328–37. 

Neves, H., Dupin, E., Parreira, L. and Le Douarin, N. M. (2012). Modulation of Bmp4 signalling in 
the epithelial-mesenchymal interactions that take place in early thymus and parathyroid 
development in avian embryos. Developmental biology 361, 208–19. 



34 
 

Nowell, C. S., Farley, A. M. and Blackburn, C. C. (2007). Thymus organogenesis and development 
of the thymic stroma. Methods in molecular biology (Clifton, N.J.) 380, 125–62. 

Okabe, M. and Graham, A. (2004). The origin of the parathyroid gland. Proceedings of the National 
Academy of Sciences of the United States of America 101, 17716–9. 

Owen, J. and Ritter, M. (1969). Tissue interaction in the development of thymus lymphocytes. The 
Journal of experimental medicine. 

Palmer, E. (2003). Negative selection--clearing out the bad apples from the T-cell repertoire. Nature 
reviews. Immunology 3, 383–91. 

Parreira, L., Neves, H. and Simões, S. (2003). Notch and lymphopoiesis: a view from the 
microenvironment. Seminars in Immunology 15, 81–89. 

Patel, S. R., Gordon, J., Mahbub, F., Blackburn, C. C. and Manley, N. R. (2006). Bmp4 and Noggin 
expression during early thymus and parathyroid organogenesis. Gene expression patterns  : 
GEP 6, 794–9. 

Peters, H., Neubuser, a., Kratochwil, K. and Balling, R. (1998). Pax9-deficient mice lack pharyngeal 
pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes & 
Development 12, 2735–2747. 

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. 
Nucleic acids research 29, e45. 

Radtke, F., Fasnacht, N. and Macdonald, H. R. (2010). Notch signaling in the immune system. 
Immunity 32, 14–27. 

Rodewald, H.-R. (2008). Thymus organogenesis. Annual review of immunology 26, 355–88. 

Sato, Y., Kasai, T., Nakagawa, S., Tanabe, K., Watanabe, T., Kawakami, K. and Takahashi, Y. 
(2007). Stable integration and conditional expression of electroporated transgenes in chicken 
embryos. Developmental biology 305, 616–24. 

Seefeldt, B., Kasper, R., Seidel, T., Tinnefeld, P., Dietz, K.-J., Heilemann, M. and Sauer, M. 
(2008). Fluorescent proteins for single-molecule fluorescence applications. Journal of 
biophotonics 1, 74–82. 

Shanley, D. P., Aw, D., Manley, N. R. and Palmer, D. B. (2009). An evolutionary perspective on the 
mechanisms of immunosenescence. Trends in immunology 30, 374–81. 

Tarek, K., Mohamed, M., Omar, B. and Hassina, B. (2012). Morpho-Histological Study of the 
Thymus of Broiler Chickens During Post-Hashing Age. International Journal of Poultry Science 
11, 78–80. 

Vilas-Boas, F., Fior, R., Swedlow, J. R., Storey, K. G. and Henrique, D. (2011a). A novel reporter of 
notch signalling indicates regulated and random Notch activation during vertebrate 
neurogenesis. BMC biology 9, 58. 

Wallin, J., Eibel, H., Neubüser, a, Wilting, J., Koseki, H. and Balling, R. (1996). Pax1 is expressed 
during development of the thymus epithelium and is required for normal T-cell maturation. 
Development (Cambridge, England) 122, 23–30. 

Watanabe, N., Tezuka, Y., Matsuno, K., Miyatani, S., Morimura, N., Yasuda, M., Fujimaki, R., 
Kuroda, K., Hiraki, Y., Hozumi, N., et al. (2003). Suppression of differentiation and proliferation 
of early chondrogenic cells by Notch. Journal of bone and mineral metabolism 21, 344–52. 



35 
 

Watanabe, T., Saito, D., Tanabe, K., Suetsugu, R., Nakaya, Y., Nakagawa, S. and Takahashi, Y. 
(2007). Tet-on inducible system combined with in ovo electroporation dissects multiple roles of 
genes in somitogenesis of chicken embryos. Developmental biology 305, 625–36. 

Weinmaster, G. (1997). The ins and outs of notch signaling. Molecular and cellular neurosciences 9, 

91–102. 

Xu, P.-X., Zheng, W., Laclef, C., Maire, P., Maas, R. L., Peters, H. and Xu, X. (2002). Eya1 is 
required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 
(Cambridge, England) 129, 3033–44. 

 

  



36 
 

6. APPENDIX 

 
Table 6-1 Sequence of primers used in qRT-PCR assays and the respective product size and annealing 
temperature. 

Primer 
name 

Forward primer (5'-3') Reverse primer (5'-3') 
Product 
size (bp) 

Annealing 
temperature 

(ºC) 

qGAPDH GAGTCCCCGCTCTTCACCACC GGAAGAATTTGGAGGAGGAG 97 62 

cGAPDH GGTCATCCATGACAACTTTGG CATCCACCGTCTTCTGTGTG 83 62 

Foxn1 CGACATCGATGCTCTGAATC AGGCTGTCATCCTTCAGCTC 81 60 

Gcm2 TCAGAATTCCCAGAAAAAGAG GAGGGCAGATTTTGCATGTT 93 60 

Hes5.1 CCGACATCCTGGAGATGACT AGGCATACCCTTCGCAGTAA 99 60 

DNMAML1 CTGGAGCGCCAGCAAACCTT TCATCAGTGCTTGCCGGCCC 78 62 

ICN1 TAGTCAGCTGACGCGTGCTA TTGCTCGACTCCGTCACTTTG 106 60 

GFP CGACAACCACTACCTGAGCA GAACTCCAGCAGGACCATGT 82 60 

 

Table 6-2 qRT-PCR primers for each evaluate gene and the respective sample used for calibration curves 
performing. 

Primer name Gene Sample used for calibration curve 

qGAPDH Quail GAPDH Quail E9 thymus 

cGAPDH Chicken GAPDH Chicken E18 thyroid 

Foxn1 Foxn1 Quail E9 thymus 

Gcm2 Gcm2 Quail E9 parathyroid 

Hes5.1 Hes5.1 Chicken Neural Tube 48h 

DNMAML1 DNMAML1 constructs pT2K-DNMAML1eGFP or pT2K-NLS-Cherry-DNMAML1eGFP 

ICN1 ICN1 construct pT2K-ICN1eGFP 

GFP GFP OP9-vector 
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Table 6-3 Foxn1 (A), Gcm2 (B) and Hes5.1 (C) expression in the heterospecific association of tissues 
electroporated with the control vector (pT2K-BI-TREeGFP), pT2K-DNMAML1eGFP or pT2K-NLS-Cherry-
DNMAML1eGFP. 
 

A 
Foxn1 pT2K-BI-TREeGFP DNMAML1 Low DNMAML1 Medium DNMAML1 High NLS-DNMAML1 

Average 1,000 0,132 0,411 0,504 0,446 

StDev 1,129 0,100 0,420 0,567 0,406 

p-value - 0,314 0,469 0,546 0,493 

 

B 

     

Gcm2 pT2K-BI-TREeGFP DNMAML1 Low DNMAML1 Medium DNMAML1 High NLS-DNMAML1 

Average 1,000 0,427 3,251 5,983 1,036 

StDev 1,330 0,414 2,510 4,069 1,002 

p-value - 0,540 0,262 0,159 0,972 

 

C 

     

Hes5.1 pT2K-BI-TREeGFP DNMAML1 Low DNMAML1 Medium DNMAML1 High NLS-DNMAML1 

Average 1,000 0,115 0,112 0,186 0,181 

StDev 0,644 0,115 0,068 0,145 0,080 

p-value - 0,136 0,138 0,154 0,157 

 

 

 

Table 6-4 Foxn1 (A), Gcm2 (B) and Hes5.1 (C) expression in the heterospecific association of tissues 
electroporated with the control vector (pT2K-BI-TREeGFP) or pT2K-ICN1eGFP. 

 
 A 

Foxn1 pT2K-BI-TREeGFP ICN1 Low/Medium ICN1 High 

Average 1,000 0,133 0,229 

StDev 1,129 0,061 0,085 

p-value - 0,315 0,358 

 
B 

   

Gcm2 pT2K-BI-TREeGFP ICN1 Low/Medium ICN1 High 

Average 1,000 3,170 2,196 

StDev 1,330 4,336 2,753 

p-value - 0,606 0,486 

 
C 

   

Hes5.1 pT2K-BI-TREeGFP ICN1 Low/Medium ICN1 High 

Average 1,000 0,429 0,059 

StDev 0,644 0,316 0,010 

p-value - 0,281 0,127 
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Table 6-5 Buffers composition for multiple uses: TAE 1X (A) and PBS 1x (B). 

 

A 

TAE 1X  

EDTA (pH 8) 1mM 

Acetic acid 20mM 

Tris base 40mM 

 

B 

PBS 1X  

NaCl 1mM 

KCl 20mM 

Na2HO4 40mM 

KH2PO4  

Adjust pH to 7.4 with HCl  

 

 

 

Table 6-6 Bacterial growh media: LB medium (A) and LB agar (B) 

 

A 

Lysogeny Broth (LB) medium  

Tryptone 1% 

Yeast extract 0.5% 

NaCl 1% 

 

B 

LB agar  

7.5g agar per 500mL of LB medium  

 

 

 


