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Resumo 

 

A doença de Parkinson (DP) é uma doença neurodegenerativa caracterizada pela 

presença de inclusões proteicas designadas por corpos de Lewy (LB). Os LB são agregados 

intracelulares que se formam nos neurónios dopaminérgicos, localizados na substantia 

nigra, mas que podem ocorrer em outras áreas do cérebro à medida que a doença progride. 

Os LB são constituídos principalmente pela proteína alfa-sinucleína (aSyn), sendo esta a 

principal característica desta doença. A aSyn é uma proteína envolvida tanto nos casos de 

doença idiopática, como familiar da DP. Vários resíduos de aSyn são fosforilados quer na 

forma solúvel quer na forma agregada da proteína. Sendo que, aproximadamente 90% da 

aSyn presente nos agregados é fosforilada no resíduo serina 129 (S129), em contraste com 

apenas 4% de fosforilação neste resíduo em cérebros saudáveis. Apesar da fosforilação no 

resíduo S129 ser a mais bem estudada, pouco se compreende sobre o seu papel na 

doença. Por outro lado, estudos recentes realizados em culturas de células, em Drosophila e 

em cerébros humanos demonstraram a existência de fosforilação no resíduo tirosina 125 

(Y125). Sabe-se que a fosforilação deste resíduo suprime a oligomerização. Para além 

disso, durante o envelhecimento, a fosforilação Y125 é naturalmente reduzida, sendo essa 

redução mais notável nos pacientes com DP. A falta de informação sobre a fosforilação no 

resíduo Y125 está relacionada com a dificuldade de detectar aSyn fosforilada neste resíduo 

em cérebros de humanos. Para além disso, é difícil estabelecer a ligação entre a progressão 

da doença e os níveis de aSyn fosforilados no resíduo de Y125. Devido a todas estas 

razões torna-se importante estudar o papel da fosforilação da aSyn nos resíduos S129 e 

Y125 na patogénese da DP. 

A levedura Saccharomyces cerevisiae (S. cerevisiae) é um organismo eucariota e 

unicelular versátil que apresenta uma organização intracelular complexa e cujas vias 

metabólicas são conservadas. Deste modo, este modelo é amplamente utilizado para 

compreender processos biológicos complexos encontrados em eucariotas superiores. S. 

cerevisiae é um modelo de estudo validado para a investigação da DP, sendo que já foi 

demonstrado que aSyn humana expressa em células de levedura induz toxicidade e 

formação de inclusões citoplasmáticas à semelhança do que foi observado noutros modelos 

biológicos, nomeadamente em modelos celulares de mamífero e em modelos animais de 

PD. Para além disso, existem várias vantagens para a utilização da levedura, como um 

organismo modelo, tais como a facilidade de manipulação em laboratório; o fato do seu 

genoma estar totalmente sequenciado; de apresentar um tempo de geração curto e também 

devido ao fato de ser possível manipular geneticamente através da aplicação simples de 

métodos clássicos de genética molecular. 
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O principal objetivo do presente trabalho foi estudar o papel da fosforilação de aSyn 

na etiologia da DP, no que diz respeito ao efeito a nível de toxicidade e propensão para 

formar inclusões, utilizando como modelos S. cerevisiae e células humanas. Para isso, 

foram utilizadas três formas de aSyn: a forma selvagem (WT) e as formas não fosforiladas 

nos resíduos Y125 (Y125F) e S129 (S129A ou S129G), respetivamente. Observou-se que o 

bloqueio da fosforilação no resíduo Y125 (Y125F aSyn) diminui a percentagem de células 

com inclusões, enquanto, que o bloqueio da fosforilação no resíduo S129 (S129A aSyn ou 

S129G aSyn) aumenta a percentagem de células com inclusões. Em paralelo, observou-se 

que a mutação Y125F não altera a toxicidade da aSyn expressa na levedura S. cerevisiae 

enquanto, que a mutação S129G aumenta a toxicidade desta.  

Para validar os resultados em levedura, foi utilizado um modelo de agregação de 

aSyn, previamente descrito, numa linha celular humana de neuroglioma (H4). Neste modelo, 

a co-transfecção de uma forma modificada de aSyn (fundida a uma forma truncada de 

proteína verde fluorescente (GFP), e designada por SynT) juntamente com sinfilina-1, uma 

proteína neuronal também identificada nos LBs, resulta na formação de inclusões 

citoplasmáticas, as quais foram observadas através do método de imunocitoquimica. 

Utilizou-se este modelo estabelecido de agregação de aSyn para investigar o papel das 

mutações Y125F SynT e S129G SynT na formação de inclusões, em comparação com a 

situação controlo, WT SynT. Observou-se que as mutações Y125F SynT e S129G SynT 

resultaram no aumento do número de células com inclusões, o que indica que o bloqueio da 

fosforilação nos resíduos Y125 e S129 aumenta a propensão da aSyn para agregar no 

modelo de agregação H4. Além disso, observou-se que o padrão de formação de inclusões 

na mutação Y125F SynT era diferente do observado na WT SynT e S129G, apresentando 

agregados mais pequenos.  

Neste estudo mostrou-se que existem evidências de uma correlação entre 

fosforilação, agregação e toxicidade celular de aSyn usando o modelo simples, mas 

poderoso da levedura S. cerevisiae, e um modelo de células neurogliais humanas. Os 

resultados obtidos também contribuíram para a compreensão da base molecular da doença 

de Parkinson, tal como de outros distúrbios neurodegenerativos (isto é, outras 

sinucleionopatias, como, multiple system atrophy (MSA), pure autonomic failure (PAF), 

Doença de Lewy bodies). É importante referir que a forma não fosforiladado do resíduo 

Y125, neste caso, a mutação Y125F, deve ser considerada para estudos posteriores, pois 

obtivemos resultados diferentes quando se bloqueou a sua fosforilação quer em células de 

levedura quer em células neurogliais humanas. Isto pode significar que não há uma 

conservação de mecanismos entre espécies ou então que os resultados obtidos dependem 

do facto da sinfilina-1 não estar presente em levedura; será algo que terá interesse 

aprofundar. Também se pode explicar a discrepância de resultados com o facto de o modelo 



iii 
 

H4 se basear na co-expressão de sinfilina-1, uma proteína que não tem homologo em 

levedura mas quando expressa em levedura se sabe aumentar a propensão da aSyn para 

agregar. A fosforilação de Y125 aSyn, apesar de pouco conhecida e estudada considera-se 

muito importante, pois muitos estudos sugerem que uma alteração neste resíduo pode estar 

relacionada com a causa da doença neurodegenerativa e que pode ter uma influência 

negativa sobre a oligomerização, e consequentemente na agregação de aSyn.  

Por outro lado, a mutação S129G aSyn conduz ao aumento da formação de 

inclusões em levedura e a formação de inclusões nas células H4. Assim, concluímos que 

S129 é um resíduo que tem efeitos semelhantes nos dois modelos usados, sendo que 

provavelmente a sua fosforilação é um mecanismo conservado entre espécies. Seria de 

extremo interesse de futuro, estudar em mais detalhe as cinases e as fosfatases envolvidas 

na regulação da fosforilação deste resíduo. Em conjunto, estes novos resultados 

demonstram que diferentes resíduos fosforilados na aSyn resultam em diferentes níveis de 

agregação e toxicidade, sendo que os efeitos da fosforilação de S129 se mostraram 

indubitavelmente consistentes entre espécies. Por outro lado, a fosforilação de Y125 não 

apresentou essa mesma consistência. Uma explicação possível pode estar relacionada com 

o fato das cinases/fosfatases que regulam tirosinas em aSyn nas células humanas poderem 

não estar tão conservadas em células de levedura como as vias que 

fosforilam/desfosforilam serinas. Deste modo, torna-se interessante de futuro estudar os 

dois resíduos em simultâneo e verificar o que acontece quando os dois locais estão 

disponíveis ou não para serem fosforilados. 

O presente trabalho contribuiu para esclarecer o papel de uma modificação pós-

traducional, a fosforilação, no processo de agregação de aSyn, no contexto da DP. 

Conhecer melhor estes mecanismos moleculares pode vir a permitir o desenvolvimento de 

novas estratégias para intervenção na DP, tal como noutras sinucleinopatias. 
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Abstract 

 

 Alpha-synuclein (aSyn) is a protein involved in both idiopathic and familial 

Parkinson´s disease (PD) cases, being the major component of Lewy body inclusions (LBs), 

the typical pathological hallmark of this disorder. It is estimated that ~90% of the aggregated 

aSyn in LBs is phosphorylated in S129 residue, in contrast with only 4% of phosphorylation 

in the same residue in normal brain.  

Saccharomyces cerevisiae is a versatile eukaryotic organism that has being 

extensively used to understand the complex biological processes found in higher eukaryotes 

and it is a validated model in PD. Indeed, it has already been shown that aSyn induces 

toxicity and inclusion formation in a similar manner to that observed in other cell and animal 

model systems.  

The objective of this work was to study the role of phosphorylation of aSyn in the 

etiology of PD. For this, we used three forms of aSyn: wild shape (WT) and non-

phosphorylated forms in the residues Y125 (Y125F) and S129 (S129A or S129G), 

respectively. We observed that blocking the phosphorylation at residue Y125 reduced the 

percentage of cells with foci while blocking the phosphorylation at residue S129 increased 

the percentage of cells with foci. In parallel, we observed that the Y125F mutation did not 

change the toxicity of aSyn expressed while the S129G mutation increased its toxicity.  

Subsequently, the aggregation resulting from the expression of Y125F aSyn and S129G 

aSyn was analyzed in the mammalian cell aggregation model based on co expression SynT 

and synphilin-1. Both mutations increased the formation of aSyn inclusions in those cells. 

Taken together, these new results provide an important insight into the role of 

phosphorylation in the aggregation process. A better understanding of these molecular 

mechanisms may enable the development of new strategies for intervention in PD and other 

synucleinopathies. 
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1. Introduction 

 

1.1. Parkinson’s Disease and other synucleinopathies 

Parkinson’s disease (PD), originally described by James Parkinson in 1817, is the 

second most common late-onset neurodegenerative disorder after Alzheimer’s disease [1]. 

The neuropathological hallmark of the disease is represented by the deposition of alpha-

synuclein (aSyn) in the Lewy Bodies (LB), which are intracellular aggregates 

characteristically found in the dopaminergic neurons affected by the disorder [2]. PD is 

known to affect around 1% of the population over the age of 65 [3] and 4-5% of the 

population by the age of 85 [2]. It is clinically characterized by tremor, rigidity, akinesia 

(reduction in movement) and bradykinesia (slowed movement) correlated to the 

degeneration of dopaminergic innervation involved in the movement [4]. In fact, the initial 

defects in the motor system result from the progressive loss of the dopaminergic neurons in 

the substantia nigra pars compacta (SNpc), which consequently cause a reduction in the 

dopamine levels. In the late stage of the disease the neurodegeneration affects also the 

other brain regions, with patients experiencing non-motor symptoms such as autonomic 

dysfunction, sleep disturbances and neuropsychiatric symptoms [5, 6]. 

The majority of the PD cases are sporadic (about 95%) with unknown aetiology, 

demonstrating that the disease may result from a combination of environmental, epigenetic 

and genetic factors [6, 7]. Indeed, environmental factors such as pesticides, have been 

implicated as risk factors for PD pathogenesis [8, 9]. The genetic factors may then represent 

susceptibility to disease that, either acting alone or in combination with other environmental 

factors, might predispose an individual to PD [10, 11] . Only 5% of the cases are familiar and 

are associated to specific gene mutations [12]. In the last years several mutations 

responsible for the disease were discovered [10]. These studies suggest the presence of 

common mechanisms underlying both familial and sporadic forms, like the presence of 

specific protein within the LBs. It is believed that these bodies may present a protective 

mechanism of the disease, where dysfunctional and misfolded proteins are sequestered, 

although there are increasing evidences suggesting a toxic role for aSyn intermediate 

oligomers species formation [13, 14]. 

In this scenario, synucleinopathies constitute a distinct group of neurodegenerative 

disorders that share a common pathologic hallmark, the presence of aSyn aggregates in 

surviving neurons. These disorders are characterized by the deposition of intracellular 

inclusions composed largely of fibrillar aSyn, although the distribution of aSyn aggregates is 

significantly different according to the disease [14-16]. This group of neurodegenerative 

disorders includes Parkinson’s disease (PD), dementia with Lewy bodies (DLB), Lewy body 
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variant of Alzheimer’s disease, multiple system atrophy (MSA) and pure autonomic failure 

(PAF) [17-19].  

These disorders are characterized by different molecular and cellular pathological 

mechanisms, however, they point out to a key role for aSyn misfolding that may allow us to 

understand if aSyn intracellular inclusions are a cause or a consequence of neuronal death, 

and help us to design new therapeutic strategies [20]. 

 

1.2. Alpha-synuclein 

 

aSyn was initially associated with PD pathogenesis by being characterized as a 

primary component of the LB, and by the subsequent discovery of early onset familial PD 

cases caused by three different autosomal dominant missense mutations (A30P, E46K and 

A53T) present in the gene encoding aSyn [2, 21, 22]. Recently, new missense mutations, 

H50Q and G51D, were discovered, but few is  known about it [23, 24].  Also duplications and 

triplications of its locus were associated with the early onset of PD pathogenesis [25, 26]. 

aSyn is a 14.5 kDa protein of 140 amino acids, with three major domains [27]. The N-

terminal is an amphipatic lysine rich domain that is characterized by containinng a highly 

conserved region of seven 11-residue imperfect repeats with a hexameric motif (KTKEGV) 

[28, 29]. The hydrophobic central region, comprising residues 61-95, also known as NAC 

domain, with two additional KTKEGV repeats [30, 31]. The carboxy terminal (C-terminal) 

domain enriched in acidic residues is negatively charged, comprises the majority of post-

translational modification sites and has been involved in the majority of aSyn proteins 

interactions [32-34] (Fig.1). 

The function of aSyn is not yet truly understood, but several studies suggest that this 

protein might have a role in synaptic development, function and plasticity [35, 36]. aSyn 

found only in vertebrates, is expressed throughout the central nervous system and  

particularly enriched in neural pre-synaptic terminals, where may function as a chaperone-

like protein or may be involved in synaptic vesicular regulation [37]. Numerous factors have 

been reported to affect the aggregation process of aSyn, however, few proteins and 

compounds have been identified as able to inhibit its aggregation propensity [38]. In addition 

aSyn is known to interact with several proteins, such as synphilin-1, in synaptic vesicles [39]. 

 

 

 

 

Figure 1. Schematic representation of aSyn and the positions of genetic mutations. The N-terminal 

(shown in blue) presents the mutations associated with familial PD (shown in red). The imperfect KTKEGV 



3 
 

repeats are represented in yellow. In purple the NAC domain. In green the C-terminal domain. (adapted 

from Tenreiro S and Outeiro, unpublished). 

 

 

1.3. Alpha-synuclein phosphorylation 

 

Several aSyn post-translational modifications, such as nitrosylation, ubiquitinylation, 

oxidation, truncation and phosphorylation have been identified and significant advances have 

been made towards the identification of new ones. Among these, phosphorylation is strongly 

linked to the pathogenesis of PD. In fact, among the aSyn post-translational modifications 

present in the LB, phosphorylation in Serine 129 (S129) is the most frequent [17, 40-42]. 

Phosphorylation regulates the structural and functional properties of proteins in health 

and disease conditions. The role of phosphorylation (a reversible post-translational 

modification) in the aggregation and toxicity of aSyn is currently the subject of intense 

investigation [41] . 

Phosphorylation of aSyn at one or multiples sites may play an important role in the 

regulation of LB formation and neurotoxicity in vivo, but also on its physiological function [43, 

44]. Several studies showed that aSyn is predominantly phosphorylated on serine residues. 

Residues S87 and S129 were identified as possible phosphorylation sites.  S129 is the more 

phosphorylation site in the C-terminal region of aSyn [40-42, 45] . Phosphorylation of aSyn is 

known to occur also on tyrosine residues 125, 133 and 136 (Y125, Y133, and Y136), but 

very little is known about its biological significance [43, 46]. 

aSyn phosphorylation status influences the affinity of aSyn for other proteins and thus 

alters the biological processes regulated by these interactions. One way to study aSyn 

toxicity or aggregation related with phosphorylation, is by mimicking this modification by 

mutating specific serine or tyrosine residues to another amino acid (aa). Depending on the 

animal model used, the effect of phosphorylation of aSyn using the phospho-mimicking 

approach has yielded different results. Drosophila and several rat models have also been 

used to determine which form of aSyn confers toxicity [43, 46] (Fig.2). 

While there are reports suggesting that pS129 phosphorylation promotes aSyn 

inclusion formation [47, 48], others suggest that phosphorylation prevents or does not affect 

inclusion formation [49].  Studies in Drosophila and transgenic mouse models of PD showed 

that phosphorylation S129 (pS129) aSyn mediates aSyn neurotoxicity and inclusion 

formation [46, 50].  These results suggested that modulation of pS129 aSyn had a role in 

inducing neuronal dysfunction [51, 52]. However studies in rats and in C. elegans failed to 

reveal any toxicity associated with the accumulation of phosphorylated aSyn [52, 53] .  
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Cell culture model systems have also shown that three adjacent tyrosine residues 

(Y125, Y133, and Y136) in the aSyn C-terminal (phosphorylation of these residues 

suppresses aSyn oligomerization) can be phosphorylated as well as in human and 

Drosophila brain [54].  

Phosphorylation of wild type human aSyn at Y125 in Drosophila was shown to be 

protective against aSyn neurotoxicity. Interestingly, during the normal aging process both in 

humans and flies Y125 phosphorylation decreases. In addition, cortical tissue from patients 

with dementia with LB showed less phosphorylation at Y125. aSyn neurotoxicity in Parkinson 

disease and others synucleinopathies may result from the loss of the neuroprotective action 

of Y125 phosphorylation, which might inhibit toxic oligomer formation [54]. The lack of further 

studies on Y125 is related to the difficulty of detecting pY125 aSyn in human brains and the 

correlation between the progression of the disease and the levels of aSyn tyrosine 

phosphorylation [55].  

 

 

 

 

 

Figure 2. aSyn phosphorylation sites. Schematic representation illustrating the various aSyn residues 

that can be phosphorylated in vitro (represented in green) and the ones detected in LBs inclusions (shown 

in red) (adapted from Tenreiro and Outeiro, unpublished). 

 

 

1.4 Yeast as a model to study neurodegenerative disease 

 

The yeast model S. cerevisiae has been extensively used as a tool in the study of 

neurodegenerative diseases, such as Huntington’s disease (HD), Alzheimer’s disease (AD) 

and PD, since it recapitulates key cellular pathways involved in neurodegeneration [56]. S. 

cerevisiae is an extremely powerful model for molecular biologists and extensive knowledge 

has been produced on its fundamental cellular mechanisms [57]. Simple yeast cells have 

made possible to gain insight into neurodegenerative diseases and to uncover and establish 

basic aspects of both normal and abnormal aSyn biology [58, 59].   

Despite the absence of an aSyn ortholog in S. cerevisiae, it is still possible to study 

the human gene via its heterologous expression in yeast, generating a humanized model 

system [58, 60]. Heterologous expression of aSyn in yeast induces toxicity in a 

concentration-dependent manner and is associated with the formation of cytoplasmic protein 

inclusions as observed in other cellular model systems and human PD brain [58]. Key 

cellular processes between yeast and higher eukaryotes are highly conserved. This 

conserved cellular network between yeast and higher eukaryotes has been benefitial to 

identify and study genes known to be involved in human diseases [61, 62]. Other features 
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obtained through the use of multicellular model systems have also been successfully 

recapitulated in yeast, namely the involvement of protein quality control system, production of 

reactive oxygen species and apoptosis [56]. Furthermore, in yeast, several proteins with very 

diverse functions were identified as genetic modifiers of aSyn toxicity and alterations of these 

pathways, together with the accumulation of aSyn, contribute to the same cellular 

dysfunction observed in PD pathology [61, 62]. 

 

1.4.1 The life cycle of Saccharomyces cerevisiae 

 

Yeast cells propagate as haploid a, haploid α or diploid a/α cell types. The haploid 

cells undergo a simple life cycle of mitosis and growth. Under conditions of high stress they 

will, in general, die. On the other hand, during its vegetative cycle, the diploid a/α cells (the 

preferential 'form' of yeast) undergo meiosis and sporulation to produce an ascus that 

contains four haploid spores, which can proceed on to mate. After germination, two of these 

spores become cell type a and the other two become cell type α; these are divided to 

produce a mother and a daughter cell that have the same mating type as the original spore 

(Fig.3). As the second mitotic division occurs, the daughter duplicates its DNA, undergoes 

budding and division without switching mating type, whereas the mother switches the mating 

type before S phase. At the end of two mitotic divisions of the original spore, four cells are 

generated, being two a and other two α mating types. Four cells are then generated after two 

mitotic divisions of the original spore (two with a mating type and two with α) [63, 64]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The life cycle of S. cerevisiae. The diagram shows yeast life cycle. Mating of haploids gives 

origin to a diploid, and meiosis of a diploid originates haploid cells. a/α  cells produce within an ascus, which 

http://en.wikipedia.org/wiki/Haploid
http://en.wikipedia.org/wiki/Biological_life_cycle
http://en.wikipedia.org/wiki/Mitosis
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contains the four haploid products (spores) that results from the meiosis of the diploid cell. To analyze the 

individual spores, the ascus wall is digested with degradation enzymes, and the individual spores are 

separated from each other by micromanipulation. The spores begin to grow on nutrient media and form 

colonies that can be tested for their mating type and for other markers (Adapted from 

http://www.uta.edu/search/?q=saccharomyces). 

 

1.5. Mammalian cells model of aSyn aggregation 

 

1.5.1. SynT and synphilin-1 

 

The SynT aggregation model used in this study was first described by McLean and 

colleagues and has been extensively used since then. This model is based on the 

expression of aSyn tagged with a truncated, non-fluorescent fragment of GFP (SynT) (Fig.4). 

In this model, overexpression of SynT together with synphilin-1 in a neuroglioma cell line 

(H4) promotes the formation of aSyn inclusions [65].  

 

 

 

 

 

Figure 4. Schematic representation of SynT. This construction allows us to study aSyn aggregation in 

vitro in different mammalian cell lines. 

 

Synphilin-1 is a presynaptic protein that was first identified by yeast-two-hybrid 

screening as a protein that interacts with aSyn and it is composed of 919 amino acid 

residues. aSyn interacts in vivo with synphilin-1 via its N-terminal and co-localizes with aSyn 

in LBs of PD patients. Similarly to aSyn, synphilin-1 is present in the majority of LB of 

patients with PD being present in almost 90% of LB from substantia nigra and other regions 

of the brain, suggesting its importance to the pathogenesis of PD [66, 67]. Moreover, 

synphilin-1 seems also to be required for inclusion formation [68]. 

 

 

 

 

 

 

http://www.uta.edu/search/?q=saccharomyces


7 
 

 

2. Aims of the study 

 

In order to study the effect of aSyn serine and tyrosine phosphorylation on its toxicity 

and aggregation we set two major aims: 

 - To determine the role of phosphorylation of specific residues Y125 and S129 on 

aSyn toxicity and inclusions formation. For this purpose, an established yeast S. cerevisiae 

model, a versatile eukaryotic organism, was has been already extensively used to 

understand the complex biological processes found in higher eukaryotes, involving aSyn 

post-translational modification in PD.  

 - To validate the main achievements obtained in yeast in a higher eukaryotic model of 

PD, using a human neuroglioma cell line (H4). For that aim, we generated the constructs 

Y125F and S129G to express mutant forms of aSyn and to investigate the effects of the 

different mutations on aSyn inclusions in cultured cells. 
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3. Materials and Methods  

 

3.1. Molecular biology techniques used in Escherichia coli 

 

3.1.1. Plasmids used in this study 

The plasmids used in this study are listed in Annex 7.1. 

Bacterial cultures of E. coli transformed with those plasmids were routinely preserved 

in glycerol stocks prepared in 2 mL vials of cryopreservation. For that, 500 µL of bacterial 

culture were mixed with 500 µL of glycerol (50% v/v) and stored at -80°C for future use. 

The vectors chosen for the heterologous expression of aSyn in S.cerevisiae were 

pRS304 and pRS306 and were used to express human aSyn under a galactose-inducible 

promoter and fused with GFP (green fluorescent protein) which enables the evaluation of 

protein expression and subcellular localization by fluorescence microscopy. They have a 

yeast TRP1 and URA3 selectable marker, respectively, and E.coli ampicillin resistance 

marker. 

 

3.1.2. Growth media  

The E. coli were grown at 37ºC overnight in specific medium (Luria-Bertani Broth - 

LB). The transformed bacteria were streaked onto plates supplemented with 2% agar 

containing 100 µg/mL of ampicillin (LB/Amp) as selection antibiotic and incubated overnight 

at 37ºC. After visible growth, the plates were kept at 4ºC. 

 

3.1.3. Transformation of E.coli supercompetent cells  

E. coli supercompetent cells were thawed on ice. 10 µL of transforming DNA were 

mixed with 100 µL thawed supercompetent bacteria cells (Nzytec). After that, mixed 

transformation was kept in ice for 30 min. Heat-shock of bacteria cells was performed by 

placing the tubes at 42ºC for 45 sec and the cells were placed on ice for 2 min. The resulting 

solutions added to 900 µL of LB medium without antibiotics and incubated for 1 hour at 37ºC. 

The transformed bacteria were spread on LB/Agar plates containing 100 µg/mL of ampicillin 

as selection antibiotic and incubated overnight at 37ºC. 

 

3.1.4. Extraction and purification of plasmids  

Random colonies were picked from the LB/Agar plates. These selected colonies were 

used to inoculate in 3 mL liquid LB/Amp medium, grown overnight with agitation (200 rpm) at 

37ºC. The bacterial cultures were harvest by centrifugation and the plasmid DNA purified 

using NZYMiniPrep Kit from Nzytech. DNA extraction was performed following the 

manufactured recommendations. The plasmid DNA was eluted in 30 µL of preheated (42ºC) 
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sterile water. DNA concentration was determined at Nanodrop® (Thermo Scientific) or stored 

at -20ºC for further use. 

 

3.1.5. Restriction digestion 

To prepare the DNA for cloning procedures or to analyse the resulting clones multiple 

restriction digestion was performed. These restriction reactions were preformed both to 

confirm the presence of a gene in the expression vector and also to clone genes into 

expression vectors. 

For cloning proposes, vectors and inserts were subject to enzymatic restriction. About 

2-3 µg of DNA was digested in a final volume of 40 µL. The appropriated restriction enzymes 

were added using 1U for each 500 ng/µL of DNA and 4 µL of the corresponding enzyme 

buffer. For restriction map analysis of the clones obtained from the cloning procedures, a 

similar enzymatic restriction reaction was performed, but then 1 µL of the miniprep DNA was 

digested in a final volume of 10 µL. 

The reactions were incubated at 37ºC for 2-3 hours or overnight and the resulting 

DNA fragments were visualized in agarose gel. 

 

3.1.6. DNA extraction from agarose gel  

The agarose gel was prepared in TAE 1x buffer and ethidium bromide was added 

before gel solidification. For visual tracking of DNA fragments migration during 

electrophoresis, it was applied the Orange G loading buffer (1/3 of the total volume of the 

samples to the DNA samples). The resolving agarose gel allowed separation of DNA 

fragments at a constant voltage of 80V. 

For further cloning, the bands corresponding to the DNA fragments of interest were 

cut from the gel and DNA was purified using a specific kit.  

 

3.1.7. Generation of Y125F and S129G phospho-mutants in yeast and 

mammalian vectors 

Using the aSyn WT or SynT (aSynEGF deletion mutant (WTSynGFPΔ155) [65] and 

synphilin-1 [69]) constructs as a template, the mutations Y125F and S129G phospho-

mutants were introduced by site-directed mutagenesis (QuickChange Site-Directed 

Mutagenesis Kit, Agilent Technologies).Briefly, a PCR was carried out using the PfuTurbo® 

DNA Polymerase (Stratagene, La Jolla, CA, USA) (1.25 U), the plasmid DNA template (10 

ng) and the mutagenesis primers (62.5 ng, each primer) (Table 1).  

 

 

 



10 
 

Table 1. Primers used for site-directed mutagenesis. 

 

The following conditions were used to perform the PCR reaction: 1 min at 95ºC, 18 

cycles x [50 s at 95ºC, 50 s at 60ºC, 8 min at 68ºC] and 10 min at 68ºC. The resulting 

products were incubated with DpnI at 37ºC, overnight. The DpnI endonuclease specifically 

digests methylated and hemimethylated DNA allowing the selective digestion of the DNA 

template (methylated) and the selection of the mutated constructs synthesized de novo (not 

methylated). Accordingly, the digested DNA solutions contained only the mutant plasmids. 

Then, mutant plasmids were transformed in supercompetent E. coli cells as described in 

3.1.3. 

Two independent clones of each mutagenesis reaction were sequenced by means of 

external DNA sequencing services to confirm the mutations introduced. The results of 

sequencing were analysed using the Basic Local Alignment Search Tool. 

E. coli transformants of the positive clones were preserved in glycerol stocks as 

described above. 

 

3.1.8 Cloning strategy of yeast integrative vectors  

The vectors chosen for the heterologous expression of aSyn in S. cerevisiae were 

pRS304-GAL and pRS306-GAL. These were a shuttle integrative yeast expression vectors 

that have an inducible GAL (galactose) promoter, carrie a yeast TRP1 and URA3 selectable 

marker, respectively, and an E. coli ampicillin resistance marker (Fig.5). 

 The Y125F aSyn mutant forms were obtained by site-directed mutagenesis as shown 

in 3.1.7. While S129G aSyn were obtained by sub-cloning Gal1-aSyn S129G-CYCterminator 

from p426 yeast plasmid to either prs304 or prs306 integrative plasmids, using SacI/KpnI. 

The tyrosine (Y) residue at position 125 of the aSyn polypeptide chain was replaced by the 

amino acid phenylalanine (F) and the serine (S) residue at position 129 of the aSyn 

polypeptide chain was replaced by the amino acid guanine (G).  

The different aSyn genes are fused to a GFP tag (green fluorescent protein) which 

enables the evaluation of protein subcellular localization by fluorescence microscopy. 

 

Primer Phospho-mutants Sequence 5’ to 3’ 

Y125F-S Y125F mutagenesis 5' CCTGACAATGAGGCTTTTGAAATGCCTTCTGAG 3' 

Y125F-AS Y125F mutagenesis 5' CTCAGAAGGCATTTCAAAAGCCTCATTGTCAGG 3' 

S129G-S S129G mutagenesis 5' GGCTTATGAAATGCCTGGTGAGGAAGGGTATCAAG 3' 

S129G-AS S129G mutagenesis 5' CTTGATACCCTTCCTCACCAGGCATTTCATAAGCC 3' 
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Figure 5. Maps of the yeast expression vectors (A) pRS304-GAL and (B) pRS306-GAL.These 

expression vectors carry a TRP1 and URA3 selection marker, respectively. The GAL promoter controls the 

expression of generated fusion proteins. Here are shown the restriction sites of the multiple cloning site 

(MCS). 

 

 

3.2. Molecular biology techniques used in S. cerevisiae 

 

3.2.1. Yeast strains  

The yeast strains used in this study are listed in Annex 7.2. Yeast strains were stored 

in glycerol stocks prepared by mixing 500 µL of yeast culture added to 500 µL of glycerol (50 

% v/v) and stored at -80°C for future use. For further manipulations, strains were defrost and 

cultivated in solid medium. These plates were incubated at 30ºC until visible cell growth. The 

cultures were then stored at 4ºC. 

 

3.2.2. Growth media 

For routine work, yeast strains were grown at 30ºC in YPD medium and when 

necessary in synthetic complete (SC) medium lacking specific amino acids in Annex 7.3. 

 

3.2.3. Yeast transformation 

Yeast transformation protocol is based in the permeabilization of the yeast cellular 

membrane by lithium acetate (LiAc), its destabilization by TE and added PEG 40%. These 

compounds allowed the entry of DNA molecules in the cell.  

Yeast cell were prepared prior to manipulation: in the first day, a single colony of each 

was picked into 5 mL of YPD and incubated at 30ºC with 250 rpm until late afternoon. The 

optical densities (ODs) were measured at 600 nm and yeast pre-cultures were diluted in 10 

mL per transformation to obtain an OD between 0.5-0.7 (generation time of yeast cells in 

YPD were 90 min). In the second day, cells were harvest by centrifugation, washed with 30 

mL of sterile water and resuspended in 1mL of sterile water. Then, pellet was washed in 0.5 

mL of a solution of the LiAc 10x (1M LiAc pH 7.5) mixed with TE buffer 10x (0.1 M Tris pH 

7.5; 0.01 M EDTA pH 7.5). For each transformation, 50 µL of yeast cells were added to the 

corresponding eppendorf along with 5 µL of previously boiled denatured salmon sperm. Ten 
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µL of transforming DNA were added and 300 µL of a solution containing PEG 50 %, TE 10x 

and AcLi 10x. The mixture was homogenized and incubated at 30ºC with orbital agitation for 

30 min. The eppendorf was transferred to a 42ºC bath for 20 min. Cells were washed and 

were resuspended in 100 µL of sterile water, and plated onto appropriate selective medium.  

The plates were incubated at 30ºC for 2-3 days and the transformants obtained were 

streaked onto fresh plates. 

 

3.2.4. Construction of haploid yeast strains with single genome insertions of 

the aSyn forms 

The integrative plasmids already available and the ones here constructed (point 

3.1.8) were used to construct new yeast strains either in the W303.1A or the W303.1B 

background, carrying in its genome single integrations of WT aSyn, S129A aSyn, or Y125F 

aSyn, with or without a N-terminal fusion with GFP.  

Namely, 3 µg of the integrative vectors of interest either in the pRS304 or in the 

pRS306 backbone were linearized with EcoRV as described in point 3.1.5. Then DNA was 

purified using a specific Kit (Wizard SV Gel and PCR Clean-Up System). The obtained DNA 

was them used to transform either W303.1A or W303.1B as described in point 3.2.3. 

After strains were obtained, the correct insertion of the integrative vectors was verified 

by PCR using a specific pairs of primers (table 2). 

 

Table 2. Primers used for confirmation of the insertion of the integrative vectors in the expected 

genome locus. 

 

Primer Sequence 5’ to 3’ 

Y125F-S 5' CCTGACAATGAGGCTTTTGAAATGCCTTCTGAG 3' 

Y125F-AS 5' CTCAGAAGGCATTTCAAAAGCCTCATTGTCAGG 3' 

S129G-S 5' GGCTTATGAAATGCCTGGTGAGGAAGGGTATCAAG 3’ 

S129G-AS 5' CTTGATACCCTTCCTCACCAGGCATTTCATAAGCC 3' 

S129A-S 5' CTTATGAAATGCCTGCTGAGGAAGGGTATC 3' 

S129A-AS 5' GATACCCTTCCTCAGCAGGCATTTCATAAG 3' 

 

The following conditions were used to perform the PCR reaction: 5 min at 95ºC, 30 

cycles x [30 s at 95ºC, 30 s at 55ºC, 2 min at 72ºC] and 10 min at 72ºC. After the PCR 

reaction was performed to confirm the PCR by agarose gel (1% agarose gel TAE 1x  was run 

60 min at 90V). Transformants were positive for vectors integrations were preserved at 4°C 

or used.  

These haploid strains were then used to generate diploid strains by mating. Briefly, 

yeast cells from each haploid strain were mixed on a YPD agar plate and incubated at 30ºC 

for 2 days. Then, cells were picked, ressuspended in sterile watter and diploids were 

selected in minimal medium by URA and TRP auxotrophy. 
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These diploid strains were used to obtain haploid strains with double insertions of the 

appropriate aSyn by our collaborator Donata Wawrzycka. Briefly, diploids were by 

sporulation and tetrad dissection using a micromanipulator. The haploid strains obtained 

from each spore was analysed regarding auxotrophies and mating type.  

The phenotypic characterization of these haploid strains was performed in several 

haploids obtained from dissected spores from independent tetrads and independent matings. 

 

3.2.5. Growth conditions and spot assays 

In the afternoon of the first day a pre-inoculum of the yeast strains of interest was 

prepared from fresh cultures in 5 mL YEP-Raffinose  liquid media and incubated at 30ºC with 

orbital agitation (200 rpm) overnight. Optical density at 600 nm (OD600 nm) was read in the 

next afternoon and yeast cells were diluted into 5 mL of the same medium and incubated at 

30ºC, with orbital agitation (200 rpm) until the standardized culture OD600 nm=0.5 was reached 

the next morning. The volume of yeast culture needed to inoculate a new culture with an 

initial standardized OD600 nm=0.2 was centrifugated and the cells were resuspended in YEP-

Galactose liquid media and incubated at 30ºC, with orbital agitation (200 rpm), for 6 hours.  

Serial dilutions (1:3) of the cell suspensions were prepared and spotted directly onto 

the agar plates that were then incubated at 30ºC and growth of yeast strains was monitored 

during 3 days. 

 

 

3.3. Molecular biology techniques used in human neuroglioma cells   

 

3.3.1. Construction of psi Y125F and S129G aSyn mammalian expression 

vectors 

The SynT aggregation model used in this study was a starting point for the production 

of the Y125F and S129G phospho-mutant constructs. We generated two different phospho-

mutant constructs using the SynT as a template. These mutations were introduced by site-

directed mutagenesis (as described in 3.1.7). 

 

3.3.2. Cell culture and cell transfection 

The experiments were carried out in Human neuroglioma cells (H4) (ATCC HTB-148, 

LGC Standards, Barcelona, Spain) which were maintained in OPTI-MEM® I (Gibco, 

Invitrogen, Barcelona, Spain) supplemented with 10% Fetal Bovine Serum (FBS). The cells 

were grown at 37°C in an atmosphere of 5% CO2, under controlled conditions. For selected 

method cells were counted and seeded at a specific density of cells and on different types of 

plates. The density was maintained among the different sizes of plates in order to obtain 
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comparable results with different techniques. For microscopy experiment, cells were counted 

and seeded at a density of 120.000 cells/cm2 on glass- bottom 35 mm dishes (10 mm glass 

surface diameter, MatTek Corporation, Ashland, MA, USA) and for protein extraction cells 

experiment, cells were counted and seeded at a density of 175.000 cells/cm2 in 100 mm 

dishes (Techno Plastic Cultures AG, Switzerland). After 24 hours prior to transfection, H4 

cells were transfected with the different combinations of plasmids. So, DNA transfection 

(Roche diagnostics, Mannheim, Germany) was used to transiently transfect cells (the cells 

are 60-80% confluent upon transfection) with the different combinations of plasmids, 

according to the manufacturer’s instructions. 

 

3.3.3. Immunocytochemistry 

The H4 cells were washed three times with PBS 1x, after 24 hours of incubation in 

the conditions described below. Cells were then fixed in 4% paraformaldehyde (PFA) at room 

temperature (RT) for 10 min. Cells were washed with PBS three times and thenwere 

permeabilized in 0.5% Triton X at RT for 20 min. The Triton X was removed but not washed. 

Cells were blocking in 1.5% normal goat serum (NGS) at RT for 1 hour. After blocking cells 

were incubated with primary antibody (mouse anti-aSyn, 1:1000) overnight at 4ºC. The 

primary antibody was removed and washed with PBS for three times. The secondary 

antibody was added (anti-mouse IgG-Alexa488, 1:1000, Invitrogen) and incubated at RT for 

2 hours. Cells were washed more three times with PBS. Cells were maintained in PBS at 4ºC 

for further analyse fluorescent microscopy. 

 

 

3.4. Fluorescence microscopy and image analysis 

Fluorescence microscopy was performed using a Zeiss Axiovert 200 M Widefield 

fluorescence microscope equipped with a digital Axiocam from Zeiss (objective 40x and 63x, 

EC Plan-NeoFluar, Dry, NA (0.75)). 

The yeast cultures grown as described in 3.2.4 were centrifuged at 3000 rpm, at 30ºC 

for 5 min and visualized under the microscope. The percentage of cells with aSyn inclusions 

was then determined by counting at least 500 cells per strain using ImageJ software. 

Transfected H4 cells were fixed with 4 % paraformaldehyde described in 3.3.2. Slides 

were subjected to fluorescence microscopy. The proportion of cells with aSyn inclusions was 

then determined by counting at least 60-100 cells per culture using ImageJ software. 
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3.5. Protein extraction 

For protein extraction, equal amounts of yeast cells were harvest and incubated with 

Trichloroacetic acid (TCA) (10%) at -20ºC for 20 min. Cells were than lysed using MRB buffer 

[50 mM sodium phosphate, 25 mM MES, pH 7.01 1% SDS, 3 M urea, 0.5% B-

mercaptoethanol, 1mM sodium azide and proteases and phosphatases inhibitors (Roche 

diagnostics, Mannheim, Germany)] and disrupted with glass beads (3 cycles of 30 sec in the 

beadbeater and 5 min on ice). The samples were incubated at 70ºC for 10 min, and unlysed 

cells and membranes were removed by centrifugation at 10.000 g for 1 min at 4ºC and the 

supernatant containing the proteins was collected. 

For H4 cells, the medium was removed. Cells were washed three times with PBS and 

harvest with Lysis buffer NP4O (with proteases inhibitor cocktail tablet).The plates were 

scraped and the cells were collected to an eppendorf and frozen at -80ºC for 15 min to 

disrupt membranes. Cells were always kept on ice during the extraction procedure, to avoid 

protein degradation. Cells were then sonicated 10 sec at 5 mA putted in 2 min in the ice 

twice (Soniprep 150 sonicator (Albra, Milano, Italy). After, cells were centrifuged at 0.7 rcf for 

10 min at 4ºC. Proteins that were in the supernatant were collected.  

The protein concentration was determined by means of the BCA Protein Assay 

Reagent Kit (Thermo Fisher Scientific Inc., Rockford, IL, USA), following manufacturer’s 

instructions.  

 

3.6. Western blot analysis 

Protein sample buffer (200 mM Tris-HCl pH 6.8, 6% 2-mercaptoethanol, 8% SDS, 

40% glycerol, 0.4% bromophenol blue) was added to each protein sample that was then 

heated for 10 min at 100ºC. Protein samples were run in SDS-PAGE. After, resolved, 

proteins were transferred to a nitrocellulose membrane using a Trans-Blot Turbo transfer 

system (Bio-Rad). Immunoblotting was performed following standard procedures with the 

listed antibodies: aSyn (BD Transduction Laboratories, San Jose, CA, USA), pS129 aSyn 

(Wako Chemicals USA, Inc., Richmond VA, USA) and Y125F Abcam ab10789, GAPDH 

(Ambion, Cambridgeshire, UK) antibody served as loading control for yeast. 

 

3.7. Data and statistical analysis 

Results are shown as the averages of at least three independent experiments and are 

represented as the means ± SD. Differences amongst treatments were detected by analysis 

of variance with the Tukey HSD (honest significant difference) Multiple Comparison Test 

using SigmaStat 3.10 (Systat). Values of p<0.05 were considered significant. 
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4. Results 

 

4.1 Construction of yeast strains with double insertions of the Y125F, S129G or WT 

SNCA human gene 

 

4.1.1. Construction of yeast integrative expression vectors 

In this work it was decided to use integrative expression vectors in order to guarantee 

stable expression levels of aSyn. Accordingly, the first step consisted to construct the 

plasmids that were not available yet and to use them in parallel with other already available 

and characterized in our laboratory (UNCM/IMM). 

The strain W303.1A was chosen for this study, as several strains constructed in this 

background were, as mentioned above, were already available in the laboratory. This strain 

was also used and characterized by Outeiro and Lindquist, 2003. This study showed that 

when the gene encoding aSyn, SNCA is cloned into a 2 µ vector (pRS426GAL) and is 

expressed in this strain (W303.1A) results toxic, decreases yeast growth and augments the 

number of cells presenting foci. Since 2 µ expression of aSyn results quite toxic, cells have 

tendency to reduce the plasmid copy number and protein expression might be considerable 

variable in a yeast cell population; therefore in our study it was preferred to use the aSyn 

integrated strains. 

The aSyn mutants forms Y125F and S129G, where the phosphorylation in this 

resides is blocked were obtained either by site-directed mutagenesis as described in point 

3.1.7. or by subcloning as described in 3.1.8. (Fig.6). 

 

 

 

Figure 6. Maps of the yeast expression vectors of S129G aSyn in (A) pRS304-GAL and (B) pRS306- 

GAL plasmids. These expression vectors contain a Gal promoter which controls the expression of the 

fusion proteins S129G aSyn; a MCS with multiple restriction sites and a TRP1 or URA3 selection marker, 

respectively. 
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In Figure 7 there is a schematic representation of the nucleotides and aminoacid 

sequences of aSyn where the site-directed mutagenesis was performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic representation of the aSyn nucleotide and amino acid sequences. Upper line 

represents the nucleotides sequence and the below one represents the protein sequence. Codons modified 

by site-directed mutagenesis for Y125F are shown in blue, while the ones modified by S129G are shown in 

green. 

 

In more detail, Y125F mutation occurred through the replacement of tyrosine for 

phenylalanine, which blocks phosphorylation and allows studying the effect of 

phosphorylation on this residue. Indeed, S129G mutation occurred through the replacement 

of serine for a glycine residue. This mutation mimics aSyn unphosphorylated form and 

represents a novel mutant as alternative to the widely characterized S129A, where the serine 

was replaced by an alanine.  

 

 

4.1.2. Construction of yeast strains with single insertions of the SNCA gene 

The plasmids obtained in 4.1.1. were used to construct haploid yeast strains with 

single insertions of Y125F aSyn in the genome (see 3.2.3). Integrative plasmids containing 

the mutation Y125F and bearing URA3 or TRP1 as auxotrophic markers, were cloned. Using 
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this construction and S129G; aSyn without GFP, S129A without GFP (already available in 

the laboratory) were made single integrations in the genome of W303.1A and W303.1B. 

Integrative vectors were designed in order to address a specific auxotrophic marker to 

integrate aSyn gene by homologous recombination (Fig.8). 

Different insertions in genome were performed with different mating types. The 

plasmids used were pRS306 and pRS304, which present different auxotrophies, URA and 

TRP respectively. The insertion of the integrative vectors in the expected genome locus was 

confirmed by PCR using specific pairs of primer. Figure 9 shows the PCR primers used and 

their respective products.  

 

Figure 8. Construction of yeast strains with single genome insertion of the indicated phospho-

mutants. Integrative yeast vector with different selective markers have been used to clone each aSyn 

mutant and integrated in genome.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Representative electrophoresis to confirm genome insertions with plasmids containing 

different auxotrophies. (A) PCR primers used and their respective products. (B) The insertion of the 

integrative vectors in the expected genome locus (ura3 or trp1) was confirmed by PCR using specific pairs 
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of primers. S129G aSyn-GFP; S129A aSyn-GFP and Y125F aSyn-GFP represents the unphosphorylated 

forms and WT aSyn is the control (VSY72). a, b, c represents different of colonies. * indicates negative 

candidates while all the remaining strains were positive for the correct genome insertion of the integrative 

vectors.  

 

4.1.3. Construction of yeast strains with double insertions of the SNCA gene 

A normal cell division of yeast leads to their genetically identical progeny. However, in 

this study we crossed different strains of yeast in order to produce new strains with unique 

genetic combinations. 

For this purpose yeast strains of each mating type were mated. The next step was to 

induce sporulation of the cells mentioned above by removing nutrients from their growth 

media. During this sporulation cells undergo two rounds of cell division, resulting in four 

spores in which the chromosomes have been distributed. This process generates four 

haploid yeast cells that are contained in an ascus and a single unit can be grown as an 

haploid cells. 

W303 diploid strains were used to obtain haploid strains with double insertions of the 

appropriate aSyn by our collaborator Donata Wawrzycka (University of Wroclaw, Poland). 

Briefly, haploid cells were induced by sporulation and tetrads were dissected using a 

micromanipulator. The haploid strains obtained from each spore was characterized by 

auxotrophic marker and mating type.  

The phenotypic characterization of these haploid strains was performed in several 

haploids obtained from dissected spores from independent tetrads and independent matings 

(Fig.10). 

 

 

 

 

 

 

Figure 10. Haploid strains obtained from dissected spores from independent tetrads and 

independent matings. The picture represents the stains obtained by budding (as described in 3.2.4). 

Throughout the plate are observed haploid strains resulting from de germination of different tetrads 

obtained from the mating of, in this case the strains SC208/220 (see Annex 8.2).  

 

 

The VSY strains which contain a double genome insertion of WT aSyn where used as 

control strains. These strains were previously described and characterized by Sancenon et 

al., 2010.  

Then we performed the characterization of the tetrads in order to study the toxicity 

and formation of foci in the Y125F and S129G residues. 
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4.2. Using yeast as a model to study aSyn phosphorylation 

 

4.2.1. Effect of Y125F on aSyn toxicity and foci formation 

We next investigated the role of blocking phosphorylation on residue Y125 on aSyn 

aggregation and toxicity using the phospho-mutant Y125F aSyn. Expression of this mutant 

was under the regulation of a galactose-inducible promoter which was turned on upon 

transfer of cells from raffinose and to galactose media. 

To evaluate the effect of blocking phosphorylation on Y125 on aSyn toxicity, the 

strains selected previously expressing one or two copies of Y125F aSyn (haploid strains 

obtained in 4.1.3), which resulted from the same tetrad were analysed. A replica of one of 

these set of strains was compared to strains expressing two copies of WT aSyn (VSY72) or 

S129A aSyn mutant form (VSY73) (that mimics the unphosphorylated form of aSyn) by 

spotting assay (Fig. 11). The control strain (VSY71) contained an empty vector.  

Expression of two copies of WT aSyn was not toxic for yeast as previously described 

[58], whereas two copies of S129A aSyn (VSY73) caused mild toxicity. Our results showed 

that either one or two copies of Y125F aSyn did not cause cellular toxicity, as it presented 

identical growth as for the WT strains (Fig.11). Therefore, no significant phenotype was 

visible when phosphorylation on Y125 was blocked. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Effect of Y125F on aSyn toxicity in yeast cells carrying single or double insertions of the 

encoding gene. Spotting assay of serial dilutions of cell suspensions, initially adjusted to OD600 nm=0.05+-

0.005, that where applied as spots (4 µl) onto the surface of the solid medium either with glucose (aSyn 

expression repressed) or galactose (aSyn expression induced). Results shown are from one representative 

experiment from at least three independent experiments. 

 

 

Furthermore, we analysed cells expressing WT and Y125F aSyn-GFP by 

fluorescence microscopy. After 6 hours of induction of aSyn expression, cells expressing WT 

aSyn already showed the presence of aSyn foci (Fig.12). Surprisingly, we did not observe 

formation of foci in cells expressing either one or two copies of Y125F aSyn.  
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Figure 12. Effect of Y125F on aSyn foci formation in yeast cells carrying single or double insertions 

of the encoding gene. Fluorescence microscopic visualization and intracellular localization of the WT and 

phospho-mutant Y125F aSyn fused to GFP 6 hours post induction of aSyn expression. Scale bar is 10 µm. 

 

 

4.2.2. Effect of S129G on aSyn toxicity and foci formation  

In these experiments, we compared the effect of two mutations (S129A and S129G) 

that prevent the phosphorylation of S129 residue on aSyn toxicity. Expression of these 

mutants was under the regulation of a galactose-inducible promoter (as described in 

4.3.1.).We previously showed that aSyn toxicity and foci formation was enhanced (Tenreiro 

et al., unpublished results) by S129A mutation that blocks aSyn phosphorylation. However, 

whether this was simply due to structural effects caused by the S129A substitution in aSyn or 

due to blocking phosphorylation was not completely clear. To clarify this, we replaced the 

serine 129 by glycine, which also blocks phosphorylation, following the same procedure as in 

4.2.1. (haploid strains obtained in 4.1.3). The spotting assays were performed with haploid 

strains that resulted from the same tetrad and were compared to strains expressing two 

copies of WT aSyn (VSY72) or S129A aSyn mutant form (VSY73) (that mimics the 

unphosphorylated form of aSyn). The control strain (VSY71) contained an empty vector. We 

observed that the toxicity caused by expression of S129A and S129G aSyn is identical 

(Fig.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Effect of S129G on aSyn toxicity in yeast cells carrying single or double insertions of the 

encoding gene. Spotting assay of serial dilutions of cell suspensions, initially adjusted to OD600 nm=0.05+-
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0.005, that where applied as spots (4 µl) onto the surface of the solid medium either with glucose (aSyn 

expression repressed) or galactose (aSyn expression induced). Results shown are from one representative 

experiment from at least three independent experiments. 

 

 

In particular, yeast strains carrying two copies of human SNCA integrated in the 

genome, encoding either WT, S129A and S129G mutant aSyn C-terminally tagged with GFP 

were used to to be compared side by side and pursuit the work. Confirming the results 

apresented in fig. 13, the expression of S129A and S129G aSyn is more toxic for yeast cells 

than expression of WT aSyn, as evaluated by spotting assay (Fig.14).  

 

 

 

 

 

Figure 14. S129G aSyn shows a similar phenotype to S129A aSyn. Cell viability of yeast cells 

expressing either WT aSyn, S129A aSyn or S129G aSyn, after 6 hours of aSyn expression induction, 

assessed by spot assay. Cell suspensions were adjusted to OD600 nm=0.05±0.005 and used to prepare 1/3 

serial dilutions that were applied as spots (4 µl) onto the surface of the YPD rich medium and incubated at 

30ºC for 2 days. Results shown are from one representative experiment from at least three independent 

experiments. 

 

Furthermore, after 6 hours of induction of aSyn expression, aSyn foci formation in 

cells expressing the WT, S129A or S129G was quantified by fluorescence microscopy. The 

majority of cells expressing either S129A or S129G aSyn displayed foci (90%). In contrast, 

only 70 % of cells expressing WT aSyn presented foci (Fig.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. S129G aSyn shows similar foci formation to S129A aSyn in yeast cells. Intracellular 

localization of the WT, S129A or S129G aSyn-GFP (left panel) and percentage of yeast cells containing 

aSyn foci, after 6 hours of aSyn expression induction, assessed by fluorescence microscopy (**p < 0.01; 
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ANOVA and post-hoc Tukey test) (right panel). Error bars indicate the standard error. Results shown are 

from one representative experiment from at least three independent experiments. Values represent the 

mean ± SD of three independent experiments. Scale bar is 10 µm. 

 

 

In conclusion, the expression of S129G aSyn was indistinguishable from expression 

of S129A aSyn, confirming that the previous observations obtained with the S129A mutation 

were due to the block of phosphorylation and not due to structural modification of the protein. 

 

4.2.3. Effect of Y125Fand S129G on aSyn S129 phosphorylation levels  

The expression levels of the different variants of aSyn tested in this work were 

assessed by western-blot analysis. Here we checked that aSyn expression levels were not 

affected by the mutations Y125F and S129G and found all variants were expressed at similar 

levels after 6 hours of expression induction (Fig. 16). Using an antibody that specifically 

recognizes pS129 aSyn, we observed that all aSyn were phosphorylated on S129 except the 

ones with mutations on the serine residue (S129G and S129A) (Fig.16). Importantly, S129G 

and S129A aSyn mutants cannot be detected by the anti-pS129 antibody, as expected. 

 

 

 

 

 

 

 

 

 

 

Figure 16. S129 phosphorylation levels of WT aSyn, Y125F aSyn, S129G aSyn and S129A aSyn 

expressed in yeast cells, determined by immunoblotting analysis. Representative immunoblotting of 

yeast cells expressing Y125F, S129G and S129A phosphorylation mutants. GAPDH was used as loading 

control.  

 

 

 

 

4.3. Validation of phosphorylation effects in human cells  

 

4.3.1. Effects of aSyn phosphorylation on inclusion formation 

The SynT aggregation model was used to study the effect of Y125F and S129G 

mutations on aSyn inclusion formation. The SynT plasmids were constructed by site-directed 

mutagenesis as described for the yeast ones (see 3.1.7). H4 cells were co-transfected with 

WT, Y125F or S129A SynT and synphilin-1. Forty-eight hours post-transfection cells were 

fixed and subject to ICC as described in 3.3.2., and observed by fluorescence microscopy as 

described in 3.4. For this study, cells were counted and categorized according to the number 
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of inclusions shown. Three groups of cells were established: cells without inclusions; cells 

with less than ten inclusions (<10) and cells with 10 or more inclusions (≥ 10). The latter 

group surprisingly included only cells expressing Y125F as different types of inclusions were 

observed for this particular aSyn mutant (Fig.17). 

 

 

 

 

 

 

 

 

Figure 17. Representative images of the phenotypes observed in the H4 cells co-transfected with 

WT, Y125F or S129A aSyn and synphilin-1. The three different phenotypes were used to group and count 

H4 cells according to the number of inclusions. Scale bar is 20 µm. 

 

 

We observed that the effect of aSyn inclusion formation may be dependent on the 

tyrosine phosphorylation status of aSyn. Both Y125F and S129G phosphorylation mutants 

showed a similar inclusion pattern compared to WT aSyn, but in almost 50% of the cells 

presenting the Y125F mutation, more than 10 inclusions were detected (Fig.18). 

 

 

 

 

 

 

 

 

 

 

Figure 18. Effect of S129G and Y125F mutations on SynT inclusions formation in H4 cells. (A) 

Fluorescence microscopy of H4 cells co-transfected with SynT and synphilin-1, showing the WT, Y125F 
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and S129G SynT cellular localization (in green). Scale bar is 20 µm. (B) Percentage of cells showing no 

inclusions (black), less of 10 inclusions (grey) or 10 or more than 10 inclusions (white) per cell (*No 

inclusions, 
#
<10 inclusions e 

£
>10 inclusions ;p < 0.001; ANOVA and post-hoc Tukey test). Error bars 

indicate the standard error. Results shown are from one representative experiment from at least three 

independent experiments. Values represent the mean ± SD of three independent experiments. 

 

In the control situation, about 60% of cells form less than 10 aggregates, while about 

40% does not. However, the number of cells with aggregates increases with the expression 

of both S129G and Y125F in about 5% and 10%, respectively, with statistical significance. In 

cells expressing Y125F and S129G SynT, around 70% of cells displayed inclusions. 

However, these phosphorylation mutants presented a distinctive pattern of inclusions, as in 

the cells expressing Y125F SynT, 50% from the 70% of cells with aggregates, presented 

more than 10 aggregates, and, in some situations, an uncountable senary of aggregates was 

detected. 

To further assess if the different percentage of inclusions were not caused due to 

different expression levels, western blot analysis was performed. Cells were transfected with 

WT, Y125F or S129G aSyn and synphilin-1, cell lysates were prepared and analyzed by 

immunoblotting. The expression levels of Y125F and S129G were similar when compared to 

those of WT aSyn (Fig.19).  

 

 

 

 

 

 

Figure 19. Immunoblotting analysis of aSyn Y125F and S219G mutants co-expressed with synphilin-

1. Representative immunoblotting of H4 cells expressing Y125F and S129G phosphorylation mutants. 

Results shown are from one representative experiment from three independent experiments.  
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5. Discussion and Conclusions 

 

Several neurodegenerative diseases display abnormal aggregation of aSyn, in the 

form of Lewy bodies, Lewy neurites, or glial cytoplasmic inclusions [18]. The poor 

understanding of the mechanisms involved in aSyn aggregation contributes to the 

controversy surrounding the role of aSyn aggregation in cytotoxicity and neurodegeneration.  

Post translational modifications regulate the structural and functional properties of 

proteins in health and pathological conditions [70]. Currently, the role of phosphorylation in 

modulating the aggregation of aSyn is being investigated in PD. In vivo, usually less than 5% 

of aSyn is phosphorylated and this occurs predominantly at the C-terminal [71]. 

Phosphorylation of aSyn occurs in the serine residue 129 (S129), as well as in the tyrosine 

residue 125 (Y125) [72]; however, it remains unclear whether phosphorylation inhibits or 

promotes aSyn aggregation and toxicity. 

The present work showed new evidence for a correlation between phosphorylation in 

two phosphorylation residues, Y125 and S129, and aSyn aggregation and cellular toxicity in 

vivo using a simple but powerful model organism, S. cerevisiae, and in vitro using a human 

cell model.  

We used yeast strains carrying double insertions of the aSyn human gene in the 

genome. Specifically, we generated either the WT or phospho-resistant mutants Y125F and 

S129A or S129G of aSyn, with the C-terminal fused with GFP, and expressed it in yeast cells 

under regulation of an inducible promoter (GAL1).  

To validate the results obtained in yeast, we used a human cell model of aSyn 

aggregation. Cells were co-transfected with a C-terminal tagged form of WT, Y125F or 

S129G aSyn (SynT) together with synphilin-1, an aSyn interacting protein that is known to 

potentiate aSyn aggregation [65].  

Initially, the effect of Y125F mutation on the toxicity of aSyn was evaluated in yeast 

cells. We also analyzed the toxicity of a set of haploid strains with double and single 

insertions of Y125F aSyn, in parallel with a WT aSyn expressing strain. The results showed 

that the Y125F mutation did not significantly affect aSyn toxicity phenotype. However, it 

completely abolished the formation of aSyn foci in yeast cells. In contrast, in the H4 

aggregation model, the Y125F mutation resulted in the formation of smaller but in a higher 

number of SynT aggregates per cell. Altogether, these results suggest that Y125 

phosphorylation affects the formation of aSyn aggregates and may indicate that is involved in 

a mechanism that prevents the formation of larger aggregates.  

These apparent conflicting results obtained in the two models might be due to the fact 

that we are using different forms of aSyn in yeast and mammalian cells. While in yeast we 
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are using aSyn fused to GFP, in mammalian cells we are using aSyn fused to a truncated 

version of GFP, which promotes aSyn aggregation. Besides this, the H4 model is based in 

the co-expression of SynT with synphilin-1, a protein that has no counterpart in yeast but 

when expressed in yeast is known to increase aSyn aggregation [68]. 

The results here obtained are in contradiction with the results obtained in a 

Drosophila model were it was observed that the phosphorylation of the Y125 suppresses 

aSyn aggregation [54]. However is important to mention that authors used a triple phospho-

mutant Y125F-Y133F-Y135F [54]. Accordingly, it is not possible to exclude a role of the other 

tyrosine residues on the observed phenotype. 

In the present work, we also studied the role of S129 phosphorylation on aSyn 

aggregation and toxicity. For that, we generated a new S129G aSyn yeast mutant in order to 

mimic the unphosphorylated form of S129, since the use of S129A aSyn mutant is 

controversial due to a putative effect of the mutation in the increment of aSyn aggregation 

[73]. Our data showed that expression of S129G aSyn results in a similar level of toxicity and 

foci formation when compared to S129A aSyn. Moreover, both mutants are more toxic and 

form more foci than WT aSyn, which it is known to be phosphorylated in yeast by 

endogenous kinases (Tenreiro et al., under revision). Thus, we concluded that the effects 

observed with the mutant S129A aSyn were due to the inability of the protein to be 

phosphorylated, and not due to structural differences induced by the alanine residue. 

Interestingly, the S129G mutation also increases the formation of SynT aggregates in the H4 

model. Furthermore, we observed that the pattern of inclusions formation in S129G SynT 

was different from the one observed with WT SynT and Y125F SynT. Accordingly, blocking 

aSyn S129 phosphorylation has similar effects in both cellular models used. 

Together, the new results here described demonstrate that different phosphorylated 

residues in aSyn result in different levels of aggregation and toxicity. From the two residues 

here studied known to be phosphorylated in aSyn, the one that was less characterized so far 

is the Y125. This is mainly due to the fact that it is difficult to detect significant levels of 

pY125 aSyn in human brain tissues, therefore little is known about this phosphorylation [55]. 

However, we believe that future work should be considered in order to better evaluate the 

role of phosphorylation at Y125 aSyn residue. The yeast model here developed for the first 

time could also be very useful for the follow up of this work, to study the role of Y125 

phosphorylation as well as to identify the yeast kinases/phosphatases that are able to 

phosphorylate/dephosphorylate this residue. This strain could be also used to study the 

interplay between the residues Y125, S129 and S87 phosphorylation, another residue known 

to be phosphorylated in aSyn, which has also been poorly investigated [74]. In particular, the 

emerging opportunities to further continue the investigation might rely in more detailed 

studies on the toxicity and aggregation effects of Y125F SynT in H4 cells. Namely, 
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cytotoxicity could be evaluated using techniques such as Lactate dehydrogenase (LDH), 

Caspase 3, and Propidium iodide (PI). Regarding the inclusions nature formed in this cell 

line, this can be dissected analyzing the distribution of oligomeric species by sucrose 

gradient complemented by Triton X solubility assay of Y125F aSyn aggregates to check 

whether they are more or less insoluble than the aggregates of the WT aSyn.  

The understanding of the molecular mechanisms underlying the interplay between 

aSyn phosphorylation and cytotoxicity might pave the way for the development of novel 

strategies for therapeutic intervention in PD and other synucleinopathies. 
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8. Annexes 

 

Annex 7.1 

 

Table 3. Plasmids used in this study. During this work we used plasmids already available 

at the lab or produced specifically to this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plasmid Reference 

Yeast Plasmids  

p426_GAL (empty) in our lab 

p426_GAL_aSynWT in our lab 

p426_GAL_aSynWT_GFP in our lab 

p426_GAL_aSyn Y125F_GFP in our lab 

pRS304_Gal_aSyn WT in our lab 

pRS304_Gal_aSyn S129G_GFP in our lab 

pRS304_Gal_aSynY125F_GFP in our lab 

pRS304_Gal_aSyn S129A in our lab 

pRS304_Gal_aSyn_A53T in this study 

pRS304_Gal_aSyn_E46K in this study 

pRS304_Gal_aSyn_A30P in this study 

pRS304_Gal_aSyn_S87A_GFP in this study 

pRS304_Gal_aSyn_S87E_GFP in this study 

pRS306_Gal_aSyn WT in our lab 

pRS306_Gal_aSyn S129G_GFP in our lab 

pRS306_Gal_aSyn S129A  in our lab 

pRS306_Gal_aSyn_A53T in this study 

pRS306_Gal_aSyn_E46K in this study 

pRS306_Gal_aSyn_A30P in this study 

pRS306_Gal_aSyn_Y125F_GFP in this study 

pRS306_Gal_aSyn_S87A_GFP in this study 

pRS306_Gal_aSyn_S87E_GFP in this study 

Mammalian Plasmids  

psi synTY125F  in this study 

psi synTS129G in this study 
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Annex 7.2 

 

Table 4. S. cerevisiae strains used in this study. W303.1A, W303.1B, VSY71, VSY72 and 

VSY73 were strains, already available (as shown in respective references). As to the other 

presented strains, they were all produced by us during this work and we hope to use them in 

further researches. Moreover, many other yeast strains, not presented in this table, were 

created and used in this work. 

 

Yeast Strain Description Reference 

Wild-type strains  

W303.1A MATa; can1-100; his3-11,15; leu2-3,112; trp1-1; ura3-1; 

ade2-1 

[75] 

W303.1B MATα; can1-100;his3-11, 15; leu2-3, 112; trp1-1; ura3-1; 

ade2-1 

[75] 

Haploid strains with single insertions 

SC149 W303.1A; ade2-1; can1-100; his3-11,15; ura3-1/GAL1pr-

SNCA(S129G)-GFP::URA3 

this study 

SC172 W303.1A; ade2-1; can1-100; his3-11,15; ura3-1/GAL1pr-

SNCA(S129A):URA3  

this study 

SC182 W303.1A; ade2-1; can1-100; his3-11,15;ura3-

1/GAL1prSNCA(Y125F):URA3 

this study 

SC190 W303.1A; ade2-1; can1-100; his3-11,15; ura3-1/GAL1pr-

SNCA(WT)::URA3 

this study 

Diploid strains with double insertions 

SC208 W303 MATa/α ade2-1/ade2-1; can1-100/can1-100; his3-

11,15/his3-11,15; ura3-1/GAL1pr-SNCA(S129G)-

GFP::URA3;  trp1-1/GAL1pr-SNCA(S129G)-GFP::TRP1 

 

this study 

SC217 W303 MATa/α ade2-1/ade2-1; can1-100/can1-100; his3-

11,15/his3-11,15; ura3-1/GAL1pr-SNCA(S129A):URA3;  

trp1-1/GAL1pr-SNCA(S129A)::TRP1 

this study 

SC220 W303 MATa/α; ade2-1/ade2-1; can1-100/can1-100; his3-

11,15/his3-11,15;ura3-1/GAL1prSNCA(Y125F):URA3;  

trp1-1/GAL1pr-SNCA(Y125F)::TRP1 

this study 

SC212 W303 MATa/α; ade2-1/ade2-1; can1-100/can1-100; his3-

11,15/his3-11,15; ura3-1/GAL1pr-SNCA(WT)::URA3;  

trp1-1/GAL1pr-SNCA(WT)::TRP1  

this study 



35 
 

Haploid strains with genomic double insertions 

VSY71 W303.1A trp1-1::pRS304 TRP1+; ura3-1:: pRS306 

URA3+ 

[76] 

VSY72 W303.1A trp1-1:: pRS304 GAL1pr-SNCA(WT)-GFP 

TRP1+; ura3-1:: pRS306 pRS306GAL1pr-SNCA(WT)-

GFP::URA3+ 

[76] 

VSY73 W303.1A trp1-1:: pRS304 GAL1pr-SNCA(S129A)-GFP 

TRP1+; ura3-1:: pRS306 GAL1pr-SNCA(S129A)-

GFP::URA3+ 

[76] 

Tetrads obtained by sporulation of diploid strains  

SC244 MAT alpha; can1-100 his3-11 15 leu2-3 112 ade2-1; 

GAL1pr-syn S129G-GFP::TRP1; ura3-1 

this study 

SC245 MAT a; can1-100 his3-11 15 leu2-3 112 ade2-1; trp1-1; 

GAL1pr-syn S129G-GFP::URA3 

this study 

SC246 MAT a; can1-100 his3-11 15 leu2-3 112 ade2-1; GAL1pr-

syn S129G-GFP::TRP1; GAL1pr-syn S129G-GFP::URA3 

this study 

SC247 MAT alpha; can1-100 his3-11 15 leu2-3 112 ade2-1; 

trp1-1; ura3-1 

this study 
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Annex 7.3 

 

Table 5. Growth media used for S. cerevisiae in this study. Throughout this work, we 

used different growth media for S. Cerevisiae, each of them composed as presented in this 

table.   

 

 

Media Components Composition 

YPD Glucose (Sigma) 

Yeast extract (Himedia) 

Peptone (Himedia) 

 

20g/L; 

20g/L 

10g/L 

YEP 

Raf 

Raffinose 1% (Sigma) 

Yeast extract 1% (Himedia) 

Peptone 2% (Himedia) 

 

10 g/L; 

10 g/L 

20 g/L 

YEP 

Gal 

Galactose 1% (Sigma) 

Yeast extract 1% (Himedia) 

Peptone 2% (Himedia) 

 

10 g/L; 

10 g/L 

20 g/L 

SC 

 

Yeast nitrogen base without amino acids or (NH4)2SO4 

Glucose, raffinose* or galactose* 

CSM (standard mixture of amino acids, vitamins and 

other components used to supplement auxothrophies) 

 

6.7g/L; 

20g/L,10g/L* 

 

 


