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Abstract

Clear cell Renal Cell Carcinoma, ccRCC, is the most common form of
Renal Cancer, accounting for 90% of these cancers cases. It is well estab-
lished that the majority of these cancers happen when both alleles of VHL
(Von Hippel Lindau) tumour suppressor gene are mutated. It has also been
observed that patients with this form of cancer present mutations on the
SETD2 gene which applies its functions during transcription.

In the last few years the growth within sequencing technologies has been
astonishing. Next Generation Sequencing technology, NGS, provides tools
for assessing full genomes to a reference sequence in a matter of days, being
extremely accurate, while also increasingly cost effective. One of its many
applications is RNA-Sequencing, a method for transcriptome analysis.

Throughout this thesis we aimed at analysing RNA-Seq data from six
samples: four with mutations on the SETD2 gene and two control samples.
The main goal was to understand how the remaining genes on the transcrip-
tome respond to these genes mutations.

In the first part of this work we aimed at analysing several forms to
normalize the data, resorting to R software packages (EDASeq, DESeq and
edgeR). Data normalization is a crucial step on NGS techniques, as these
techniques have some inherent bias that need to be accounted for. DESeq

proved to be the most selective, while EDASeq is not as stringent. The second
part of this work aimed at identifying differentially expressed genes, to infer
which genes behave in a significant way in the samples, packages edgeR,
DESeq and RankProd. We identified six new genes as differentially expressed.

Keywords: Next Generation Sequencing (NGS), clear cell Renal Cell
Carcinoma, normalization, differential expression, SETD2
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Resumo

O carcinoma renal de células claras, ccRCC, é o tipo mais comum de can-
cro renal, sendo responsável por cerca de 70% destes tumores, com a mais
alta taxa de mortalidade entre todos os tipos de cancro renal. A grande maio-
ria destes tumores deve-se a mutações no gene VHL, um gene supressor de
cancro. Não obstante, vários estudos de sequenciação do ccRCC acabaram
por revelar a ocorrência de mutações somáticas no gene SETD2, uma Histone
methyltransferase que trimetila a lisina 36 na histona H3 (H3K36me3). Este
gene tem um papel fundamental na transcrição, um dos principais passos
na expressão genética – processo pelo qual são geradas protéınas perfeita-
mente funcionais, permitindo que o ADN se desenrole e seja posteriormente
transcrito. Está localizado no braço curto do cromossoma 3 e as mutações
deste gene conduzem à perda de funções deste mesmo cromossoma.

O objectivo biológico da presente tese é avaliar as alterações do transcrip-
toma, induzidas pelas mutações no gene SETD2. Esta questão será abordada
utilizando dados do transcriptoma completo, de linhas celulares mutadas no
gene SETD2 e de linhas celulares não mutadas do gene wild tipe (WT),
no ccRCC. Os dados desta análise consideraram 4 amostras biológicas de
transcriptomas mutados do genoma SETD2 e 2 amostras wild tipe, dados
estes que foram gerados pela unidade do investigador Sérgio Almeida, do
Instituto de Medicina Molecular (IMM da FMUL).

Recentemente, o desenvolvimento de novas tecnologias de métodos de
sequenciação, designadas por Next Generation Sequencing (NGS), disponi-
bilizou um novo método que, em simultâneo, executa o mapeamento e a
quantificação de transcriptomas, chamado sequenciação de RNA (RNA-seq).
Apesar de mais expendioso do que os estudos de microarrays e ainda com
alguns problemas de análise de dados por resolver, a sequenciação do RNA
pode avaliar o transcriptoma completo, disponibilizando a derradeira solução
para a análise dos ńıveis e da estrutura de transcriptomas processados e não
processados, sob diferentes condições. Esta técnica disponibiliza uma impor-
tante poupança de tempo (o genoma humano completo pode ser sequenciado
em menos de uma semana, dependendo das opções do investigador) com
qualidade, precisão de leitura (cerca de 98%) e poupanças de tempo. O
transcriptoma completo de cada amostra é convertido em cRNA e separado
em pequenos fragmentos (cerca de 200, 300nt), estes fragmentos são poste-
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riormente utilizados como modelos no passo de sequenciação, onde só uma
pequena sequência da parte final do fragmento irá ser sequenciada (chamada
de read). Este processo gera milhões de reads, que podem ser depois al-
inhadas com o genoma e originar uma tabela de contagens para cada gene
(número de reads, por gene) por amostra.

Algumas ferramentas bioinformáticas foram recentemente desenvolvidas,
para analisar esta imensa informação gerada pela técnica RNA-seq. Estas
ferramentas diferem entre si quanto à normalização e às técnicas estat́ısticas
aplicadas, com impacto nos resultados finais. Assim, o objectivo da pre-
sente tese é explorar e comparar os diferentes métodos aplicados ao prob-
lema biológico acima mencionado. Para o efeito, a nossa análise recorreu
ao Bioconductor. O Bioconductor é um software de utilização gratuita, não
impondo quaisquer licenças de utilização, que disponibiliza código aberto
para Bioinformática. Aqui, encontram-se packages que permitem processar
a informação no que respeita aos 2 passos da análise: normalização e análise
da expressão diferencial dos genes. O trabalho desta tese foi desenvolvido
considerando a análise dividida nestes dois passos principiais: normalização
e expressão diferencial. Os nossos estudos irão ser desenvolvidos em torno
das diferentes formas de normalização dos dados, analisando posteriormente
os diferentes resultados que se obtiveram na expressão diferencial dos dados.

A normalização é o passo pelo qual se consegue que uma base de dados
com contagens profundamente discrepantes entre si possa ser comparável,
aplicando a estes dados um denominador comum que toma em consideração
os erros associados à utilização desta técnica. A expressão diferencial é o
passo onde se identificaram os genes que revelaram significativas alterações
da expressão estat́ıstica, entre duas amostras, tal como a mutação do gene
SETD2 e as linhas das células do ccRCC wild type. No essencial, isto significa
que estes genes revelam uma alteração significativa da sua expressão, das
amostras mutadas para as wild type.

A nossa análise baseou-se na utilização de 4 packages, EDASeq, edgeR,
DESeq e RankProd. Enquanto o primeiro foi desenhado apenas para realizar
a normalização, o último foca-se apenas na análise da expressão diferen-
cial. Ambos os packages edgeR e DESeq possuem abordagens próprias para
realizar ambos os passos, podendo ao mesmo tempo receber contagens de
dados normalizados pelo EDASeq. O método RankProd pode receber dados
normalizados pelos métodos EDASeq e DESeq, e o método edgeR também
pode receber dados normalizados obtidos pelo método DESeq.

A forma como estes dados são normalizados vai depender das premis-
sas que cada método utiliza para normalizar os dados: o edgeR e o DESeq

consideram abordagens diferentes na normalização between lane, enquanto
o método EDASeq realiza uma normalização na própria lane relativamente
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ao conteúdo em GC, antes de proceder à normalização textitbetween lanes.
Observámos ainda que todas estas abordagens disponibilizam bons ńıveis de
normalização, bem correlacionados entre si (obtendo valores de 0.98/1.00 no
coeficiente de correlação de Pearson) e no que respeita aos dados em bruto.

As combinações estudadas entre os vários métodos tiveram o objectivo de
permitir uma comparação detalhada das metodologias, no que respeita aos
seus próprios protocolos (normalização DESeq combinada com a análise de ex-
pressão diferencial com DESeq e normalização edgeR combinada com a análise
da expressão diferencial com edgeR) e à junção de protocolos: nomeadamente
as diferentes abordagens no passo da normalização pelos métodos - EDASeq
ou DESeq – e ainda as diferentes abordagens no passo da expressão diferencial
dos métodos – edgeR, DESeq ou RankProd.

No que respeita a protocolos próprios, observámos que o protocolo com-
pleto do método edgeR identificou muito mais genes que o método DESeq,
independentemente dos ńıveis de significância considerados (1%, 5% e 10%).
No que respeita à junção de protocolos, quando se juntou a normalização do
EDASeq à expressão diferencial do edgeR, obteve-se um número significativa-
mente maior de genes identificados quando comparado com quaisquer outros
métodos.

O método RankProd acabou por apresentar uma nova perspectiva sobre os
dados, tendo sido concebido para trabalhar os dados numa lógica de microar-
rays ; contudo, ao assumir que cada lane dos nossos dados funciona como um
array, propusemo-nos investigar se este package se podia ajustar aos nossos
dados de NGS. Observámos que o RankProd se ajustava adequadamente ao
receber dados normalizados oriundos do método DESeq, mas falhava quando
recebia dados normalizados pelo método EDASeq.

Observámos que, globalmente, o método DESeq, quando utilizado como
processo de normalização, conduz à identificação de um número menor de
genes diferencialmente expressos que o EDASeq, para todos os ńıveis de sig-
nificância considerados (1%, 5% e 10%). Por outro lado, quando considera-
dos todos os métodos para a expressão diferencial, detectámos que o método
edgeR identificou mais genes que o RankProd ou o DESeq, para os mesmos
ńıveis de significância.

Observámos ainda que a maioria dos genes identificados com estes métodos
(com excepção dos procedimentos de normalização do EDASeq) conduziram
a um maior número de contagens para genes up regulated que para genes
down regulated, o que significa que estes genes demonstram possuir maior ex-
pressão diferencial quando mutados do que nas amostras wt. O passo seguinte
na análise foi perceber se os genes que estes métodos identificam como dife-
rencialmente expressos são os mesmos. Considerando todos os métodos do R,
identificámos 6 genes diferencialmente expressos comuns a todos eles (para
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uma FDR=5%): ”SLC2A10”, ”COL14A1”, ”GPR173”, ”LOC100506178”,
”EREG” e ”ADAMTSL1”. Uma vez exclúıdo o RankProd desta comparação,
foram identificados 27 genes como diferencialmente expressos, considerando
o mesmo valor para a FDR.

Considerando investigações futuras, e no que respeita aos resultados obti-
dos pelo Bioconductor, a combinação entre técnicas que revelou um maior
número de genes com expressão diferencial é entre o método EDASeq para a
normalização com o método edgeR para a análise da expressão diferencial.

Adicionalmente, todas as combinações de técnicas onde o método EDASeq

executa a normalização, claramente resultaram em amostras com um maior
número de contagens.

No prinćıpio deste projecto, propusemo-nos estudar 6 amostras de
transcriptoma, obtidas com o RNA-Seq, duas correspondendo a amostras
controlo, as outras quatro apresentando mutações no gene SETD2, o que leva
à ocorrência do ccRCC. O desafio foi analisar os dados, procurando identi-
ficar genes que reagissem às mutações do SETD2, respondendo à questão
de como este gene afecta os restantes genes no transcriptoma. Outro de-
safio a que nos propusemos, conforme indicado neste texto, foi a comparação
de metodologias por forma a melhor aferir sobre o objectivo primário deste
trabalho.

Este trabalho permitiu identificar 6 novos genes que respondem às mutações
do SETD2.

Palavras chave: Next Generation Sequencing, clear cell Renal
Cell Carcinoma, normalização, Expressão diferencial, SETD2
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Preface

Clear cell Renal Cell Carcinoma, ccRCC, is the most common form
of renal cancer, accounting for 7 out of 10 cases, having the highest
mortality rate amongst renal cancer. The vast majority of these
cancers are due to mutations on the VHL tumor suppressor gene.
However, studies in ccRCC sequencing have revealed the occur-
rence of somatic mutations on SETD2 gene, an Histone methyl-
transferase that specifically trimethylates ’Lys-36’ of histone H3
(H3K36me3). This histone modification is found in actively tran-
scribed genes, revealing an important role of SETD2 in transcrip-
tion, one of the main steps on gene expression. This gene is located
in the short arm of chromosome 3 and mutations in it will lead to
loss of function of the chromosome.

The biological goal of the present thesis is to assess the tran-
scriptome alterations induced by SETD2 mutations. This question
will be addressed using genome-wide transcriptomic data of ccRCC
cell lines with mutated and wild-type SETD2. The data considered
to our analysis considered four biological mutated replicates and
two biological wid-type replicates. This data was produced by Ser-
gio de Almeida Unit in Instituto de Medicina Molecular (IMM).

Recently, the development of novel high-throughput DNA se-
quencing methods, designated Next Generation Sequencing (NGS),
has provided a new method for both mapping and quantifying
transcriptomes, termed RNA sequencing (RNA-seq). Although
more expensive than microarray studies and with some data anal-
ysis issues still to be solved, RNA sequencing can assess complete
transcriptome coverage, providing the ultimate resolution to an-
alyze the levels as well as the structures of both processed and
unprocessed transcripts under different conditions. This technique
provides both an effective time saving (the entire human genome
can be sequenced in less than a week time, depending on the re-
searchers choice) with read accuracy of about 98% while operating
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Preface

under very reasonable cost & quality beneficts. The full transcrip-
tome of each sample is converted to cDNA and then break into
small fragments (around 200-300nt). These fragments are after-
wards used as templates in the sequencing step, where only a short
sequence of the fragment end will be sequenced (termed ”reads”).
This process generates millions of reads that can be aligned to the
genome and originate count table data for each gene (number of
reads per gene) on each sample.

Several bioinformatics tools have been developed recently for
analysis of the such a big amount of data originated from RNA-seq
technology. These tools differ in the normalization and statistical
methodologies applied, that can influence the final results. Thus,
the present thesis aims to explore and compare the different meth-
ods, applying to the biological problem described above. we anal-
ysed it resorting to R Bioconductor packages. Bioconductor is a
free open source software tool that provides ways to process the
data regarding the two steps of the analysis involved: normaliza-
tion and differential expression gene analysis.

This thesis workflow considers the analysis in two major steps:
normalization and differentially expression analysis. Our studies
will be performed in different ways for data normalization and
report how this resulted in different outputs for the data expression
analysis.

Normalization is the way we allow the very discrepant count
data to be comparable to each other, rendering it to a common
denominator, which accounts for bias associated with this tech-
nique. Differential expression gene analysis is the step where we
identify the genes that show statistically significant expression al-
terations between two samples, such as SETD2 mutated and wild
type ccRCC cell lines. Essentially, this means that these genes re-
port a significant expression change from the mutated to the wild
type samples.

Our analysis was based on four packages, EDASeq, edgeR, DESeq

and RankProd. While the first is designed just to perform nor-
malization, the latter focuses on differential expression analysis.
Both edgeR and DESeq packages have their own approaches to per-
form both steps, at the same time being able to receive normalized
count data from EDASeq. RankProd received normalized count data
from both EDASeq and DESeq, and edgeR also received as input the
normalized count data obtained with DESeq.

These count normalized data matrix will depend on the assump-
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tions each method uses to normalize the data: edgeR and DESeq take
different approaches normalizing between lanes, while EDASeq per-
forms a GC content within lane normalization, before performing
a between lane normalization. We observed that all of these ap-
proaches provided good normalized data, properly correlated (lead-
ing to 0.98 and 1.00 Pearson correlation coefficient) amongst them
and regarding the raw data.

The combinations studied between the several methods were
meant to provide a detailed comparison of the methodologies, re-
garding their self-protocols (DESeq normalization with DESeq dif-
ferentially expression analysis and edgeR normalization with edgeR

differentially expression analysis) and joined-protocols: namely in-
ferring differences regarding different approaches on the normaliza-
tion step – EDASeq or DESeq – and regarding different approaches on
the differential analysis step – edgeR, DESeq or RankProd. Regard-
ing self-protocols, we observed that edgeR full protocol identified
far more genes then DESeq for all the significance levels considered
(1%, 5% and 10%). Regarding joined-protocols, EDASeq normaliza-
tion coupled with edgeR differential expression led to the greater
number of identified genes amongst all the methodologies.

RankProd provided an interesting alternative perspective on
the data. This package is designed to work with microarrays ex-
periments; however, by assuming each lane of our experiment to
function as an array, we proposed to see whether this package could
adjust to our NGS data. We observed that RankProd seemed to ad-
just properly when provided with normalized data from DESeq, but
it failed to adjust as good when provided with EDASeq normalized
count data.

We observed that, globally, DESeq method, when used as a nor-
malizing procedure, leads to lower identified differentially expressed
genes than EDASeq for all the significance levels considered (1%, 5%
and 10%). On the other hand, when considering all the meth-
ods for differential analysis, we detected that edgeR identified more
genes than RankProd or DESeq to the same significance levels.

We also observed that the majority of genes identified with the
methods (with exception to EDASeq normalization procedures) led
to bigger counts for up regulated genes than for down regulated
genes, which means that these genes show a higher expression in
mutated then in wt samples.

The next step in the analysis was to observe whether these
methodologies point to identifying the same differentially expressed
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genes. Considering all R methods, we identified 6 genes as differ-
entially expressed, in common for all methodologies (for a FDR
of 5%): ”SLC2A10”, ”COL14A1”, ”GPR173”, ”LOC100506178”,
”EREG” and ”ADAMTSL1”. When excluding RankProd from this
compared analysis, 27 genes were identified as differentially ex-
pressed to the same FDR value considered.

Considering future researches and as per bioconductor results,
the techniques combination that delivered a greater number of dif-
ferentially expressed genes is EDASeq for normalization, combined
with edgeR in differential expression analysis.

Furthermore, all technique combinations where EDASeq handles
normalization clearly result in samples having a higher number of
counts.

At the beginning of this project, we proposed to study 6 transcrip-
tome samples obtained using RNA-Seq, two corresponded to con-
trol samples, the other four presented mutations on SETD2 gene,
leading to ccRCC cancer expression. The challenge was to anal-
yse this data, looking for genes that eventually reacted to SETD2
mutations, responding how this gene affects the remaining tran-
scriptome. Another challenge we set ourselves to, as indicated in
the text, was the comparison of methodologies in order to more
accurately assess on the primary objective of this work.

Our studies led to the identification of six new genes responding
to SETD2 mutations.

xviii



Chapter 1

Biological Background

This chapter is meant to give some background knowledge in order
to fully understand the biological questions this thesis proposes to
answer. It offers a description of the biological problem in study
– renal cancer – and it also describes some important notions on
genetics, which are necessary to understand the technique used to
obtain the data – Next Generation Sequencing. After clearing all
the theoretical concepts, the objectives established for this work
are stated.

1.1 Genetics

Genes are segments of DNA involved in producing a protein. They
include a region preceding and following the coding region, as well
as intervening sequences (introns) between individual coding seg-
ments (exons). DNA is a long double stranded helix of molecules
composed of sugar, phosphate and four different nucleotides, A for
adenosine, T for thymidine, G for guanosine and C for cytidine.
The nucleotides are arranged in triplets called codons, each one
codifying a specific aminoacid which, in turn, will bind forming
proteins.

Each nucleotide is constituted of a 5-carbon sugar that binds
to one or more phosphate groups and to one nuclear base (A for
adenine, T for thymine, G for guanine and C for cytosine), the
nuclear base being the naming factor for the nucleotide. There
are about 3 billion base pairs forming the genes that compose the
double helix of human DNA, being the basis bound two by two –
A pairs with T, G pairs with C – and this genetic information is
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Chapter 1. Biological Background

copied to every single cell (Lewin, 2004).
It is known that a base pair (bp) is 0.34 nanometers long (a me-

ter corresponds to 1,000,000,000 nanometers) and that the typical
cell size is around 10,000/100,000 nanometers long (e Silva et al.
, 2008), so the question that arises is: how is it possible that so
many basis can get into a single cell?

The answer to this question lies in the extreme level of packing
of the DNA. The long molecules of DNA containing the genes are
organized into chromosomes (figure 1.1) and different species have
a different number of chromosomes, with a specific number and
order for the nucleotides. Humans have 23 pairs of chromosomes
and the entire set of 23 human chromosomes is called the human
genome. This means that the 23 pairs of chromosome make up for
6 billion base pairs of DNA per cell, which translates in about 2
meters of DNA [(0.34× 10−9)× (6× 109)] per cell (Damaschun et al.
, 1983). How is this packing achieved?

In human genetics, within the chromosomes, the DNA is packed
into chromatin. Chromatin consists of DNA and structural pro-
teins. Within the chromatin itself, the repeated unit is the nucleo-
some, these are constituted by a portion of DNA wrapped around
proteins called histones. Nucleosomes contain 9 histone proteins,
H1, H2A, H2B, H3 and H4. Two of each of H2A, H2B, H3 and
H4 form the eight protein complex of the nucleosomes core. H1
is then added to the formation to maintain the DNA wrapped in
place. Histones are responsible for maintaining chromatin shape
and structure and, therefore, responsible for compacting the DNA
into a smaller volume.

It is important to state that each gene, each fragment of DNA,
encodes a specific protein that expresses a particular trade, which
goes from hair color to risk for certain diseases. Most important,
regarding this thesis, genes regulate the biochemical processes that
occur in the body, it is therefore extremely important that these
genes are properly expressed, so they can play their role.

The process by which the information that genes carry (regard-
ing their function) is used to synthesize a protein, is called gene
expression (figure 1.2). It has four main steps: transcription, splic-
ing, translation and post-translational modifications. Transcrip-
tion is the process by which individual genes are copied into RNA
molecules: an mRNA (messenger RNA) is created from a DNA
template, resorting to a series of transcription factors (an mRNA is
a molecule of RNA whose sequence is complementary to the coding

2



1.1. Genetics

Figure 1.1: Zooming in on a chromosome. The image emphasises the
great level of DNA coiling, the four nucleotides, bound together as de-
scribed, form the DNA double helix that, resorting to histones, coils into
chromosomes – figure adapted from (Cheng-Fu, 2013)

.

sequence of one of the strands of the DNA). The collection of these
RNAs formed in transcription is called transcriptome. Following
transcription, there is splicing, where the non-coding regions - in-
trons - are removed and exons are joined together, leading to the
finished product of mRNA. The next step is translation, where the
mRNA is translated to polypeptide chains that then suffer post-
translational modifications, before becoming the mature protein
product (Lewin, 2004).

The chromatin is known to play a key role in the regulation
of gene expression, with particular emphasis on transcription. On
a closer look at this phase, transcription involves a copy of one
of the DNA strands so, at a given point of gene expression, the
two DNA strands are separated. This means that something must
happen to break the tight bonds that coil the DNA around the
histones. Histones will temporarily be removed, making the DNA
accessible to transcription. The way the cell is designed to do this
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Chapter 1. Biological Background

is by modifying histones (Talbert et al. , 2012).
There are a few proteins that, given the correct signal from the

cell, will trigger mechanisms which will lead to certain alterations
on histones, making the chromatin more accessible. Some of those
modifications can be acetylations, methylations, di-methylations,
tri-methylations, phosphorilations or ubiquitinations, respectively
corresponding to the addition of an acetyl group, CHCO3, one, two
or three methyl groups, CH3, a phosphate group PO3−

4 or a protein
called ubiquitin. The core histones (H2A, H2B, H3 and H4) have
long proteic tails (mentioned in figure 1.1) and it is in different
positions of these tails where the modifications will occur.

The vastness of modifications that can happen in all 5 types of
histones, at different points of these proteins, led to the need of
creating a proper nomenclature to identify them. Several authors
postulated their views, Bryan Turner (Turner, 2005) proposed that
histone modifications would be characterized first by stating the
modified histone, then the residue that is altered and last the type
of modification suffered. Exemplifying with the practical example
of this work, H3K36me3 is regarding a 3 methylation (me3) on the
aminoacid lysine(K) which is in position 36 of histone 3 (H3) tail.

1.2 clear cell Renal Cell Carcinoma (ccRCC)

Kidneys (figure 1.3A) are the main organ of the urinary tract sys-
tem, being responsible for filtering the blood, reabsorbing main
nutrients and water and eliminating what the body does not need,
as urine. They play a very important role in maintaining, within
normal values, the hormonal, the electrolytes and the blood pres-
sure levels. Kidneys play their functions at its basic functional
structure, the nephron (figure 1.3B), which is composed by the re-
nal corpuscule (Bowman’s capsule) and renal tubule. It is highly
irrigated (figure 1.3C) in order to allow for reabsorption. The com-
ponents meant to be reabsorbed follow through bloodstream, and
those to be eliminated go through the collecting duct (Cohen &
McGovern, 2005). These processes are based in physiological and
biochemical tight regulation, and errors affecting them can have
severe repercussions.

Cancerinogenesis is the process that leads to cancer generation.
By definition, cancer occurs when there is growth of abnormal
cells. This growth is generated when there are errors in vital regu-
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1.2. clear cell Renal Cell Carcinoma (ccRCC)

Figure 1.2: Gene Expression mechanism. Several processes need to
occur to obtain a finished protein: the DNA is first transcribed to mRNA,
which then suffers splicing events to remove the non coding segments of
the mRNA. Only then the protein is translated into polypeptide chain,
these suffer posttranslational modifications that lead to a protein, image
adapted from (TheMedicalNews, 2013)

.

latory pathways. In most situations, the accumulation of errors in
the cellular machinery that lead to cancer happen by somatic mu-
tations. These mutations happen after conception, meaning that
they are not inherited, they occur only on the daughter cells. Can-
cers progress when multiple cycles of mutations happen. Various
causes can lead to these errors on the pathways - many cancers are
generated by loss rather than the increase of gene function (reces-
sive and dominant genes respectively). In any case, altered DNA
nucleotides (mutations) are the basis of cellular changes that cause
cancer - this includes chemical alterations of individual nucleotides
or the order in which nucleotides occur.

Several factors can lead to cancerinogenesis, like smoking, diet
habits (fat, water, fibre and vitamins being key topics), sex hor-
mones and family history. Age is also a factor: as people get older,
the most likely it is that some mechanisms loose specificity, leading
to malfunction and possibly shutting down (Latchman, 2007).

Renal Cell Carcinoma, RCC, occurs when malignant cells form
in the proximal tubule, at the cortex. It accounts for 9 out of 10
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Figure 1.3: Schematic representation of the urinary tract system. (A)
The picture goes from the kidney, (B)to its basic structure, the nephron,
(C) emphasizing how irrigated it is, in order to better reabsorb and elim-
inate nutrients (Gallant, 2013)

.

kidney cancers. There are several subtypes of tumors of RCC, in-
cluding clear cell RCC, ccRCC, papillary RCC (type I and type II),
chromophobe RCC, collecting duct RCC, and unclassified RCC.
ccRCC is the most common tumor in the kidney, 7 out of 10 kid-
ney tumor cases are ccRCC (Singer et al. , 2012).

About 60% of ccRCC cases occur when both alleles of the
VHL tumor suppressor gene are mutated (leading to its inacti-
vation) – this gene is absent from most other cancers (Nabi et al. ,
2010). However, recent studies on ccRCC sequencing have identi-
fied, amongst the genes that are mutated in ccRCC, somatic muta-
tions in SETD2, a methyltransferase that mediates tri-methylation
of lysine 36 of histone 3 (H3K36me3) during transcription, and
also, that the majority of these mutations (82%) had an hypoxic
pattern of expression, which means they occur induced by oxygen
free conditions (Carvalho, 2012). As mentioned, histones are the
key component in chromatin, which is responsible for DNA pack-
ing. So, it is clear that SETD2 is a chromatin-modifying gene,
however its precise role on transcription is not yet clear (Dalgliesh
et al. , 2010). Another role has been found for this gene, that is,
SETD2 has a key part in activating the major regulator on DNA
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Damage Response, DDR, regulating the accuracy of the DNA dam-
age signalling and repair. But how the gene acts at the sites of
DNA damage is also an unanswered question.

1.3 Next Generation Sequencing (NGS)

Sequencing a segment of DNA means determining the exact order
of these base pairs in the DNA chain. DNA sequencing is a mile
stone on understanding genetics and it can be used to determine se-
quences for single genes, for chromosomes or even an entire genome
sequence. And that is exactly what a group of american scientists
proposed to do, with the ”Human Genome Project”. The US De-
partment of Energy and the US National Institute of Health set up
the Office of Human Genome Research and, together with geneti-
cists from all over the world, began, in 1990, the project of deter-
mining the sequence of the human DNA. The full human genome
sequence was completed in 2003. Back then, they used Sanger’s
technique to determine the long human genome sequence. With
this method, the bases of a small fragment of DNA are sequentially
identified from signals emitted as each fragment is re-synthesized
from a DNA template strand, using fluorescence or a radioactive
element. It determines the order of the bases one at a time, and
that is why it took 13 years. Approximately 3 billion dollars where
needed to determine the sequence of the 3 billion chemical base
pairs of the human DNA (Chial, 2008).

Another important step on DNA sequencing were the Microar-
rays. These are 2D arrays that sample several probes at the same
time, for instances, if the goal of a certain study is to examine a
specific region of the human genome of several individuals. What
the arrays allow to do, relatively to Sanger’s technique, is to test
all of the samples from the several individuals in one single array,
saving up a significant amount of time and money (Diamandis,
2000).

Sequencing has come a long way since Sanger, and today there
are second and third generation sequencing. Nowadays, with the
advent of new technologies, the human genome can be sequenced
in a week time, and the cost is drastically lower, around 5,000 USD
(ORNLaboratory, 2013). This is resorting to Next Generation Se-
quencing, NGS, the technology used in this thesis.

The principal in both techniques is the same: the bases of a
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DNA fragment are sequentially identified from signals emitted, as
fragments are re-synthesized from a DNA template strand. The
big difference is that NGS techniques do this resorting to massive
parallel sequencing platforms, which allows them to have up to
millions of reads per DNA sample (Nowrousian, 2010).

The NGS technique used is this thesis, Illumina Solexa Genome
Analyser, immobilizes sequencing templates on a flow cell. This
flow cell is a solid platform that has eight lanes, the lanes con-
stitute the basic unit of this technology, and in each one there
is a sample in test, that will lead to an extreme amount of out-
put. There are three main steps to this process: first there is the
library preparation (figure 1.4A), then the cluster amplification
(figure 1.4B) and then sequencing (figure 1.4C). When preparing
the samples, the DNA is randomly fragmented and adapters are
bound to these fragments, making up for the ligated DNA. The
single stranded fragments will bind to primers on a solid surface
of the flow cell, trough a process called bridge Polimerase Chain
Reaction, bridge PCR. PCR is a technique used to amplify copies
of DNA, generating copies of a particular read. It uses very small
DNA sequences, the primers, that essentially operate as triggers
for the fragments copy. In bridge PCR, these primers are linked to
the solid-support surface, and they bind both ends of the sequence
of interest adapters, forming a kind of an arch – hence bridge
PCR – unlabelled nucleotides are then added for fragment ampli-
fication, generating clusters of unique DNA fragments (Berglund
et al. , 2011). These PCR colonies will then be sequenced, through
enzyme driven biochemistry processes and using fluorescent irre-
versible tagged dye terminators. They are sequenced to either
be aligned with a reference genome or to be used to assemble a
DNA sample – which is called de novo sequencing. The full set
of aligned reads reveals the entire sequence in study (Voelkerding
et al. , 2009).

Figure 1.4 is from a paired-end sequencing. To avoid regions on
the sequence where no reads align to, NGS techniques can be used
for paired-end sequencing. Here, the fragment is sequenced from
both ends, providing two reads for each fragment, which translates
into a superior alignment across regions that have repetitive se-
quences, while, at the same time, allowing to produce longer over-
lapping sequencing reads, filling the gaps. This results in a com-
plete overall coverage. Furthermore, the distance between each
paired read is identified, and alignment algorithms use this in-

8



1.4. Objectives

Figure 1.4: NGS - Genome analyzer workflow separated by its main
steps, (A) first is the library preparation, (B) to which follows cluster
generation (C) and sequencing. NGS techniques can sequence samples as
big as the human genome in a matter of days with little sample prepara-
tion, image adapted from (Illumina, 2013)

.

formation to map the reads on the repetitive regions with more
accuracy (Nowrousian, 2010).

In this thesis, the sequencing technology was applied in high-
throughput mRNA sequencing, RNA-Seq, to analyse the transcrip-
tome, estimating every transcripts abundance. The methodology
follows the three steps mentioned before but, with RNA-Seq, the
quantification of gene expression levels is done by first converting
RNA transcripts into complementary DNA fragments, cDNA, and
then these fragments proceed to being sequenced leading to the
short reads (Oshlack et al. , 2010).

1.4 Objectives

This thesis aims at analysing NGS data of ccRCC samples. For
that matter, in this project, transcriptome data from six differ-
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ent cellular lines was analysed: two wild type samples, wt, and
four mutated samples on the SETD2 gene. As previously stated
in this chapter, SETD2 encodes proteins that are involved in hi-
stone modifications, meaning that this gene plays its functions in
DNA packing, being therefore extremely important its tight regu-
lation, in order to have proper processes of gene transcription and
consequent active tumor suppressor genes.

By comparing mutated cellular lines on this gene to non mu-
tated cellular lines, we proposed to study how this genes mutations
may or may not impact the remaining genes. So the main focus of
this project is to identify variations between the two kinds of cel-
lular lines, regarding the genes that compose their sequence, not
only to identify those that are differentially expressed, but also to
understand to what extend SETD2 influences the other genes that
compose each sample.

The data to the six cellular lines were obtained resorting to the
NGS Illumina/Solexa technique and were analysed with different
Bioconductor packages: edgeR, DESeq, EDASeq and RankProd. The
main question here was to assess how these methodologies (with
different focus on the data analysis and alternative approaches to
it) evaluate the data: do they identify the same genes? And if so,
with what significance?

There are two steps on the analysis: normalization (to make the
data comparable) and differential expression (to assess whether a
gene is significantly expressed). While EDASeq can only perform
the first and RankProd the second, edgeR and DESeq do both. And
this leads to another question regarding the methodologies: given
that each method has its own protocols for the two separate parts
of the analysis, could there be a cross analysis between them that
provides more interesting results? To this extend, separate studies
regarding both phases of the analysis were performed, where the
same normalization procedures were applied (EDASeq and DESeq)
and the same differential analysis procedures were studied (DESeq
and edgeR). RankProd is a package designed to identify genes that
are differentially expressed in Microarray data. This package pro-
vides another objective to this thesis: it was studied here to infer
if this specific method for microarray analysis can extend to NGS
data.

aaaaa
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Chapter 2

Methods for data Analysis

The present chapter contains a description of the methodologies
applied on this thesis. It focuses first on the technique used to
obtain the data (NGS) and then on the two step analysis of the
gene counts obtained with NGS: different methods are applied to
achieve normalized data, and different methods are used to de-
termine which genes are differentially expressed (i.e. biologically
significant). Both phases were analysed with R software.

Hereinafter, in order to unify the methodologies, Ygi is consid-
ered as the number of reads (i.e. the coverage) from sample i
mapped to gene g. The set of genewise counts (read counts) for
sample i makes up the expression profile or library (i.e. sequencing
depth) for that sample. The library size refers to the number of
mapped short reads obtained from the libraries sequencing process.

2.1 NGS data analysis workflow

The NGS technique used in this work is the Illumina/Solexa Genome
Analyzer, with the Illumina HiSeq2000 model. The technology is
able to process up to three billion reads, each around 100 bp, re-
sulting in a total amount of count data around 600 Gb, with an
accuracy of base calling of about 99.5% (Zhang et al. , 2011).

The pipeline (figure 2.1) to process this immense quantity of
output is based on the processing of different types of file formats
(figure 2.2). NGS outputs a massive load of counts, since it mea-
sures how many reads align to what specific part of the sequence
in study (Kadota et al. , 2012). The volume of information it re-
turns makes it impossible to be managed on a normal PC. Users

11
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must connect to a proper server and use, via command line, the
processors for NGS data.

Figure 2.1: Methodology applied in RNA-Sequencing. The steps are
marked on red boxes and the methods used are marked with the blue
boxes. The reads are mapped to a reference genome resorting to Bowtie.
These reads are then summarized into a table of counts which shows how
many genes were aligned to the sample under analysis. These counts are
normalized resorting to different methodologies and only then is applied
statistical testing to determine genes that are DE (image adapted from
(Oshlack et al. , 2010)

).

With this in mind, the first step is to assess data quality. This
can be done resorting to several tools, such as FastQC, PRINSEQ
or FASTX. Focusing on FastQC, this tool reads .fastq files into
.fastaqc files. These files are obtained by processing the short
reads sequence and attributing a quality score to every base that
constitutes it. Hence, these files contain information regarding the
read quality. This provides a plateau on the analysis: provided
the reads are good the analysis proceeds, if they are not (in other
words, if they exhibit unusual qualities, which is a synonym of
poor sequencing quality itself, or sequencing contamination), then

12



2.1. NGS data analysis workflow

Figure 2.2: Different file extensions involved on the NGS data analysis
processing.

13
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some reparametrization on the NGS technique is required (CBCB,
2013).

The millions of short reads, after quality assessment, will be
aligned to a reference resorting to the TopHat mapper. TopHat
is based on the short reader aligner Bowtie, and uses it to align
reads to a reference. The difference between these two softwares
is that TopHat allows gap alignment as well. TopHat will align the
reads to the reference using the .fastq files as input (which have the
gene coordinates) and return the aligned reads, and the reads that
overlap, onto the file extension .sam. These files will be comprised
into .bam files, which store the same information but in binary code
(CBCB, 2013). The mapping is done with the Borrows-Wheeler
algorithm (which is ideal for short reads that have to be aligned
to a big reference sequence) and with reads that align only one
time, so the obtained reads belong to that gene and that gene only
(Oshlack et al. , 2010).

The mapped reads are assembled into an expression summary.
For this study, we will consider gene-level counts, which means that
the reads are assembled to a gene-level expression summary i.e.,
the number of reads that fall into a given gene, which is done re-
sorting to Cuffdiff. This software receives the .bam files (which are
the compressed version of the .sam files) with the aligned reads ob-
tained per gene and then counts them, outputting the information
on a table of counts that then proceeds to statistical evaluation.

An example of a simple table of counts obtained with this method-
ology is as follows in table 2.1, where the g genes are indicated on
the rows, and the columns indicate the i samples or libraries. Each
cell will correspond to the number of reads aligned to the gene in
that sample.

gene mut 1 control 1 control 2 mut 2
1 154 298 120 35
2 16 831 4 273
3 16 155 1 35
4 218 9 63 39
5 982 385 325 163
6 14 5 1 1

Table 2.1: Gene expression matrix example.

When proceeding to the data evaluation, there are two very
important steps involved: normalization (chapter 2.2) and differ-
ential expression gene analysis (chapter 2.3). These two steps will
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lead to a list of differentially expressed genes, which constitute the
biological insight of this project.

2.2 Methods for Normalization

This is the key step leading to the analysis of gene’s Differen-
tial Expression, DE. To better understand why, Robinson & Osh-
lack (2010) propose a scenario where a large number of genes are
uniquely aligned to one of the two experimental conditions in study
(in this thesis, mutated or wild type). What happens is that the
real sequencing state available for the other genes is shortened. If a
large amount of sequencing is dedicated to a specific experimental
condition, then there is less sequencing available for the remaining
genes. This must be adjusted, otherwise it will lead to a skewed
analysis towards one of the experimental conditions (Robinson &
Oshlack, 2010),(Oshlack & Wakefield, 2009).

It is therefore imperative to make this data comparable, in a
step called normalization. The purpose of this step is to weigh-
in systematic technical effects that occur in the data and remove
them, to ensure that systematic bias have minimal impact on the
results. A few sources of systematic variation in RNA-seq can
be referred. For instance, larger library sizes will typically lead
to higher counts for the entire sample, which is described as the
overdispersion problem. Another example is that read counts are
generally proportional to the gene length. It is important to un-
derstand that normalization is necessary in order to only consider
sample-specific effects on the analysis, hence removing systematic
variations (Robinson et al. , 2010).

During the last 4 years, some normalization approaches on how
to treat RNA-seq data have been studied, resulting in several avail-
able methodologies, each one considering different assumptions,
algorithms, approximations and aspects of the data, to adjust for
different bias. But, despite all these studies, there is still not a
consensus towards how the choice of normalization influences the
downstream analysis (Dillies et al. , 2012).

Bioconductor is an open source software that uses R statistical
programming language. This software provides tools for the high-
throughput genomic data analysis, conveying numerous software
packages designed for the analysis of: DNA microarray, DNA se-
quence, a process responsible for genetic variability called Single
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Nucleotide Polimorfism (SNP) and other data, such as RNA-seq
(Bioconductor, 2013). Some of these packages are designed only
for data normalization, while some perform both normalization and
DE analysis (chapter 2.3).

Considering the methods that have their own protocols for nor-
malization and for the identification of differentially expressed genes,
DEG, two methods are described in this thesis: edgeR and DESeq

(with Bioconductor). Regarding the packages that focuses specifi-
cally on normalization, we used the package EDASeq.

2.2.1 edgeR

This package was created in 2008 by Robinson, McCarthy, Chen,
Lun and Smyth. Although scaling to library size makes sense,
and there are ways to do this (like computing the proportion of
every genes reads rendering them to the total number of reads and
then comparing it across samples) this might not be enough as a
normalization choice. The number of reads that align to a gene
is also function of the composition of the RNA population that is
being sampled: different experimental conditions express different
RNA repertoires and the proportion might not always be directly
comparable, which can lead to an over or under sampling effect,
misleading DE calls.

With this in mind a new method for normalization was pre-
sented by Robinson and Oshlack: the trimmed mean of M-values
normalization method, TMM (Robinson & Oshlack, 2010).

Let us consider that the expected value of Ygi is a function of:
the true, yet unknown, expression levels (number of reads), µgi; of
the length of the gene Lg; and of the total RNA output of a sample
Ni, as follows:

E[Ygi] =
µgiLg
Si

Ni (2.1)

where→Si =
G∑
g=1

µgiLg (2.2)

What equation 2.2 means is that Si is the sum of the number
of reads obtained for every single gene in all libraries, times the
length of that library – it represents the total RNA output of a
sample, which is unknown and, as mentioned before, can vary a lot
according to the RNA population. Si can not be estimated directly
because there is no way of knowing for sure µgi or Lg for every gene.
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On the other hand, the relative RNA production of two samples,
represented by fi = Si/Si′, can (Robinson & Oshlack, 2010).

Based on this quantity, Robinson and Oshlack assembled a method
that equates the overall expression levels of genes between samples,
under the premise that most genes are not DE (Oshlack & Wake-
field, 2009). What they did was to consider a trimmed mean of
the data, where both the log fold-change, log FC, between library
i and library r (M r

gi) and the absolute intensity (Ag) were cut in
order to level the estimates of RNA production, defining them as:

M r
gi = log2

Ygi/Ni

Ygi′/Ni′
(2.3)

Ag =
1

2
log2(Ygi/Ni · Ygi′/Ni′) (2.4)

The authors then calculated normalization factors by selecting
one sample as reference, and calculating TMM factors for the other
samples relatively to this reference, so that for every tested sample,
TMM is computed as the weighted mean of log ratios between the
test and the reference sample, excluding the most expressed genes
and the genes with the highest log ratios. Given the hypothesis that
the majority of genes are not DE – the null hypothesis – this TMM
should be close to one. If it is not, then the value obtained provides
the correction factor to be applied to the library sizes in order to
be in agreement with H0. In R, the function calcNormFactors()

calculates these normalization factors. To obtain the normalized
read counts, the software must consider these normalization factors
and re-scale them by the mean of the normalized library sizes. The
normalized read counts per se are retrieved by dividing the raw
read counts by these re-scaled normalization factors (Dillies et al.
, 2012). This method provides a robust way to weight in relative
RNA production levels, with the normalization factors proceeding
directly to DE analysis.

2.2.2 DESeq

DESeq was developed by Anders and Huber (2010). DESeq and edgeR

both base their normalization method on the hypothesis that most
genes are not DE, although they adopt different approaches. Being
that said, Anders and Huber (Anders & Huber, 2010) developed
a method of normalization where, along with Ygi, they introduce,
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si, the size factor which stands for the effective size of library i.
In the normalization step, m size factors, si, are estimated from
the count data, resorting to the median of the ratios of observed
counts for all genes, as follows:

ŝi = mediani
kgi

(
∏m
υ=1kgυ)

1/m
(2.5)

The denominator of equation 2.5 is interpreted as a reference
sample, to which every size factor is compared (Anders & Huber,
2012).

The authors created a method that, like edgeR, takes into ac-
count that the total number of reads might not be a factor good
enough to normalize the data. They admit that there might be
some highly differentially expressed genes that can have a big in-
fluence on the total read counts, and this will lead to a biased DE
analysis, if not normalized. They then devised a method where
each sample – column – is divided by the geometric mean of the
rows – genes – and the median of these ratios is the sizing factor
for the sample in question (Rapaport et al. , 2013).

In R the normalization is reached with the functions
estimateSizeFactors() and sizeFactors(), where the size factors
are computed for each sample, and the counts are divided by the
factor associated with that sample (Anders, 2010).

2.2.3 EDASeq

Thus far, it has been stated in this chapter, how some fragments
characteristics make them preferentially detected with RNA Seq
techniques (Hansen et al. , 2012). An example that has already
been stated, is that longer genes tend to bias the analysis, as
they typically tend to have more reads aligned to them. An-
other strong example is the effect of GC content, which has been
shown to affect DNA related measurements, such as RNA Seq
(Pickrell et al. , 2010). Pickrell et al have demonstrated GC-
content effect can change from sample to sample and Benjamini &
Speed (2007) have demonstrated that both genes with high content
GC and low content GC reveal this sample specific effect (Ben-
jamini & Speed, 2012).

With this knowledge regarding GC-content effect, Risso and
Dudoit created EDASeq package, 2010. These authors took a differ-
ent approach from the two methods described before: they con-

18



2.2. Methods for Normalization

sider that there are two types of effects on read counts, within-
lane gene-specific effects and between-lane distributional differ-
ences effects. These two types of effects lead to a two step nor-
malization process: within lane normalization accounts for GC
content or gene length biases, while between lane normalization
focuses on normalization for the sequencing depth (Risso, 2011).
In essence, the approach this authors made is different from edgeR

and DESeq, because the EDASeq package has this dual approach, by
first considering a lane-specific normalization – GC content or gene
length (within normalization) – and only then accounting for the
sequencing depth (between normalization)(Bullard et al. , 2010).
The normalization is achieved with withinLaneNormalization() and
betweenLaneNormalization() functions.

The authors consider several options for either within and be-
tween normalization. Within-lane normalization has four approaches
to adjust for GC content or to gene length effect on the sample:
loess robust local regression, global-scaling, using the median or
the upper quantile, and full-quantile normalization. Loess regres-
sion will perform a regression on the data, according to the gene
effect of interest (either GC content or gene length) (Risso et al. ,
2011). The three approaches that use quantiles will be function of
a defined number of equally sized bins. These bins divide the data
according to GC content in several stratus: global scaling using
the median will scale the data to have the same median for each
bin, global scaling using the upper quantile scales the data to have
the same upper quantile and full-quantile normalization will take
the several bins quantiles and pair them in order to obtain the me-
dian for every quantile. This is an approach similar to microarrays
where, for each lane, the distribution of read counts is matched to
a reference distribution, that is defined according to the median
counts of the sorted lane (Bullard et al. , 2010).

Between-lane normalization adjusts for lane sequencing depth,
i.e., by the number of total read counts per lane i. This nor-
malization aims at rendering lane differences, making the samples
comparable. The authors postulated three different types of nor-
malization procedures, the same above referred: global-scaling nor-
malization using upper quantile, global-scaling normalization using
the median and full quantile normalization. The way these normal-
izations process the quantiles is the same as described for within
normalization but applied to the lanes in study. Hence, global scal-
ing using the median will force the median of each lane to be the
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same, global scaling using the upper quantile will force the upper
quantile of each lane to be the same and full quantile normalization
will take the quantiles of each lane and pair the median of every
quantile (Bullard et al. , 2010).

This package focuses specifically in data normalization, creat-
ing an EDASeq object of normalized data count, to be used for DE
analysis by DESeq and edgeR.

2.3 Methods for Differential Expression Gene

analysis

The previous normalization step will lead to normalized count data,
on the form of a matrix, where each cell will correspond to the
number of reads aligned to gene g in sample i. This count data
matrix will constitute the input for a differential expression gene
analysis. DE analysis is used to measure differences in expression
levels between two conditions, allowing the analyst to infer about
the genomic structure under study, either a known sequence, or a
de novo sequencing.

As normalization takes into account different considerations that
lead to different normalized count data, DE analysis also has meth-
ods based on distinct premises, that lead to alternative ways to
achieve differential expression.

Being that said, different statistical methods can be assumed for
DE analysis. The selected methods to be presented in this thesis
are: edgeR, DESeq and RankProd. RankProd has the characteristics of
not only considering a non-parametric approach – while all others
assume parametric assumptions – but also being meant for mi-
croarray analysis. Other methods examples are NOISeq, DEXseq,
DEGseq, which were not considered in our analysis, since these are
not as used in the literature.

The considered methods are all based on the null hypothesis
that genes are not differentially expressed against the alternative
hypothesis that they are differentially expressed. The five meth-
ods provide statistical elements that allow the user to infer about
differential expression analysis and gene regulation. To be men-
tioned, and of key importance, are the log fold-change, log FC,
and the false discovery rate, FDR (Benjamini & Hochberg, 1995).

The log fold-change calculation, logFC, is computed between
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two experimental conditions. It is calculated by dividing two val-
ues, A and B, that reflect gene expression measured under two
different experimental conditions, typically between mutated and
control (Robinson et al. , 2010).

FDR is a measure used in multiple testing: it controls the num-
ber of false discoveries in tests that result in a positive result (i.e.
significant result). Multiple testing corrections will adjust p-values
derived from multiple statistical tests, in order to correct for oc-
currence of false positives. This is better explained resorting to an
example: a p-value of 0.05 would imply that 5% of all tests result
in false positives. However, when considering an adjusted p-value
of 0.05, what is being considered is that that 5% of significant tests
will result in false positives. Methods for multiple testing whose
aim is to decrease FDR (like Benfamini-Hochberg) imply smaller
adjusted p-values (Benjamini & Hochberg, 1995). This is a mea-
sure typically used in microarrays or NGS data, given the amount
of tests performed in such gene-expression analysis.

2.3.1 edgeR

In order to perform statistical testing, edgeR fits the data to a nega-
tive binomial distribution, NB. NB distribution has different mean
and variance. This gives more reliability than the Poisson distribu-
tion (which is by definition the model used for count data), given
this distribution assumes the same value for the mean and the vari-
ance – unlike Poisson, over dispersion is accounted for within NB
distribution (Robinson & Smyth, 2007). This being said, the NB
distribution allows the possibility of gene-specific variability (some
genes may show different biological variability from one another)
and this is accounted for.

The gene counts are thus modelled as follows:

Ygij ∼ NB(Mipgj;φg) (2.6)

with E(Ygij) = µij = Mipgj (2.7)

and var(Ygij) = µij(1 + µijφg) (2.8)

with Ygij being the number of counts for gene g in library i and
replicate j, Mi the library size for library i, pgi the proportion of
reads for gene g in library i and φg the overdisperson parameter
for gene g(Robinson & Smyth, 2007).
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edgeR devises two levels of variation: biological and technical
variation. The package considers the dispersion parameter, φg, as
the square of the coefficient of variation, CV (φg = CV2). CV is
given, by definition, by the sum of the square of the biological co-
efficient of variation, BCV and the square of the technical CV, as
follows (with BCV being the dominant source of variation) (Mc-
Carthy et al. , 2012):

CV 2 = BCV 2 + TechnicalCV 2 (2.9)

The first step towards differential expression gene analysis is
to model the data dispersion parameter, which determines how
to model the variance for each gene. This is done by first es-
timating the common dispersion parameter for the genes, with
estimateCommonDisp() function. With this consideration, all the
genes are admitted to have the same value for dispersion when
modelling the variance. The authors assume an extension to this
tactics, given by estimateTagwiseDisp() function, where genes as-
sume their own dispersion value, while also rendering it to the
common dispersion estimate obtained with estimateCommonDisp()

function. This adjustment is done with a quantile adjusted con-
ditional maximum likelihood test, qCML, which searches for an
equilibrium between common and tagwise dispersion (Robinson &
Smyth, 2008).

The method these authors built introduces this weighted condi-
tional likelihood estimator that considers tagwise dispersion when
estimating the common dispersion. This shrinkage considers an
approximate empirical Bayes rule, which adapts the similarity of
the dispersions, considering sample sizes, scores and informations
(Robinson & Smyth, 2007).

To test the difference between expression levels under two con-
ditions, these authors use an exact test, analogous to Fisher?s exact
test or the likelihood ratio test, LRT. For both, the quantile ad-
justment considered for qCML is used to adjust the tag counts
to a common library size (Robinson & Smyth, 2007). The exact
test was developed for experimental data with single factor, while
LRT, which is in fact a LRT test for a Generalized Linear Model,
GLM, was design mainly for experiments with multiple factor de-
sign. However, this is outside the context of this project, where
we worked with single factor design experiment.
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2.3.2 DESeq

As in edgeR, DESeq package also assumes data to follow a NB distri-
bution, thus addressesing this “over dispersion” problem by mod-
elling the number of read counts for gene g in sample i (Ygi) re-
sorting to the Negative Binomial distribution, whose parameters
are determined by µgi (mean) and σ2

gi (variance) (Anders & Huber,
2012).

Ygi ∼ NB(µgi;σ
2
gi) (2.10)

The mean is expressed as the product of qg,ρ(i), and si, as follows:

µgi = qg,ρ(i)si (2.11)

where ρ(i) is the experimental condition of sample i and qg,ρ(i) is
therefore a condition value for a given experimental condition on
a specific sample i on gene g ; qg,ρ(i) is proportional to the expected
value of the true (but unknown) concentration of fragments from
gene g, under condition i ; si is the size factor for sample i. This is
particularly important when estimating the library size.

The variance: σ2
gi, reflects the dispersions to each gene, it is the

sum of the shot noise and the raw variance.

σ2
gi = µgi + s2iυg,ρ(i) (2.12)

The shot noise, µgi, is the name given to the uncertainty in
measuring a concentration by counting reads. It is dominating in
lowly expressed genes. The raw variance, s2iυg,ρ(i), is the sample-to-
sample variation, this term traduces the effective variance in the
counts and it is dominating in highly expressed genes (Anders &
Huber, 2010). The shot noise is a function of qg and ρ(i):

υg,ρ(i) = υρ(qg,ρ(i)) (2.13)

When fitting the model, the first step is to define a table of
counts of sequencing reads. These counts cannot be rounded, nor
can they be counts of covered based pairs, DESeq is designed to
work with raw counts.

Then, the package must be provided with a data.frame that
stores information about the samples and their features, each row
being a sample and each column being a feature about the sample,
such as type of library or sample conditions. It can store size sam-
ple annotations, conditions and size factors – this is called metadata

(Anders, 2010).
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The model requires some parameters to be set, the first being
the estimation of the effective library size (this is the normalization
step) and it is imperative, because the number of reads is not neces-
sarily a good way to assess differential expression for other than the
highly expressed genes. Different samples may come from different
sequencing depths, which must be put in terms of comparison. In
this step, m size factor vectors, sj, are estimated from the count
data, resorting to the median of the ratios of observed counts along
all genes:

ŝi = mediang
kgi

(
∏m
υ=1kgυ)

1/m
(2.14)

Then, the variance is estimated. For this, we first need to es-
timate, for each experimental condition ρ, n expression strength
parameters, qg,ρ(i), resorting to an averaging of the counts scaled to
the size vectors, according to the formula:

q̂jρ =
1

mρ

∑
i:ρ(i)=ρ

kgi
ŝi

(2.15)

where mρ is the number of replicates for each condition ρ and kgi
is the number of counts for gene g in sample i.

Afterwards, the sample variances, wgρ, are calculated on a com-
mon scale, for each gene g on condition ρ:

wgρ =
1

mρ − 1

∑
i:ρ(i)=ρ

(
Ygi
ŝi
− q̂gρ

)2

(2.16)

A mean scaling factor, zgρ, is also defined for each gene g on
condition ρ:

zgρ =
q̂gρ
mρ

∑
i:ρ(i)=ρ

1

ŝi
(2.17)

By default, DESeq then uses a parametric fit for statistical infer-
ence on the variance, resorting to a GLM family. This regression
may however lead to bad results, in which case, a local regression
is fitted to the data points wgρ under condition qg,ρ, to obtain a
smooth function for the estimates of the raw-variance, as follows
(Anders & Huber, 2010):

υ̂ρ(q̂gρ) = wρ(q̂gρ)− zgρ (2.18)

The test for differential expression with this package is based on
the null hypothesis that the expression strength parameter for the
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samples of experimental condition A is the same as the expression
strength parameter for the samples of experimental condition B:
H0 : qa = qb against the alternative hypothesis of H1 : qa 6= qb. To
test this, the authors defined two test statistics, KgA, KgB, as the
total counts in each condition, and their sum, KgS, as:

KgA =
∑

i:ρ(i)=A

Kgi, KgB =
∑

i:ρ(i)=B

Kgi, KgS = KgA +KgB (2.19)

and computed the probabilities of the events KgA = a and KgB = b
has p(a, b). To the pair of observed counts (KgA, KgB) a p-value was
adjusted as:

pg =

∑
a+b=kgS

p(a,b)≤p(kgA,kgB)

p(a, b)

∑
a+b=kgS p(a, b)

(2.20)

This approach is similar to Robinson and Smyth and is anal-
ogous to to other conditioned tests, such as fisher’s exact test
(Robinson & Smyth, 2008).

2.3.3 RankProd

RankProd package was developed by Breitling et al. (2004). Es-
sentially, it is a non-parametric approach on the data, that provides
tools to determine the significance levels for each gene, identifying
differentially expressed genes (based on the estimated percentage
of false predictions, pfp – also know as the FDR) associated in the
rank products’s calculation, RP. The method uses this rank system
to classify genes among replicates and identify those that are con-
sistently highly ranked (either strongly up regulated, or strongly
down regulated) as differentially expressed (Hong, 2011).

This package presents a different perspective on the data: it
assumes that the approximation of a distribution for the count
data might be too much of an assumption. This can potentially
not be the best way to process the data as (from the n genes in
study) possibly not all of the genes can be assumed to follow the
same distribution. By admitting a non parametric approach, these
authors start their analysis in a non restricted way.

Breitling et al. (2004) assume not only that most genes are
not differentially expressed but also that their variance measure
is equal. Regarding the replicate arrays, the authors assume that
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the measurements are independent between them (Breitling et al.
, 2004).

RankProd package considers that, under the null hypothesis,
the order/rank of all genes is random and that the probability of
finding a specific gene among the top r of n genes in a replicate is
given by:

p = r/n (2.21)

Multiplying these probabilities allows the calculation of the corre-
sponding combined probability, as a rank product:

RP =
∏
j

rj/nj (2.22)

where rj is the position of a specific gene in the j-th replicate
and nj is the total number of genes in the j-th replicate sorted by
increasing/decreasing values (up regulated/down regulated).

High RP values reflect a bigger certainty (higher probability)
that the observed position of the gene in study is where the method
estimated it to be, hence, high RP values concern significant genes
to the analysis (Hong et al. , 2006) In order to check how likely it is
to observe a certain RP value, the authors propose a permutation-
based procedure. This resampling method allows sample rear-
rangement, producing different sets of the same data, to more
accurately quantify estimates and perform significance tests. In
practice, one has to count how many simulated RP values are
smaller or equal than the observed RP, #(RP ), over a large num-
ber, m, of permutations on the experimental data. From here, an
estimate of the RP expected value, E(RP ), is given by #(RP )/m.

Now, it is possible to calculate an estimate of the FDR for gene
g and all the genes with RP values smaller or equal than the RP
of gene g, RPg:

FDRg =
E(RPg)

r(g)

where r(g) represents the position of gene g in the list of genes
ordered by increasing value of RP.

The problem of multiple testing resulting from the simultane-
ous analysis of thousands of genes, is automatically resolved by
this procedure since RP values are converted into expected values,
which allows the direct calculation of the FDR.

The main disadvantage of RP method is that there is a signif-
icant loss of performance, when the equal-variance assumption is
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seriously violated and the number of replicates is higher than three
(Breitling & Herzyk, 2005).
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Chapter 3

Results

This chapter is meant to show the results obtained thorough the
course of the project, with particular emphasis on the differentially
expression phase of the analysis, exploring all the methods used
and the very different results they lead to. The data in origin of
the project follows the defined Ygi for the number of read counts
the align to gene g (g = 1, 2, 3, 4, 5, ..., 23207) in sample i (i =
1,2,3,4,5,6).

The tests performed in this chapter, to assess differential ex-
pression, were performed to a FDR of 1%, 5% and 10%, although
ultimately we chose to consider a FDR of 5%, in order to achieve
a reasonable number of genes.

3.1 Samples

At a genetic level, ccRCC occurs by loss of a portion of chromosome
3. This can be due to several alterations in different positions of
that specific DNA portion, all of them leading to the inactivation of
gene SETD2 in this type of cancer (Duns et al. , 2010). Duns et al,
2010, studied 10 ccRCC mutated cellular lines that had deletions in
specific places of this chromosome portion. Their studies led to the
conclusion that the mutations in four of those samples, RCC AB,
RCC ER, RCC FG2 and RCC MF, will all have a strong effect on
SETD2.

The authors verified (through a protein detection technique,
Western Blot) that these mutations led to the inactivation of
H3K36me3, as seen in figure 3.1. In this figure, six samples were
tested for the presence of proteins H3K36me3 and H3K36me2. A
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black spot indicates the presence of those proteins on the sample
tested, with fuller spots, in principle, being synonym of a big-
ger amount of protein detected. The lack of a spot means that
the method did not detect the protein under analysis on the sam-
ple. We can see that the four samples tested reveal absence of
H3K36me3 protein.

Figure 3.1: Global histone methylation levels in ccRCC mutated cellu-
lar lines. H3K36me3 and H3K36me2 levels in ccRCC cellular lines were
detected by Western blot analysis on the four mutated samples and also
on two HEK293T samples, which were included as positive controls for all
protein tests – image adapted from (Duns et al. , 2010).

According to these authors results, we chose to analyse the
4 above mentioned samples. RCC AB, RCC ER, RCC MF and
RCC FG2 had, respectively, 1 bp deletion, a mutation, a 9 bp
deletion and a lack of 3 terminal exons of the chromosome se-
quence. For our analysis, two other samples served as controls (or
wt samples): RCC1 Caki1 and RCC1 Caki2.

The 6 samples (or libraries) were analysed resorting to Illu-
mina/Solexa technique analysis with HiSeq 2000 model, forming
paired-end reads. After read quality assessment, all sequenced li-
braries were mapped to the human genome data base of NCBI
group (hg19) using TopHat (v.2.0.3).

The mapped reads were then assembled into a table of counts,
showing how many read counts are there to each gene, and 23207
genes from the entire human genome were tested. This table of
counts served as input for every normalization technique applied
to the data. The counts for six of those genes are represented in
table 3.1 and the total counts for the raw data are represented in
figure 3.4. The same six genes were represented for every normal-
ization procedure studied in this thesis, and the total count data,
normalized for each technique, was plotted in figure 3.4, to em-
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phasize the differences of the several considerations taken by the
normalization techniques.

RCC AB RCC Caki1 RCC Caki2 RCC ER RCC FG2 RCC MF
WASH7P 2546 1431 2682 2083 2063 3274

NOC2L 10101 20421 33962 18615 16438 6718
SLC2A10 76 7504 6716 1 22 2

LOC729737 316 536 303 552 1915 1073
AMIGO2 7107 43401 71248 5196 11981 5469

SETD2 4419 8916 10555 1533 1138 6055

Table 3.1: Raw counts for the 6 ccRCC cellular lines.

3.2 Normalization

3.2.1 edgeR

This package also receives as input the raw count matrix, which
serves to create edgeR object, DGEList. This object is part of the
DGEList-class and stores the read counts and a data.frame. And
this data.frame has the library sizes and the experimental condi-
tions for each sample.

After creating this object, the first step was to apply a filter
to the analysis. The criteria applied here is to filter out lowly ex-
pressed genes, the interest being in keeping tags that are expressed
in at least one of the two experimental conditions in study (mu-
tated or wt samples). As proposed by the authors, genes having
less then one count per million on either of the groups were re-
moved. Thus, the filtered data is composed by 14247 genes out of
the initial 23207, reducing it to about 61%.

After straining the data, the analysis proceeded with the es-
timation of the size factors, applying calcNormFactors() function.
This function aims at determining normalization factors to scale
the raw library sizes. The obtained normalized factors, as well as
the library sizes and experimental groups, are stored on the DGEList

object and are represented in table 3.2.
Note that all library sizes seem equally sized and that the

norm.factors column also appears to give relatively similar sized
factors. RCC AB and RCC FG2 present the highest normaliza-
tion factor, which means that these should be the smallest libraries
from the bunch. Likewise, RCC MF has the lowest normalization
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group lib.size norm.factors
RCC AB mutated 157228170 1.1331755

RCC Caki1 wt 153131637 0.9470461
RCC Caki2 wt 159440222 1.0287259

RCC ER mutated 121392837 0.9439515
RCC FG2 mutated 142518192 1.0601597
RCC MF mutated 118509054 0.9051302

Table 3.2: Size factors for edgeR

factor, implying that this is the sample with the highest number
of reads aligned to.

Like in EDASeq, the normalized count data obtained resorting to
this package is stored on a matrix to be used for DE analysis. The
counts for six of the genes analysed are represented in table 3.3
and the distribution of the full normalized count data for edgeR, is
represented in figure 3.4.

RCC AB RCC Caki1 RCC Caki2 RCC ER RCC FG2 RCC MF
WASH7P 2015.36 1391.67 2306.22 2563.81 1925.69 4304.62

NOC2L 7995.89 19859.83 29203.21 22911.44 15344.12 8833.20
SLC2A10 60.53 7297.79 5774.92 1.35 20.53 2.80

LOC729737 250.02 521.28 260.49 679.50 1787.61 1410.73
AMIGO2 5625.85 42208.34 61264.64 6395.35 11183.74 7190.89

SETD2 3498.07 8670.99 9076.01 1886.94 1062.23 7960.96

Table 3.3: Counts normalized for edgeR

With edgeR, both the lib.size and the norm.factors are multi-
plied together and act as effective library size factor.

3.2.2 DESeq

The input to this package is the matrix of read count data obtained
with NGS for gene g in every sample i.

After reading the count data matrix, a data.frame was defined
for the samples, specifying their experimental condition and the
type of read they were assigned to (all of which paired-end read).

We then provided this data.frame to DESeq newCountDataSet()

function, from the CountDataSet class. This function creates a
CountDataSet object which stores information regarding the aligned
read counts and the samples in study, as defined by the data.frame.
This object is not yet fully defined, as it still lacks information
about the size factors and the dispersions, the first being the key
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step at this point of the analysis (normalization), the latter to be
determined later, on the DE analysis (section 3.3.2).

The function estimateSizeFactors() was used for the normal-
ization step, to estimate the effective library size based on each
sample count data. The function estimates the size factors, storing
them to the CountDataSet object, as obtained by table 3.4.

sizeFactor condition
RCC AB 1.32 mutated

RCC Caki1 1.02 unmutated
RCC Caki2 1.14 unmutated

RCC ER 0.85 mutated
RCC FG2 1.11 mutated
RCC MF 0.77 mutated

Table 3.4: Size factors for DESeq

Two things must be noted here. The first is that the values
for the size factors of each library are not very discrepant (they
all revolve around the value one). The second is that samples
from RCC ER and RCC MF (both mutated samples) are the two
samples that have, in comparison, the higher number of counts,
given that their size factor values are the lowest, the table also
indicates that RCC AB has the highest size factor, indicating that
this sample has less counts than the others.

Like in the two previous methods, the normalized counts ob-
tained for DESeq are kept in a matrix that will serve as input for
DE analysis that. Like EDASeq, DE analysis will proceed with DESeq

(section 3.3.2), with edgeR (section 3.3.1) and with RankProd (sec-
tion 3.3.3). Table 3.5 represents the normalized counts of the same
six out of the 23207 genes (notice that, unlike the previous methods
– that filter the data prior to estimating normalization factors –
DESeq does not perform this step here, it performs it after estimat-
ing variance, in section 3.3.2). The full effect of DESeq normalization
procedure on the data, compared to raw counts, is represented by
the first line of figure 3.4.

3.2.3 EDASeq

EDASeq package is a two step normalization procedure: it first
normalizes within lane (making the count data within every library
comparable to one another) and then between lane (allowing the
data between the different lanes to be comparable).
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RCC AB RCC Caki1 RCC Caki2 RCC ER RCC FG2 RCC MF
WASH7P 1924.17 1407.73 2342.55 2441.41 1851.64 4236.08

NOC2L 7633.96 20088.87 29663.56 21817.99 14753.86 8692.12
SLC2A10 57.44 7381.95 5865.98 1.17 19.75 2.59

LOC729737 238.82 527.28 264.65 646.98 1718.80 1388.31
AMIGO2 5371.20 42695.11 62230.42 6090.05 10753.50 7076.09

SETD2 3339.71 8770.99 9219.10 1796.78 1021.41 7834.29

Table 3.5: Counts normalized for DESeq

The analysis with this package starts with a file containing the
gene level counts for the six samples. The first thing done was to
apply a filter to this raw data. The criteria used, as advised by
the authors, was that genes that had a total amount of ten average
read counts in the six samples are excluded: this made our data
go from 23207 to 17293 genes, about 75%. After this, a data.frame

was created, storing gene level features information – gene length
and GC content – for every gene in study. The data.frame served
as input to define the newSeqExpressionSet() function of EDASeq

SeqExpressionSet() class. This function stores not only read counts,
but also feature data for every gene and information about the
samples.

EDASeq can normalize the data according to both stored fea-
tures: GC content or gene length. Our analysis proceeded with
normalization for GC content, given this is the most used and
most described approach in papers. The results were plotted in
figure 3.2. The figure represents, on the first column, the loess
regression of the counts on GC content. Column two has the same
data on the axis, but considering within lane normalized counts
for GC content, with function withinLaneNormalization(). Column
three accounts for the between lane normalization, achieved with
betweenLaneNormalization(). From this picture, it seems clear that
GC content is a good input for this package normalization in our
count data, leading to a stable variation of it – as seen in the upper
panel three of figure 3.2.

With these authors approach, when normalizing within lane for
the GC content – second panel in figure 3.2 – the effect this factor
introduces to the count data is removed. When normalizing be-
tween lane, the effect on sequencing depth is also removed. As a
result, these authors made available a method with a more specific
normalization process, leading to normalized data, as seen in panel
three from figure 3.2.
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3.2. Normalization

Figure 3.2: Biasplots for EDASeq normalization. The first line represents
the three panels for data normalization for GC content, the second line
represents the data normalized for gene length. The first column plots
raw counts regarding the variable in study (GC content and gene length),
the second and third columns stand for within and between lane normal-
ization, for each factor.

An extra parameter in the newSeqExpressionSet() function is
the offset, which is a matrix with the same size as the count data.
It is used to store a normalization offset to be supplied to the
model in differential expression analysis. This parameter allows
this packages users to keep the count data unchanged, saving an
offset argument to the data, which, if not specified, will constitute
a matrix of zeros. A visual representation of the offset parameter
is provided with figure 3.3. The figure plots the GC content data,
followed by its between lane normalization and then between lane
normalization with an offset. The first and third panel appear to
be the same, although they are produced with different criteria.

The normalized counts obtained with EDASeq are stored in a ma-
trix to be used for differential expression analysis by DESeq (section
3.3.2), by edgeR (section 3.3.1) and by RankProd (section 3.3.3). Ta-
ble 3.6 represents the normalized counts of six of the 17293 genes.
The full effect of EDASeq normalization procedure on the data, com-
pared to raw counts, is represented by the first column of figure
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Chapter 3. Results

3.4.

RCC AB RCC Caki1 RCC Caki2 RCC ER RCC FG2 RCC MF
WASH7P 2920 2058 3068 3013 2172 5058

NOC2L 11155 21230 33032 23735 18058 9417
SLC2A10 52 7100 5741 2 14 6

LOC729737 447 930 646 1098 1993 2201
AMIGO2 5432 31616 56718 6624 11100 6466

SETD2 2954 8167 8354 1648 698 7263

Table 3.6: Counts normalized for EDASeq.
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Chapter 3. Results

Figure 3.4: Boxplots for normalized data counts on log scale. The pic-
ture represents the effects of the several normalization procedures on the
data: the first column corresponds to the raw data, followed by EDASeq

within lane and between lane normalization; the second column shows
data normalized for DESeq, followed by edgeR.

38



3.3. Differential Expression Analysis

3.3 Differential Expression Analysis

3.3.1 edgeR

edgeR with edgeR normalized matrix

With the fully defined DGEList object in section 3.2.1, and before
proceeding to DE analysis, we did a Multidimensional scaling plot
of the gene expression profiles, with the plotMDS() function, repre-
sented in figure 3.5. This function calculates (internally) the dis-
tance between each pair of samples as the root of the mean square
deviation (Euclidean distances), and plots them. It provides an
interesting way to perceive the data on a 2D scale, showing the
sample relations in a multidimensional scaling mode.

Figure 3.5: Multidimensional scaling plot for the data –normalization
with edgeR and DE analysis with edgeR – showing the relations between
the samples in two dimensions, with dimension 1 separating mutated and
wt samples.

We can see from this figure that dimension 1 separates the mu-
tated from the wt samples. This evidences that the replicates from
each condition are reasonably similar to each other, which should
lead to differences in DE analysis.
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We carried through the analysis by estimating the dispersion.
This was done by first estimating the common variance parameter
for the reads, with estimateCommonDisp() function. This function
receives as input the DGEList and returns a value for the dispersion,
considering all genes. The value obtained was 0.5260142, with
which we get to the coefficient of biological variation of 0.7252683.
This value means that the true abundance for each gene can vary
up or down by 73% between replicates, which points to a high
variation.

The analysis progressed with the estimateTagwiseDisp(), which
estimates an individual dispersion parameter for each gene, while
moderating it to the common dispersion parameter. This way, esti-
mates that are bigger then the common value are made smaller and
vice versa. This offers an improved statistical inference by sharing
information, which is important because the common dispersion
parameter determines the same unique value for the variance for
all genes – and that can be considered a rather risky statement.
The way we set this squeezing effect was by defining the prior.df

parameter in the estimateTagwiseDisp() function. In this analysis,
we defined it to be 4 degrees of freedom (given that we were work-
ing with 6 samples for two groups, 6− 2 = 4), this coerces edgeR to
restraint the tagwise dispersion to the common value.

A plotBCV() was designed in figure 3.6, representing both the
biological coefficient variation (obtained with the common disper-
sion) and the estimated dispersions (obtained with tagwise disper-
sion):

This led to the final stage of the analysis, the differential ex-
pression, which is achieved with the exactTest() and the topTags()

functions. The first receives as input the DGEList and a vector,
pair, which names the group comparison to be done. The latter
received as input the exactTest() statistics, and adjusted it with
the Benjamini-Hochberg procedure to control FDR. The top six
genes the method reported as differentially expressed, are given in
table 3.7.

In this table, tests for each genes were done, based on the null
hypothesis that is defined in exactTest() (and that is based on
the qCML method): evaluating the null hypothesis, that there is
no difference between mutated and wt samples (non differentially
expressed genes) versus the alternative hypothesis that there is.
The table reports logFC values, logCPM values (which considers the
log of the counts per million obtained for that gene), the PValue
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3.3. Differential Expression Analysis

Figure 3.6: Normalization with edgeR and DE analysis with edgeR –
plot for the dispersion estimates obtained with tagwise dispersion (black
dots) and common dispersion, 0.5260142, (represented with the red line).

Comparison of groups: mutated-wt
logFC logCPM PValue FDR

MLLT11 -3,960785 5,734351 1,04557E-13 1,49047E-09
PLAC8 -7,346652 4,589403 2,08922E-11 1,48909E-07
C8orf4 -7,796926 1,722237 1,11116E-10 4,72846E-07

COL5A1 7,762157 5,694833 1,32682E-10 4,72846E-07
ACOT7 -3,067926 5,897775 6,0447E-10 1,72334E-06

AFAP1-AS1 -9,447595 5,712523 9,62531E-10 1,9709E-06

Table 3.7: Normalization with edgeR and DE analysis with edgeR – top
6 identified genes.

and the FDR (which refers to the adjusted p-value) obtained for this
tests.

A final function was added to the analysis, decideTestsDGE().
This function received as input the DGEList results from the
exactTest() function (again, adjusting the Benjamini-Hochberg pro-
cedure to control FDR, by settling it to 5%). This analysis iden-
tified 307 genes as differentially expressed, 183 up regulated and
the remaining 124 down regulated (these results can be visualized
resorting to the plotSmear() in figure 3.7):
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Figure 3.7: Normalization with edgeR and DE analysis with edgeR –
plot of all 307 genes identified as DE (red dots).

edgeR with EDASeq normalized matrix

The EDASeq package estimates correction factors that adjust for
sample specific GC content effects. These are compatible with
edgeR, when passed to this package with the original counts and an
offset (to be supplied to a generalized linear model).

Thus, the original counts and the offset obtained with EDASeq

in section 3.2.3 was used to create an edgeR DGEList object, which
served as input for the plotMDS() function, plotting the relative
similarities of the six samples in study. This is represented by
figure 3.8.

From this figure, we can see that dimension 1 seems to separate
the mutated from the wt samples into two different regions, which
allows us to infer that the replicates are analogous within their
experimental group. This should translate in differences in DE
analysis.

The following steps for this analysis are in essence very similar
to the previous topic, except that for this joint analysis, a design
matrix is defined, in order to create a generalized linear model,
which was done resorting to the model.matrix function. This func-
tion creates a design matrix for the given factors (in this case, a
vector where the value 1 was given to the mutated samples, and
the value 2 was given to the wt samples), using the original data,
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3.3. Differential Expression Analysis

Figure 3.8: Multidimensional scaling plot for the data –normalization
with EDASeq and DE analysis with edgeR – showing the relations between
the samples in two dimensions, with dimension 1 separating mutated and
wt samples.

as defined by EDASeq with an offset.

Next, the dispersion was estimated, but using the appropriate
functions to a GLM model, the estimateGLMCommonDisp() function
and the estimateGLM

TagwiseDisp() function. These were applied under the same premises
as before, but they are supplied not only with the DGEList ob-
ject, but also with the design matrix. The obtained value for the
estimateGLMCommonDisp() was 0.6485521, meaning that the coeffi-
cient of biological variation value was 0.8053273. This points to a
high variation between replicates.

The estimateGLMTagwiseDisp() was enforced to the data and then
a plotBCV() function was created, to plot how the two estimate
dispersions functions are associated, shown in figure 3.9.

Afterwords, we assessed for differentially expression, resorting
first to functions glmFit() (in which the offset is supplied) and
glmLRT(). These functions fit a negative binomial model, imple-
mented through generalized linear models methods, followed by
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Figure 3.9: Normalization with edgeR and DE analysis with edgeR –
plot for the dispersion estimates obtained with tagwise dispersion (black
dots) and common dispersion, 0.6485521, (represented with the red line).

likelihood ratio tests for the coefficients in the linear model.
Finally, the topTags() function was applied to the data: it re-

ceives as input the glmLRT() statistics and adjusts the test p-values
resorting to Benjamini-Hochberg procedure. Table 3.8 shows the
top six genes this joint methodology returned as differentially ex-
pressed:

Coefficient: groups: mutated-wt
logFC logCPM LR PValue FDR

GPR173 10,681581 29,03964 58,64665 1,88689E-14 3,262998e-10
ISL2 9,759915 26,46001 53,61301 2,44138E-13 1,459297e-09

FAM25A 10,620449 25,57775 53,36073 2,77591E-13 1,459297e-09
EREG 10,271295 34,14963 52,97660 3,37546E-13 1,459297e-09

PLAC8 8,289833 31,61084 51,32342 7,83356E-13 2,709314e-09
CST4 11,769234 26,81185 48,61243 3,11886E-12 8,989077e-09

Table 3.8: Normalization with EDASeq and DE analysis with edgeR –
top 6 identified genes

This method also used decideTestsDGE() function and plotSmear()

to determine and better visualize the results obtained with this
methodology: the analysis determined 866 genes as differentially
expressed, 464 being up regulated, 402 down regulated.
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Figure 3.10: Normalization with edgeR and DE analysis with edgeR –
plot of all 866 genes identified as DE (red dots).

edgeR with DESeq normalized matrix

A final approach was taken regarding edgeR differential expression
achievements. To that extend, in this part of the analysis, we pro-
vided edgeR the normalized count data obtained from DESeq nor-
malization as in section 3.2.2.

The same graphical representation of Euclidean distances was
determined and plotted in figure 3.11.

And, once again, the samples were devised based on their ex-
perimental group, leading to a good prediction for the differential
expression analysis.

The next step was to determine variance dispersion,
estimateCommonDisp() led to 0.6659756, which translates into a coef-
ficient of biological variation of 0.8160733. The estimateTagwiseDisp()

function was applied to the data, for the same prior.df value of
4 degrees of freedom (6 samples − 2 experimental groups = 4)
and the plotBCV() was designed, representing with a red line the
common dispersion value statistics obtained for this analysis and,
with the black dots, the estimates achieved with tagwise dispersion
(figure 3.12).

This led to final stage of the analysis, identifying differentially
expressed genes. This was achieved with the exactTest() and
topTags() functions, with the same inputs as previously described
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Figure 3.11: Multidimensional scaling plot for the data –normalization
withDESeq and DE analysis with edgeR – showing the relations between
the samples in two dimensions, with dimension 1 separating mutated and
wt samples.

in section 3.3.1, under ”edgeR with edgeR normalized matrix”. The
top six genes this joint methodology identified as differentially ex-
pressed are represented in table 3.9.

Comparison of groups: mutated-wt
logFC logCPM PValue FDR

MLLT11 -3,96587 5,717642 1,92E-12 4,45E-08
C8orf4 -7,74723 1,665067 1,01E-10 1,17E-06

PLAC8 -7,50675 4,530177 2,49E-10 1,92E-06
COL5A1 7,721449 5,740842 5,15E-10 2,36E-06

INSR 7,340207 4,698672 5,49E-10 2,36E-06
RASSF6 5,315024 5,179019 6,09E-10 2,36E-06

Table 3.9: Normalization withDESeq and DE analysis with edgeR – top
6 identified genes

The decideTestsDGE() function revealed 254 significant genes for
a FDR of 5%: 136 were up regulated, 118 were down regulated. A
graphical representation of this results is given by figure 3.13. We
can observe that the plot returns orange dots on the yy axis. These
dots represent the genes whose counts were zero in all samples of
one of the groups (mutated or wt).
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Figure 3.12: Normalization with edgeR and DE analysis with edgeR –
plot for the dispersion estimates obtained with tagwise dispersion (black
dots) and common dispersion, 0.6659756, (represented with the red line).

3.3.2 DESeq

DESeq withDESeq normalized matrix

To complete CountDataSet object, after having estimated the size
factors vector (section 3.2.2), the analysis proceeded with the vari-
ance estimation, by use of the estimateDispersions() function. With
the results achieved with this function, a graphic of empirical dis-
persion values and local regression dispersion values was plotted
against the mean of normalized counts, obtained as from the
estimateSizeFactors() function, resorting to the
plotDispEsts() function (figure 3.14).

The variance estimation, achieved with the estimateDispersions()

function, depends on estimating a dispersion value for each gene,
fitting a local regression curve through the estimates and then as-
signing a dispersion value to each gene.

DESeq most recent version uses a parametric fit for the regres-
sion. This way, the regression line models not only the underlying
dispersions, but also the true underlying variance between differ-
ent genes, which is a more conservative approach. Upon estimating
the dispersion for each gene, whatDESeq does is attribute a value to
the per gene estimation (every black dot on figure 3.14). Should
this point estimate be below the parametric regression line, the
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Figure 3.13: Normalization with edgeR and DE analysis with edgeR –
plot of all 254 genes identified as DE (red dots).

method assigns to this point the estimate obtained from the re-
gression line. If the point estimate lies above the regression line,
the method assumes this value as it is.

However, this parametric fit gave very poor results so, as ad-
vised by the package authors, the analysis proceeded with a local
fit (Anders & Huber, 2010). With a local fit, the assumption is
that the red regression line in figure 3.14 stands for the true un-
derlying dispersions, and that the variation of the point estimates
around it reflects the sampling variance.

Like mentioned in section 3.2.2, Anders and Huber recommend
that the filtering step should be done after estimating the variance.
They hypothesize that, by filtering the data at this stage, the raw
p-values should be the same as without filtering, but the adjusted
p values might get better (Anders & Huber, 2012).

In order to do this, a data.frame with a new variable was created,
filterstat, which is defined as the average number of reads for
each gene across all samples. The data.frame also has a p-value

associated with testing the null hypothesis of the equality of the
mean counts in both experimental conditions, and the row.names

from the genes in study. With this data.frame a scatterplot was
devised, plotting filterstat versus the log of the p-value. This is
represented in figure 3.15A.

From figure 3.15A we can point that it seems that 40% of the
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Figure 3.14: Plot for empirical dispersions forDESeq normalization
andDESeq differential expression analysis. The empirical dispersions val-
ues for EDASeq normalization andDESeq differential expression were plot-
ted with a local fit no better adjust to the data.

genes revolve around 2.5 in the log scale, which translates in a p-
value around 0.003 (10−2.5). This means that in 40% of the genes
with lower counts (with exception of a few points that do not seem
to follow this trend) almost none seem to achieve that p-value.
The authors propose those low count genes to be excluded from
the analysis, which reduces the data to 13924 genes (scatterplot
presented in figure 3.15B).

The function nbinomTest() was then used to test the differences
between the base means of the mutated and wt samples. Table
3.10 shows the results for the first six tested genes, which are or-
ganized in a data.frame. The baseMean stands for the mean nor-
malized counts, baseMeanA and baseMeanB stand for the mean of
normalized counts for the mutated and wt samples, respectively,
the log2FoldChange is the logarithm of the foldChange which is cal-
culated from the mutated to the wt samples.

The null hypothesis tested is qiA = qiB, which raises the ques-
tion if the expression strength parameters from gene i on sample
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Figure 3.15: Normalization withDESeq and DE analysis withDESeq – the
figure represents a scatterplot of the raw data (A) and the filtered data
(B).

id baseMean baseMeanA baseMeanB FC log2FC pval padj
SLC2A10 2221,48 20,23593 6623,967 327,3369 8,354632 6,41E-16 1,35E-11
COL14A1 2160,478 43,12196 6395,189 148,3047 7,21242 2,16E-13 2,28E-09

GLUL 5017,09 7510,402 30,46438 0,004056 -7,94562 1,53E-11 1,08E-07
MLLT11 7568,358 1213,797 20277,48 16,70582 4,062279 1,77E-09 9,35E-06

LOC100422737 13563,7 20275,1 140,9121 0,00695 -7,16877 1,81E-08 7,62E-05
COL5A1 6994,693 10465,58 52,92484 0,005057 -7,62749 4,06E-08 0,000107

Table 3.10: Normalization withDESeq and DE analysis withDESeq – top
6 identified genes

A are the same for sample B. This translates in assessing, in the
test statistics, the counts for these samples on each gene. The null
hypothesis corresponds to the non differentially expressed genes
and the alternative hypothesis is that the counts obtained for the
mutated and the wt samples are different, corresponding to the
differentially expressed genes. With R, this is evaluated consider-
ing the fold-change obtained from the mutated to the wild type
samples: the pval is the p-value for the statistical significance of
this change and the padj is the adjusted p-value for multiple test-
ing, using the Benjamini-Hochberg procedure, which controls FDR
(Anders & Huber, 2012).

The results for these multiple tests are represented in figure
3.16, with the differentially expressed genes at a FDR of 0.05 rep-
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resented in red. This figure is a plotMA, which, by definition, plots
the log of an intensity ratio (M-values) against averages (A-values).
Figure 3.16 represents the log2FoldChange against the mean of nor-
malized counts, baseMean. The figure has a clear tilt in the negative
yy axis, which is due to the fact that there are only two wt samples
versus four mutated samples.

Figure 3.16: Normalization withDESeq and DEG analysis withDESeq –
plot MA. This plot represents the mean of the normalized counts against
the log2 FC, representing the differentially expressed genes in red.

From this plot (figure 3.16) a few things can be noted: we can
see that the point estimates are relatively uniformly distributed
and appear to show a symmetry around the yy axis - marked with
the red line - which is an indicator that the differential expression
testing gave reliable results. We can also observe that this method-
ology seems to identify more up regulated genes (genes with a pos-
itive log FC) then down regulated genes.

This analysis, with normalized data withDESeq and differential
expression analysis withDESeq identified 53 genes at a 5% FDR, 34
up regulated and 19 down regulated.
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DESeq with EDASeq normalized matrix

The matrix of normalized counts obtained with EDASeq in section
3.2.3 serves as input to determine differential expression withDESeq.
The first step regarding this analysis was to define the normalized
count matrix as aDESeq object, to make it accessible to this package.
This was done resorting to the as function (this function receives
as input the count matrix and forces it into the CountDataSet class
ofDESeq).

However, this CountDataSet is defined differently from the pre-
vious section: since the data it receives is already normalized for
between-lane, it defines the sizeFactor vector as a vector composed
by six values of one, as observed by the following table 3.11.

sizeFactor condition
RCC AB 1 mutated

RCC Caki1 1 unmutated
RCC Caki2 1 unmutated

RCC ER 1 mutated
RCC FG2 1 mutated
RCC MF 1 mutated

Table 3.11: Effect on size factors forDESeq when normalized with EDASeq

The analysis proceeded with the estimateDispersions() func-
tion, to which, as in the previous section, a local regression was ap-
plied, and the values obtained were represented with plotDispEsts()

in figure 3.17.
The next step in the analysis was to assess for differentially

expressed genes, by applying the nBinomTest() to the data.

id baseMean baseMeanA baseMeanB FC log2FC pval padj
EREG 19057,83 57082,5 45,5 0,000797 -10,293 1,20E-27 2,08E-23

CYTL1 4602,333 13787 10 0,000725 -10,4291 8,16E-25 7,05E-21
COLEC10 6099 18249,5 23,75 0,001301 -9,58571 2,16E-23 1,24E-19

AFAP1-AS1 5819,833 17402,5 28,5 0,001638 -9,25412 2,60E-22 1,12E-18
GSTA1 14222,67 1,5 21333,25 14222,17 13,79585 2,56E-19 8,86E-16
KRT79 1617,833 4843 5,25 0,001084 -9,84937 2,27E-18 6,53E-15

Table 3.12: Normalization with EDASeq and DE analysis withDESeq –
top 6 identified genes

The joint analysis with data normalized with EDASeq and dif-
ferential analysis withDESeq led to the identification of a very con-
siderable number of genes, when compared with the full analysis
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Figure 3.17: Plot for empirical dispersions for EDASeq normalization
andDESeq differential expression analysis. The empirical dispersions val-
ues for EDASeq normalization andDESeq differential expression were plot-
ted with a local fit no better adjust to the data.

withDESeq. It identified, at a 5% FDR, 542 genes as differentially
expressed, 204 up regulated, 338 down regulated.

3.3.3 RankProd

Even though RankProd premises do not link directly to the technique
in study (NGS) – as they are applied in microarrays – this method
is designed to operate meta-analysis and its DE analysis assessment
starts, as in Hong 2011, by being supplied with a normalized matrix
of the gene expression data to be analysed (Hong, 2011). Thus
far, to our knowledge, there are no studies pointing at discovering
RankProd applicability to NGS data but, by assuming our data’s six
lanes as arrays, we proposed to study whether it applies to this
RNA-Seq data set.
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RankProd with EDASeq normalized matrix

The first step in the analysis was to use RP() function. This function
applies the rank product method to identify differentially expressed
genes. It takes as input a count data matrix, a vector with the
class labels of the samples and, an extra parameter stating the
number of permutations. The first argument was provided from
the normalized counts obtained with EDASeq in section 3.2.3; the
second is defined by the number of columns, with labels 0 and
1, for wt and mutated samples respectively; the third was set to
m = 100 permutations.

The results obtained with this function served as input for the
plotRP() function, which plots the estimated pfp values (or FDR)
versus the number of identified genes, to a certain cutoff (in this
analysis considered to be 0.05), as in figure 3.18.

Figure 3.18: Normalization with EDASeq and DE analysis with RankProd

– FDR representation for genes ordered by RP, red dots corresponding to
DEG.

The following step in the analysis was to apply topGene() func-
tion to the data, to obtain the FDR values associated to every test.
The top six genes identified by this methodology as differentially
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expressed (340 genes for a FDR of 0.05) are represented in table
3.13 (with FC standing for fold-change and regulation designating
the regulation of the gene).

id RP FC FDR p.val regulation
CCRL2 134,1432 0,0009 0,0000 0,0000 down

CST4 140,0818 0,0013 0,0000 0,0000 down
FAM25A 143,6501 0,0024 0,0000 0,0000 down
GRAP2 155,9459 0,0006 0,0000 0,0000 down

HENMT1 159,5171 0,0033 0,0000 0,0000 down
CCDC140 161,6660 0,0048 0,0000 0,0000 down

Table 3.13: Normalization with EDASeq and DE analysis with RankProd

– top 6 identified genes.

This methodology outcome led to the identification of 340 dif-
ferentially expressed genes for a FDR of 5%. From these, 285 were
down regulated and 55 were up regulated. The ”EDASeq+RP”
plot for down regulated genes provides a visual observation to these
results not only representing the genes (in red), but also because it
complies with typical behaviour of RankProd, plotting the genes as
an increasing curve. However, for the up regulated genes, around
the 500th gene position according to RP value, a distortion is pre-
sented in the curve, which does not provide the usual behaviour of
the FDR.

RankProd withDESeq normalized matrix

The same methodology, with the steps described in the previous
topic, was applied to the normalizedDESeq count matrix, which was
imported from section 3.2.2.

The obtained results for the plotRP() function, for the same
cutoff, are represented in figure 3.19, with the top six identified
genes by this methodology represented in table 3.14.

The results of this method seem to induce far more optimism
than the prior combination. They provide good plots, as expected
by this method: where there is a rapid growth in the number
of identified genes for the smallest considered FDR values. Also,
analysing the full table output from these tests, we can see that
it provides fair values and that the FDR increases with increasing
RP values.

This joint methodology identified 149 genes as differentially ex-
pressed for a FDR of 5%. From these genes, 41 were down regu-
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Figure 3.19: Normalization withDESeq and DE analysis with RankProd

– FDR representation for genes ordered by RP, red dots corresponding to
DEG.

lated, the other 108 were identified as up regulated.

3.4 Comparing methodologies

Although the focus of this thesis is on inferring differentially ex-
pressed genes between mutated and wt samples, it is pertinent
to have a closer look on the normalization techniques applied and
their effects on the samples.

Thus, it seemed interesting to see how the normalization effects
correlate within the several methodologies applied. An interesting
way to represent this is through plot(), for any of the samples
tested. An over view of these relationships between normalization
techniques was provided with pair() function, reflected in figure
3.20 for RCC AB. This figure represents (on the log scale) the
counts obtained for this sample, regarding the methods considered
for normalization, and determines the correlation between them
resorting to the Pearson correlation coefficient.
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Figure 3.20: Pair plot for normalization for RCC AB. This pair plot
represents the several approaches taken on normalization and returns the
correlation values associated with all comparisons.
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id RP/Rsum Fold Change FDR P.value Regulation
GPR173 20,2256 0,0016 0 0 down

EREG 22,3198 0,0037 0 0 down
IGFBP5 25,5953 2494,0709 0 0 up

NDN 30,6378 0,0242 0 0 down
SLC2A10 31,4153 0,0031 0 0 down

LOC100216001 43,7642 0,012 0 0 down

Table 3.14: Normalization withDESeq and DE analysis withDESeq – top
6 identified genes.

These results comply with the boxplots represented in figure 3.4,
as they both reflect the smoothing effect provided with normaliza-
tion on the data. The plot suggests that the genes each method
selected to normalize are actually properly normalized, with high
correlations, thus providing good input for differential analysis.

With reference to the normalization step, at this point, it is
important to understand that as good as normalization step ends,
the better DE analysis starts. And all the methods we have been
studying ensure that normalization is robust and reliable, therefore
supplying good raw material for the ultimate step, DE analysis.

As mentioned in the beginning of chapter 3, to assess differential
expression, and to compare the results obtained with the several
methodologies, we considered three cutoff values for FDR: 1%, 5%
and 10%. The results obtained with this different considerations
were summarized in figure 3.21.

From this figure we can observe that, when usingDESeq method
for normalization, less genes are identified as DE, regardless of the
method used for differential analysis (first three columns). EDASeq,
on the other hand, seems to output the opposite result, leading to
a higher number of DE (last three columns).

To be noted here is that edgeR normalized count matrix did not
serve as input for the other methods. This is due to the fact that
edgeR does not provide ways to export its count normalized data in
a format that the other methods considered can read. This method
served only to assess DE analysis regarding its own normalized
count data.

Comparing the three given approaches in terms of normalization
we can see thatDESeq, globally, reports the lowest counts – figure
3.21, first three columns – followed by edgeR – figure 3.21, forth
column – and then EDASeq – figure 3.21, last three columns.

With the same figure, regarding DE analysis with different forms
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Figure 3.21: The figure represents the counts per methodology (CM)
obtained for the three cutoff values of FDR (1%, 5% and 10%) for the
several approaches taken, where D stands forDESeq, E stands for edgeR,
R stands for RankProd and EDA stands for EDASeq. The + sign separates
the two phases of the analysis, normalization and differential analysis.

of normalization, we can observe that it seems to perform best
for edgeR, reporting a higher number of genes as differentially ex-
pressed (column 2 versus column 4 versus column 5) than forDESeq
(column 1 versus column 6) or RankProd (column 3 versus column
7).

Another understanding from this figure is that, the higher the
FDR considered, the higher the number of genes identified as dif-
ferentially expressed. This because FDR will adjust for a higher
p-value, allowing for more positive results. As mentioned, FDR
is a statistical method used to correct for multiple comparisons:
by choosing a higher cutoff criteria, we allow for a widen range of
valid considered p-values and this means that more genes may be
(falsely) identified as positive results. While a FDR of 10% can
lead to bigger false positives, 1% may be too much of a stringent
value. Thus, we proceeded the analysis with a FDR of 5%, clearing
the previous figure 3.21 to figure 3.22.

Figure 3.22 shows the counts obtained for each methodology,
while also evidencing the differences in the fold-change for the iden-
tified differentially expressed genes. We observed that the various
combinations of normalization and DE analysis result in different
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Figure 3.22: The figure represents the counts per methodology obtained
for a FDR of 5%.

proportion of genes differentially identified as up or down regu-
lated genes. With D+R leading to the lowest number of down
regulated genes (41/149 = 28%), followed by D+D(36%), E+E(40%),
EDA+E(46%), D+E(47%), EDA+D(62%) and EDA+R(84%) (with
the highest number of identified down regulated genes). This re-
sult seems to point at EDASeq as a normalization method that leads
to a better balance of differentially expressed genes.

Our analysis followed trough with comparing these methodolo-
gies among them. We know how many genes are detected as DE
by the methodologies in study, but, regarding the main goal of this
project, it is of key importance to learn if the methods identify
the same genes as differentially expressed. In order to assess this,
we first focused the analysis on determining how many genes these
methodologies had in common for 5% FDR. and for the top x genes
identified, how many were there in common. The results obtained
were represented in table 3.15.

From table 3.15, on a first sight, we can immediately observe
how EDASeq package regularly identifies a bigger number of differ-
entially expressed genes. To a more extensive evaluation, and to
simplify reader’s comprehension, the table will be analysed first
top/down. Thus, the first line compares self protocol methodolo-
gies, D+D versus E+E, leading to most genes identified with D+D
to also being identified with E+E (43 out of the 53 genes reported
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Methodology A Methodology B CM5% (A vs B) top100 top500 top1000
D+D E+E 43 (53 vs 307) 50 299 665
D+D D+E 36 (53 vs 254) 49 263 649
D+D D+R 23 (53 vs 149) 26 185 432
D+E D+R 71 (254 vs 149) 28 240 524
D+E E+E 200 (254 vs 307) 77 373 750

EDA+D EDA+E 363 (542 vs 866) 32 246 502
EDA+D EDA+R 106 (542 vs 340) 15 138 343
EDA+E EDA+R 259 (866 vs 340) 39 293 616
EDA+E E+E 202 (866 vs 307) 32 197 410
EDA+E D+E 197 (866 vs 254) 41 275 561
EDA+D D+D 48 (542 vs 53) 19 187 497
EDA+R D+R 51 (340 vs 149) 20 240 563

Table 3.15: Methodology A and B stand for the two analysis in com-
parison as described in figure 3.21, at 5% FDR. The table also represents
the total of genes identified as DE for the top 100, 500 and 1000 genes for
both A and B.

as DE by D+D are also accounted with E+E). Furthermore, we
can observe that these two methodologies seem to report that for
a cutoff of X genes, more than 50% are identified by both. This
points to an understanding that both methodologies have a similar
internal computing process, as reported by Anders et al (Anders
& Huber, 2012).

Proceeding to the next three lines (regarding protocols forDESeq
normalizations) we notice that these point to consistent values,
with D+D versus D+R, reporting the lowest counts.

The 5th line is comparing the effect of DE analysis for D+E
versus E+E, thus assessing edgeR response. This test reported con-
sistently higher figures both for a FDR of 5% and fot top X genes.
Which leads us to infer how robust edgeR package performance is
(Oshlack et al. , 2010).

EDASeq normalization – lines 6, 7 and 8 – reported the highest
counts from all methodologies comparisons, with EDA+R present-
ing the lowest count values amongst them, even though they still
report higher counts then all the other approaches considered on
the data (figure 3.22)

When comparing the EDASeq normalization effect against theDESeq
normalization effect for the given DE analysis methods (last 3 lines)
we can report that it consistently returns higher values for EDASeq.
Given that EDASeq performs a two step normalization – within and

61



Chapter 3. Results

between lane – whileDESeq focuses on accessing between lane’s only,
this can mean that EDASeq is accounting for genes that escapeDESeq
scope.

A critical analysis proceeded focusing on the two steps of this
methodology: normalization and DE analysis. Therefore, we de-
termined how many DE genes were identified in common when the
same normalization strategy was set:DESeq and EDASeq (figure 3.23).
We then assessed how many DE were identified in common when
the DE strategy was under test, edgeR,DESeq and RankProd (figure
3.24). A final consideration was appraised regarding self normal-
ization and DE analysis, with edgeR andDESeq (figure 3.25). All
these combinations were best represented trough Venn Diagrams
representations, as follows.

Figure 3.23: Venn diagram representing how many genes were identified
as DE when the same normalization method was applied (i) normalized
data withDESeq (identified 16 genes in common between the three DE
strategies considered), (ii) normalized data with EDASeq (identified 98
genes in common between the three DE strategies).

From figure 3.23 we can observe that EDASeq normalization pro-
cedure leads to a higher number of genes identified as differentially
expressed, which seems to point that EDASeq can be a less stringent
normalization procedure thanDESeq.

Figure 3.24 enhances DE analysis results, regarding the meth-
ods chosen to normalize. The plot reverts edgeR as the method
that leads to a higher number of genes identified has differentially
expressed, while observing thatDESeq and RankProd appeared to be
less selective.

Regarding self protocol methodologies, we can see that almost
all the genes identified withDESeq full procedure (both normaliza-
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Figure 3.24: Venn diagram representing how many genes were identi-
fied as DE when the same DE analysis method was applied (i) DE data
withDESeq (identified 48 genes in common between the two normalized
strategies considered), (ii) DE with edgeR (identified 146 genes in com-
mon between the three normalized strategies considered) and (iii) DE
with RankProd (identified 51 genes in common between the two normal-
ized strategies considered).

tion and differentially expression gene analysis) were also identified
as differentially expressed when edgeR self protocol was in study.

As a final inference we proposed to see how many genes were
identified as differentially expressed among the 7 methodologies
considered, resorting to intrinsic matching functions in R, and ob-
tained a list of 6 genes for a 5% FDR:

[1] "SLC2A10" "COL14A1" "GPR173" "LOC100506178"

[5]"EREG" "ADAMTSL1"

Having observed that RankProd did not provide the most consis-
tent results, particularly when provided with an EDASeq normalized
count matrix (chapter 3.3.3), we were curious towards its influence
in the final analysis and thus tested the same matching functions
code in R, which led to 27 genes identified as differentially ex-
pressed for a 5%FDR:

[1] "SLC2A10" "COL14A1" "GLUL" "MLLT11"

[5] "LOC100422737" "COL5A1" "GPR173" "BCAM"

[9] "RASSF6" "UNC5CL" "CXADR" "LOC100506178"

[13] "GPX3" "ACOT7" "CFI" "EREG"

[17] "INSR" "EPHA7" "ADAMTSL1" "ADAMTS16"

[21] "LOC440173" "RAB11FIP4" "GPC6" "MYO15B"

[25] "TXNIP" "TBX15" "COBL"
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Figure 3.25: Venn diagram representing how many genes were identified
as DE when the same method was applied for the two steps of the analysis:
normalization and DE analysis (43).
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Discussion

This thesis main goal was to respond to a biological question on the
influence of SETD2 mutations on ccRCC. To that extend, we anal-
ysed the obtained transcriptome for four mutated and two wild-
type samples resorting to RNA-Seq technique.

This thesis workflow considered the analysis divided into two
major steps: normalization and differential expression analysis.
We aimed at studying different forms of data normalization and
reported how this resulted in different outputs for the data expres-
sion analysis.

To a first extension, we aimed at comparing how different forms
of normalization operate the data, all of these provided properly
normalized count data: seen in figures 3.4 with the boxplots and
3.15 with the pair plots of Pearson correlations. These results of
proper normalized data induce to a good prediction, since this is
the raw material for DE analysis (Dillies et al. , 2012).

In order to accurately infer to our biological goal, we proposed
to study several statistical ways to analyse the same data, thus aim-
ing at obtaining a statistical support to our conclusions, regarding
trully differentially expressed genes. This led to a complex set of
combined analysis, where four methods (EDASeq, edgeR,DESeq and
RankProd) were considered and all the possible logical combinations
between them were followed trough, as follows: EDASeq+DESeq,
EDASeq+edgeR, EDASeq+RankProd,
DESeq+DESeq,DESeq+edgeR, DESerq+RankProd and edgeR+edgeR.

We observed thatDESeq normalized procedures (with differential
expression analysis resorting toDESeq, edgeR and RankProd) led to
the lowest counts of differentially expressed genes: 53, 254 and
149 genes (respectively) were identified for a FDR of 5% – val-
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ues taken from tables 3.21 and 3.22 – while EDASeq identified (for
the same differential expression analysis approaches, and the same
FDR) 542, 866 and 340 genes. We can see thatDESeq seems to offer
a stricter normalization method, while EDASeq seems to have less
stringent inherent methodologies to calculate normalizing factors.
We know that EDASeq normalizes for both within and between sam-
ples, whileDESeq normalizes just between samples, which seem to
point that either this method leaves relevant information out of the
analysis, or it could be too selective. Another justification is that,
given EDASeq normalizes for both, it benefits from a wider range of
applicability.

When comparing methods to assess differentially expressed genes
(to a FDR of 5%) regarding the different normalization techniques
applied to it, edgeR revealed to be a more flexible method, iden-
tifying 254, 307 and 542 genes as differentially expressed forDESeq,
edgeR and EDASeq normalization matrix. DESeq however, as a dif-
ferentially expressed method, did not show a consistent outcome,
identifying only 53 genes with self normalization and 542 when
using EDASeq normalizing factors.

With RankProd, we achieved peculiar results: EDASeq plots are
not conclusive, namely in what concerned up regulation, figure
3.18. The proportion of up regulated genes is lower than the pro-
portion obtained by other methods (DESeq and edgeR, with the
same normalization). On the other hand, the revealed boss could
be an indicator that the method might not be appropriate for this
kind of data – NGS. A possible, yet remote explanation for this, is
that our data constitutes an unbalanced study, with four mutated
samples to two wt samples.

Finally, the conjoint analysis for all the methods referred through-
out this project, led to an identification of six differentially ex-
pressed genes with the analysis: ”SLC2A10”, ”COL14A1”, ”GPR173”,
”LOC100506178”, ”EREG” and ”ADAMTSL1”.

Back to main goal of our project, the answer is that the above
6 genes respond to SETD2 mutations.

Many scientific questions remains unanswered for many years.
NGS technique just started its contributions. Being so new, is
expected to give more and more answers to the scientific challenges
in the years to come.

Hopefully, these conclusions may lead to further investigations.
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