
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

ACHIEVING FAULT-TOLERANT CONSENSUS IN AD
HOC NETWORKS

David Rogério Póvoa de Matos

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

2013

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

ACHIEVING FAULT-TOLERANT CONSENSUS IN AD
HOC NETWORKS

David Rogério Póvoa de Matos

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

Dissertação orientada pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

2013

This work was partially supported by:
CE through project FP7-257475 (MASSIF)

FCT through the multianual program (LaSIGE)
PTDC/EIA-EIA/113729/2009 (SITAN)

Acknowledgments

First, I would like to thank my advisor, prof. Nuno Neves, for accepting me as his student,
helping me with every issue I faced during the research period, establish a high bar for
every task assigned to me, improving the overall quality of my work and for his patience
in clarifying every question I had.

I want to acknowledge Faculty of Sciences, particularly the Department of Informa-
tics. During this years I had the opportunity to learn so much, acquire lots of good ex-
periences, met good colleagues and Professors who were very helpful in every issue I
faced. I also want to thank the Navigators research team for their welcoming, support and
fellowship.

I also want to thank my close friends for the moral support and company during hard
times.

A very special thank goes to my lovely girlfriend, Raquel, who were always there for
me and encourage me to never give up every time I had second thoughts.

Finally, I want to thank my mother and my father for giving me the opportunity to
study away from home and for giving me everything I needed to complete my academic
course.

À Raquel, à minha famı́lia e amigos

Abstract

Consensus plays a fundamental role in distributed systems. This operation consists
in having every process in a distributed system, or a subset of processes, to agree upon
a value that was proposed by any of the processes. Consensus is used to solve several
problems in distributed systems computation, such as: state machine replication, leader
election and atomic broadcast, allowing the coordination of the network. Its applicability
becomes more important and difficult to implement in wireless ad hoc networks that are
vulnerable to intrusions. When dealing with a wireless ad hoc network, specially one
composed by mobile devices that are constantly moving, there are several obstacles that
have to be overcome such as the unreliability in the communication, the hardware lim-
itations of the devices, the limited communication range and the exposure to malicious
users.

The project consists in the design, implementation, test and analysis of Byzantine
fault-tolerant consensus protocols for wireless ad hoc networks. It is assumed that the
number of participants is unknown and the consensus protocols execute in a group of
processes called sink. The protocols are byzantine fault-tolerant and circumvent both
FLP and Santoro-Widmayer impossibility results. Three forms of consensus protocols
were considered: binary, multivalued and vector. The protocols were organized in a stack,
where lower level protocols were used to build higher ones. The stack was implemented
as a library and was tested in a simulation environment. Some preliminary tests were also
performed with Android devices. The evaluation of the protocols shows that they exhibit
good performance in several scenarios and even under attack.

Keywords: Distributed systems, dependability, security, fault tolerance, intrusion
tolerance, agreement, consensus, ad hoc wireless networks

Resumo

O consenso tem um papel fundamental em sistemas distribuı́dos. Esta operação con-
siste em ter todos os processos num sistema distribuı́do, ou um subconjunto de processos,
a acordar num valor que foi proposto por algum dos processos. O consenso é usado para
resolver vários problemas na computação de um sistema distribuı́do, como por exem-
plo: máquina de estados replicada, eleição de lı́der e difusão atómica, permitindo a
coordenação da rede. A sua utilidade torna-se mais importante e difı́cil de implemen-
tar em redes ad hoc móveis sem fios que estão vulneráveis a intrusões. Quando se está a
lidar com uma rede ad hoc sem fios, especialmente uma composta por dispositivos móveis
que apresentam uma mobilidade constante, existe um conjunto de obstáculos relaciona-
dos com a falta de fiabilidade na comunicação, as limitações dos equipamentos, o seu
reduzido alcance de comunicação e a exposição a utilizadores mal intencionados.

O projecto consiste no desenho, implementação, teste e análise de protocolos de con-
senso tolerântes a faltas bizantinas para redes ad hoc sem fios. É assumido que o número
de participantes é desconhecido e os protocolos de consenso são executados num grupo de
processos denominado poço. Os protocolos são tolerântes a faltas bizantinas e contornam
of resultados de impossibilidade de FLP e de Santoro-Widmayer. Foram considerados
três tipos de protocolos de consenso: binário, multi-valor e vector. Os protocolos estão
organizados numa pilha, onde protocolos de baixo nı́vel foram usados para construir os
protocolos de nı́veis superiores. A pilha foi implementada como uma biblioteca e foi
testada em ambiente de simulação. Alguns testes preliminares foram também efectuados
com dispositivos Android. A avaliação dos protocolos revela que estes exibem um bom
desempenho em vários cenários e mesmo sobre ataque.

Palavras-chave: Sistemas distribuı́dos, confiabilidade, segurança, tolerância a faltas,
tolerância a intrusões, acordo, consenso, redes ad hoc sem fios

Resumo Alargado

As redes ad hoc sem fios são um importante avanço na evolução das redes sem fios. As
suas caracterı́sticas permitem a operabilidade da rede em caso de catástrofes naturais, em
operações militares, ou no dia a dia em situações em que o acesso a um meio de controlo
centralizado é escasso ou até mesmo inexistente. Ao contrário das redes tradicionais, os
dispositivos integrantes de uma rede ad hoc sem fios apresentam limitações na capaci-
dade de processamento, na energia disponı́vel, no alcance da transmissão e recepção e na
largura de banda. Estas limitações têm de ser tomadas em conta quando se constrõem
protocolos de comunicação e coordenação.

As redes ad hoc sem fios podem ser compostas por dispositvos pessoais móveis:
telémoveis, pdas, computadores portáteis, tablets, entre outros, que já possuem algum
poder computacional mas que apresentam um comportamento móvel e podem não estar
continuamente ligados em rede. Outro tipo de redes ad hoc sem fios são as redes de senso-
res que são compostas por dispositivos de baixa capacidade de processamento e memória.
O uso de operações que exigem elevado processamento por parte dos dispositivos, e pro-
tocolos que efectuam demasiadas transmissões de mensagens estão fora de questão. Em
qualquer um dos casos não sabemos ao certo quantos dispositivos fazem parte da rede
num dado instante uma vez que alguns deles podem se mover ou simplesmente desligar
da rede e mais tarde voltar.

Para além das restrições associadas às limitações energéticas e de processamento dos
dispositivos também temos de lidar com a hipótese de existirem utilizadores mal inten-
cionados, que se interponham na rede com vista a adulterar o processamento do sistema
ou simplesmente a quebrar a prestação do serviço. Esta hipótese é bastante provável uma
vez que os nós comunicam através de uma redes sem fios, sendo possı́vel que qualquer
dispositivo que se encontre na vizinhança se interponha na rede.

Uma vez que este tipo de redes não tem controlo centralizado, por vezes é necessário
que todos os intervenientes mantenham uma coordenação para garantir um uso adequado
e eficiente da rede. A coordenação pode ser necessária por várias razões, por exemplo:
para garantir que não estejam vários nós simultâneamente a transmitir na rede o que pode
causar ruı́do e impedir qualquer comunicação naquele instante; para garantir a operabili-
dade do sistema, se o sistema for uma rede de sensores e actuadores é fundamental que

os actuadores actuem com base nos dados adquiridos pelos sensores; para eleição de um
coordenador da rede, um lı́der, que tenha uma tarefa especial na gestão da rede.

Para conseguir a coordenação da rede recorre-se a uma operação de consenso em que
todos os nós escolhem o mesmo valor dentro de um conjunto de valores propostos. A
concretização do consenso não é trivial e está provado que não tem solução em sistemas
assı́ncronos se houver a possibilidade de um processo falhar (resultado de impossibili-
dade de FLP [8]). Outro resultado de impossibilidade é o de Santoro e Widmayer que
estabelece que não existe solução determinı́stica para o problema de consenso mesmo
com fortes pressupostos de sincronismo se pelo menos n-1 mensagens se perderem [22],
o que é bastante provável neste tipo de redes (se um nó falhar perdem-se n mensagens
num sistema com n nós).

Num cenário realista em que ocorreu uma catástrofe natural ou durante uma complexa
operação militar, pode não se saber ao certo quantos ou quais os intervenientes que fazem
parte da rede, e não existe uma forma simples de os reunir fisicamente para se trocar os
parâmetros de segurança (chaves usadas na autenticação). Nesta situação é importante
que os dispositivos cooperem para que se consiga coordenar a rede. Cavin, Sasson e
Schiper apresentaram um algoritmo de consenso para esta situação denominado consenso
com participantes desconhecidos [4] em que não se sabe quem são os participantes nem
quantos são. Os participantes da rede conhecem apenas parte de rede e quando é ne-
cessário atingir um consenso apenas um núcleo da rede executa o algoritmo de consenso
e transmite o valor decidido ao resto da rede.

Esta tese tem o objectivo estudar algoritmos de consenso e a sua concretização numa
pilha de protocolos especializada para redes ad hoc sem fios que seja tolerante a faltas
bizantinas. A pilha pressupõe a existência de um conjunto de protocolos de suporte e
comunicação segura em redes ad hoc, pois tira partido de uma operação de difusão fiável
autenticada, e fornece uma primitiva de consenso. Da mesma maneira que esta pilha
também está preparada para que outros protocolos sejam construı́dos no topo dela, por
exemplo para a difusão atómica.

Palavras-chave: Sistemas distribuı́dos, confiabilidade, segurança, tolerância a faltas,
tolerância a intrusões, acordo, consenso, redes ad hoc sem fios

Contents

List of Figures xxii

List of Tables xxv

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Contributions of the Thesis . 2
1.4 Document Structure . 3

2 Related Work 5
2.1 The Consensus Problem . 5

2.1.1 System Model . 6
2.1.2 Impossibility Results . 7
2.1.3 The Byzantine Generals Problem 9

2.2 Ad hoc Wireless Networks . 9
2.2.1 Common Attacks in Wireless Ad hoc Networks 9
2.2.2 Consensus in Ad hoc Wireless Networks 11

3 Binary, Multivalued and Vector consensus protocols 13
3.1 System Model . 13
3.2 Protocol Stack . 15

3.2.1 Binary Consensus . 15
3.2.2 Multivalued Consensus . 23
3.2.3 Vector Consensus . 25

4 Implementation and Evaluation 29
4.1 Design and Implementation of the Protocol Stack 29

4.1.1 Single-threaded and Multi-threaded Mode 29
4.1.2 Protocol Context . 31
4.1.3 Library Architecture . 31
4.1.4 Application Programming Interface 32

xvii

4.2 NS-3 Simulation . 38
4.3 Android Implementation . 39
4.4 Simulation Results . 40

4.4.1 Experimental Environment . 40
4.4.2 Binary Consensus . 41
4.4.3 Multivalued Consensus . 49
4.4.4 Vector Consensus . 51

5 Conclusion 55
5.1 Discussion of the results . 55
5.2 Future Work . 56

Abbreviations 57

Bibliography 61

xviii

xx

List of Figures

3.1 Protocol stack . 14
3.2 Interactions between the protocols . 16
3.3 Execution example of Algorithm 1 . 19

4.1 Class diagram of the android network library 33
4.2 Sequence diagram of a vector consensus execution 34
4.3 Latency of binary consensus with divergent values; byzantine faults affect

the identity of the sender . 42
4.4 Latency of binary consensus with divergent values; byzantine faults affect

the phase number . 42
4.5 Latency of binary consensus with divergent values; byzantine faults affect

the status value . 43
4.6 Latency of binary consensus with divergent values; byzantine faults affect

the proposal value . 43
4.7 Latency of binary consensus with unanimous values; byzantine faults af-

fect the identity of the sender . 44
4.8 Latency of binary consensus with unanimous values; byzantine faults af-

fect the phase value . 44
4.9 Latency of binary consensus with unanimous values; byzantine faults af-

fect the status value . 45
4.10 Latency of binary consensus with unanimous values; byzantine faults af-

fect the proposal value . 45
4.11 Number of phases of binary consensus with divergent values; byzantine

faults affect the identity of the sender . 46
4.12 Number of phases of binary consensus with divergent values; byzantine

faults affect the phase value . 46
4.13 Number of phases of binary consensus with divergent values; byzantine

faults affect the status value . 47
4.14 Number of phases of binary consensus with divergent values; byzantine

faults affect the proposal value . 47
4.15 Exchanged messages of binary consensus with unanimous values; byzan-

tine faults affect the proposal value . 48

xxi

4.16 Exchanged messages of binary consensus with divergent values; byzan-
tine faults affect the proposal value . 48

4.17 Latency of multivalued consensus with divergent values; byzantine faults
affect the identity of the sender . 49

4.18 Latency of multivalued consensus with divergent values; byzantine faults
affect the proposal value . 50

4.19 Latency of multivalued consensus with unanimous values; byzantine faults
affect the identity of the sender . 50

4.20 Latency of multivalued consensus with unanimous values; byzantine faults
affect the proposal value . 51

4.21 Latency of vector consensus with divergent values; byzantine faults affect
the identity of the sender . 51

4.22 Latency of vector consensus with divergent values; byzantine faults affect
the proposal value . 52

4.23 Latency of vector consensus with unanimous values; byzantine faults af-
fect the identity of the sender . 52

4.24 Latency of vector consensus with unanimous values; byzantine faults af-
fect the proposal value . 53

xxii

xxiv

List of Tables

3.1 Example of table V Ki with the messages signatures for process pi 19

xxv

List of Algorithms

1 Turquois: a Byzantine k-consensus algorithm 17
2 validate(m) . 20
3 validatePhase(m, count) . 21
4 validateStatus(m, dCount0, dCount1, dCount⊥, dCounttotal) 21
5 validateV alue(m, count0, count1) . 23
6 Multivalued consensus protocol . 25
7 Vector consensus protocol . 26
8 selectV alue(j, arrayi) . 27

xxvii

Chapter 1

Introduction

In the last years there has been a proliferation of mobile devices: laptops are increasingly
lighter and powerful, and smartphones and tablets are becoming much more common. All
these devices share a group of characteristics: wireless communication, limited process-
ing, memory and battery power, and some level of mobility.

There is a range of distributed applications that can be developed for this kind of
devices, such as: productivity tools for groups, schedulers, chat applications, save and
rescue applications for emergency scenarios. These distributed applications take advan-
tage of the wireless communication capacity and mobility of the devices, but must deal
with the processing, memory and autonomy limitations.

A network composed only by mobile devices (from now on designated processes) is
called Mobile Ad hoc NETwork (MANET). These networks are self organized because
there is no centralized unit to configure and manage them. These networks exhibit several
limitations: unreliability of the communication medium, due to noise in the communica-
tion channel or obstacles to messages transmission; unreliability of the processes, as they
may disconnect at any time or be apart from the network; and asynchrony of message
delivery.

The lack of a central coordinator to configure and manage the network hampers their
management. Every management decision must be taken by the group and they must
agree on the decision taken. The management of the network requires several coordination
actions, such as: agreeing on a unique process to be leader; deciding the ordering of the
received messages; assigning roles to processes; deciding routes. Also, several distributed
applications need the agreement on some specific values.

A fundamental operation used to coordinate the network is called consensus. The
consensus problem attempts to reach an agreement on some data value among a group
of processes given some information that is proposed by each one of them. Consensus
solves several problems, such as: leader election, state machine replication and atomic
broadcast. It provides a means of agreement to a distributed application.

1

Chapter 1. Introduction 2

1.1 Motivation

Consensus is a crucial operation to coordinate and configure a MANET. However, achiev-
ing consensus in such system model it is a very difficult operation. Most consensus al-
gorithms do not consider the system model of a MANET, making them useless in this
kind of networks. The mobility of the processes causes message loss, the wireless com-
munication is unreliable and asynchronous. It was proven that it is impossible to reach
agreement in asynchronous systems in the presence of certain faults [8][22]. Having a
consensus protocol specific for this kind of network and that is able to circumvent [8][22]
would be very helpful to manage and configure such network and to assist the develop-
ment of distributed applications.

Developing distributed applications can be a very difficult task, specially in a MANET
system. The MANET system presents several obstacles due to the unreliability of wireless
communication and mobility and fault model of the processes. Additionally, a program-
mer must assume the existence of byzantine processes, since the wireless communication
is exposed. The programmer needs to ensure the network is correctly configured and
must cope with the unreliability of the communication medium and the possible faults
the processes may suffer. Having a library that deals with these problems would assist
the developers work and would allow the implementation of other protocols that need a
consensus primitive, such as atomic broadcast.

1.2 Objectives

Developing distributed applications for mobile devices assuming the presence of byzan-
tine faults is very difficult and there is no framework providing a coordination primitive.
Also the existent multivalued and vector consensus protocols do not consider the chosen
system model and fault model. So the objectives of this work are:

• the study of three byzantine fault-tolerant consensus protocols: binary, multivalued
and vector;

• the adaptation of existing protocols [17] [6] so they can fit the MANET system
model;

• the implementation of a protocol stack with the three consensus protocols;

• the evaluation of the protocol stack in the Network Simulator-3 (NS-3) simulator
[10].

1.3 Contributions of the Thesis

The contributions of this thesis are:

Chapter 1. Introduction 3

• a new protocol for vector consensus and the adaptation of the multivalued consensus
protocol of [6] to MANETs. A new message validation process was also created
for the binary consensus of [17];

• the implementation and evaluation with the network simulator NS-3 [10] of three
consensus protocols for MANETs: binary, multivalued and a vector;

• the preliminary implementation of the studied protocols in the mobile platform
Android[20], as a network library for distributed applications.

• some of the results of the thesis were presented in a paper in the INFORUM’13
Simpósio de Informática, with the title ”MiCCS4Mobile - Middleware para Comunicação
e Coordenação Segura em Redes Ad-hoc”.

1.4 Document Structure

This document is organized as follows:

• Chapter 2 – Related work - short description about the research and developed work
made so far in this area: presents the consensus problem and the Michael J. Fischer,
Nancy Lynch, and Mike Paterson (FLP) and Santoro-Widmayer impossibility re-
sults; describes some of the research in ad hoc wireless networks explaining its
limitations, respective attacks and the consensus protocols specific for this kind of
networks.

• Chapter 3 – Binary, Multivalued and Vector consensus protocols - a formal defini-
tion of the considered system model, the fault model and the guarantees provided
by each of the protocols. The modifications to the validation process of binary
consensus protocol are described. The adaptations to the multivalued and the new
vector consensus protocols for MANET are also discussed.

• Chapter 4 - Implementation and evaluation - A full description of the design and
implementation of the stack of consensus protocols. The simulation and the execu-
tion environment used to evaluate the protocol stack are also explained; the results,
organized by protocol and execution scenarios, are presented and discussed.

• Conclusion - reviews of the developed work listing the accomplished results and
the aspects that could be improved. Future work is presented with possible features
that can be implemented.

Chapter 1. Introduction 4

Chapter 2

Related Work

This chapter explains the related work made concerning byzantine fault-tolerant consen-
sus for wireless ad hoc networks. Section 2.1 describes in detail the consensus problem,
the system model and its particularities and, the main impossibility results and how it is
possible to circumvent them. Section 2.2 explains the characteristics of a wireless ad hoc
network, the specific attacks to these networks, and how consensus can be achieved by
introducing two protocols.

2.1 The Consensus Problem

Every distributed system needs its processes to agree on one or more values. Agree-
ment must be an unanimous operation among the correct processes and must resist to the
failures that may occur, whether they are of accidental causes or a malicious attempt to
corrupt the system.

The agreement problem in distributed systems is generalized into a consensus abstrac-
tion [25]. The consensus problem consists in having every process from the group to agree
on a value which was previously proposed by these processes. The consensus problem is
equivalent to the state-machine replication problem and atomic broadcast.

A formal presentation of the consensus problem assumes a known set of n processes.
If a process executes the protocol from beginning until the end without failing or deviating
from the protocol it will be considered correct, otherwise it will be faulty. Each process
pi has a unique identifier i which is known by every process in the group. The operation
starts when every correct process proposes a value vi and terminates when the all the
processes decide the same value v.

A typical consensus protocol provides the following properties:

• Validity. If every correct process proposes the same value v, then any process that
decides, decides v.

• Agreement. No two correct processes decide differently.

5

Chapter 2. Related Work 6

• Termination. Every correct process decides.

Depending on the system model these properties may vary to adjust to the system’s lim-
itations. The validity property guarantees that the processes decision is based on the
proposal values and it is not a deterministic value that relive the interaction between the
processes. The agreement property if essential for the purpose of the operation, without
this guarantee a consensus operation would be useless. Finally, the termination property
ensures that the protocol does something.

The properties can be grouped into two categories. Validity and agreement are safety
properties, i.e., they ensure that the protocol does not do unwanted things. Termination is
a liveness property which ensures that something is done during the execution.

2.1.1 System Model

The system model influences how the protocol works in order to provide a consensus
operation. The system model is defined in terms of how activities proceed in the system
and the kind of faults that may occur.

Timing Model

The timing model defines how the system executes its tasks and the processing duration.
There are two main timing models: synchronous and asynchronous.

Synchronous system. Assumes that there is a known upper bound in the message trans-
mission and in the processing time of the processes. Formally [9], a synchronous system
is one that guarantees:

• there is a known upper bound on the time required by any process to execute a
computational step;

• there is a known upper bound on message delay; this consists in the time it takes to
send, transport, and receive a message over any link;

• every process has a local clock with a known bounded rate of drift with respect of
real time.

These properties allow the system to detect failures by measuring the time that is taken by
a the process to transmit a message. If the process exceeds the maximum delay of message
transmission and processing time then one can assume that there was a failure. A failure
detection mechanism is a very helpful tool to achieve consensus. When a process fails,
it is excluded from the group of correct processes, so it does not violate the termination
property.

Chapter 2. Related Work 7

Asynchronous system. An asynchronous system is the opposite of the synchronous. In
this system model there is no assumption about the amount of time needed for message
transmission or processing time. This characteristic makes impossible to know when
processes fail. In an asynchronous system the consensus operation is more difficult to
accomplish (see below).

Fault Model

A fault model defines the kind of faults that may occur in the system [9]. A fault occurs
when a process fails to do what it is expected to do, which can be related to failing to send
a message or to deviating from the protocol. The faults can be classified in two groups:

• omissive faults: when an expected message from a process fails to be delivered.
These faults can be caused by broken communication channels or by processes that
crashed;

• byzantine faults: it is an arbitrary fault that occurs when a process does something
that varies from the protocol specification. This fault can be caused intentionally to
corrupt the system by breaching the protocol properties.

2.1.2 Impossibility Results

Achieving consensus is a difficult problem. In some system models with certain charac-
teristics it was proved that it has no deterministic solution. This section describes two
impossibility results: the FLP and the Santoro-Widmayer impossibility results.

The FLP Impossibility Result

Fischer, Lynch and Paterson established an impossibility result [8] to solve deterministic
consensus in an asynchronous system if only one process fails. The impossibility result
assumes an asynchronous system composed by n processes with reliable channels and
assume that processes can fail by crashing. This impossibility result affects systems that
assume byzantine faults because a byzantine process may fail arbitrarily. The result is
related to the fact that in an asynchronous system there is no way to know, for sure, if
processes failed. When a process does not receive a message from a process p this can
be caused by the fact that p failed (by crashing) or because it took longer to transmit the
message. This condition can cause the processes to wait indefinitely.

Circumventing the FLP impossibility result. Although it is impossible to achieve con-
sensus in asynchronous systems if only one process fails, there are some techniques that
allow to circumvent the FLP result [25]:

Chapter 2. Related Work 8

• Partial synchrony: although it is proven that it is impossible to achieve consen-
sus in asynchronous systems, that does not necessarily means that a complete syn-
chrony is needed. The solution consists in declaring that some parts of the system
can be synchronous while the remaing parts are asynchronous and defining which
parts of the system need synchrony in order to achieve consensus;

• Failure detector: this technique consists of having a special failure detector that
provides information about which processes have failed. The consensus protocol
can take advantage of this information to ensure that a decision is taken.

• wormholes: the wormhole technique is an architectural hybridization that consists
in enhancing certain parts of the system in order to provide stronger properties
not provided by the standard system. In this technique some support services can
execute inside a wormhole, which can be built to guarantee timely behavior and
be immune to byzantine faults. The consensus protocol then uses the service to
ensure termination. This mechanism requires implementation of such a wormhole
in the system, which can be difficult in some environments like an ad hoc wireless
network;

• randomization: the randomization technique circumvents the FLP impossibility
result by discarding the deterministic requirement. The protocols considered in the
impossibility result assume that the algorithms are deterministic, which means that
for a given input the system will always return the same output. If instead of having
a fully deterministic algorithm, some parts of it are random, then it would be pos-
sible to achieve consensus with a probability. The technique consists in having a
protocol that makes progress in rounds where some value of the protocol is gener-
ated randomly. The advantage of this approach is that it does not need to alter any
assumption about the environment.

Randomized consensus protocols use a virtual coin to generate random values to
the process. There are two kinds of randomized consensus protocols: local virtual
coin, each process has an internal mechanism that returns a random value; shared
virtual coin, the mechanism generates the same random value to be used by every
process. The binary consensus protocol considered in this work is a local virtual
coin protocol.

The Santoro-Widmayer Impossibility Result

The Santoro-Widmayer impossibility result [22] is associated with systems in which fail-
ures may occur in the communication links. This result assumes a synchronous system
in which both the transmission and processing delay are bound by a known constant. It

Chapter 2. Related Work 9

concerns a specific instance of consensus called k-agreement. A k-agreement consen-
sus requires that at least k > n

2
out of n processes agree on a value v ∈ {0, 1}. The

result states that there is no deterministic solution to achieve k-agreement in a system
composed by n processes if more than n − 2 messages can be lost during a communi-
cation step. It only takes one process to fail to lose n − 1 messages. Most of the tech-
niques utilized to circumvent the FLP impossibility result are not effective to circumvent
the Santoro-Widamyer impossibility result because it assumes a completely synchronous
system. Nevertheless, the protocol used in this project circumvents both impossibility
results using randomization.

2.1.3 The Byzantine Generals Problem

The Byzantine Generals Problem [15] is an agreement problem in which generals of the
of Byzantine army have to make a decision about attacking or not a castle. The generals
communicate with each other through messengers. Each general chooses to attack or not.
All the generals must agree with the same action but some of them are traitors and they
may mislead other generals to perform the wrong action. There is no solution to this
problem for n < 3 ∗ f + 1, where n is the total number of generals and f the total number
of traitors. This problem is similar to the binary consensus problem and it helps to define
the correct f (number of Byzantine faulty processes) in our system.

2.2 Ad hoc Wireless Networks

Ad hoc wireless networks [27] are self organized networks composed by mobile devices
such as laptops, smartphones, tablets, Personal Digital Assistant (PDA)s and other mobile
devices with wireless communication capabilities. They dispense the existence of a cen-
tralized device to control and manage the network. This characteristic makes them useful
to scenarios of disaster relief, conference, and battlefield environments.

The nature of ad hoc networks and the wireless and mobile communications exhibit
several issues and limitations such as: lack of bandwidth optimization and power control,
poor quality of transmission due to noise or obstacles. Also the inexistence of a central in-
frastructure to configure the network, discover the devices, maintain the topology, assign
addresses to the devices and resolve routing aspects makes these networks a specific topic
of research and development. There are several protocols for this kind of networks that
deal with different problems from the standard networks to accomplish the same goals.

2.2.1 Common Attacks in Wireless Ad hoc Networks

The nature of ad hoc wireless networks and the exposure of the communication reveal
many vulnerabilities and consequently several possible attacks that can be performed.

Chapter 2. Related Work 10

At the route discovery phase and during maintenance, malicious devices can mon-
itor the traffic and use this information to deceive the remaining nodes by transmitting
false information of the network topology, tampering the Internet Protocol (IP) Addresses
of the data packets and also identifying resources ID. Attacks can be grouped into two
categories: passive attacks and active attacks.

Passive attacks. In this kind of attacks the adversary monitors the network traffic and
it does not disturb the network operations. It is very difficult to discover such an attack
since the attacker does not perform any detectable action. By monitoring the traffic in
the network, a malicious user may obtain sensitive information that it can use to perform
active attacks. Passive attacks are usually the first step of an attacker, where it collects
sensitive information, like cryptographic and network parameters.

Active attacks. It is called an active attack when an attacker attempts to modify or
destroy the data packets being exchanged between source and destination. By doing this
an attacker is able to manipulate the protocol execution. These attacks are easier to detect
than the passive attacks. Active attacks can be:

• based on modification: malicious processes may fake routes so that the packets do
not reach the final destination. This attack can be classified as a redirection and a
Denial of Service (DOS) attack;

• impersonation attacks: malicious processes perform these attacks in order to im-
personate other processes by changing their IP or Media Access Control (MAC)
addresses. This is also called spoofing.

• creating information: there are several variants of this attack [19], which can be
performed by fabricating information. Three examples of this attacks are:

– falsification of route error messages: a malicious process sends fake and in-
correct route error messages from some correct process to force the routing
protocol to remove it;

– route cache poisoning: when the routes are being calculated, a malicious pro-
cess sends spoofed packets in order to congest the network, make it inaccessi-
ble or make it slower by suggesting a least advantageous path;

– routing attacks: a malicious process inserts itself between correct processes to
absorb the communication. Later it can use the received packets and resend
them and waste battery power and network bandwidth. Moreover, it is able to
flood the network by broadcasting the received packets to every process [26].

Chapter 2. Related Work 11

Other attacks. There is another group of attacks which are more sophisticated.

• Wormhole attack: connects two parts of the network via one exclusive link con-
trolled by the attacker. A malicious process is placed in the link and tunnels the
communication [12], [23] and [14].

• Black hole attack: a malicious process inserts itself between the communication
by sending incorrect information during the routing phase, it then absorbs all the
packets and stops forwarding them [11];

• Gray hole attack: it is similar to a black hole attack but the attacker only discards
some data packets. This may happen selectively or statistically;

• Resource consumption attack: a malicious process can consume other correct pro-
cesses battery by sending unwanted packets and creating a route loop.

2.2.2 Consensus in Ad hoc Wireless Networks

The consensus protocols for ad hoc wireless networks must take in consideration all the
limitations in these networks. Typically they only use the broadcast operation for com-
munication, which saves energy, and they use less expensive processing operations both
for authentication and for the protocol operation itself. The binary consensus protocol
considered for this work is Turquois [17], which is a k-consensus protocol designed for
MANETs.

Turquois: a Byzantine Fault-tolerant Binary Consensus

Turquois is a byzantine fault-tolerant binary k-consensus algorithm for wireless ad hoc
networks. It takes advantage of the processing and memory limitations of the mobile
devices in a MANET and it only uses the wireless broadcasting medium as the com-
munication channel. It also avoids using expensive asymmetric cryptography during the
normal execution of the algorithm. It circumvents the FLP [8] and the Santoro-Widmayer
[22] impossibility results by applying randomization. The algorithm works in two tasks
that execute concurrently. The first task periodically broadcasts the internal state of the
process. The second task handles the received messages. Progress is ensured in rounds
of three phases. Once a process collects a quorum of n+2

2
valid messages in its phase it

makes progress to the next phase (more details are provided in the next chapter).

Byzantine Fault-tolerant - Consensus wiht Unknown Participants (BFT-CUP)

BFT-CUP [1] - Byzantine Fault-Tolerant Consensus with Unknown Participants is an al-
gorithm that solves consensus in a network in which the number of participants is un-
known and some of them may behave maliciously. It assumes an asynchronous system

Chapter 2. Related Work 12

model composed by a set of Π processes from a larger universe with n processes. There
are two kinds of networks: known networks in which every process knows n and Π and
unknown networks in which a process pi ∈ Π may only be aware of a subset Πi ⊆ Π.
The protocol uses authenticated and reliable point to point channels established between
known processes. The set of known processes is not fixed: if a process pi sends a message
to pj and pi /∈ Πj then pj adds pi to its Πj . A participant detector (Participant Detector
(PD)) is used to provide to each process the set of known processes it can communicate
with. The participant detector provides the following two guarantees:

• Information inclusion: the information returned by the participant detectors is not
decreasing over time;

• Information accuracy: the participant detector does not make mistakes

The PD gives each process a context about which processes are reachable other by re-
turning a directed knowledge connectivity graph. The graph is directed because the set of
processes a process knows may be different from the group of processes the other process
knows. Processes are connected through more than one disjoint paths. A process pj is
k-strongly connected to another process pi if pj can reach pi from k-disjoint paths. Gdi
is the directed graph representing the knowledge relation determined by the PD oracle.
A component Gs of Gdi is a sink component when there is no path from a process in
Gs to other processes of Gdi, except processes from Gs itself. The BFT-CUP uses the
weakest participant detector defined to solve Fault-tolerant - Consensus wiht Unknown
Participants (FT-CUP), which is called k-One Sink Reducibility (OSR). The knowledge
connectivity graph Gdi satisfies the following conditions:

• the undirected knowledge connectivity graph G obtained from Gdi is connected;

• the directed acyclic graph obtained by reducing Gdi to its k-strongly connected
components has exactly one sink;

The consensus protocols described on the next chapter were developed to be run among
the processes that belong to the sink. Once they reach a decision, they propagate this
value to the remaining processes.

Chapter 3

Binary, Multivalued and Vector
consensus protocols

This chapter describes the binary, multivalued and vector consensus algorithms used to
implement the protocol stack. It is divided in three sections. The first section makes
a formal presentation of the system model. The second section explains in detail the
protocol stack, the architecture and the interactions between the protocols. It includes a
description of each consensus protocol in detail, presenting the algorithms so that they fit
the system model.

3.1 System Model

The algorithms are designed to be executed in wireless ad hoc networks composed by
mobile devices (MANETs). The communication channels are unreliable and, to take
advantage of the wireless capacity of the devices, all the messages are transmitted through
a broadcast. The system model for the complete protocol stack (represented in Figure
3.1, and divided in support layer and consensus layer) is the one defined in [1], which
considers an universe ∪ of unknown participants.

The support layer main task is to discover and provide a group of known processes in
the network, called the sink, in which the consensus protocols will execute. The sink is
composed by a set of Π = {p0, p2, p3, ..., pn−1} processes. Each process pi has a unique
identifier i ∈ {0, ..., n− 1} and every process knows the identifiers of the other ones. The
fault model assumes the existence of byzantine faults, meaning that up to f process may
fail arbitrarily. A byzantine process can become silent, send messages with wrong values,
or work together with other byzantine processes to corrupt the properties of the system.
The fault model also assumes that correct process may fail to transmit messages as the
network is unreliable (i.e., suffer an omission fault in the communication).

All the consensus protocols make progress in rounds and tolerate dynamic omission
faults from correct processes, meaning that the safety properties are ensured no matter
how many omission faults occur. However, in order to make progress, the number of

13

Chapter 3. Binary, Multivalued and Vector consensus protocols 14

UDP

Communication

Stubborn P2P Channels

Reachable broadcast

Membership

Sink

Participant Discovery

Consensus

Multivalued Consensus

Binary Consensus

Application

Vector Consensus

Support Layer

Consensus Layer

Figure 3.1: Protocol stack

omissions must never exceed a certain bound (see the protocols description). A process
that executes the protocol from the beginning to the end without failing or deviating from
the original algorithm is correct. If it fails during the execution, the process is considered
incorrect. The algorithm tolerates up to f faulty processes as long as f < n

3
.

A process pi has a pair of public (pui) and private (pri) keys [24]. Every process
knows the public keys from the other process, but the private key is only known to the
owner. Some protocols in the stack use a cryptographic hash function H(m) with the
following characteristics:

• for every message m, regardless of size(m), H(m) will return a hashm value with
a constant size s;

• it is impossible to find m given a hashm;

• given m, it is impossible to find m′, such that H(m) = H(m′).

• it is impossible to find m and m′, such that H(m) = H(m′);

The protocols use an unreliable broadcast primitive that appends to the messages a Mes-
sage Authentication Code (MAC) for each potential received. This MAC allows the re-
ceiver to authenticate the sender of the message and check the integrity of its contents.

Chapter 3. Binary, Multivalued and Vector consensus protocols 15

Each process has a local virtual coin that returns a random bit with uniform distribu-
tion probability observable only by the process and a local clock used to trigger periodic
tasks of the protocols.

3.2 Protocol Stack

The consensus protocols were developed to be installed on the top of a communication
and a membership support for ad hoc networks, as depicted in Figure 3.1. The support
layer is based on the User Datagram Protocol (UDP) and was developed in [3]. The con-
sensus protocols run among the sink and once a decision is reached, the decided value is
propagated to the rest of the network. The broadcast primitive used by consensus is the
reachable broadcast, which only broadcasts in the sink. The binary consensus protocol
is the lowest protocol on the consensus layer. Next, there is the multivalued consensus
protocol that executes an instance of the binary consensus and decides on non-binary val-
ues. The top protocol is vector consensus that decides on sets of values. Above the vector
consensus protocol is the application level where other protocols can use the primitives
provided by the stack.

Figure 3.2 displays the interactions among the protocols of the stack. The member-
ship level finds the group Π of known processes located at the sink of the network. The
communication level offers a broadcast primitive that transmits a message in the sink of
the network. Binary consensus uses the group membership to get the set of n processes
in Π and the communication primitives from the support layer. It provides propose and
decide operations for multivalued consensus and the application level. Simultaneously,
the multivalued and vector consensus implement propose and decide operations, and call
the protocols below in the stack.

3.2.1 Binary Consensus

The binary consensus protocol is a k-consensus protocol [17]. Every process pi proposes
a value vi, such that vi ∈ {0, 1}, and decides on a value v ∈ {0, 1}. Only k processes,
such that n+f

2
< k ≤ n− f , are expected to decide. The remaining correct processes (at

most n− k) might not decide, but if they do, the same value must be selected as the rest.
The binary consensus ensures the following properties:

• BC1 Validity. if all processes propose the same value v, then any correct process
that decides, decides v.

• BC2 Agreement. no two correct processes decide differently;

• BC3 Termination. at least k correct processes eventually decide with probability
1.

Chapter 3. Binary, Multivalued and Vector consensus protocols 16

Vector Consensus

Multivalued Consensus

Binary Consensus

Group Membership

Application

getInstance()

GroupMembership

decide()

propose()

decide()

propose()

decide()

propose()

propose()

propose()

decide()

decide()

broadcast(message) receive(message)

broadcast(message)

Communication

UDP

getInstance() GroupMembership()

send(message) receive(message)

receive(message)

Figure 3.2: Interactions between the protocols

Algorithm

Each process pi has an internal state containing: the current phase number φi; its current
value vi; a boolean flag deterministici that indicates if vi was generated randomly or
deterministically; a double dimension array R[p][3] with random numbers only visible by
pi with size p x 3 (p is an upper bound of the number of phases a consensus execution
might have; if the estimation is wrong and more phases have to be run, then a new array
of random values Ri needs to be generated and exchanged; see later on in this section)
and a boolean value, statusi, saying if pi has decided yet (see Algorithm 1). Additionally,
the process has a vector Vi with every valid received message.

The algorithm works with two parallel tasks. Task T1 is triggered by a local timer to
broadcast the process internal state. A process pi broadcasts the internal state in a message
m of the form 〈i, φi, vi, statusi, deterministici, R[φi][vi], Ji〉. Ji is an array with the
messages that justifies m and allow its validation. Ji includes the received messages in
the previous phase and the messages in the last decided phase φd < φi. To optimize the
communication, the first time pi sends a message in the current phase (when φlast < φi)
it does not append Ji (lines 10-12). Then, φlast is updated (line 12). Ji is only sent when
pi is retransmitting its state, in other words, when φlast = φi (lines 13-16).

Chapter 3. Binary, Multivalued and Vector consensus protocols 17

Algorithm 1: Turquois: a Byzantine k-consensus algorithm
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}

1 φi ← 1;
2 vi ← proposali;
3 statusi ← undecided;
4 Vi ← 0;
5 Ri ← (rand(), ..., rand());
6 φlast ← 0;
7 deterministici ← 1;
8 Task T1
9 when local clock tick :

10 if φlast < φi then
11 broadcast(〈i, φi, vi, statusi, deterministici, Ri[φi][vi], []〉);
12 φlast ← φi;
13 else
14 φd ← last DECIDE phase φ < φi ;
15 Ji ← {〈∗, φ, ∗, ∗, ∗, ∗, ∗〉 ∈ Vi : φ ∈ {φi − 1, φd}};
16 broadcast(〈i, φi, vi, statusi, deterministici, Ri[φi][vi], Ji〉);

17 Task T2
18 when m = 〈j, φj , vj , statusj , deterministicj , rj , Jj〉 is received :
19 Vi ← Vi ∪ {m : m is valid};
20 if ∃〈∗, φ, v, status, ∗, ∗, ∗〉 ∈ Vi : φ > φi then
21 φi ← φ;
22 if φ(mod 3) = 1 ∧ deterministici = 0 then
23 vi ← coini();
24 deterministici ← 0;
25 else
26 vi ← v;
27 deterministici = 1;

28 statusi ← status;

29 if |{〈∗, φ, ∗, ∗, ∗, ∗, ∗〉 ∈ Vi : φ = φi}| > n+f
2 then

/* phase CONVERGE */;
30 if φi(mod 3) = 1 then
31 vi ← majority value v in messages with phase φ = φi;
32 /* phase LOCK */;
33 else if φi(mod 3) = 2 then
34 if ∃v ∈ {0, 1} : |〈∗, φ, v, ∗〉 ∈ Vi : φ = φi| > n+f

2 then
35 vi ← v;
36 else
37 vi ← ⊥;

38 /* phase DECIDE */;
39 else
40 if ∃v ∈ {0, 1} : |{〈∗, φ, v, ∗, ∗, ∗, ∗〉 ∈ Vi : φ = φi}| > n+f

2 then
41 statusi ← decided;

42 if ∃v ∈ {0, 1} : |{〈∗, φ, v, ∗, ∗, ∗, ∗〉 ∈ Vi : φ = φi}| ≥ 1 then
43 vi ← v;
44 deterministici = 1;
45 else
46 vi ← coini();
47 deterministici = 0;

48 φi ← φi + 1;

49 if statusi = decided then
50 decisioni ← vi;

Chapter 3. Binary, Multivalued and Vector consensus protocols 18

Task T2 handles the received messages. Every message must pass the validation pro-
cedure of Algorithm 2 before it is stored in vector Vi (line 19). Lines 20 and 21 apply a
technique to jump phases. When a process receives a valid messages with phase φ greater
than φi, it updates φi, vi and statusi (lines 20-28). This technique allows processes that
have lost communication for a certain amount of time (and stood some phases behind) to
catch up with the rest of the group.

Once a process collects more than n+f
2

messages in the current phase (line 29), it
updates the internal state in the following way: if it is at a CONVERGE phase then it picks
the majority value among the messages received at that phase (line 31); if it is at a LOCK
phase, it picks the value proposed by more than n+f

2
(line 35) or⊥ if not enough processes

chose the same value (line 37); if it is at a DECIDE phase, it updates the proposal value vi
if there are one or more messages with the (same) value v ∈ {0, 1}, otherwise it updates
the value vi with the result of a coin flip (lines 43 and 46). Additionally, it can update the
status value statusi to decided if there more than n+f

2
messages received with the same

value v different from ⊥ (line 41). Finally, it updates the phase value by incrementing it
(line 48).

Figure 3.3 represents an execution example of the Algorithm 1. In the example n = 4

and p0, p1 and p2 are correct and p3 is byzantine. At the beginning p0 and p2 propose 1, p1
and p3 propose 0. Once they receive the initial proposals, p3 chooses an incorrect value.
At phase LOCK the message from p3 is discarded because it does not pass validation. At
phase DECIDE, p0, p1 and p2 decide 1. p3, which is incorrect, decides 0. The fact the
p3 sent wrong messages did not affect any of the properties of the algorithm.

Message Validation

As indicated in line 19 of Algorithm 1, every received message is validated before being
treated by Task T2. If it fails the validation process then the message is not used by
the protocol. There are two complementary methods of validation: authentication and
semantic.

Authentication. The authentication method validates messages using cryptographic tech-
niques. At the beginning of execution, the processes exchange a table V K with hash val-
ues (see Table 3.1). The table is signed by an one-way function F (e.g., RSA [21]). The
lines of the table correspond to phases and the columns to the possible proposal values.

The table V Ki for a process pi is created using an one-way hash function H (e.g.
SHA-256 or RIPEMD-160)[16] to calculate the hash values of the table. H takes as input
a value composed by: the proposal value (v ∈ {⊥, 0, 1}), the phase number φ and a
different random value Ri[φ][v] for each vi and φi. If the number of phases exceeds the
projected upper bound of random values generated inR, then a new array of random vales
R′ must be generated and a new table V K ′ must be exchanged by the processes.

Chapter 3. Binary, Multivalued and Vector consensus protocols 19

Φ = CONVERGE Φ = LOCK Φ = DECIDE

P0

P1

P2

P3

v=1

v=0

v=1

omission

P0 majority(1,1,0) = 1

P1 majority (1,0,1) = 1

P2 majority(1,1,0) = 1

P3 picks 0

v=1

v=1

v=1

v=0

P0 majority(1,1,1) = 1

P1 majority(1,1,1) = 1

P2 majority(1,1,1) = 1

P3 picks 0

P0 decides 1

P1 decides 1

P2 decides 1

P3 decides 0

v=1

v=1

v=1

X

X

X

X

X

v=0

X

v=0

X Invalid messages discarded Invalid messages discardedX

Figure 3.3: Execution example of Algorithm 1

When pi broadcasts a message with phase φi and value vi, it appends the random
value, Ri[φi][vi], used to generate the corresponding h in the table V Ki. With this random
value, along side with the phase value and the proposal value, the receiver is able to get
the hash value h′. h′ is generated with the hash function H using as inputs: vi, φi and
Ri[φi][vi]. If h′ matches V Ki[φi][vi] then the message is authenticated. This method
ensures the receiver that pi sent the message because, according to the properties of H , it
is impossible to generate h′ without knowing the input value used by H . The security of
this mechanism lies with the secrecy of the random values.

Phase v = ⊥ v = 0 v = 1
φ1 H(〈φ1,⊥, Ri[1][⊥]〉) H(〈φ1, 0, Ri[1][0]〉) H(〈φ1, 1, Ri[1][1]〉)
φ2 H(〈φ2,⊥, Ri[2][⊥]〉) H(〈φ2, 0, Ri[2][0]〉) H(〈φ2, 1, Ri[2][1]〉)
...
φp H(〈φp,⊥, Ri[p][⊥]〉) H(〈φp, 0, Ri[p][0]〉) H(〈φp, 1, Ri[p][1]〉)

Table 3.1: Example of table V Ki with the messages signatures for process pi

Semantic validation. The semantic validation checks if the values in the received mes-
sage are congruent with the previous computation, i.e., the previously transmitted mes-
sages. This validation complements the authentication method by checking if the sender
behaved correctly, i.e., it did not deviate from the algorithm.

Chapter 3. Binary, Multivalued and Vector consensus protocols 20

Depending on the set of messages used to validate the received messages, the semantic
validation can be implicit or explicit:

• Implicit: the validation is implicit when the received message does not include
other messages to justify its values. In this case the receiver needs to compare it
with the previous messages in the messages vector Vi.

• Explicit: if a process did not receive enough messages to validate the arriving
message m, or if, by some reason, m appears to be invalid when comparing to the
Vi, then the sender must resend m with a vector Ji containing the messages that
justifies m.

Algorithm 2 starts the validation process. Messages with phase φj = 1 are valid since
there are no previous messages to compare with (lines 1 and 2). If Jj is not empty then
it completes Vi with the missing messages from Jj (lines 3-5). Then it sets the counters
count0, count1, dCount0, dCount1 and dCount⊥ according to value v ∈ {0, 1,⊥} and
phase number φ, and counters counttotal and dCounttotal with the total number of mes-
sages with phase φj − 1 and in the last decided phase respectively (lines 6-12). Then it
executes the methods to validate each of the fields in the message (lines 13-15). Finally it
returns the conjunction of the validation results (line 16).

Algorithm 2: validate(m)

Input: Message m = 〈j, φj , vj , statusj , deterministicj , rj , Jj〉
Output: A boolean value indicating if the message is valid

1 if φj = 1 then
2 return true;

3 if |Jj | > 0 then
4 forall the mk = 〈k, φk, vk, statusk, deterministick, rk, ∗〉 ∈ Jj do
5 Vi ← Vi ∪ {mk : mk is valid};

6 count0 = |{〈∗, φ, 0, ∗, ∗, ∗, ∗〉 ∈ Vi : φ = φj − 1}|;
7 count1 = |{〈∗, φ, 1, ∗, ∗, ∗, ∗〉 ∈ Vi : φ = φj − 1}|;
8 counttotal = |{〈∗, φ, ∗, ∗, ∗, ∗, ∗〉 ∈ Vi : φ = φj − 1}|;
9 dCount0 = |{〈∗, φ, 0, ∗, ∗, ∗, ∗〉 ∈ Vi : φ = highest φ < φj : φ(mod 3) = 0}|;

10 dCount1 = |{〈∗, φ, 1, ∗, ∗, ∗, ∗〉 ∈ Vi : φ = highest φ < φj : φ(mod 3) = 0}|;
11 dCount⊥ = |{〈∗, φ,⊥, ∗, ∗, ∗, ∗〉 ∈ Vi : φ = highest φ < φj : φ(mod 3) = 0}|;
12 dCounttotal = |{〈∗, φ, ∗, ∗, ∗, ∗, ∗〉 ∈ Vi : φ = highest φ < φj : φ(mod 3) = 0}|;

/* Validates each field separately */;
13 phase← validatePhase(m, counttotal);
14 status← validateStatus(m, dCount0, dCount1, dCount⊥, dCounttotal);
15 value← validateV alue(m, count0, count1);
16 return phase ∧ value ∧ status;

Phase value. Algorithm 3 validates the phase value. A phase value φj requires more
than n+f

2
valid messages with phase φj − 1, otherwise there are not enough messages to

justify the remaining fields of the message (lines 1 and 2).
If the phase value φj is greater than φi then the message must be treated differently.

According to the system model, a process may miss necessary messages to make progress.

Chapter 3. Binary, Multivalued and Vector consensus protocols 21

Algorithm 3: validatePhase(m, count)
Input: Received message m = 〈j, φj , vj , statusj , deterministicj , rj , Jj〉
Input: count with the number of message with phase φj − 1
Output: A boolean value valid indicating if φj is valid

1 if count ≤ n+f
2 then

2 return false ;

3 return true;

To recover from this problem it must resume the protocol by jumping to the current phase.
A process pi jumps to a phase when it receives a valid message m with φj such that
φj > φi (lines 20-28). To ensure that the state maintains its consistency the received
message m must carry an array Jj with enough messages to validate m. The messages
from Jj cannot be validated semantically if the phase φj > φi + 1 because there are no
previous messages. It is only possible to authenticate the sender and to guarantee that it
generated vj and φj . However, as long as the number of byzantine processes does not
exceed f , the group of messages in Jj contains enough correct messages to validate m
and update the internal state without corrupting any of the properties.

This jumping method allows processes that become disconnected for some consider-
able time to catch up the group, and is also a good technique to guarantee property BC3
Termination. As long as there is at least one correct process broadcasting the set of
messages that led to the decision, a recovering process is able to decide.

Algorithm 4: validateStatus(m, dCount0, dCount1, dCount⊥, dCounttotal)
Input: Received message m = 〈j, φj , vj , statusj , deterministicj , rj , Jj〉
Input: dCount0, dCount1, dCount⊥: the number of messages with the highest φ(mod

3) = 0 < φj and values 0, 1 and ⊥, respectively
Input: dCounttotal: the total number of messages received in the last phase DECIDE
Output: A boolean value valid indicating if statusj is valid

1 if statusj = decided then
2 if φj ≤ 3 then
3 return false;

4 if (dCount0 ≤ n+f
2 ∧ vj = 0) ∨ (dCount1 ≤ n+f

2 ∧ vj = 1) then
5 return false;

6 else /* statusj = undecided */
7 if φj > 3 then
8 if dCounttotal ≤ n+f

2 then
9 return false;

10 if dCount⊥ ≤
n+f

2

2 then
11 return false;

12 return true;

Status value. Algorithm 4 validates the status value. It takes as input the message
m to be validated and counters, dCount0, dCount1 and dCount⊥ with the number of
messages with values 0, 1 and ⊥ respectively and dCounttotal with the total number of

Chapter 3. Binary, Multivalued and Vector consensus protocols 22

messages in phase φ′ such that φ′ is the highest DECIDE phase and φ′ < φj . The status
can only assume one of two values: {decided, undecided}.

• status = decided: messages with phase φj must pass these two conditions (lines
1-5):

– φj > 3 which means, in other words, that no process can decide prior to phase
3;

– the message must carry a value vj chosen by more than n+f
2

processes in the
last decide phase (lines 4-5).

• status = undecided: if φj ≤ 3 then the message is valid. If φj > 3, in order
to have enough messages to validate, dCounttotal must be greater than n+f

2
(line 8

and 9). m is valid if dCount⊥ is less or equal than
n+f
2

2
(lines 10 and 11). Since

the value vj and the phase number φj are authenticated, there is no way a byzantine

process could tamper more than b
n+f
2

2
c proposal values.

Algorithm 5 validates the deterministic flag and the proposal value. It takes as input
the message m to be validated and counters, count0 and count1, with the total number of
messages with values 0 and 1 respectively and phase φj − 1.

Deterministic flag. This bit indicates if the proposal value was decided determinis-
tically or randomly. It can only assume one of two values {0, 1}. This flag is validated
along side with the proposal value (lines 4-11).

Proposal value. The proposal value vj is selected according to the phase, so its
validation depends on φj .

• Phase CONV ERGE (φj(mod 3) = 1): the validation depends if the proposal
value vj was generated deterministically (line 43 of Algorithm 1) or randomly (line
46 of Algorithm 1).

– Deterministically: if there are no messages with phase φj − 1 and value v ∈
{0, 1} then the message is invalid (lines 4-8);

– Randomly: there can be no message from last phase with v ∈ {0, 1} for this
message to be valid (lines 10 and 11).

• Phase LOCK (φj(mod 3) = 2): the voted value must be the one chosen by the

majority. A majority in a quorum of n+f
2

is more than
n+f
2

2
. A message with value

vj is valid if there are at least
n+f
2

2
messages with value vj (lines 12-16).

Chapter 3. Binary, Multivalued and Vector consensus protocols 23

• Phase DECIDE (φj(mod 3) = 0): the validation depends if the value is in {0, 1}
or if it is ⊥.

– vj ∈ {0, 1}: the message is valid if there are more than n+f
2

messages with the
same value vj ∈ {0, 1} (lines 18-20).

– vj = ⊥: the message is invalid if all messages have the same value v 6= ⊥.
(lines 22 and 23).

Algorithm 5: validateV alue(m, count0, count1)
Input: Received message m = 〈j, φj , vj , statusj , deterministicj , rj , Jj〉
Input: count0, count1 with the number of message with phase φj − 1 and values 0, 1
Output: A boolean value indicating if the vj and deterministicj are valid

/* phase CONV ERGE */;
1 if φj(mod 3) = 1 then
2 if (vj = ⊥) then
3 return false;

4 if deterministicj = 1 then
5 if count0 = 0 ∧ count1 = 0 then
6 return false;

7 if (count0 = 0 ∧ vj = 0) ∨ (count1 = 0 ∧ vj = 1) then
8 return false;

9 else /* deterministicj = 0 */
10 if count0 ≥ 1 ∨ count1 ≥ 1 then
11 return false;

/* phase LOCK */;
12 if φj(mod 3) = 2 then
13 if vj = ⊥ then
14 return false;

15 if (count1 ≤
n+f

2

2 ∧ vj = 1) ∨ (count0 ≤
n+f

2

2 ∧ vj = 0) then
16 return false;

/* phase DECIDE */;
17 if φj(mod 3) = 0 then
18 if vj ∈ {0, 1} then
19 if (vj = 0 ∧ count0 ≤ n+f

2) ∨ (vj = 1 ∧ count1 ≤ n+f
2) then

20 return false;

21 else /* vj = ⊥ */
22 if count0 = 0 ∨ count1 = 0 then
23 return false;

24 return true;

3.2.2 Multivalued Consensus

A multivalued consensus protocol allows processes to agree on an arbitrary value. The
proposed algorithm solves the multivalued consensus problem in the presence of byzan-
tine faults. It was adapted from [6] to ensure that the protocol can be used in ad hoc

Chapter 3. Binary, Multivalued and Vector consensus protocols 24

networks. The multivalued consensus protocol provides the following properties:

• MVC1 Validity 1. If all correct processes propose the same value v, then any
correct process that decides, decides v.

• MVC1 Validity 2. If a correct process decides v, then v was proposed by some
process or v = ⊥.

• MVC1 Validity 3. If a value v is proposed only by corrupt processes, then no
correct process that decides, decides v.

• MVC1 Agreement. No two correct processes decide differently.

• MVC1 Termination. Every correct process eventually decides.

Algorithm

Algorithm 6 solves the multivalued consensus problem. Each process pi has an inter-
nal state with: the current phase number φ, the value vi and a vector with the received
messages Vi. The algorithm works in three independent tasks.

Task T1 is triggered by a local timer (line 5). It broadcasts the internal state of pi in
a message m in the form 〈i, φ, vi, Ji〉, being i the identifier of the sender, φ the current
phase number and Ji the array of messages that justifies the proposal of pi (line 6).

Taskt T2 handles received messages. When a message m = 〈j, φj, vi, Jj〉 is received
(line 8) it is validated and if valid it is stored in Vi (line 9).

Task T3 updates the internal state depending on φ:

• φ = 0: once it collects more than n+f
2

messages with the same phase φ = 0 it sets
the variable maj with the most voted value (line 12). Then, if there are more than
f messages with the same value v = maj (line 13), it sets vi with maj (line 14).
This way it is guaranteed that at least one correct process voted for maj. Finally,
the phase number φ is incremented.

• φ = 1: it waits until there are more than n+f
2

messages with the same phase number
φ = 1 (line 16). Then, if there are more than n+f

2
messages with the same value

v and phase value φ = 1, vi is updated to v and variable propose is set to 1 (lines
17-19). Otherwise vi is set to ⊥ and propose to 0 (lines 20-22). The propose is
then used as proposal value of binary consensus (line 23). The decided value of
multivalued consensus depends on the decision of binary consensus:

– binary consensus decided 1: if vi is ⊥ then pi must wait until one of the other
processes sends the decided value in order to update vi with v (lines 24-27);

– binary consensus decided 0: vi is set to ⊥ (lines 28-29).

Chapter 3. Binary, Multivalued and Vector consensus protocols 25

The phase number φ is incremented to prevent the protocol from continuing execu-
tion (line 30) and the decided value vi is returned;

• φ = 2: in background, Task T1 continues to broadcast the decided value, to ensure
that the remaining processes can also terminate.

Algorithm 6: Multivalued consensus protocol
Input: Instance id of this execution
Input: Initial proposal value proposali
Output: Decision value vi

1 φ← 0;
2 vi ← 〈proposali, sigi〉;
3 Vi ← 0 ;
4 Task T1
5 when local clock tick :
6 broadcast(〈i, φ, vi, Ji〉);
7 Task T2
8 when m = 〈j, φj , vi, Jj〉 is received :
9 Vi ← Vi ∪ {m : m is valid};

10 Task T3
11 when |{∗, φ, ∗, ∗} ∈ Vi : φ = 0| > n+f

2 :
12 maj ← majority value in Vi for φ = 0;
13 if |{〈∗, φ, v, ∗〉 ∈ Vi : φ = 0 ∧ v = maj}| > f then
14 vi ← maj;

15 φ← 1;

16 when |{〈∗, φ, ∗, ∗〉 ∈ Vi : φ = 1}| > n+f
2 :

17 if |{〈∗, φ, v, ∗〉 ∈ Vi : φ = 1}| > n+f
2 then

18 vi ← v;
19 propose← 1;
20 else
21 vi ← ⊥;
22 propose← 0;

23 result← BConsensus(propose);
24 if result = 1 then
25 if vi = ⊥ then
26 wait until (it is delivered 〈∗, φ, v, ∗〉 ∈ Vi : φ = 2)
27 vi ← v;

28 else /* result = 0 */
29 vi ← ⊥;

30 φi ← 2;

31 return vi;

For the multivalued consensus protocol we will not describe the validation procedure
as it is relatively simple. This occurs because values are signed (see line 2), and therefore
the malicious processes cannot tamper with the values from correct processes.

3.2.3 Vector Consensus

In the vector consensus problem each process pi proposes a value vi and all the processes
decide upon a vector V of size n. For every correct process pi, V [i] contains vi proposed

Chapter 3. Binary, Multivalued and Vector consensus protocols 26

by pi or ⊥. The vector consensus protocol provides the following properties:

• VC1 Vector Validity. every correct process that decides, decides on a vector V of
size n:

– ∀pi if pi is correct, then either V [i] is the value proposed by pi or ⊥;

– at least (f + 1) elements of V were proposed by correct processes.

• VC2 Agreement. no two correct processes decide differently.

• VC3 Termination. every correct process eventually decides.

Algorithm

Algorithm 7 solves the vector consensus problem. Every process pi has an internal state
with the value vi, a double dimension array arrayi with pairs with every received proposal
and its correspondent signature, and the current round number r. The value vi is initialized
with the proposali and its signature. The protocol works in three tasks.

Algorithm 7: Vector consensus protocol
Input: Initial proposal value proposali
Output: Decision vector Vi

1 r ← 0;
2 arrayi ← ((⊥, ...,⊥), ..., (⊥, ...,⊥));
3 arrayi[i][i]← 〈proposali, sigi〉;
4 Task T1
5 when local clock tick :
6 broadcast(〈i, arrayi[i]〉);
7 Task T2
8 when m = 〈j, vectorj〉 is received :
9 count← 0;

10 forall the (vk, sigk) ∈ vectorj do
11 if vk 6= ⊥ then
12 if verifySig(k, vk, sigk) = invalid then
13 break to when;

14 count← count+ 1;

15 if count = 2f + 1 then
16 arrayi[j]← vectorj ;

17 if |{vk = arrayi[i][k] : k ∈ {0, ..., n− 1} ∧ vk 6= ⊥}| < 2f + 1 then
18 arrayi[i][j]← vectorj [j];

19 Task T3
20 when ∃vector ∈ arrayi : |{vk ∈ vector : k ∈ {0, ..., n− 1} ∧ vk 6= ⊥}| = 2f + 1 :
21 repeat
22 vector ← selectV alue(r(mod n), arrayi);
23 Vi ←MConsensus(r, vector);
24 r ← r + 1;
25 until Vi 6= ⊥;

26 return Vi;

Chapter 3. Binary, Multivalued and Vector consensus protocols 27

Algorithm 8: selectV alue(j, arrayi)
Input: j
Input: arrayi

1 value← ⊥;
2 for index ∈ {0, .., n− 1} do
3 k ← (index+ j)(mod n);
4 if |{vl = arrayi[k][l] : l ∈ {0, ..., n− 1} ∧ vl 6= ⊥}| = 2f + 1 then
5 return arrayi[k];

6 return ⊥;

Task T1 is triggered by a local clock (line 5) to broadcast a message m in the form
〈i, arrayi[i]〉 (line 6). The process sends arrayi[i] which corresponds to the single di-
mension array (or vector) with the valid received proposal values by pi.

Task T2 handles received messages. When pi receives a message m = 〈j, vectorj〉
sent by pj (line 8), it verifies if the signature of each value is valid (lines 9-12). Function
verifySig(k, vk, sigk) verifies the digital signature of vk by using the public key puk. If
at least one value of the vectorj is invalid then the message is not used (line 13). As the
signatures are verified, the variable count (line 9) is incremented for every value different
than ⊥ in vectorj (lines 11 and 14). If the number of values in vectorj different from ⊥
is equal to 2f + 1 then the arrayi is updated to include the received vectorj in the jth

position (lines 15 and 16). If the number of entries in arrayi[i] with a value different from
⊥ is less than 2f + 1, then arrayi is updated to include the proposal of pj (lines 17 and
18).

Task T3 executes the required multivalued consensus executions to achieve a vector
consensus. It is triggered when there is a vector with 2f +1 values different than⊥. Then
it enters in a loop and in each iteration it invokes the function selectV alue(), implemented
in Algorithm 8, and uses its result to execute a multivalued consensus (lines 22 and 23).
Then it increments the round number r (line 23). When the result of the multivalued
consensus is different than ⊥ it returns the decided vector (line 26).

Algorithm 8 consists in an auxiliar function used by vector consensus. It runs the
arrayi from j to j − 1 (similar to a circular array) (lines 2-5) until it finds a k such that
the number of values in arrayi[k] different from ⊥ are equal to 2f + 1. If it does then it
returns that vector, otherwise it returns ⊥.

Chapter 3. Binary, Multivalued and Vector consensus protocols 28

Chapter 4

Implementation and Evaluation

This chapter describes the implementation and evaluation of the protocol stack. Section
4.1 explains the design and implementation of the protocol stack. Section 4.2 describes
the simulation configuration and specific details of using the network simulator NS-3 [10].
Section 4.3 describes the implementation of the protocol stack in the mobile platform
Android[20]. Section 4.4 presents the execution environment and the results obtained
with the simulations.

4.1 Design and Implementation of the Protocol Stack

There are several aspects that had to be taken into account when designing the stack,
which was implemented as a network library. The library provides several primitives for
consensus and must interfere as less as possible with the applications.

4.1.1 Single-threaded and Multi-threaded Mode

There are two possible approaches to implement the protocol stack related to the execu-
tion flow: single-threaded and multi-thread. Both approaches have their advantages and
disadvantages. In the single-threaded approach, the protocol stack runs in an independent
thread from the application and every protocol in the stack executes in the same thread.
This approach has the advantage that it does not need synchronization techniques to keep
the state consistent, but it may have a performance degradation because only a protocol
may execute at a time. The multi-threaded approach allows for each protocol instance
to run in a separated thread concurrently, but this approach requires a synchronization
mechanism to keep the library state consistent.

After analyzing the protocols to understand which approach would be advantageous,
the single-threaded was chosen. The binary consensus, at the base of the protocol stack,
provides a consensus primitive for the multivalued consensus which in turn offers a prim-
itive for vector consensus. Both multivalued and vector consensus, which are dependent
from the lower protocols, do not take significant advantage from multiple threads because

29

Chapter 4. Implementation and Evaluation 30

they only make progress once a decision is reached. Also the synchronization mechanisms
required to keep the system consistent would potentially create overheads. Although the
stack runs in single-threaded mode, each protocol offers callbacks to the application level
so it can run concurrent instances of consensus without blocking.

The consensus protocols periodically broadcast messages with the state of the pro-
cesses. In order to not interfere with the execution flow of the application, the protocol
stack runs in two independent threads from the application thread. One thread deals with
message transmission and the other thread deals with the consensus protocol.

Communication Thread

The communication thread carries out message transmission and it is independent from
the protocol stack. It works the following way: when the protocol stack sends a message,
it is stored in a queue. Periodically the communication thread consults the queue and if it
is not empty it broadcasts the entire queue. Since none of the protocols require point-to-
point channels, every message is broadcast, this way less transmissions are made saving
the battery power of the mobile device.

When the communication thread receives a message it saves it in a list and waits for
the protocol stack (or the application) to check for received messages. The protocol stack
does not use callbacks because they may corrupt the consistency of the internal state of
the protocols, instead it uses the timer that triggers a check for received messages.

Protocols Thread

The protocols run in a specific thread that is independent from the application thread. This
way the application runs without interruption and once it needs to initiate a consensus
execution a new thread is created. The consensus starts and when a decision is reached it
returns the decided value to the application.

The application, however, may need to execute several consensus instances simulta-
neously without waiting for decisions. The protocols offer non-blocking calls to execute
consensus, and, for every consensus instance is initiated a new thread. The application
may use a callback to obtain the consensus decision or it can pool the consensus instance
to determine if a decision was reached.

Messages. The communication thread groups the messages from several protocols and
protocol instances in a queue and sends them at once. This requires a mechanism to
manage the delivery of the messages. Each message, independently of the protocol, has
two IDs: one identifies the protocol and the other the instance. When a group of messages
arrive at a node, the communication layer groups the received queue by their protocol and
instance IDs.

Chapter 4. Implementation and Evaluation 31

The IDs allow the communication thread to deal with messages from protocol in-
stances that are not running locally (e.g., because they have not started yet). These mes-
sages are queued for later processing.

4.1.2 Protocol Context

Each protocol allows several instances to be executed. Each instance is identified by a
unique ID and the ID of the protocol. Every consensus instance is saved in a per protocol
list.

The protocol stack tolerates arbitrary faults. Therefore, process may lose communi-
cation for some time and recover later but meanwhile the remaining process reached a
decision. It is essential that the correct process save the decisions made so that when a
process recovers it is able to learn the decided value. The library saves every results of
consensus executions in a list for as long as the application is running (and while there is
space in memory).

4.1.3 Library Architecture

The classes of the library are organized by packages representing a logic part of the stack.
The package - pt.fcul.consensus.network - includes the classes related to the network

tasks:

• Communication: Contains all the methods and attributes necessary to establish a
connection between peers and do broadcast and receive messages;

• CommunicationCallback: Interface to be implemented by classes to receive mes-
sages;

• Message: Generic type of message. Every message exchanged by the stack of
protocols must extend this type;

• MessageBinaryConsensus: Specific type of message for BinaryConsensus proto-
col

• MessageMultivaluedConsensus: Specific type of message for Multivalued Con-
sensus protocol

• MessageVectorConsensus: Specific type of message for Vector consensus proto-
col.

The most important package - pt.fcul.consensus.protocols - includes the classes which
implement the protocols and the interfaces needed to implement the callbacks.

Chapter 4. Implementation and Evaluation 32

• BinaryConsensus: Implements the binary consensus protocol described in Section
3.2.1.

• BinaryConsensusCallback: An interface to be implemented by a class to deal with
the result of the consensus execution.

• MultivaluedConsensus: Implements the multivalued consensus protocol explained
in Section 3.2.2.

• MultivaluedConsensusCallback: An interface to be implemented by a class to
deal with the result of the multivalued consensus.

• VectorConsensus: Implements the vector consensus protocol explained in Section
3.2.3.

• VectorConsensusCallback:An interface to be implemented by the application to
deal with the results of vector consensus executions.

The pt.fcul.consensus.utils package has the classes with utilities and constants of the
library:

• Constants: contains all the constant variables commons to all project;

• FileUtils: a set of file manipulation methods.

Figure 4.1 presents the class diagram of the network library. The Communication class
is instantiated by the Consensus class and is used by all three consensus protocols. Using
only one instance of the Communication class allows a better use of the wi-fi interface
of the mobile device. Each consensus protocol has its own message type that extends the
main message. The consensus class is the class that saves the internal state of the protocol
stack and manages the instances of the protocols.

Figure 4.2 represents a vector consensus execution started by the application. This
example illustrates a complete use of the protocol stack. As we can see, every interaction
made is unilateral. In the example it is used the blocking proposal call for every consensus
protocol. This call does not return until a decision is reached and is the one used internally
in the stack.

4.1.4 Application Programming Interface

The network library offers a set of operations to the application level. The Application
Programming Interface (API) of both the simulation and the android network library con-
tains the following methods.

Chapter 4. Implementation and Evaluation 33

<<interface>>
CommunicationCallback

+uponMessageReceive(message: Message)

<<interface>>
BinaryConsensusCallback

+binaryConsensusDecided(instance:int, decision:int):void

<<interface>>
MultivaluedConsensusCallback

+multivaluedConsensusDecided(instance:int, decision:String):void

<<interface>>
VectorConsensusCallback

+VectorConsensusCallback(instance:int, decision:String[]):void

ConsensusResults
-binaryConsensusResults:HashMap<String, Integer>
-multivaluedConsensusResults:HashMap<String, String>
-vectorConsensusResults:HashMap<String, String[]>

+ConsensusResults():void
+addBinaryConsensusResult(i:String, d:int):void
+addMultivaluedConsensusResult(i:String, d:String):void
+addVectorConsensusResult(i:String, d:String[]):void

MultivaluedConsensus

-caller:MultivaluedConsensusCallback
-communication:Communication
-context:Consensus
-decidedProcessId:int
-decision:String
-instance:String
-k:int
-messages:MessageMultivaluedConsensus[]
-n:int
-processId:int
-status:boolean
-timer:Timer
-value:String
-values:String[][]

-MultivaluedConsensus():void
-valueFrom(pid:int):String
-checkMessages():void
+propose(i:String, value:String):void
+proposeAndDecide(i:String, value:String):String
+decide(i:String):String
-TaskT1():void
-TaskT2():void
-TaskT3():void

Communication
-caller:CommunicationCallback
-messagesToSend:ArrayList<Message>
-receivedMessages:HashMap<String, ArrayList<Message>>

+Communication():void
+broadcast(message:Message):void
-broadcastMessages():void
+setCaller(caller:CommunicationCallback):void
+receiveMessages(protocol:int, instance:String)

Consensus

-communication:Communication
-connectedPeers:int
-consensusResults:ConsensusResults
-groupId:String
-n:int
-port:int
-processId:int
-status:value

BinaryConsensus
-caller:BinaryConsensusCallback
-communication:Communication
-context:Consensus
-count:int[][]
-decision:int
-deterministic:boolean
-f:boolean
-instance:String
-messages:MessageBinaryConsensus[]
-n:int
-phase:int
-processId:int
-quorum:int
-status:boolean
-timer:Timer
-value:int

+BinaryConsensus():void
-broadcastState():void
-checkMessages():void
-flipCoin():int
+propose(i:String,proposal:int):void
+proposeAndDecide(i:String, proposal:int):int
-TaskT1():void
+TaskT2(message:MessageBinaryConsensus):void
-validate(m:MessageBinaryConsensus, count:int[]):
boolean
-validateImplicitly(m:MessageBinaryConsensus):boolean
-validateExplicitly(m:MessageBinaryConsensus):boolean

VectorConsensus

-values:String[][]
-caller:VectorConsensusCallback
-communication:Communication
-context:Consensus
-decision:String[]
-instance:String
-n:int
-round:int
-timer:Timer
-value:String
-vector:String[]

-VectorConsensus():void
+propose(i:String, value:String):void
+proposeAndDecide(i:String, value:String):String[]
+decide(i:String):String[]
-valueFrom(pid:int):String
-checkMessages():void
-broadcasstValue():void
-TaskT1():void
-TaskT2():void
-TaskT3():void

Message
-instance:String
-protocol:int
-processId:int

+Message(processId:int, protocol:int, instance:String):void

MessageBinaryConsensus
-deterministic:boolean
-phase:int
-previousMessages:ArrayList<MessageBinaryConsensus>
-status:boolean
-value:int

+MessageBinaryConsensus(pid:int, i:string, p:int, v:int, s:
boolean, d:boolean):void
+addPreviousMessage(previousMessage:
MessageBinaryConsensus):void

MessageMultivaluedConsensus
-messages:ArrayList<MessageMultivaluedConsensus>
-value:String

+MessageMultivaluedConsensus(pid:int, i:int, v:string):void
+addMessage(message:MessageMultivaluedConsensus):void

MessageVectorConsensus
-value:String
-messages:ArrayList<MessageMultivaluedConsensus>

+MessageVectorConsensus(pid:int, i:int, v:String):void
+addMessage(message:MessageVectorConsensus):void

1 1 1

1..*

1..*

1..*

1 1

1 1 11

1
1

Figure 4.1: Class diagram of the android network library

Communication

void broadcast(Message message)

Broadcasts a messages through Wi-Fi direct [2], in case of android, and in Wi-Fi 802.11g
in case of the simulation. This broadcast primitive does not give any acknowledgement
about the delivery of the message and does not offer any guarantee that the message is
delivered.

Chapter 4. Implementation and Evaluation 34

Application VectorConsensus MultivaluedConsensus BinaryConsensus Communication

proposeAndDecide(i,p)

broadcast(message)

receiveMessages(p,i)

proposeAndDecide(r,vector)
broadcast(message)

broadcast(message)

receiveMessages(p,i)

receiveMessages(p,i)

proposeAndDecide(k,v)

decide(i)

Figure 4.2: Sequence diagram of a vector consensus execution

Parameters:

• message: the message to broadcast.

ArrayList<Message> receiveMessages(int protocol, String
instance)

Checks for received messages. If a callback is not set, the protocol must call this method
to receive messages.

Parameters:

• protocol: the protocol that is the receiver of the message;

• instance: the instance of the protocol.

Returns:

• An ArrayList<Message>: containing the received messages of the protocol
instance.

void setCaller(CommunicationCallback caller)

Chapter 4. Implementation and Evaluation 35

Sets a callback (an implementation of CommunicationCallback) to handle received
messages. If no callback is set, the received messages are saved in a list and can be
obtained by the receiveMessages() method.

Parameters:

• caller: the CommunicationCallback invoked that will be triggered when a mes-
sage arrives.

Binary Consensus

void propose(String instance, int value)

Non-blocking proposal method. The result of consensus execution can be retrieve through
getDecision(). It takes as input:

Parameters:

• instance: a String value to identify the instance of this consensus execution;

• value: the proposal value vi ∈ {0, 1}.

int proposeAndDecide(String instance, int value)

Blocking proposal call. This method does not return until a decision is reached. Once a
decision is reached it returns the decided value decisioni ∈ {0, 1}.

Parameters:

• instance: the instance of this consensus execution;

• value: the proposal value vi ∈ {0, 1}.

Returns:

• decision: the decided value decisioni ∈ {0, 1}.

int decide(String instance)

Method used to consult the result of a previous consensus execution. For a given instance
instance it returns the decided value decisioni ∈ {0, 1} or -1 if the process did not yet
decided.

Chapter 4. Implementation and Evaluation 36

Parameters:

• instance: the identifier of the consensus instance to consult the decided value.

Returns:

• decision: the decided value decisioni of the binary consensus execution.

Multivalued Consensus

void propose(String instance, String value)

Non-blocking proposal method. The result of consensus execution can be retrieve through
getDecision().

Parameters:

• instance: the instance of this consensus execution;

• value: the proposal value proposali, the empty string (” ”) is used to refer to the
⊥ value.

String proposeAndDecide(String instance, String value)

Blocking proposal call. This method does not return until a decision is reached.

Parameters:

• instance: the instance of this consensus execution;

• value: the proposal value vi.

Returns:

• decision: the decided value decisioni. If decision equals an empty string (”
”) then the decided value was ⊥.

String decide(String instance)

Method used to collect a decided value. For a giver instance i of a multivalued consensus
protocol it returns the decided value v ≥ 0, -1 for ⊥ or -2 if it has not decided yet.

Chapter 4. Implementation and Evaluation 37

Parameters:

• instance: the identifier of the instance.

Returns:

• decision: the decided value decisioni. If decision equals an empty string (”
”) then the decided value was ⊥.

Vector Consensus

void propose(String instance, String value)

Non-blocking proposal method. The result of consensus execution can be retrieve through
getDecision().

Parameters:

• instance: the instance of this consensus execution;

• value: the proposal value.

String[] proposeAndDecide(String instance, String value)

Blocking proposal call. Until a decision is reached this method does not return. When
they reach a decision it returns the decided vector V . It takes as input:

Parameters:

• instance: the instance of the protocol

• value: the proposal value vi ≥ 0 of this process.

Returns:

• decision: the decided vector V .

String[] decide(String instance)

Method used to collect a decided value. For a giver instance instance of a vector
consensus protocol it returns the decided vector V .

Chapter 4. Implementation and Evaluation 38

Parameters:

• instance: the String with the instance of the consensus execution.

Returns:

• decision: the decided vector V .

4.2 NS-3 Simulation

The protocol stack was implemented in the network simulator NS-3 [10]. The simulation
can be configured with the following parameters:

• n: the total number of processes n executing the protocol stack;

• diverge: if true then each process proposes a different value, otherwise every pro-
cess proposes the same value;

• protocol: the top protocol of the stack being tested. It can be: binary, multivalued
or vector;

• grid: the distribution of the processes: if true they are set in a grid otherwise they
assume a random distribution;

• byzantine identity: if true, byzantine processes try to impersonate correct pro-
cesses;

• byzantine value: if true, byzantine processes send a different value than they
should;

• byzantine status: if true, byzantine processes send incorrect status value;

• byzantine phase: if true, byzantine processes send incorrect phase value;

• num sims: the number of simulations being executed with this configuration.

The simulation is composed by the following additional classes:

• ProtocolStackSimulator: main class executed when the simulation starts. It in-
stalls the network, sets-up the protocols, sets the simulation configuration (based
on the configuration file) and initiates the execution;

• ProtocolStack: Depending on the configuration file, this class instantiates the pro-
tocols to be tested;

Chapter 4. Implementation and Evaluation 39

• Communication: Every process instantiates this class to use a simple broadcast
primitive. This class implements some mechanisms to optimize the network usage,
such as: saving the messages to be sent in a list to be periodically sent, instead of
sending the messages immediately.

• ProtocolStackHelper: Auxiliary class that installs the ProtocolStack application
in the processes and passes the arguments from the ProtocolStackSimulator to the
ProtocolStack instance;

• ReadConfig: Reads the configuration file of the simulation and keeps an internal
state with the configuration parameters;

• Sha256: Implements the hashing algorithm SHA-256[16] used to authenticate the
proposal value v and the phase number φ of the binary consensus protocol.

4.3 Android Implementation

The protocol stack was also implemented in android to be used as a library that provides
consensus primitives for distributed applications. This library was implemented for An-
droid 4.0 (API level 14 or later) because it uses Wi-fi direct [2] to broadcast the messages.
To test the library, an application was built that only allows to execute consensus of each
kind.

The package - pt.fcul.consensus - is only used in the android library and it includes
the classes related to the application:

• Consensus: extends the Application class of android. It saves all the attributes
of the protocols stack such as the number of processes n, the groupId, the com-
munication instance, the connection status, the communication port, the currently
connected peers and the consensus results;

• ConfigureActivity: Handles the layout of the Configuration activity;

• MainActivity: Class related with the first activity presented to the user. Contains a
menu with the options to execute consensus and to configure the application.

• NetworkActivity: Class related with the activity to manage the network status of
the device;

• BinaryConsensusActivity: Class related to the activity that starts the execution of
a binary consensus instance;

• MultivaluedConsensusActivity: Class related to the activity that starts the execu-
tion of a multivalued consensus instance;

Chapter 4. Implementation and Evaluation 40

• VectorConsensusActivity: Class related to the activity that starts the execution of
a vector consensus instance;

4.4 Simulation Results

Several simulations were executed with each protocol. Different data was collected de-
pending on the configuration of the stack. All the results are organized in function of the
number of processes. This exhibits how the performance changes when the number of
processes increases, allowing the evaluation of the scalability of the stack.

4.4.1 Experimental Environment

An ad hoc wireless network with the communication protocol 802.11g was configured
without the presence of a centralized unit (access point). The protocol runs as expected
in a real world scenario, fully distributed. Depending on the distribution of the mobile
devices the arrangement can be:

• grid: the processes are located in a grid. The distance between lines and columns
is 1m. This scenario describes the execution of the consensus protocol in a totally
crowded classroom where the users holding their mobile devices are near each other
and do not move during the execution.

• random: the processes move randomly across a rectangular room with 50x50m.
This scenario describes the execution of the consensus protocol when the users are
moving, e.g, in the coffee break of a conference, walking randomly across the room
and eventually stopping to talk to each other.

Depending on the proposed values the executions can be:

• unanimous: if every correct process proposes the same value ;

• divergent: the worst case of a consensus execution. In the binary consensus half of
the processes propose 0 and the other half propose 1. In the multivalued and vector
consensus protocols each process proposes a different value.

Depending on the fault mode the simulations can be:

• fault-free: every process behaves as it’s expected to, i.e., each process executes
the algorithm from beginning to the end and does not fail during the execution.
Although there are no kind of process faults during the execution, the channels are
not reliable, simulating a wireless network;

• byzantine: in this case f = bn−1
3
c processes will assume a byzantine behavior that

can be one of the following:

Chapter 4. Implementation and Evaluation 41

– byzantine value: byzantine processes vote on different values than they are
suppose to in order to delay or even fail the agreement.

– byzantine status: byzantine processes change the status flag that indicates if
the process has already decided in order to make the correct process decide
earlier or to delay the decision;

– byzantine phase: byzantine processes send a different phase value to make
the correct processes jump phases and get stuck in an inconsistent state;

– byzantine identity: the id value of the sender is modified by byzantine pro-
cesses to assume the identity of correct processes.

The timeout value used to trigger the periodic tasks was the number of processes n (in
milliseconds). According to [17], this value gives the best performance results.

The data collected for all three protocols was:

• latency: is the duration it takes from the moment the first process starts a consensus
execution until the last process decides. The latency reveals if the protocol is viable
in the defined system model. It is collected through the start and end time recorded
by the processes;

• number of rounds: all three protocols make progress in rounds (phases in the case
of binary and multivalued consensus). This value allows the evaluation of how long
it takes for the protocol to converge to the decided value;

• number of sent and received messages: evaluates the impact of the protocol stack
in the network.

4.4.2 Binary Consensus

This section includes the simulations results of the binary consensus. During the simula-
tion were collected the values of the latency, number of phases and amount of messages
exchanged.

Latency

The following figures present the average latency of 10 instances with a variation on the
number of processes from 4 to 16 in several scenarios of executions. In each scenario
both the grid and the random distributions are presented, respectively, side by side.

Figure 4.3 presents the latency of binary consensus when processes propose a diver-
gent value. Results are displayed for fault-free runs and with byzantine faults that affect
the identity of the sender of the messages. The results are very identical in both distribu-
tions. The byzantine mode has a worse performance than the fault-free scenario.

Chapter 4. Implementation and Evaluation 42

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(a) Grid distribution

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.3: Latency of binary consensus with divergent values; byzantine faults
affect the identity of the sender

In Figure 4.4, processes propose divergent values, byzantine faults occur in the phase
value. In this case the grid distribution has a slightly better performance than the random
distribution and there are a few cases where the byzantine mode has a better latency than
the normal mode.

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(a) Grid distribution

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.4: Latency of binary consensus with divergent values; byzantine faults
affect the phase number

Figure 4.5 presents the scenario with divergent proposals and byzantine status faults.
The results in both grid and random distributions are identical and the byzantine case
reveals the worst results in every case.

Chapter 4. Implementation and Evaluation 43

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(a) Grid distribution

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.5: Latency of binary consensus with divergent values; byzantine faults
affect the status value

The byzantine value attack with divergent proposals is presented in Figure 4.6. This
results are different in both grid and random distributions and present the greatest ampli-
tude of values for the byzantine case, which is also the worst case.

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(a) Grid distribution

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.6: Latency of binary consensus with divergent values; byzantine faults
affect the proposal value

When the proposals are unanimous the results are better. Figure 4.7 presents the
scenario where byzantine faults occur to the identity of the sender of the messages. The
fault-free case is better and the difference between both cases increases as the number of
processes increases. The results in both the grid and random distributions are identical.

Chapter 4. Implementation and Evaluation 44

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(a) Grid distribution

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.7: Latency of binary consensus with unanimous values; byzantine faults
affect the identity of the sender

Figure 4.8 presents the byzantine phase scenario with unanimous proposals. The la-
tency in both the fault-free and the byzantine scenarios is closer and in some cases it is
equal. Once again, the physical distribution of the processes did not affect the perfor-
mance.

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(a) Grid distribution

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.8: Latency of binary consensus with unanimous values; byzantine faults
affect the phase value

Figure 4.9 presents scenario with unanimous proposals and byzantine attacks to the
status value. The latency of the byzantine mode is greater in every case and the difference
between both modes increases with the number of processes.

Chapter 4. Implementation and Evaluation 45

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(a) Grid distribution

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.9: Latency of binary consensus with unanimous values; byzantine faults
affect the status value

Figure 4.10 presents the scenario with unanimous proposals and byzantine value at-
tacks. The byzantine mode reveals greater latency values in every case. The difference
between both modes increases with the number of processes.

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(a) Grid distribution

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.10: Latency of binary consensus with unanimous values; byzantine faults
affect the proposal value

Number of phases

The binary consensus protocol progresses in rounds of three phases. The number of
phases can be a measure of the performance of the algorithm since it shows how pro-
cesses converge to the decided value when the number of nodes increases. This value was
collected by the last process to terminate the execution of consensus by saving the phase
value in the data file once it decided.

To collect the total number of phases to achieve consensus, simulations from 4 pro-
cesses to 100 were performed. In the first experiment the proposal values of all processes

Chapter 4. Implementation and Evaluation 46

was 1. In every simulation every process achieved consensus in 4 phases (they decided at
phase 3 and incremented before returning the decided value).

In the second experiment the proposal value was divergent. In this scenario the total
number of phases needed to reach consensus varied from 4 to 22, but this value did not
reveal a tendency to grow as the number of processes increased. The following Figures
reveal the number of phases to achieve consensus when the proposal value is divergent.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 p

ha
se

s

Number of processes

Number of Phases to Achieve Binary Consensus

Normal
Byzantine

(a) Grid distribution

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 p

ha
se

s

Number of processes

Number of Phases to Achieve Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.11: Number of phases of binary consensus with divergent values; byzan-
tine faults affect the identity of the sender

Figure 4.11 presents the number of phases to achieve consensus when byzantine faults
affect the identity of the sender of the messages. The results are very identical in both
distributions. The byzantine executions have a worse performance then the fault-free
scenario. The fault-free modes never exceeds 16 phases, the byzantine mode reaches 22
phases.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 p

ha
se

s

Number of processes

Number of Phases to Achieve Binary Consensus

Normal
Byzantine

(a) Grid distribution

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 p

ha
se

s

Number of processes

Number of Phases to Achieve Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.12: Number of phases of binary consensus with divergent values; byzan-
tine faults affect the phase value

Chapter 4. Implementation and Evaluation 47

In Figure 4.12 byzantine faults occur to the phase value. In this case the random
distribution has a slightly better performance than the grid distribution and there are some
cases when the byzantine needs less phases to achieve consensus.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 p

ha
se

s

Number of processes

Number of Phases to Achieve Binary Consensus

Normal
Byzantine

(a) Grid distribution

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70 80 90 100
N

um
be

r
of

 p
ha

se
s

Number of processes

Number of Phases to Achieve Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.13: Number of phases of binary consensus with divergent values; byzan-
tine faults affect the status value

Figure 4.13 present the scenario with byzantine faults affecting the status value. The
results in both grid and random distributions are identical and once again the byzantine
mode has a worst performance.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 p

ha
se

s

Number of processes

Number of Phases to Achieve Binary Consensus

Normal
Byzantine

(a) Grid distribution

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 p

ha
se

s

Number of processes

Number of Phases to Achieve Binary Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.14: Number of phases of binary consensus with divergent values; byzan-
tine faults affect the proposal value

The number of phases with byzantine value attack is presented in Figure 4.14. This
results are different in both grid and random distributions. The random distribution reveals
a n overall better performance.

Chapter 4. Implementation and Evaluation 48

Number of sent and received messages

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100

E
xc

ha
ng

ed
 m

es
sa

ge
s

Number of processes

Number of Exchanged Messages During Binary Consensus

Sent Normal
Received Normal

Sent Byzantine
Received Byzantine

(a) Grid distribution

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100

E
xc

ha
ng

ed
 m

es
sa

ge
s

Number of processes

Number of Exchanged Messages During Binary Consensus

Sent Normal
Received Normal

Sent Byzantine
Received Byzantine

(b) Random distribution
Figure 4.15: Exchanged messages of binary consensus with unanimous values;
byzantine faults affect the proposal value

Figure 4.15 presents the number of sent and received messages in fault-free run and when
byzantine processes temper the proposal value. The values proposed by correct processes
are unanimous. The number of received messages is linear to the number of processes,
which is explained by the fact that in every case it only took 4 phases to achieve consensus
and it is required a certain number of messages to make progress. The number of sent
messages is superior to the number of received messages and is not linear, that is because
some messages are lost and processes need to resend the messages.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90 100

E
xc

ha
ng

ed
 m

es
sa

ge
s

Number of processes

Number of Exchanged Messages During Binary Consensus

Sent Normal
Received Normal

Sent Byzantine
Received Byzantine

(a) Grid distribution

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90 100

E
xc

ha
ng

ed
 m

es
sa

ge
s

Number of processes

Number of Exchanged Messages During Binary Consensus

Sent Normal
Received Normal

Sent Byzantine
Received Byzantine

(b) Random distribution
Figure 4.16: Exchanged messages of binary consensus with divergent values;
byzantine faults affect the proposal value

Figure 4.16 presents the number of sent and received messages in fault-free run and
when byzantine processes temper the proposal value. The proposal values are divergent.

Chapter 4. Implementation and Evaluation 49

Once again the number of sent messages is superior to the number of received messages.
In this scenario there is not a linear relation between the number of processes and the num-
ber of received messages. When the proposal value is divergent it requires the processes
to flip the coin to make progress which in turn requires more phases and consequently
more messages to achieve agreement.

4.4.3 Multivalued Consensus

This section includes the simulations results of the multivalued consensus. There were ex-
ecuted 10 instances of multivalued consensus from 4 to 16 processes in several scenarios.
The execution time was collected to evaluate the average latency of the protocol.

Latency

The following figures present the average latency of multivalued consensus. In each sce-
nario both the grid and the random distributions are presented, respectively, side by side.
The

Figure 4.17 presents the latency of binary consensus when processes propose diver-
gent value, byzantine faults occur to the identity of the sender of the messages. The
results are very identical in both distributions. The byzantine executions have a worse
performance then the fault-free scenario.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Multivalued Consensus

Normal
Byzantine

(a) Grid distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Multivalued Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.17: Latency of multivalued consensus with divergent values; byzantine
faults affect the identity of the sender
The byzantine value attack with divergent proposals is presented in Figure 4.18. This

results are different in both grid and random distributions and present the greatest ampli-
tude of values for the byzantine case, which is also the worst case.

Chapter 4. Implementation and Evaluation 50

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Multivalued Consensus

Normal
Byzantine

(a) Grid distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Multivalued Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.18: Latency of multivalued consensus with divergent values; byzantine
faults affect the proposal value

When the proposals are unanimous the results are better. Figure 4.19 presents the
scenario where byzantine faults occur to the identity. The fault-free case is better and the
difference between both cases increases as the number of processes increases. The results
in both the grid and random distributions are very identical.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Multivalued Consensus

Normal
Byzantine

(a) Grid distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Multivalued Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.19: Latency of multivalued consensus with unanimous values; byzantine
faults affect the identity of the sender

Figure 4.20 presents the scenario with unanimous proposals and byzantine value at-
tacks. The byzantine mode reveals greater latency values in every case. The difference
between both modes increases with the number of processes.

Chapter 4. Implementation and Evaluation 51

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Multivalued Consensus

Normal
Byzantine

(a) Grid distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Multivalued Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.20: Latency of multivalued consensus with unanimous values; byzantine
faults affect the proposal value

4.4.4 Vector Consensus

This section includes the simulations results of the vector consensus. There were exe-
cuted 10 simulations from 4 to 16 processes. The execution was collected to evaluate the
average latency of vector consensus execution.

Latency

The following figures present the average latency of 10 executions with a variation on the
number of processes from 4 to 16 with different scenarios of executions. In each scenario
both the grid and the random distributions are presented, respectively, side by side. The
results are different from multivalued and binary consensus, in this case there is a linear
growth of the latency in function of the number of processes.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Vector Consensus

Normal
Byzantine

(a) Grid distribution

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Vector Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.21: Latency of vector consensus with divergent values; byzantine faults
affect the identity of the sender

Chapter 4. Implementation and Evaluation 52

Figure 4.21 presents the latency of binary consensus when processes propose diver-
gent value, byzantine faults occur to the identity of the sender of the messages. The
results are very identical in both distributions. The byzantine executions have a worse
performance then the fault-free scenario.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Vector Consensus

Normal
Byzantine

(a) Grid distribution

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Vector Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.22: Latency of vector consensus with divergent values; byzantine faults
affect the proposal value

The byzantine value attack with divergent proposals is presented in Figure 4.22. This
results are different in both grid and random distributions and present the greatest ampli-
tude of values for the byzantine case, which is also the worst case.

When the proposals are unanimous the results are better. Figure 4.23 presents the
scenario where byzantine faults occur to the identity. The fault-free case is better and the
difference between both cases increases as the number of processes increases. The results
in both the grid and random distributions are very identical.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Vector Consensus

Normal
Byzantine

(a) Grid distribution

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Vector Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.23: Latency of vector consensus with unanimous values; byzantine faults
affect the identity of the sender

Chapter 4. Implementation and Evaluation 53

Figure 4.24 presents the scenario with unanimous proposals and byzantine value at-
tacks. The byzantine mode reveals greater latency values in every case. There is a slightly
difference between the two distributions, the random distribution is slower than the grid
distribution.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Vector Consensus

Normal
Byzantine

(a) Grid distribution

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 4 6 8 10 12 14 16

La
te

nc
y

(s
)

Number of processes

Latency of Vector Consensus

Normal
Byzantine

(b) Random distribution
Figure 4.24: Latency of vector consensus with unanimous values; byzantine faults
affect the proposal value

Chapter 4. Implementation and Evaluation 54

Chapter 5

Conclusion

Achieving consensus in ad hoc wireless networks is a difficult yet fundamental task.
Agreement is crucial to manage and configure the network. Consensus becomes even
more difficult when dealing arbitrary faults. There are few consensus protocols for this
kind of networks specially when considering arbitrary faults. This thesis gives a contri-
bution by adapting two consensus protocols [17] [6] to fit the defined system model, and
proposes a new vector consensus protocol. With these algorithms it was possible to de-
velop a network library that provides three consensus primitives: binary, multivalued and
vector consensus. The developed library allows the configuration and management of a
network and provides agreement primitives for distributed applications.

5.1 Discussion of the results

The simulations of the binary consensus show similar latency results in both the normal
operation mode and the byzantine mode, which reveals that this protocol was a good
choice given the assumption of arbitrary faults. The average latency is very low, which
was a requisite since the binary consensus protocol is the most used protocol in the stack.
The number of messages is also low, which is an important fact, since it is important
that the protocol stack does not affect the application execution. The number of phases
needed to achieve consensus did not increased with the number of processes executing it,
which shows that the algorithm is scalable, as long as there is a efficient communication
support to manage exchanged messages. Another interesting result is the fact that in
every simulation all the processes terminated the consensus execution, which was not a
requirement since this is a k-consensus protocol. This result does not mean that in every
case all the processes terminate, but that it is very probable that they do so.

The multivalued consensus protocol was able to achieve a decision in less than one
second for up to 16 process. This is a very low value since the protocol uses binary
consensus to achieve a decision. The injection of byzantine faults to the proposal value
did not broke any of the properties of the protocol and did not decrease performance.

55

Chapter 5. Conclusion 56

Vector consensus protocol is the slowest of all three, which was an expected result
since it uses the multivalued consensus protocol which in turn uses binary consensus.
However, it took less than two seconds to achieve vector consensus for up until 16 pro-
cesses. This is a good value because, although 16 processes may be less than a normal ad
hoc wireless network, in this case it could be the enough because a sink with 16 processes
may be part of a much bigger network

The preliminary application for Android with the studied protocols show that it is
possible to implement these kind of protocols in this kind of devices. The API provides
blocking and non-blocking propose function calls and callbacks. A distributed application
can use the most useful propose call for each kind of operation.

5.2 Future Work

The work presented in this thesis provides a study and evaluation of a stack with con-
sensus protocols for MANETs. The stack was implemented in Android, however, the
network library does not include the work of Emanuel Alves [3], instead it uses directly
the network interface provided by Android. In the future, the protocol stack must be set
up on top of the support layer.

Another interesting feature that come up during the development of the library was the
possibility of detecting faulty processes. The detection could be made through the rejected
messages by all three protocols. This mechanism could, in theory, increase performance
since the malicious processes are automatically removed from the network and there are
less messages to process at each round.

The protocol stack allows distributed applications or other protocols to achieve agree-
ment. Developing other protocols that take advantage of consensus, such as: atomic
broadcast, state machine replication or view synchronous, would improve the stack. There
are also a range of distributed applications that can be implemented.

Abbreviations

API Application Programming Interface.

BFT-CUP Byzantine Fault-tolerant - Consensus wiht Unknown Participants.

DOS Denial of Service.

FLP Michael J. Fischer, Nancy Lynch, and Mike Paterson.

FT-CUP Fault-tolerant - Consensus wiht Unknown Participants.

IP Internet Protocol.

MAC Message Authentication Code.

MAC Media Access Control.

MANET Mobile Ad hoc NETwork.

NS-3 Network Simulator-3.

OSR One Sink Reducibility.

PD Participant Detector.

PDA Personal Digital Assistant.

UDP User Datagram Protocol.

57

Bibliography

[1] E. Alchieri, A. Bessani, and S.Fraga. Byzantine Consensus with Unknown Partici-
pants. Proceedings of the 12th International Conference on Principles of Distributed
Systems, 2008, pp. 22–40.

[2] Wi-Fi Aliance. Wi-Fi CERTIFIED Wi-Fi Direct. White Paper: http://www. wi-fi.
org/news articles. php, 2010.

[3] E. Alves. Comunicação e Filiação em Redes Ad-hoc Móveis com Participantes
Desconhecidos. Master’s thesis, Department of Informatics, Faculty of Sciences,
University of Lisbon, Oct. 2013.

[4] D. Cavin and Y. Sasson. Reaching Agreement with Unknown Participants in
Mobile Self-Organized Networks in Spite of Process Crashes. Technical Report
IC/2005/026, 2005.

[5] T. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM, 43(2), 1996, pp. 225–267.

[6] M. Correia, N. Neves, and P. Verı́ssimo. From Consensus to Atomic Broadcast:
Time-free Byzantine-resistant Protocols Without Signatures. The Computer Journal,
49(1), Jan. 2006, pp. 82–96.

[7] P. Devi and A. Kannammal. Security Attacks and Defensive Measures for Routing
Mechanisms in MANETs A Survey. International Journal of Computer Applica-
tions, 42(4), 2012, pp. 27–32.

[8] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus with
One Faulty Process. Journal of the ACM, 32(2), Apr. 1985, pp. 374–382.

[9] V. Hadzilacos and S. Toueg. Fault-tolerant Broadcasts and Related Problems. In
Distributed Systems (2nd Ed.), pages 97–145. ACM Press/Addison-Wesley Publish-
ing Co., 1993.

[10] T. Hendersona, S. Roy, S. Floyd, and G. Riley. NS-3 Project Goals. Proceeding
from the 2006 Workshop on NS-2: the IP Network Simulator, 2006.

59

Bibliography 60

[11] Y. Hu and A. Perrig. A Survey of Secure Wireless Ad Hoc Routing. IEEE Security
and Privacy, 2(3), Jun. 2004, pp. 28–39.

[12] Y. Hu, A. Perrig, and D. Johnson. Packet Leashes: A Defense Against Wormhole
Attacks in Wireless Networks. INFOCOM 2003. Twenty-Second Annual Joint Con-
ference of the IEEE Computer and Communications. IEEE Societies, 3, Apr. 2003,
pp. 1976–1986.

[13] Y. Hu, A. Perrig, and D. Johnson. Rushing Attacks and Defense in Wireless Ad Hoc
Network Routing Protocols. Proceedings of the 2nd ACM workshop on Wireless
security, Sep. 2003, pp. 30–40.

[14] M. Ilyas and R. Dorf. The Handbook of Ad Hoc Wireless Networks. CRC Press,
2003.

[15] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4(3), Jul. 1982, pp. 382–
401.

[16] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC press, 2010.

[17] H. Moniz, N. Neves, and M. Correia. Turquois: Byzantine Consensus in Wireless
Ad Hoc Networks. In Proceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Jun. 2010, pp. 537–546.

[18] A. Mostefaoui, M. Raynal, and F. Tronel. From Binary Consensus to Multivalued
Consensus in Asynchronous Message-passing Systems. Information Processing Let-
ters, 73(5), Mar. 2000, pp. 207–212.

[19] P. Ning and K. Sun. How to Misuse AODV: A Case Study of Insider Attacks against
Mobile Ad-hoc Routing Protocols. Ad Hoc Networks, 3(6), Nov. 2003, pp. 795–819.

[20] Android Developers Reference. http://developer.android.com/guide/basics/what-is-
android.html, 2011.

[21] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-key Cryptosystems. Communications of the ACM, 21(2), Feb. 1978, pp.
120–126.

[22] N. Santoro and P. Widmayer. Time is Not a Healer. In Proceedings of the 6th Annual
Symposium on Theoretical Aspects of Computer Science, February 1989, pp. 304–
313.

Bibliography 61

[23] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Belding-Royer. A Secure Rout-
ing Protocol for Ad Hoc Networks. In Proceedinds of the 10th IEEE International
Conference on Network Protocols, Nov. 2002, pp. 78–87.

[24] W. Stallings. Cryptography and Network Security - Principles and Practices. Pear-
son Prentice Hall, 2006.

[25] J. Turek and D. Shasha. The Many Faces of Consensus in Distributed Systems.
Computer, 25(6), Aug. 1992, pp. 8–17.

[26] B. Wu, J. Chen, J. Wu, and M. Cardei. A Survey on Attacks and Countermeasures
in Mobile Ad Hoc Networks. Wireless Network Security, Springer US, 2006, pp.
103–135.

[27] J. Wu and I. Stojmenovic. Ad Hoc Networks. Computer, 37(2), 2004, pp. 29–31.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contributions of the Thesis
	Document Structure

	Related Work
	The Consensus Problem
	System Model
	Impossibility Results
	The Byzantine Generals Problem

	Ad hoc Wireless Networks
	Common Attacks in Wireless Ad hoc Networks
	Consensus in Ad hoc Wireless Networks

	Binary, Multivalued and Vector consensus protocols
	System Model
	Protocol Stack
	Binary Consensus
	Multivalued Consensus
	Vector Consensus

	Implementation and Evaluation
	Design and Implementation of the Protocol Stack
	Single-threaded and Multi-threaded Mode
	Protocol Context
	Library Architecture
	Application Programming Interface

	NS-3 Simulation
	Android Implementation
	Simulation Results
	Experimental Environment
	Binary Consensus
	Multivalued Consensus
	Vector Consensus

	Conclusion
	Discussion of the results
	Future Work

	Abbreviations
	Bibliography

